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ying a Thousand Deaths: Redundant Pathways From Different
rganelles to Apoptosis and Necrosis

OHN J. LEMASTERS
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ell death is an essential event in normal life and de-
elopment, as well as in the pathophysiological pro-
esses that lead to disease. Although the literature on
ell death has grown enormously in size and complexity,

pattern has emerged that each of several distinct
rganelles (plasma membrane, mitochondrion, nucleus,
ndoplasmic reticulum, lysosome) gives rise to signals
hat induce cell death. Most often these signals con-
erge on mitochondria to initiate a common pathway to
ither caspase-dependent apoptosis or ATP depletion-
ependent necrosis. This brief overview emphasizes the
ultiple and often redundant pathways between differ-

nt organelles that lead ultimately to a cell’s demise.

ell death is a prominent and essential event in both
normal life of organisms and pathophysiological

rocesses that lead to disease. In development, pro-
rammed cell death, or apoptosis, occurs to sculpt and
emodel organs and body parts, as in creating clefts in
imb buds to form fingers and toes.1 In more mature
rganisms, immune surveillance induces apoptosis in
ransforming preneoplastic cells and in virally infected
ells.2 Apoptosis also often accounts for reversion of
ypertrophy to atrophy.3 In the gastrointestinal tract,
here renewal of epithelial cells can occur every few days,
rogrammed death of old and presumably worn out cells
xactly matches their replacement by mitotic prolifera-
ion.4 Although rarer, necrotic cell death, also called
ncosis or oncotic necrosis,5 also occurs physiologically,
s in the shedding of the uterine decidua in human
enses. The literature on cell death, especially apoptosis,

as grown enormously in size and complexity, but a
attern emerges that each of several distinct organelles
ives rise to signals leading to cell killing. Moreover,
ost often these signals converge on the mitochondrion

s an initiator of both apoptotic and necrotic cell death.
his brief overview emphasize the multiple and often

edundant pathways between different organelles that

ead ultimately to a cell’s demise.
Modes of Cell Death: Necrosis and
Apoptosis

Cell death, both necrotic and apoptotic, is fre-
uently a dominant feature of disease. In liver, particu-
arly, disease processes cause hepatocellular death with
eplacement of hepatocytes by scar tissue.6 Prevention of
ell death is thus often an important therapeutic goal.
onversely in cancer chemotherapy, cell death is the
bjective. Likewise, a promising therapy in hepatic fi-
rosis is induction of apoptosis in collagen-producing
tellate cells of the liver.7

Abbreviations used in this paper: Akt, proto-oncogene product of the
iral oncogene v-akt; AIF, apoptosis inducing factor; Apaf-1, apoptotic
rotease activating factor-1; ATF6, activating transcription factor 6;
ad, heterodimeric partner for Bcl-xL and Bcl-2; Bak, Bcl2 homologous
ntagonist/killer; Bax, conserved homolog that heterodimerizes with
cl2; Bcl2, B cell lymphoma-2; BclxL, Bcl extra long; Bid, novel BH3
omain-only death agonist; BH3, Bcl2 homology domain 3; caspase,
ysteine-aspartate protease; CHOP, C/EBP homologous protein; DISC,
eath-inducing signaling complex; DR4/5, death receptor 4/5; Drp-1,
ynamin-like protein type 1; eIF-2�, eukaryotic initiation factor-2�; ER,
ndoplasmic reticulum; FADD, Fas-associated protein with death do-
ain; GRP78, glucose-regulated protein-78; GRP94, glucose-regu-

ated protein-94; HtrA2/Omi, high temperature requirement A2; IKK,
�B kinase; IGF, insulin-like growth factor; iNOS, inducible nitric oxide
ynthase; IRE1, type 1 ER transmembrane protein kinase; I�B, inhib-
tor of �B; IAP-1, inhibitor of apoptosis protein-1; IAP-2, inhibitor of
poptosis protein-2; JNK, cJUN NH2-terminal kinase; Mcl-1, myeloid
ell leukemia sequence 1; MPT, mitochondrial permeability transition;
F�B, nuclear factor �B; p21, 21 kDa promoter; p53, 53 kDa pro-
oter; PARP, polyadenosine ribose polymerase; PERK, PKR like ER

inase; PI3 kinase, phosphoinositide 3-kinase; PIP3, phosphatidylino-
itol trisphosphate; PKR, RNA-activated protein kinase; PUMA, p53
p-regulated modulator of apoptosis; Smac, second mitochondria-
erived activator of caspases; tBid, truncated Bid; TGF�, transforming
rowth factor �; TNF�, tumor necrosis factor �; TNFR1, TNF receptor
; TRADD, TNF receptor-associated death domain protein; TRAF2,
NFR-associated factor 2; TRAIL, tumor necrosis factor-related apop-
osis-inducing ligand; UPR, unfolded protein response; VDAC, voltage
ependent anion channel; XBP1, X-box-binding protein 1; XIAP, X-

inked inhibitor of apoptosis protein.
© 2005 by the American Gastroenterological Association
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Necrotic Cell Death

The features of necrotic and apoptotic cell
eath are well described and reviewed elsewhere.1,5,8,9

he penultimate event in necrotic cell death is abrupt
oss of the plasma membrane permeability barrier
aused literally by plasma membrane rupture.10,11 As a
onsequence, cells release enzymes like ALT and LDH,
ose metabolic intermediates such as those that reduce
etrazolium dyes, and take up supravital dyes like
rypan blue and propidium iodide as markers of cell
eath. For reversible stresses like anoxia, cells can be
escued up to the point of plasma membrane rupture,
ut not afterwards.11 Usually necrosis is the conse-
uence of metabolic disruption and ATP depletion,
hich produces inhibition of plasmalemmal Na,K ion
umps. Thus, cellular swelling often precedes onset of
ecrotic cell death.5

Apoptosis

Whereas necrotic cell death occurs abruptly by
TP depletion-dependent plasma membrane rupture,

poptosis is an ATP-requiring process without a clearly
istinguished point of no return. Moreover, apoptosis
nlike necrosis may take hours to go to completion.
onetheless, the two modes of cell death are not neces-

arily independent phenomenon, but can be intertwined.
or example, ATP depletion in cells undergoing apopto-
is leads to necrosis, whereas ATP replenishment to
revent necrosis can induce apoptosis instead.12–16 In-
eed, necrosis and apoptosis can represent different out-
omes of identical pathways committing cells to death, a
rocess of ‘necrapoptosis.’17

In most instances of apoptosis, activation of caspase
, one of a family of caspases (cysteine-aspartate pro-
eases1) involved in apoptosis, begins execution of the
nal and committed phase of apoptotic cell death,
hich is characterized by chromatin condensation,

nternucleosomal DNA degradation, cell shrinkage,
ormation of numerous small surface blebs (zeiosis),
nd phosphatidyl serine externalization on the plasma
embrane. Pathways leading to caspase 3 activation

nd apoptosis seem only to become more complex, and
t is no exaggeration to say that cells can die a thou-
and deaths. A pattern emerges, however, that each
ajor cellular structure can originate its own set of

nique signals to induce apoptosis. These signals are
ften associated with specific damage or perturbation
o the organelle involved. In this way, cells choose
eath by apoptosis rather than life with the conse-

uences of organelle damage. t
Plasma Membrane

The plasma membrane is the recipient of a broad
ange of receptor-mediated signals. Prototypic proapop-
otic signaling occurs from binding of death ligands (eg,
NF�, Fas ligand, TRAIL) to their corresponding death

eceptors (TNFR1, Fas, DR4/5).18,19 In the simplest
orm of signaling (Type 1, Figure 1), ligand binding
eads to receptor trimerization, association of adapter
roteins (TRADD, FADD) and activation of caspase 8,
n initiator caspase. Activated caspase 8 then proteolyti-
ally activates caspase 3 and apoptosis ensues. Similar
ignaling occurs after association of Fas ligand with Fas
nd TRAIL with DR4/5.

Various events in the plasma membrane modulate
eath receptor signaling. The degree of expression of
eceptor genes is, of course, an important determinant of
cell’s sensitivity to death receptor ligands. Addition-

lly, certain stimuli, such as hydrophobic bile acids,
ecruit death receptors like Fas to the cell surface, pre-
umably by exocytosis of endomembranes.20 Death re-
eptors so recruited may self-activate even in the absence
f ligand. A variety of receptors localize to lipid rafts
ontaining relatively stiff membrane lipids like choles-
erol and sphingomyelin, the latter concentrated in the
uter leaflet of the bilayer. With death receptor activa-
ion, sphingomyelin hydrolysis to ceramide occurs in
hese rafts, usually via acid sphingomyelinase, an enzyme
hat may also incorporate into the plasma membrane
hrough fusion of endomembrane vesicles. Ceramide so
ormed then self-associates through hydrogen bonding to
romote raft coalescence and formation of molecular
latforms that cluster signal transducers, including acti-
ated receptors, adaptor proteins, and caspase 8—the
o-called death-inducing signaling complex (DISC).18

phingomyelinase and exogenous ceramide are apopto-
enic in many cells, and the rearrangement of lipid rafts
nto much larger platforms may be an important co-
timulatory factor in death receptor-mediated apopto-
is.21 Glycosphingolipids, such as ganglioside GD3, also
ntegrate into signaling platforms to promote apopto-
is.22

Mitochondria

Cytochrome c Release

The discovery in 1996 that cytochrome c pro-
otes caspase 3 activation in extracts of cytosol solidified

rowing evidence of involvement of mitochondria in
poptotic signaling.23 In so-called Type 2 signaling,
ctivated caspase 8 cleaves the cytosolic protein Bid to a
runcated active fragment, tBid, that translocates to mi-

ochondria and induces cytochrome c release.19,24–26 tBid
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s a BH3 only proapoptotic Bcl2 family member that
nteracts with either Bak or Bax, 2 other proapoptotic
cl2 family members, to induce cytochrome c release.27

n hepatocytes exposed to TNF�, Fas ligation, or TGF�,
ype 2 signaling leads to opening of nonspecific mito-
hondrial permeability transition (MPT) pores in the
nner membrane conducting all solutes up to 1500
a.28–31 This drastic alteration to mitochondrial perme-

bility causes mitochondrial depolarization, uncoupling
f oxidative phosphorylation and large amplitude mito-
hondrial swelling. Swelling, in turn, leads to rupture of
he outer membrane and leakage of cytochrome c into the
ytosol. Cytochrome c induces Apaf-1 and procaspase 9
o assemble into haptomeric apoptosomes and an ATP
or dATP)-dependent cascade of caspase 9 and caspase 3
ctivation.32,33 Because the MPT represents such a severe
erturbation of mitochondrial function, onset of the

Figure 1. Scheme of apoptotic signaling from the plasma membra
PT virtually assures cell death, but the mode of cell h
eath depends on other factors. If onset of the MPT is
apid and synchronous in all of a cell’s mitochondria, as
ccurs with stresses like ischemia/reperfusion, Ca2� over-
oad, various hepatotoxicants and exposure to reactive
xygen species, then a precipitous fall of ATP (and
ATP) occurs that actually inhibits caspase 9/3 activa-
ion. When this occurs, cell death has a necrotic pattern.
y contrast, if onset of the MPT is slower and less

ynchronous or when alternative sources of ATP forma-
ion (eg, glycolysis) are present, then necrosis is pre-
ented and caspase activation leading to apoptosis occurs
nstead.9,15–17,34,35

Studies of mitochondrial involvement in apoptosis
ange a gamut of cell types from developing worms and
rog eggs to undifferentiated tumor cells and differenti-
ted mammalian cells like hepatocytes, enterocytes, and
yocytes. Although various cell types are described as

itochondria, nucleus, endoplasmic reticulum, and lysosomes.
aving Type 1 or Type 2 signaling, in reality both
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athways often co-exist, one simply producing faster
ignaling that the other.29 In many models of Type 2
ignaling, cytochrome c release appears to occur via
ormation of specific pores in the mitochondrial outer
embrane rather than via the MPT. Except for the

mportant requirement for either Bak or Bax, the mo-
ecular composition and properties of the putative cyto-
hrome c release channels remain poorly understood.27 In
eLa cells (a cell line derived from an atypical cervical

denocarcinoma), cytochrome c release from mitochon-
ria activates caspase 3, which then acts retrogradely to
ause mitochondrial depolarization and inhibition of
ADH-linked respiration.36,37 By contrast in primary

epatocytes, mitochondrial inner membrane permeabili-
ation (the MPT) with depolarization occurs prior to
ytochrome c release and caspase 3 activation.28,29,31 In
epatocytes, caspase 3 inhibition does not prevent mito-
hondrial depolarization after death receptor signaling,
hereas specific inhibition of the MPT prevents depo-

arization, cytochrome c release, caspase 3 activation, and
poptosis.

An argument against involvement of the MPT in
any forms of apoptosis is the assertion that cell killing

ccurs without mitochondrial swelling, but careful elec-
ron microscopy shows that mitochondrial swelling with
uter membrane rupture occurs in virtually all of a broad
ange of apoptotic models.38 A role of physical disruption
f the outer membrane in cytochrome c release is also
onsistent with the empirical observation that Bcl-2
amily proteins make the outer membrane permeable to
olutes up to at least two million Da molecular mass.39

ne recent proposal is that the cytochrome c release
hannel is not a protein at all but is made up of lipid
eramide barrel structures in the bilayer that grow pro-
ressively in size after pro-apoptotic signaling,40,41

hereas other work implicates ganglioside GD3 in onset
f mitochondrial permeabilization.22 Another proposal
ttempts to reconcile the roles of inner and outer mem-
rane permeabilization in cytochrome c release.42 Outer
embrane permeabilization is proposed to occur first,

ut even after opening of cytochrome c release channels
n the outer membrane, much cytochrome c is retained in
he mitochondrial cristae due to the narrow necks of
hese tubular invaginations of the inner membrane.43

hen the MPT occurs, the inner membrane undergoes a
onfigurational change much like that studied exten-
ively in the 1960s and 1970s.44,45 Such remodeling
eems due to leakage from the matrix space of adenine
ucleotides and other metabolites after MPT pore open-
ng.46–48 As a consequence, the narrow necks connecting
he cristae to the mitochondrial surface open up to allow

ntracristal cytochrome c release. Although this model X
as received much attention, the idea that cytochrome c
oes rapidly through putative 3 nm release channels in
he outer membrane but not through the �30 nm
penings of cristae in the inner membrane seems implau-
ible. Clearly, future investigations are needed to deter-
ine whether cytochrome c release actually occurs via

ne mechanism or by a variety of different mechanisms.
he latter would certainly be consistent with the redun-
ancy of apoptotic signaling in many other respects.
uch redundancy of signaling and multiplicity of mech-
nisms requires that apoptotic signaling be characterized
n each individual cell type of interest.

Regulation of Mitochondrial Signaling

Numerous mechanisms tightly regulate apoptotic
ignaling. Expression levels of procaspases, Apaf-1, and
ther proteins vary from cell to cell, and some terminally
ifferentiated cells, such as neurons, do not respond to
icroinjected cytochrome c with caspase activation and

poptosis.49 Expression of anti-apoptotic Bcl2 family
embers, like Bcl2, Bcl-xL, and Mcl-1, is another im-

ortant mechanism frequently used by cancer cells to
lock apoptosis.50,51 These antiapoptotic Bcl2 family
embers purportedly make heterodimers with proapop-

otic family members like Bax and Bak, but the real
pecifics of the interaction and how such interactions
eutralize the cytochrome c-releasing properties of Bax
nd Bak is not well understood. The voltage-dependent
nion channel (VDAC) in the outer membrane is pro-
osed to be an important anchoring point for Bax and
ther proteins regulating cytochrome c release.52,53 A
unctional complex of Bad (a proapoptotic Bcl2 family
ember regulated by phosphorylation), protein phos-

hatase-1, glucokinase, and other proteins has also been
roposed to exist in isolated liver mitochondria and be
mportant for integrating pathways of glucose metabo-
ism and apoptosis,54 although other reports indicate that
o detectable glucokinase is associated with mitochon-
ria isolated from mice and rats.55,56

Inhibitor of apoptosis proteins (IAPs) provide another
rake on apoptotic signaling by inhibiting caspases, in-
luding IAP-1, IAP-2, and XIAP.57,58 Some IAPs inhibit
ignaling upstream of mitochondria at caspase 8, whereas
thers like XIAP inhibit caspase 9/3 activation after
ytochrome c release. Additional proteins suppress IAP
ctivity, providing an “inhibitor of the inhibitor” effect
hat promotes apoptosis. In particular, mitochondria
ontain Smac, a mitochondrial intermembrane protein
hat is released with cytochrome c after apoptotic signal-
ng.57,59,60 Smac inhibits XIAP and thus promotes apo-
totic signaling after mitochondrial signaling. Thus, the

IAP to Smac ratio is an important determinant of
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hether caspase 3 activation occurs after cytochrome c
elease. During ischemia to hepatocytes, XIAP but not
mac decreases in hepatocytes, which makes the cells
ore vulnerable to apoptosis after reperfusion.61 Along
ith cytochrome c and Smac, other proapoptotic proteins

eleased from mitochondria during apoptotic signaling
hrough mitochondria include AIF (a flavoprotein oxi-
oreductase that promotes chromatin condensation and
NA degradation), endonuclease G (an enzyme that
egrades DNA), and HtrA2/Omi (a serine protease that
nhibits and degrades IAPs).57,62–66

Mitochondrial fragmentation is often prominent in
poptosis. Drp-1, a large GTPase mechanoenzyme, me-
iates mitochondrial fission. Drp-1 also forms complexes
ith BAX and other proapoptotic Bcl2 family members

o promote outer membrane permeabilization and cyto-
hrome c release during apoptosis.67 Drp-1 overexpres-
ion promotes apoptosis, whereas Drp-1 mutants inhibit
t. Thus, fusion-fission events in mitochondria may also
ensitize the organelles to pro-apoptotic signaling.

Survival Pathways

Death receptors also stimulate antiapoptotic
F�B signaling through the adapter protein, TRAF2,

nd IKK.19,68 IKK phosphorylates I�B, an endogenous
nhibitor of NF�B activation, leading to proteosomal
�B degradation. Degradation relieves inhibition of
F�B and allows NF�B to translocate to the nucleus and

ctivate gene expression. These genes include IAPs,
clxL, inducible nitric oxide synthase (iNOS) and other

urvival factors.69,70 Nitric oxide from iNOS leads to
nhibitory S-nitrosylation of caspases and cGMP-depen-
ent suppression of the MPT.71,72 In many models, ac-
ivation of NF�B suppresses apoptosis after death recep-
or ligation. Apoptosis then only occurs when NF�B
ignaling is blocked, as with proteosomal inhibition,
rotein synthesis inhibition or overexpression of a non-
egradable I�B superreppressor.19,28,69 In liver in vivo,
nduction of apoptosis with TNF� requires co-treatment
ith galactosamine, which depletes dUTP and thus
locks protein synthesis.73,74 Simultaneous stimulation
f potent pro- and anti-apoptotic pathways by death
eceptor ligands accounts, in part, for their pleiotropic
ffects and the consternation of investigators.

Another source of antiapoptotic signaling is the PI3
inase/Akt pathway.75,76 Binding of insulin, IGF, and
arious other growth factors to their corresponding re-
eptors activates PI3 kinase, causing formation of PIP3
nd then activation of Akt/protein kinase B, a serine/
hreonine protein kinase. One consequence is the phos-
horylation and inactivation of the proapoptotic Bcl2

amily member, Bad, but several other antiapoptotic E
argets of PI3 kinase/Akt signaling exist. In many cell
ines, withdrawal of serum or specific growth factors
nduces apoptosis due to suppression of the PI3 kinase/
kt survival pathway.

Nucleus

Death receptors initiate what is called the extrin-
ic pathway of apoptosis. In the intrinsic pathway, sig-
aling begins in the nucleus. The prototypic initiating
vent is UV or gamma irradiation causing DNA damage.
NA damage leads to activation of p53, a nuclear tran-

cription factor, with transactivation of genes for apopto-
is and/or cell-cycle arrest, especially the proapoptotic
cl2 family members PUMA, NOXA, and Bax for ap-
ptosis and p21 for cell cycle arrest.77,78 PUMA, NOXA,
nd Bax translocate to mitochondria to interact with
ntiapoptotic Bcl2 proteins to induce cytochrome c re-
ease by the same mechanisms discussed above for the
xtrinsic pathway.79–81 Additionally, p53 itself translo-
ates to mitochondria and may interact with Bcl2 family
embers to induce apoptosis.82,83 Many tumors, espe-

ially those from the gastrointestinal tract, have loss of
unction mutations for p53.

DNA damage also activates PARP, a DNA repair
nzyme. With moderate activation, PARP helps mend
he broken DNA, but with strong activation PARP
auses formation of polyadenosine-ribose polymers that
eplete cellular NAD and ultimately exhaust cellular
TP. ATP depletion then leads to necrotic cell death.
owever, if p53-dependent apoptotic signaling occurs
ore quickly, activated caspase 3 proteolytically de-

rades and inactivates PARP. Thus, irradiation can lead
o either PARP activation and ATP depletion-dependent
ecrosis or PARP degradation during caspase-dependent
poptosis.84,85

Endoplasmic Reticulum

The endoplasmic reticulum (ER) is another or-
anelle that is a source of proapoptotic signals. Main
unctions of the ER include protein synthesis and storage
f a rapidly mobilized pool of calcium. Oxidative stress
nd other perturbations can inhibit ER calcium pumps
nd activate calcium release pathways with the conse-
uence that calcium dumps into the cytosol from the ER
o be taken up by mitochondria.86,87 Such uptake may
nduce a Ca2�-dependent MPT. ER calcium release also
ctivates phospholipase A2 and the formation of arachi-
onic acid, another promoter of the MPT.88

Additionally, ER calcium depletion perturbs the
roper folding of newly formed proteins in the lumen of

R cisternae, which causes “ER stress” and the unfolded
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rotein response (UPR).89–91 Inhibitors of glycosylation,
arious toxicants, and synthesis of mutant proteins can
lso cause ER stress. Calcium-binding chaperones in the
R, such as GRP78 and GRP94, mediate the detection
f unfolded and misfolded proteins. These chaperones
elp fold nascent unfolded proteins into a proper mature
rotein conformation. In the absence of unfolded/mis-
olded proteins, GRP78 associates with and inhibits
pecific sensors of ER stress. During ER stress, GRP78
ranslocates from the sensors to unfolded/misfolded pro-
eins to cause sensor activation by disinhibition. The 3
rincipal sensors are PKR (and PERK), IRE1, and
TF6. PKR and PERK are protein kinases that promote
hosphorylation of eukaryotic initiation factor-2a (eIF-
�), which suppresses ER protein synthesis, decreases
elivery of newly formed protein to the ER lumen and
ttenuates the unfolding stress.92 Ire1 is a membrane-
panning receptor protein kinase and riboendonuclease
hat initiates splicing of a preformed mRNA, XBP1,
nto an activated transcription factor.93 ATF6 is another
ranscription factor that is transported to the Golgi after
R stress.94 Proteases in the Golgi process ATF6 to an
mino-terminal fragment that is released and taken up
nto the nucleus. Together Ire1 and ATF6 act to increase
xpression of GRP78 and other proteins that increase
rotein-folding capacity in the ER to alleviate the un-
olding stress.

If the UPR persists, Ire1- and ATF6-dependent ex-
ression of CHOP and continued activation of Ire1 ini-
iate apoptotic signaling. Activated IRE1 associates with
RAF2 to activate caspase 12 and JNK.95,96 Caspase 12
ctivates caspase 3, whereas JNK together with CHOP
ctivates the mitochondrial pathway. Additionally, ER
tress itself leads Ca2� release, which also promotes mi-
ochondrial signaling. Larger proteins, such as GRP78,
an also be released after ER stress.90 Remarkably, the
ame Bcl-2 family members that associate with mito-
hondria and regulate mitochondrial signaling of apo-
tosis, including Bcl-2, Bcl-xL, Bax, and Bak, also asso-
iate with the ER. Available evidence suggests that
ro-apoptotic Bcl-2 family members like Bax and Bak
ct to increase the size of the ER calcium store, thus
ncreasing the proapoptotic potential of ER calcium re-
ease.97 An interrelation also exists between ATP and ER
tress, since chaperones require ATP to induce proper
rotein folding.98 Thus, perturbations that decrease ATP
an augment ER stress.

Lysosomes

Lysosomes and the associated process of auto-

hagy (self-digestion) represent another source of pro- s
poptotic signaling. So-called autophagic cell death
as long been recognized by pathologists and is char-
cterized by an abundance of autophagic vacuoles in
ying cells.99 Autophagic cell death is especially
rominent in involuting tissues. In autophagy, ele-
ents of smooth ER surround and then sequester

ortions of cytoplasm to form a double membrane
utophagosome, which then fuses with lysosomes (or
ate endosomes) to form an autolysosome.100 In this
ay, cellular constituents are removed and digested,

n appropriate action for any tissue undergoing invo-
ution. Although once thought to be random, increas-
ng evidence suggests that autophagy is relatively
elective for specific organelles, especially if they are
amaged.101,102 For example, stresses inducing the
PT may help signal autophagy of mitochondria.103

Controversy remains as to whether autophagy pro-
otes or prevents cell death.104,105 Some evidence

uggests that autophagy promotes cell death, because
eletion of certain autophagy genes decreases apopto-
is. Other data supports the conclusion that autophagy
revents cell death, since disruption of autophagic
rocessing and/or lysosomal function promotes
aspase-dependent cell death.104 –106 In the latter cir-
umstance, enzymes may leak from lysosomes/autoly-
osomes, such as cathepsins and other hydrolases, that
nitiate mitochondrial permeabilization and caspase
ctivation. Lysosomal permeabilization appears also to
ugment death receptor-mediated apoptosis. In par-
icular, cathepsin B is released from lysosomes (or
elated structures such as late endosomes) during
NF� signaling and contributes to mitochondrial re-

ease of cytochrome c.107,108 Lysosomal extracts also
an cleave Bid to its active form, and another lysoso-
al protease, cathepsin D activates Bax.109,110

In the current issue of GASTROENTEROLOGY, these
athways are further clarified.111 During TNF� signal-
ng in hepatocytes, caspase 8-dependent Bid cleavage to
Bid initiates lysosomal permeabilization. Consequent
elease of lysosomal cathepsin B then activates caspase 2
o cause mitochondrial permeabilization and cytochrome

release. Lysosomal permeabilization with release of
athepsin B is also implicated in lipotoxicity, namely
poptosis induced by steatosis or exposure to high
mounts of free fatty acids.112 Remarkably, Bax translo-
ation to lysosomes occurs prior to lysosomal permeabi-
ization. Thus, Bax translocation occurs in association
ith dysfunction and apoptotic signaling in 3 different
rganelles—mitochondria, endoplasmic reticulum, and
ysosomes—and may be promoting a permeability tran-

ition in each.
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Conclusion

In conclusion, damage and stress to different cel-
ular structures elicit responses that activate cell death
ignaling. In most but not all cases, a common final
athway is via mitochondrial permeabilization with re-
ease of cytochrome c and other proapoptotic factors,
eading to caspase activation and apoptosis. Alterna-
ively, mitochondrial membrane dysfunction induced by
he same stimuli can lead to ATP depletion and a ne-
rotic mode of cell death. Such shared pathways leading
o different modes of cell death constitute necrapoptosis.
n general, however, apoptosis represents a better out-
ome for the organism since it promotes a more orderly
esorption of dying cells, whereas necrotic cell death
eads to proinflammatory release of cellular constituents
nto the extracellular space. For gastroenterological re-
earch, the question of which of these multiple and
edundant pathways actually leads to cell death in a
pecific cell type can only be answered empirically. Given
he abundance of different terminally differentiated cells
n the GI tract, that leaves us lots to do.
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