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Three weighted, complex nonlinear least-squares methods for the deconvolution of dielectric or
conducting system frequency-response data are described and applied to synthetic data and to
dielectric data ofn-pentanol alcohol, water, and glycerol. The first method represents a distribution
of relaxation times or transition rates by an inherently discrete function. Its inversion accuracy and
resolution power are shown to be limited only by the accuracy of the data when the data themselves
arise from a discrete distribution involving an arbitrary number of spectral lines. It is shown that
those inversion methods employed here which allow the relaxation times to be free variables are
much superior to those where these quantities are fixed. Furthermore, free-t methods allow
unambiguous discrimination between discrete and continuous distributions, even for data with
substantial errors. Contrary to previous conclusions, discrete distributions were determined for both
n-pentanol alcohol and water. A complex, continuous distribution estimate was obtained for
glycerol. Algorithms for all approaches are incorporated in a readily available computer program.
Serious problems with some previous dielectric inversion methods are identified. Finally, several
possibilities are mentioned that may allow greater inversion resolution to be obtained for complex
nonlinear least-squares estimation of continuous distributions from noisy data. ©1995 American
Institute of Physics.
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I. INTRODUCTION AND ANALYSIS METHODS

A. General background

Given some small-signal AC complex dielectric con
stant, frequency-response data,e~v!5e8~v!2i e9~v!, it is of-
ten useful to estimate the discrete or continuous distribut
of relaxation times~DRT! function,1,2 G~t!, from the data.
Here, i [ A21, v is the angular frequency, andt is a
relaxation time.

Knowledge of theG~t! associated with thee~v! data can
frequently be helpful in improving one’s understanding
the physico-chemical processes occurring in the experim
tal material during measurement. Such knowledge can
particularly useful in initial stages of an investigation whe
no detailed response theory is available. In particular,
unambiguous determination of whether a distribution i
volves a sum of discrete spectral lines or is a continuo
function of t can be particularly valuable. The capability t
do so is an important feature of two of the present invers
methods but not of earlier ones.

The estimation ofG~t! is an inverse problem involving a
Fredholm integral equation of the first kind, one which
often ill posed.3–6~a! Then, no unique solution is possible an
special approaches, such as Tikhonov regularization,3–6~a! are
often used to obtain an approximate estimate of the distri
tion. Here, a weighted, nonlinear least-squares invers
method is described and illustrated, one which avoids so
of these inversion problems and can lead to unique, accu
estimates under some conditions. Although the pres
method is applied here only to dielectric data, it is also va
able for conducting system DRT estimation7–13 and even to
inverse-diffusion problems.14

The dielectric responsee~v! may be expressed in term
of a general, normalized frequency-response function,I ~v!,
as1,2,7
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e~v!5e`1~e02e`!I ~v!, ~1!

wheree`[e8~`! and e0[e8~0!. Therefore,I ~0!51 and I ~`!
50.

For the present discrete or continuous DRT situation, w
may replace the generalI ~v! function by1,2

I G~v![E
0

`

@G~t!/~11 ivt!#dt, ~2!

where normalization requires thatI G~0!51. Note thatG~t! is
not dimensionless when the relaxation time,t, has its usual
dimension of time.

Most dielectric and conducting system small-signal A
data extend over a wide frequency range, sometimes as g
as 10 decades. It is then appropriate to consider logarithm
frequency variation and a dimensionless logarithmic dist
bution of relaxation times,2,7,15or activation energies.7,16 Let
us introduce into Eq.~2! the dimensionless quantities
y[2ln~t/t0! andx[ln~v/v0!, with the scaling valuest0 and
v0 satisfying the relationv0t051. Heret0 is arbitrary but
will usually be taken as 1s. Now denote the new distribution
function asF(y). Note that since conservation of probability
requires thatG(t)udtu5F(y)udyu, we can replace theI G~v!
response function in Eq.~2! by

I F~v![E
2`

`

$F~y!/@11 i exp~x2y!#%dy, ~3!

now expressed in convolution form, withI F~0!51. This con-
dition specifies that the area under theF(y) curve is unity.
Physical considerations also require that bothF(y) andG~t!
approach zero at their extremes.

The functionsG~t! and F(y) are related byF(y)
5tG(t). Unfortunately, the same symbol,G~t!, has some-
times been used for both of them, tending to confuse t
6241/6241/10/$6.00 © 1995 American Institute of Physics¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6242 J. Ross Macdonald: Inversion of dielectric relaxation spectra
distinction between them. Another common usage2 is to de-
note the logarithmic distribution function asG@ln~t!#, but the
use of an entirely different symbol for the two differe
quantities eliminates the possibility of ambiguity and
strongly recommended. Further, it is worth mentioning t
expressions such as ln~t!, very commonly used in the prese
field,2,17 are mathematically inadmissible whent is not di-
mensionless. Finally, since experimental frequency-respo
data are discrete, the frequency variablev must then be writ-
ten asvn , where 1<n<N,`.

B. Numerical inversion approaches

1. Discrete distribution

In this case the unknown DRT is purely discrete and
is made up ofM spectral lines. Then one can write

G~t!5 (
m51

M

dmd~t2tm!, ~4!

where thedm’s are amplitude coefficients which define th
relative strength of each$dm ,tm% line. The distribution is
then fully defined by the values of the set of paramete
Now defineImod~vn! as a theoretical or model response. Su
stitution of Eq.~4! into Eq. ~2! leads to the exact result

I G~vn![Imod~vn!5 (
m51

M

dm /~11 ivntm!, ~5!

a sum of Debye responses which can be readily shown t
independent of whethert or y is used as the relaxation-tim
variable. Notice that normalization requires thatImod~0!51, a
requirement which sets the scale of thedm parameters.

2. Continuous distribution

The situation is somewhat different if the unknown d
tribution is continuous. Then one must use numerical qua
ture to obtain estimates ofImod~vn!. Such quadrature ap
proximates the distribution by means of discrete points. I
then fully defined by the parameter set$cm ,tm%, where here
the continuous character of the distribution is recognized
replacing thedm parameters by thecm ones. It is important to
remember that although the$dm ,tm% set defines isolated
unconnected points, the$cm ,tm% one specifies connecte
points along the distribution. If quadrature weights are
fined aswm , then a general approximation for theI F~v! re-
sult of Eq.~3! may be written as

Imod~vn!5 (
m51

M

~wmcm!/~11 ivntm!, ~6!

a result similar to that of Eq.~5!, but where normalization
now requires that the sum of the productswmcm be unity.
Some specific choices for thewm quantities will be discussed
later.

3. Inversion procedure

Most previous inversion methods, whether they u
Tikhonov regularization or other procedures,3–6~a!,18–22 start
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by defining a set of fixed points over the expected range
the distribution, and usually take their spacing constant. F
the dielectric area, the usual choice17,23,24has been to define
a range fort by settingvmaxtmin5vmintmax51. Then, for
equal spacing in the variable ln~t/t0!, the step size is just
ln~tmax/tmin!/~M21!, which can be set equal towm for all m
in the simplest possible quadrature scheme.

The ab initio selection of a set of fixed-t points is par-
ticularly inappropriate for discrete distributions where th
line spacing is initially unknown and almost always irregula
But, as will be shown later, even for a continuous distribu
tion the choice of fixed points is far inferior to the alternat
of taking such points as free parameters of a weighted, no
linear least-squares inversion procedure. The main differen
in the present inversion methods from earlier ones using l
ear or nonlinear least-squares fitting is the present provis
that all the$dm ,tm% or $cm ,tm% parameters can be free vari
ables of the fitting.

Allowing the tm @or ln~tm/t0!# parameters to be free in-
troduces two complications. Fitting is generally carried o
with M initially small, then increased to larger and large
values. The successivetm values found in this way are not
usually in monotonically increasing order, but ordering
needed for an integration routine appropriate when the sp
ing between ln~tm/t0! values is not constant. Thus, sorting o
tm is required before the use of such a routine, but it is
course unnecessary for the discrete-distribution situation.

The actual procedure for the dielectric case is to fit th
model predictions

emod~vn!5e`1~e02e`!Imod~vn! ~7!

to the experimental data,emeas~vn!, for all n values. Such
fitting allows one to obtain least-squares estimates ofe` , e0,
and the 2M distribution parameters, and their estimated sta
dard deviations as well. In the fitting, any of these param
eters can be taken free or fixed. Since dielectric frequen
response data are usually complex, complex nonlinear lea
squares~CNLS! fitting of both real and imaginary parts si-
multaneously is generally employed in order to use all th
available data, but real- or imaginary-part fitting is also po
sible.

All the present inversions and direct fits were carried o
with the readily availableLEVM computer program described
in Appendix A. The nonlinear least-squares fitting procedu
itself involves some regularization effects4 which help con-
tribute to good inversion estimates. The various fittin
choices available in specific CNLS fitting program use
herein ~LEVM !, allow several different approaches to b
used. To define the relevant DRT inversion possibilities, l
‘‘ D ’’ stand for discrete, ‘‘C’’ for continuous, ‘‘F ’’ for fixed,
and ‘‘V’’ for variable ~free! tm . Then the following combi-
nations are of particular interest: discrete-distribution inve
sion method involving free, variabletm’s ~DV!, continuous-
function inversion method involving fixedtm’s ~CF!, and
continuous-function inversion method involving free, var
abletm’s ~CV!.

The linear least-squares problem associated with use
Eq. ~6! for inversion with constant spacing involves a
N3M ‘‘design’’ matrix, and, whenN5M , direct inversion
2, No. 15, 15 April 1995¬to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6243J. Ross Macdonald: Inversion of dielectric relaxation spectra
of the M3M matrix may be employed to obtaincm
values.6~b! This approach has been called the matrix
quadrature method of numerical inversion,5 and was applied
to the present problem long ago by Uhlmann and Hakim23

But, it is generally unsatisfactory, and its generalizatio
when M,N ~for example, the use of linear least square
fitting! is also quite inadequate and usually leads to mea
ingless oscillatory estimates5,24 of cm . Note that when
N5M , either matrix inversion or, equivalently, linear leas
squares, should lead to an exact solution, ‘‘one which ‘mo
els’ the discrete data function to within numerica
round-off,’’5 but ill conditioning intervenes when, as usua
the condition number of the matrix is much greater tha
unity.5 Thus it is important that the number of degrees o
freedom in the present inversion procedures always be s
stantial~see Appendix A!.

II. INVERSION RESULTS

A. General considerations

A cardinal point about inversion solutions which yield
estimates of continuous distributions, one associated w
their usually ill-posed and ill-conditioned character, is that n
matter how well a frequency-response model, such as E
~7!, fits a given set of data, the estimate of the DRT asso
ated with the data is not guaranteed to approximate the t
DRT well. In fact, the accuracy of such an estimate does n
necessarily improve beyond a certain point as theSF of the
frequency-response fit is decreased by increasingM , the
number of freecm parameters in the fitting model. HereSF is
a measure of goodness of fit at the frequency-response le
~see Appendix A!. This accuracy limitation does not apply
for DV estimation using data arising from an inherently dis
crete DRT since the data themselves determine the appro
ate number ofdm points.

B. Estimation of distributions using synthetic data

Morgan and Lesmes17 ~ML ! recently inverted both syn-
thetic and experimental data using a variant of the prese
CF approach~see Appendix B!, and some of their same data
sets will be reanalyzed herein. For synthetic data, I consid
only their choices of single Debye-function relaxation re
sponse and of Cole–Cole~CC! response involving the pa-
rameterb50.6. The more general empirical response fun
tion suggested by Havriliak and Negami25 may be written as

IHN~v!5@11~ ivtHN!b#2g, ~8!

wheretHN is not necessarily equal tot0, andb andg fall in
the range@0,1#. When g51, this equation reduces to the
Cole–Cole form;26 for b51 it describes Davidson–Cole
response;27 and for g5b51, it degenerates to Debye re-
sponse. I follow ML here by using the valuese`55 and
~e02e`!520 in generating synthetic data. The synthetic C
data used covered the range from 1023<vnt0<103, a loga-
rithmic bandwidth of 6, with 49 points equally spaced in lo
frequency. TheF(y) DRT associated with Cole–Cole behav
ior may be written2 as

FCC~y![~2p!21 sin~c!/@cosh~by!1cos~c!#, ~9!
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wherec[pb. Since this expression is normalized, its inte
gral over ally is unity.

1. Discrete distribution: a single spectral line

Although discrete-distribution response with only a fe
lines present is probably rarer than a response associ
with the presence of a continuous DRT, Garg and Smyt28

found that their data on normal primary alcohols could
well described by the sum of three Debye functions. Morg
and Lesmes17 applied their real-part CF method to singl
Debye response. The results of their fitting withM519 were
not entirely satisfactory, since they yielded a centralcm5c10
estimate of about 1.3 instead of unity, and showedc10 depen-
dence onM . Such behavior arises from the use of CF ar
normalization rather than discrete-distribution normalizatio

In contrast, DV inversion yielded essentially exact es
mates when applied to the same synthetic data, namely
input valuese`55, e0525, d151, andt51 s. Further, very
few iterations were required for convergence, and only t
single value ofdm was nonzero, so the appropriateM51
value was verified.

CNLS fit results of the same data using theLEVM CF
inversion method were instructive when carried out with D
rather than CF normalization. The calculations involve
double-precision arithmetic with stringent stopping
convergence criteria and required a large number of ite
tions for full convergence. WithM511, for example, they
led to essentially exact estimates fore` ande0 as before, to
an SF value of about 1029, to a value of the centralc6 of
1610210, and to positive estimates of all the other 10cm’s of
less than 10210. However, as in the ML calculations,17 it was
necessary to ensure that one of the fixed inputtm values
coincided with thet value of the single line present, an im
portant weakness of the CF method applied to data involv
a discrete distribution.

Incidentally, real-part CF fitting yielded essentially th
same results as complex fitting, as also did imaginary-p
fitting, although the latter does not allow an estimate ofe` to
be obtained. To illustrate the results of a poor choice of t
fixed tm values with CF fitting, exact data such as tho
above were produced forM511 with tp , the value oft for
the single line present, placed halfway betweent6 and t7.
Fitting then yieldedSF.0.12, ~e02e`!.18.0, e`.4.98, and
only two significantcm values:c6.0.486 andc7.0.514.

2. Discrete distribution: multiple lines

Over the years there has been considerable effort
pended to find ways of resolving the sum of two or mo
simple Debye responses with relaxation frequencies re
tively close together,19,20,29–32but no satisfactory approach
has been demonstrated. For example, when Fourier deco
lution methods are used,5,19–22there is a problem of selecting
an appropriate window for high-frequency filtering, an
when such methods are applied to Debye spectra they y
limited resolution with spectral responses of finite width an
usually with oscillating tails as well. Further, Fourier tran
, No. 15, 15 April 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6244 J. Ross Macdonald: Inversion of dielectric relaxation spectra
formation of discrete data leads to somewhat different res
than does continuous-function transformation, as analy
elsewhere.33

In order to demonstrate the great resolution power of
DV, the inversion of data arising from two very closel
spaced lines is considered here. In the first case, the foll
ing values were used in Eq.~A1! to generate the
data: C151 F,R151 V, C250.01 F, andR2590 V. Thus,
the peak height of one dispersion is 100 times smaller th
the other, and the ratio of their time constants is 1 to 0
very close spacing. DV inversion of the original exa
frequency-response yielded essentially the exact input v
ues, including the time constantst151 s andt250.9 s. When
the data were rounded to four significant figures, howev
the fit yieldedSF.231024, and estimates of 1.003, 0.997
0.0069, and 129, for the above four circuit elements, resp
tively. The correspondingtm values were thus about 1 an
0.89 s, showing thatt2 was better estimated than its ind
vidual components. Considerably less-accurate estim
were obtained with only three digits remaining in the data

For a second test,C1 and R1 had the same values a
above, butC2 was taken as 0.3 F andR2 as 2V. Thus, for
this case the peak height of the second dispersion was a
a third of that of the first, and the ratio oft’s was 1 to 0.6.
With three~and two! significant figures, the fit estimates fo
SF , C1, R1, C2, andR2 were, respectively, 0.0018~0.014!,
1.001u0.011 ~0.967u0.090!, 0.998u0.014 ~1.047u0.116!,
0.299u0.037 ~0.335u0.258!, and 2.005u0.029 ~1.824u0.202!.
Here a number likeu0.037 is the relative standard deviatio
estimate of the associated parameter as determined from
fit ~see Appendix A!. Again, thet1 andt2 estimates are bette
than their individual components, and most of the relati
standard deviation estimates are appreciably greater than
actual errors of estimation. These results show that altho
the accuracy is strongly degraded on going from three to t
digits in the data, the estimates are still quite significant.

The present inversions indicate that DV fits of nois
discrete-distribution data can yield much greater resolut
than has been demonstrated before. Furthermore, disc
distribution inversion is not constrained by the limitations
an ill-posed problem which usually apply for continuou
function DRT estimation.

3. Continuous Cole –Cole distribution

Figure 1 shows the results of two complex-fi
proportional-weighting CV inversions of exact CC data wi
b50.6. Morgan and Lesmes17 treated this same situation
with their CF method but presented their results as lo
resolution linear plots ofcm @called y~t! by them# vs the
ordinary logarithmic variable,sm[log10~tm/t0!. This vari-
able, rather thanym , is also employed here for plotting. Bet
ter comparison between theory and predictions, particula
in the tails of the distribution, is possible when a logarithm
rather than a linearcm scale is used, as in Fig. 1.

Note that when anM519 inversion point, denoted by an
open circle in Fig. 1, evenly surrounds its exact value, d
noted by an asterisk, the inversion estimate is very go
indeed, as it is for the presentM519 inversion estimate.
Furthermore, comparison of theM513 andM519 results
J. Chem. Phys., Vol. 102Downloaded¬20¬Sep¬2004¬to¬129.15.70.37.¬Redistribution¬subject¬
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unambiguously demonstrates that the data analyzed involv
continuous, not a discrete DRT. Thesm values of any discrete
lines present in the distribution would remain nearly inde
pendent of the value ofM or of the span of the frequency-
response data, but we see that they do not do so here.
same variable-tm behavior was found with DV inversion of
these data, so either approach can be used to identify dis
bution type. Such a capability is absent from all previou
approaches which use fixed points.

Although log–log plots are useful to show behavior ove
a wide range, errors are better presented with a linear sc
as in Fig. 2. Here complex-fit CF and CV inversion errors a
compared. Note the approximately 10-times greater errors
the CF inversion as compared to the CV ones. The stro

FIG. 1. Log–log plots comparing the exact Cole–Cole~CC! continuous
distribution function of Eq.~9! ~solid line! with CV inversion results ob-
tained using the complex nonlinear least-squares fitting program,LEVM, with
M513 and 19cm points. Here the combination ‘‘2C’’ denotes complex data
fitting, andt0 is a scaling relaxation time taken as 1 s here and elsewhere.
The points denoted by asterisks are exact distribution values plotted at
same values ofsm[log10~tm/t0! as those found from theM519 inversion.
Here LBW is the logarithmic bandwidth, log10~vmax/vmin!.

FIG. 2. CF and CV inversion errors,@cm2FCC(sm)#, for the CC data of Fig.
1 vs log10~tm/t0! for M519. TheA, B, andC CV inversion results were
obtained with different end-point corrections, as discussed in the text. TheB
curve corresponds to theM519 results of Fig. 1.
, No. 15, 15 April 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp



6245J. Ross Macdonald: Inversion of dielectric relaxation spectra
TABLE I. Inversion results for water at 20 °C;t051 s. Here quantities written asAuB indicate an estimate,A, and its estimated relative standard deviation,
B.

Bottreauet al. ~Ref. 32! DV Morgan and Lesmes~Ref. 17! CF This study DV

tmut0 dm tput0 cp tmut0 dm tmut0 dm

4.63310214u0.002 0.036 7.17310214u0.19 0.037u0.09 3.37310214u0.45 0.026u0.27
3.09310213 0.014 2.93310213u0.70 0.019u0.39

8.92310212u0.017 0.914 9.55310212 3.04 9.39310212u0.005 0.963u0.003 9.44310212u0.006 0.955u0.003
2.86310211u0.09 0.051

e0 80.4 80.9 80.08 80.15
e` 1.78 3.30 2.26u0.10 1.94u0.16
SF 0.332 0.320
s
h

t
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e

e
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e
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e

error oscillations of the CF curve are characteristic of su
inversions of data involving continuous distributions.

All three of the CV inversions of Fig. 2 used a type o
extended trapezoidal quadrature with variable spacing34 but
with different end-point corrections. CurveA involved no
such corrections and therefore shows appreciable error
the two end points which arise from the limited range of t
data. Because the numerical integration involves a fin
range ofsm , area outside this range is ignored. CurveB
partly corrects for these omissions by changing the factor
0.5 used in the integration only for the end-points to uni
Finally, curveC, the best of the three, corrects the last tw
points on each end by factors appearing in an exten
quadrature formula6~c! of order 1/M3. Since there is no evi-
dent theoretical rationale for this formula, the curveB ap-
proach is taken standard in theLEVM CV procedure.

Incidentally, although spline-fitting and quadrature6~d!

could be used in place of the present quadrature method,
approach was found to yield somewhat larger errors than
the curveB method when the spline fitting involved natura
boundary conditions, and the use of more appropriate e
mated boundary conditions did not seem to justify the resu
ing complications. Although the curveB errors are remark-
ably small, their existence, even for exact input data,
evidence of ill conditioning which must be expected for th
inversion of discrete data associated with a continuous d
tribution.

With M519, the fit of the original synthetic frequency
response data was very good, with anSF value of about
1025. This quantity has been found to decrease for CV fitti
as exp~2aQ!, wherea is a constant which depends on th
form of the convolution kernel;Q[M /~LBW! ~LBW is the
logarithmic bandwidth of the original exact data!. For such
data,SF continues to decrease asM is increased until finally
limited by the number of decimal digits carried in the da
and calculations. There is thus always a limit on the reso
tion the present CV method can deliver. This limit is usua
unimportant for exact data but can become crucial for expe
mental data. Then the minimumSF , and so the maximum
useful M value, is limited by the error in the data. Thi
limitation is demonstrated for the data analyzed in S
II C 3.
J. Chem. Phys., Vol. 102Downloaded¬20¬Sep¬2004¬to¬129.15.70.37.¬Redistribution¬subject¬
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C. Estimation and identification of distributions from
experimental data

1. Inversion of water data

Morgan and Lesmes17 used their real-part CF method to
invert 20 °C water data compiled by Boutreauet al.32 from a
variety of sources. These 27 data values extended over th
wide range from about 63108 Hz to over 1013 Hz and are
quite irregular, having appreciable lacunae and some larg
outliers. To allow direct comparison with earlier results,
these same data were used for the present inversions, in sp
of their irregularities. Before trying to invert these data, they
were fitted, usingLEVM, to the CC form of Eq.~8!. It was
found that an adequate fit could not be obtained by using th
24 lowest-frequency original data values, those employed b
ML. Therefore, generalized cross validatory quintic spline
smoothing35 was carried out on the full 27 points listed in
Ref. 32. Of these, the last three points were extrapolation
from infrared data. This procedure automatically provides
statistically appropriate smoothing when carried out on loga-
rithmically transformed data if the original data have pre-
dominantly proportional errors.10 The smoothed data are pre-
sented in Fig. 3 but still show appreciable irregularity.

An adequateN524 CC fit was then found for the
smoothed data. It yieldedtCC/t0.9.33310212u0.006,
b.0.984u0.004, ~e02e`!.76.34u0.004, e`.4.28u0.051, and
SF50.356. Most of these results agree closely with those

FIG. 3. Complex-plane plot of the smoothed 20 °C water dielectric data
obtained by many workers, and of theM52 DV inversion fitting points for
these data. The arrow shows the direction of increasing frequency. Th
dominant discrete relaxation time obtained from thie inversion of these data
was 9.39 ps. See Table I for further results.
, No. 15, 15 April 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6246 J. Ross Macdonald: Inversion of dielectric relaxation spectra
quoted by Hasted,36 who concluded that a CC continuous
distribution fit the water data somewhat better than did
single-line discrete distribution.

Results of different analyses are summarized in Table
TheM52 DV inversion points are also plotted in Fig. 3. The
most plausible estimates shown in Table I seem to be the t
DV ones on the right, calculated withN527. Of these, one
should choose that with two isolated spectral lines, since t
parameter uncertainties are smaller than those withM53.
Fitting without the three extrapolated points yielded only
single line with at very close to the largert one, showing
that the second small-t line in Table I was associated with
these points.

When three DV lines are extracted withN527, it is
evident that two of them are then not well defined, especia
the one withtm/t0.2.93310213. When four lines are esti-
mated, it is found that the relative standard deviations of fiv
of the nine free parameters are of the order of or greater th
unity, meaningless estimates. As shown in Table I, the cent
line of the three-line discrete-function-approach results of t
present study is clearly close to the first of the two peaks
the continuous distribution estimated by ML using their C
approach, one which used21 degrees of freedom rather than
an appreciable positive value, as always employed w
LEVM fits. Herecp denotes the value ofcm at a peak of a
continuous distribution. Since the central DV line is itself no
well defined, little credence should be given to either it or th
ML estimate. Difficulties to be expected with underdete
mined fits are discussed in Appendix B.

Comparison of the results of Bottreauet al.32 with the
present ones is also instructive. These authors used
discrete-function inversion approach limited toM<4, one
which is less accurate and much less general than the pre
independently developed one. As one might expect, their
sults and the present DV ones are reasonably similar, but
present DV method yields more resolution and accuracy a
is far easier to apply. When it was used to estimate fo
spectral lines, one withtm/t0.1.2310211 appeared, roughly
corresponding to one of the lines listed at the left of Table
The relative standard deviation associated with this val
was about 0.36 and the relative standard deviation estim
for the correspondingdm was about 2, not a well-defined
line.

Because the DV approach yields adequate results w
just two spectral lines, it is not sensible to apply the C
method to these data, which are clearly better and more
propriately defined by a few isolated, discrete lines than by
continuous DRT. Even though the data are of poor quali
and consistency, the combination of least-squares-fit smoo
ing and DV inversion yields reasonable inversion param
eters, but more-accurate data, extending over a very w
frequency range for several different temperatures, are de
able for such an important material as water.

2. Inversion of n-pentanol alcohol data

Morgan and Lesmes sent me theN530 real-part data
they used17 to estimate a continuous DRT forn-pentanol
alcohol.37 These 25 °C data, shown in Fig. 4, were produce
according to ML, by digitizing the graphicale8~v! curve for
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this material appearing in Ref. 20; thus they may be expecte
to contain errors arising from this process as well as some
their original experimental errors.

LEVM has been used to fit these frequency-respons
data to a wide variety of continuous-distribution respons
functions. The best fit was found for the Davidson–Cole
response function27 form of Eq. ~8!. Fitting results
with a smoothed and interpolatedN574 set of data were
tCD.9.54310210u0.022 s,g.0.862u0.011,e`.2.787u0.006,
~e02e`!.12.374u0.007, andSF.0.0207. This fit is signifi-
cantly worse than the DV one in Table II.

Table II compares DV inversion results to two con-
tinuous-function inversions obtained by earlier workers
Those of Ref. 20 were obtained by a Fourier-transform de
convolution method involving imaginary part data only, one
which leads to broadening of any delta-function spectra
lines present. Theirt values quoted in Table II are those
defining the peaks of their continuous distribution estimate
omitting a small response for whicht0/tm is well above the
measured vmaxt0. Their peak coefficients have been
normalized17 such that the amplitude of the major peak was
set to 1.000.

The ML CF results17 were obtained from real-part fitting
with N5M530, again yielding21 for the available number
of degrees of freedom. Thus, one might expect very poo
estimates. We see that theire0 estimate is, in fact, apprecia-
bly larger than the lowest-frequency limiting data value of 15
and the DV estimates ofe0 presented in Table II. More sig-
nificantly, their CF inversion led to a smooth, apparently
continuous, distribution curve with two peaks, very differen
results, except for the location of the peaks, than the predi
tions of the DV inversions discussed below.

The DV results listed in Table II used the original 30
data values obtained from ML, and only two significant
spectral lines could be obtained from the inversion of thes
data. When I attempted to extract three lines, the relativ
standard deviation estimates of one of thetm/t0’s and two of
the threedm’s were of the order of unity or greater. Had the

FIG. 4. The 25 °Cn-pentanol alcohole8 frequency-response data, and the
M52 DV inversion fitting points for these data. Heref 051 Hz. The domi-
nant discrete relaxation time obtained from the inversion of these data w
0.802 ns. See Table II for further results.
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TABLE II. Inversion results forn-pentanol alcohol at 25 °C;t051 s.

Salefran and Dutoit~Ref. 20! Morgan and Lesmes~Ref. 17! CF This study DV

tp/t0 cp tp/t0 cp tm/t0 dm

3.6310211 0.056 3.43310211 0.026 3.48310211u0.16 0.04u0.08
7.6310210 1.000 8.55310210 2.5 8.02310210u0.014 0.96u0.007

e0 15.4 15.03
e` 2.71 2.76u0.007
SF 0.0143
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e~v! data actually been associated with a continuous dist
bution of some width, such as those estimated from t
n-pentanol data by Salefran and Dutoit20 and by ML,17 it
should have been possible to obtain many significant no
zerodm or cm estimates. Since this was not the case, it see
virtually certain that the true distribution is discrete, and thu
the present DV procedure should yield good estimates for t
DRT coefficients.

Although the present results clearly show that th
present data are associated with a discrete DRT rather t
with a continuous one, it is of interest to compare real-pa
CF results with the corresponding results of ML. The prese
CF inversion process withM510 was found to yield only a
few nonzerocm results which matched the discrete lines o
Table II as closely as possible within the limitations set b
equally spacedtm/t0 values. All othercm estimates were ef-
fectively driven to zero, further indication that for these dat
a discrete DRT is appropriate and that a continuous one
not. By contrast, with a negative value for the available d
grees of freedom, none of ML’scm estimates were less than
about 331023.

3. Inversion of glycerol data

Since only discrete DRT’s were found for the two liquid
considered earlier, it seemed worthwhile to analyze one w
a continuous distribution. Professor Sydney Nagel kind
sent me dielectric response data on salol and glycerol,37 ma-
terials of considerable current interest because of their u
fulness in allowing the verification of an important new sca
ing relationship for supercooled liquids.38 The salol data
exhibited much more irregularity in their high-frequency ta
regions than did the glycerol, so the latter have been used
the inversion results shown here. Within the limitations o
the data, a similar response was found for the salol data s
investigated.

First, it was found that all the data sets examined cou
be quite well fitted directly with continuous-distribution re
sponse functions represented by the following three circ
elements all in parallel at the admittance level: a capa
tance accounting fore` , a fractional exponential response
function39 dominating the low-frequency response, and
Havriliak–Negami response function25 important at the high
frequency end of the data. For glycerol at 230 K, the fra
tional exponent was found to be about 0.72, and th
Havriliak–Negami function degenerated to a Davidson–Co
response withg.0.30. TheSF of the proportional weighting
LEVM complex data fit was about 0.022.
J. Chem. Phys., Vol. 102Downloaded¬20¬Sep¬2004¬to¬129.15.70.37.¬Redistribution¬subject¬
ri-
e

n-
s
s
he

e
an
rt
nt

f
y

a
is
-

th
y

e-
-

l
for
f
ets

ld

it
i-

a

-
e
le

Figure 5 shows some DRT estimates for theseN541
glycerol data. First, it is evident from the differences in th
M59 and 10tm values that the response involves a continu
ous distribution rather than a discrete one. ForM510, theSF
of the fit was about 0.0094, and the estimated relative sta
dard deviations of thecm’s were all below 0.1 and mostly
below 0.06. When a fit was carried out withM511, the
value ofSF was only slightly reduced, and the relative stan
dard deviations of six of the 11cm’s were then above 0.1,
with one about 0.34. The leveling ofSF , the increase in the
estimated uncertainties of thecm , and a concomitant increase
in those of thetm’s all indicate that the limit of CV resolution
determined by the present data error level has been reac
with M'10 ~see the discussion at the end of Sec. II B 3!.

Figure 5 also shows fractional exponential DRT re
sponse. It was produced by first fitting the originale9~v! data
with a capacitance and fractional-response function in para
lel, but using unity weighting to emphasize the peak regio
of the response. This part of the response was well fitted
this procedure and the resulting fit parameters were used
generate exact, complex-response synthetic data covering
same frequency region with 87 points equally spaced
log10~v/v0!. These data were then used to obtain the two C
inversion responses identified by WW in the figure.

Figure 5 shows that there is a constant-slope region wi

FIG. 5. CV inversion results for glycerol at 230 K for different values ofM .
Calculation of the fractional-exponential DRT responses, marked WW fo
William–Watts, is described in the text. The small, solid line, uncertaint
rectangles surrounding eachM510 $cm ,tm% point were formed by adding
and subtracting one estimated standard deviation of each quantity from
point, then transforming to log–log space and connecting the results w
straight lines.
, No. 15, 15 April 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6248 J. Ross Macdonald: Inversion of dielectric relaxation spectra
a log–log slope of about 0.72 just to the left of the peak
slope which is shared by the two glycerol inversion r
sponses and by the fractional-exponential ones, as one m
expect from the aforementioned discussion. The presenc
a high-frequency tail is evident, however, in the glycer
response belowsm'27. Except for the end point, which is
likely to be inaccurate because of the finite span of the da
another nearly straight-line region is apparent, but it ha
log–log slope of nearer 0.45 than 0.3. To verify the reaso
ableness of this result, the direct-fit results mentioned ear
involving three response elements were used to generate
N587 exact data and then this data set was fitted by prop
tional weighting CV inversion. The resultingM510 curve
was found to lie almost exactly over theM510 glycerol
curve of the figure from the left side of the peak to th
minimum sm value, except for the end point. These resu
thus show that both the direct and the inverse fitting resu
are mutually consistent over most of the range of the da
Furthermore, they demonstrate the usefulness of CV inv
sion of experimental data of the present type in bringing o
details of a complicated, distributed DRT.

III. CONCLUSIONS AND FUTURE DIRECTIONS

It seems likely that the identification by ML and other
of the DRT’s of water andn-pentanol alcohol as continuou
rather than discrete arose from the lack of a general invers
method that allowed thetm’s to be free rather than initially
fixed. The present DV and CV methods do so and can t
remove the chance of misidentification. Moreover, ML ma
not have used sufficiently stringent convergence criteria
their least-squares fits, and in their inversions of data
these liquids they applied their usual least-squares proced
even when their number of degrees of freedom was21.

Although it has been demonstrated herein a
elsewhere14 that DV inversion is not an ill-posed problem
and has tremendous resolving power, the maximum res
tion of CV inversion is limited by errors in the data. Prelim
nary work indicates that resolution can be somewhat i
proved for experimental data inversion by first smoothing t
data by the method used herein for the water data, but
gain achieved is usually relatively small. An alternative is
modify the present nonlinear-least-squares CV algorithm
include Tikhonov regularization. Up to the present, su
regularization has generally involved fixed independent va
able~heret! values. In order to avoid the need for a subje
tive choice of the regularization parameter, in the combin
approach it might be taken as a free parameter of the fitt
or possibly determined by theL curve method of
Hansen.40,41 If nonlinear least-squares inversion, includin
regularization and freetm parameters, proves successfu
much larger useful values ofM than now practical should be
possible, even for data with appreciable errors.
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APPENDIX A: THE LEVM DISCRETE FUNCTION
INVERSION METHOD

A powerful instantiation of the DV discrete function in-
version approach has been included for a decade as one o
great many choices in the very generalLEVM complex non-
linear least-squares impedance spectroscopy data fitti
program.9,42–45This program uses the modified Levenberg–
Marquardt algorithm of More´,46 which is robust, fast con-
verging, and involves implicitly scaled variables.LEVM has
been used for direct impedance-spectroscopy data fitting, f
estimating DRT’s, and as a powerful substitute for Kronig–
Kramers transformation.12,13 Nearly all the present fits with
LEVM used proportional or function proportional weighting,
and fitting to full complex data or to their real or imaginary
parts is straightforward. Details of the many weighting pos
sibilities available inLEVM are given elsewhere.9,45,47 LEVM

fitting yields a value of the standard deviation of the
weighted fit residuals,SF ~which involves the number of
degrees of freedom available!, estimates of the free param-
eter values, estimates of the standard deviations of the p
rameter estimates, a parameter correlation matrix, and anF
test of the overall fit.

The actual discrete function approach circuit used in
LEVM to represent dielectric response response involves
capacitanceC` in parallel withM parallel branches, each
consisting of a capacitance,Cm , in series with a resistance,
Rm . When the admittance of this structure is divided byiv,
one obtains the complex capacitance

C~vn!5C`1L (
m51

M

Cm /~11 ivnCmRm!, ~A1!

with L[1. The capacitances appearing in Eq.~A1! can be
converted to dielectric constant form by dividing each one b
CV , the capacitance of the empty measurement ce
Weighted CNLS fitting of this circuit yields estimates of the
2M11 free parameters. Note that the individual relaxation
times are defined as justtm[CmRm , and the program in-
cludes a choice which leads to estimates ofCm ~and thusdm!
andtm directly if desired. The number of degrees of freedom
for discrete or continuous function fitting is~2N22M21!
for complex data fitting,~N22M21! for real-part fitting,
and (N22M ) for imaginary part data.

After the iterative fitting process has converged, the pro
gram calculates the quantityDC[(C02C`) ~equal to the
sum of theCm’s!, the tm’s, and the dimensionless distribu-
tion strengths,dm[Cm/(C02C`). The results may then be
expressed in just the form of Eq.~1! with I ~v! given by the
I G of Eq. ~5!.

WhenLEVM is used for discrete function inversion, it not
only returns estimates of the standard deviations of the fre
distribution parameters but also those of the relative standa
deviations of the parameters, where for a parameter estima
B, the relative standard deviation is just the standard devi
tion divided byuBu. Unfortunately, such estimates have usu
, No. 15, 15 April 1995to¬AIP¬license¬or¬copyright,¬see¬http://jcp.aip.org/jcp/copyright.jsp
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6249J. Ross Macdonald: Inversion of dielectric relaxation spectra
ally been unavailable and/or unreported in the past. Incide
tally, a relative standard deviation estimate as large as 0.4
0.5 provides only a small degree of confidence in the relat
parameter estimate, and one of the order of unity or grea
suggests that the related parameter estimate is meaning
unless it itself is zero.

Although estimated relative standard deviations can
calculated for thedm coefficients and for (C02C`) when
those of theCm’s and their correlation matrix are known, the
calculation is only approximate. It involves not only a quo
tient of uncertain quantities, but also possibly very uncerta
correlation coefficient values. These values are obtained b
linearization procedure from the off-diagonal elements of th
variance-covariance matrix, which is calculated after conve
gence of the fit. A Monte Carlo study34 has shown that in
calculations of the present type, the off-diagonal elemen
are generally much less accurate than the diagonal eleme
the ones which lead to the parameter relative standard dev
tion estimates. Thus, this approach is not used inLEVM.

Luckily, it turns out that therelative standard deviation
estimates of the distribution coefficients are closely the sam
as those of their associated parameters, and so they need
be separately estimated. This result has been established
taking theL of Eq. ~A1! fixed at the value of (C02C`)
obtained from a prior fit withL fixed at unity, and repeating
the fitting. Then, the resulting dimensionlessCm values are
the direct distribution coefficients themselves and their rel
tive standard deviation values are found to be the same
those withL51.

It should be clear that only minor changes in theLEVM

discrete function approach program are needed to conver
to a CV or CF continuous-function approach. Because of t
parameter optimization element in the present inversi
methods, a variable-t, continuous-function solution differs
from a corresponding discrete function one by more than
scale factor. For all of the different kinds of inversions dis
cussed herein,LEVM incorporates the physically required
constraint that distribution-strength coefficients cannot b
negative.24

APPENDIX B: THE MORGAN–LESMES
CONTINUOUS FUNCTION INVERSION METHOD

Morgan and Lesmes17 used nonlinear regression for thei
real-part CF inversions. They employed a modifie
Levenberg–Marquardt algorithm which, upon convergenc
should yield results very close to those obtained fromLEVM

CF real-part fitting using function-proportional weighting, a
weighting which is determined by taking the uncertainty o
each data point equal to the model estimate for th
point.42,43,47One significant difference between the prese
inversion approaches and that of ML is that they used wh
they termed a ‘‘data rms error,’’ rmsD , which involvedN21
rather than the standard degrees-of-freedom choice m
tioned in Appendix A forSF . Furthermore, rmsD should not
generally be defined as anerror measure.17 There are un-
known errors present in experimental data, and thus su
quantities as rmsD andSF are ~different! measures of only
the sum of the weighted, squared differences between
data values and the model predictions. Only when the mod
J. Chem. Phys., Vol. 102,Downloaded¬20¬Sep¬2004¬to¬129.15.70.37.¬Redistribution¬subject¬t
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is known to describe error-free data exactly~information
never available for experimental data! do these quantities
involve the true weighted errors, as opposed to the weighte
residuals.

Some of the ML inversions involved underdetermined
systems of equations, those whereM.N. The problem of
obtaining solutions under these conditions is known in
econometrics as the undersized sample problem.6~e!,48 These
authors suggest that one should not expect to obtain a uniq
solution; they mention such techniques as singular value d
composition and the repeated use of the generalized mat
inverse; but they do not suggest that it is reasonable to u
the same least-squares approach appropriate for an over
termined system for an undetermined one, as ML have don

In the ML work,17 no notational distinction is made be-
tween the DRT’sG~t! andF(y), the right side of Eq.~10!
needs to be inverted; the undefined quantity ‘‘N’’ is the num-
ber of discrete frequency values,Sm in Eqs. ~15! and ~16!
should besm , and the term sin~pt! in Eq. ~14! should be
replaced by sin~pb!.
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