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Three weighted, complex nonlinear least-squares methods for the deconvolution of dielectric or
conducting system frequency-response data are described and applied to synthetic data and to
dielectric data oh-pentanol alcohol, water, and glycerol. The first method represents a distribution
of relaxation times or transition rates by an inherently discrete function. Its inversion accuracy and
resolution power are shown to be limited only by the accuracy of the data when the data themselves
arise from a discrete distribution involving an arbitrary number of spectral lines. It is shown that
those inversion methods employed here which allow the relaxation times to be free variables are
much superior to those where these quantities are fixed. Furthermorer freghods allow
unambiguous discrimination between discrete and continuous distributions, even for data with
substantial errors. Contrary to previous conclusions, discrete distributions were determined for both
n-pentanol alcohol and water. A complex, continuous distribution estimate was obtained for
glycerol. Algorithms for all approaches are incorporated in a readily available computer program.
Serious problems with some previous dielectric inversion methods are identified. Finally, several
possibilities are mentioned that may allow greater inversion resolution to be obtained for complex
nonlinear least-squares estimation of continuous distributions from noisy daf29® American
Institute of Physics.

I. INTRODUCTION AND ANALYSIS METHODS (@)= e+ (e9— €)1 (w), 1)

A. General background where €,,=¢€'() and g;=¢€'(0). Therefore,| (0)=1 and|(x)

Given some small-signal AC complex dielectric con- =0.
stant, frequency-response dattyw)=¢€'(w)—i€"(w), it is of- For the present discrete or continuous DRT situation, we
ten useful to estimate the discrete or continuous distributiomay replace the generblw) function by?
of relaxation times(DRT) function}? G(7), from the data. B
Here,i = -1, o is the angular frequency, andis a |G(w)5f [G(7)/(1+iwT)]dT, 2)
relaxation time. 0

Knowledge of theG'(r).assoc[ated with the(w) data can  \vhere normalization requires thiagi(0)=1. Note thaiG(7) is
frequently be helpful in improving one’s understanding of not dimensionless when the relaxation timehas its usual
the physico-chemical processes occurring in the eXperimerHimension of time.
tal material during measurement. Such knowledge can be Most dielectric and conducting system small-signal AC

particula.lrly useful in initial stages of.an investigati.on Whendata extend over a wide frequency range, sometimes as great
no detailed response theory is available. In particular, th%s 10 decades. It is then appropriate to consider logarithmic

unambiguous determination of whether a distribution in-g.oq ency variation and a dimensionless logarithmic distri-
volves a sum of discrete spectral lines or is a contmuou%utiOn of relaxation time&’'5or activation energie 16| ot

function of 7 can be particularly valuable. The capability to us introduce into Eq.(2) the dimensionless quantities
do so is an important feature of two of the present inversioryz_ln(ﬂ%) andx=In(wlwy), with the scaling values, and

met?_c;ds bu_t not of egrlle_r ones. blem involvi wy satisfying the relatiorwymy=1. Here 7, is arbitrary but
e estimation o6(7) is an inverse problem involving a will usually be taken as4. Now denote the new distribution

Fredh_olm ime%g equation of_the first I_(ind_, one ‘_NhiCh isfunction asF(y). Note that since conservation of probability
often ill posed®~%® Then, no unique solution is possible and requires thaG(7)|dr|=F(y)|dy|, we can replace thes(w)
special approaches, such as Tikhonov regularizéﬁ@ﬁ,are response function in Eq2) by

often used to obtain an approximate estimate of the distribu-
tion. Here, a weighted, nonlinear least-squares inversion o0 ]

method is described and illustrated, one which avoids some 'F(“’)EJ'fw{F(y)/[lJ” expx—y)J3dy, ©
of these inversion problems and can lead to unique, accurate

estimates under some conditions. Although the presemow expressed in convolution form, with(0)=1. This con-
method is applied here only to dielectric data, it is also valu-dition specifies that the area under théy) curve is unity.
able for conducting system DRT estimatioff and even to  Physical considerations also require that biefly) andG(7)

inverse-diffusion problem¥ approach zero at their extremes.

The dielectric respons&w) may be expressed in terms The functions G(7) and F(y) are related byF(y)
of a general, normalized frequency-response functita), = 7G(7). Unfortunately, the same symbdk(7), has some-
as?7 times been used for both of them, tending to confuse the
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distinction between them. Another common usgaigeto de-
note the logarithmic distribution function &In(7)], but the
use of an entirely different symbol for the two different
guantities eliminates the possibility of ambiguity and is

J. Ross Macdonald: Inversion of dielectric relaxation spectra

by defining a set of fixed points over the expected range of
the distribution, and usually take their spacing constant. For
the dielectric area, the usual chdit€***has been to define

a range forr by setting ®maxTmin= @minTmax=21- Then, for

strongly recommended. Further, it is worth mentioning thatequal spacing in the variable (lfir), the step size is just

expressions such as(), very commonly used in the present
field, > are mathematically inadmissible wheris not di-

IN(7nad Tmin)/ (M — 1), which can be set equal t@,, for all m
in the simplest possible quadrature scheme.

mensionless. Finally, since experimental frequency-response The ab initio selection of a set of fixeea-points is par-

data are discrete, the frequency variablenust then be writ-
ten asw,, where EnsN<o,

B. Numerical inversion approaches
1. Discrete distribution

In this case the unknown DRT is purely discrete and s
is made up oM spectral lines. Then one can write

M
G(7)= 2 dpnd(7— ),

m=1

(4)

where thed,,’s are amplitude coefficients which define the
relative strength of eackd,,, 7} line. The distribution is

then fully defined by the values of the set of parameters

Now definel ,,,{@,) as a theoretical or model response. Sub
stitution of Eq.(4) into Eq. (2) leads to the exact result

M
la(@n) =1 mod @)= 2 dm/(1+iw,7y),

m=1

)

ticularly inappropriate for discrete distributions where the
line spacing is initially unknown and almost always irregular.
But, as will be shown later, even for a continuous distribu-
tion the choice of fixed points is far inferior to the alternate
of taking such points as free parameters of a weighted, non-
linear least-squares inversion procedure. The main difference

%n the present inversion methods from earlier ones using lin-

ear or nonlinear least-squares fitting is the present provision
that all the{d,,, 7} or{c,,m} parameters can be free vari-
ables of the fitting.

Allowing the 7, [or In(r,/7,)] parameters to be free in-
troduces two complications. Fitting is generally carried out
with M initially small, then increased to larger and larger
values. The successivg, values found in this way are not
usually in monotonically increasing order, but ordering is
needed for an integration routine appropriate when the spac-
ing between I, /7p) values is not constant. Thus, sorting on
T, IS required before the use of such a routine, but it is of
course unnecessary for the discrete-distribution situation.

The actual procedure for the dielectric case is to fit the
model predictions

a sum of Debye responses which can be readily shown to be

independent of whetheror y is used as the relaxation-time
variable. Notice that normalization requires thgi(0)=1, a
requirement which sets the scale of g parameters.

2. Continuous distribution
The situation is somewhat different if the unknown dis-

)

to the experimental datag,.,{wy,), for all n values. Such
fitting allows one to obtain least-squares estimates,ofe,,

and the M distribution parameters, and their estimated stan-
dard deviations as well. In the fitting, any of these param-
eters can be taken free or fixed. Since dielectric frequency

Emod @n) = €t (€9 €x) | od @p)

tribution 'E continuous. Ther; one must ushe numdencal quadrarsnonse data are usually complex, complex nonlinear least-
ture to obtain estimates dfpfwy). Such quadrature ap- . areqCNLS) fitting of both real and imaginary parts si-

proximates the distribution by means of discrete points. It i
then fully defined by the parameter det,, 7.}, where here
the continuous character of the distribution is recognized b
replacing thed,,, parameters by the,, ones. It is important to
remember that although thid,,, 7} set defines isolated,
unconnected points, théc,,,r,} one specifies connected
points along the distribution. If quadrature weights are de
fined asw,,, then a general approximation for the(w) re-
sult of Eq.(3) may be written as

M
lmod @n) = > (WnCm)/ (1 +i @7,

m=1

(6)

a result similar to that of Eq(5), but where normalization
now requires that the sum of the produetsc,, be unity.
Some specific choices for thre,, quantities will be discussed
later.

3. Inversion procedure

%ultaneously is generally employed in order to use all the

available data, but real- or imaginary-part fitting is also pos-

%ible.

All the present inversions and direct fits were carried out
with the readily availableEvm computer program described
in Appendix A. The nonlinear least-squares fitting procedure
itself involves some regularization effetwhich help con-
tribute to good inversion estimates. The various fitting
choices available in specific CNLS fitting program used
herein (LEVM), allow several different approaches to be
used. To define the relevant DRT inversion possibilities, let
“ D" stand for discrete, C” for continuous, “F” for fixed,
and “V” for variable (free) r,,. Then the following combi-
nations are of particular interest: discrete-distribution inver-
sion method involving free, variable,’s (DV), continuous-
function inversion method involving fixed,,'s (CF), and
continuous-function inversion method involving free, vari-
able 7,,,'s (CV).

The linear least-squares problem associated with use of

Most previous inversion methods, whether they useEq. (6) for inversion with constant spacing involves an

Tikhonov regularization or other procedure§?*8-?? start

NXM “design” matrix, and, whenN=M, direct inversion
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of the MXM matrix may be employed to obtaie,  wherey==p. Since this expression is normalized, its inte-
values®® This approach has been called the matrix-gral over ally is unity.

quadrature method of numerical inversiband was applied

to the present problem long ago by Uhlmann and Hakim.

But, it is generally unsatisfactory, and its generalization;, pjscrete distribution: a single spectral line

when M<N (for example, the use of linear least squares

fitting) is also quite inadequate and usually leads to mean- Although discrete-distribution response with only a few
ingless oscillatory estimate® of c,. Note that when lines present is probably rarer than a response associated

N=M, either matrix inversion or, equivalently, linear least With the presence of a continuous DRT, Garg and Sfiyth
squares, should lead to an exact solution, “one which ‘mogfound that. their data on normal primary alcoh_ols could be
els' the discrete data function to within numerical Well described by t'he sum of three Debye functions. Morgan
round-off,”s but ill conditioning intervenes when, as usual, 21d LesmeS applied their real-part CF method to single
the condition number of the matrix is much greater thanD€PYe response. The results of their fitting with=19 were
unity® Thus it is important that the number of degrees of0t entirely satisfactory, since they yielded a centiatc,o

freedom in the present inversion procedures always be sulgStimate of about 1.3 instead of unity, and showggtlepen-
stantial(see Appendix A dence onM. Such behavior arises from the use of CF area

normalization rather than discrete-distribution normalization.
In contrast, DV inversion yielded essentially exact esti-
ll. INVERSION RESULTS mates when applied to the same synthetic data, hamely the
A. General considerations input valuese,,=5, =25, d;=1, andm=1 s. Further, very
few iterations were required for convergence, and only this

A cardinal point about inversion solutions which yield _: .
. . R : .. single value ofd,, was nonzero, so the appropridté=1
estimates of continuous distributions, one associated wit .

value was verified.

their usually ill-posed and ill-conditioned character, is that no CNLS fit results of the same data using tte/m CF
matter how well a frequency-response model, such as Eq, ; . . ; .
. . . hversion method were instructive when carried out with DV
(7), fits a given set of data, the estimate of the DRT associ- o . .
: . . rather than CF normalization. The calculations involved
ated with the data is not guaranteed to approximate the tru - . : . ; .
: ouble-precision arithmetic with stringent stopping/
DRT well. In fact, the accuracy of such an estimate does no o . .
o . . convergence criteria and required a large number of itera-
necessarily improve beyond a certain point as $peof the

7 . ) tions for full convergence. WittM =11, for example, they
frequency-response fit is decreased by increadihgthe led to essentially exact estimates far and ¢, as before, to
number of freec,,, parameters in the fitting model. He®e is y 0 ’

a measure of goodness of fit at the frequency-response Ievai1 Sr value of about 10°, to a value of the centrat of
9 quency-resp £1071° and to positive estimates of all the othercl.(s of

(see Appendix A This accuracy limitation does not apply | o1 qg10 However, as in the ML calculatiort$ it was

for DV estimation using data arising from an inherently dls'necessary to ensure that one of the fixed inpytvalues

crete DRT since thq data themselves determine the aPPIOPGincided with ther value of the single line present, an im-
ate number ofi,, points.

portant weakness of the CF method applied to data involving
a discrete distribution.
B. Estimation of distributions using synthetic data Incidentally, real-part CF fitting yielded essentially the
Morgan and Lesmé& (ML) recently inverted both syn- Sa@me results as complex fitting, as also did imaginary-part
thetic and experimental data using a variant of the preser{ting. athough the latter does not allow an estimate.ofo
CF approactisee Appendix B and some of their same data be obtained. To |IIl_Jstrate t_hg results of a poor choice of the
sets will be reanalyzed herein. For synthetic data, | considdfx€d 7m values with CF fitting, exact data such as those
only their choices of single Debye-function relaxation re-200ve were produced fM =11 with 7,, the value ofr for
sponse and of Cole—CokEC) response involving the pa- the single line present, placed halfway betwegrand ;.
rameter3=0.6. The more general empirical response func-Fitting then yieldedS;=0.12, (¢~ ¢.)=18.0, ¢.=4.98, and
tion suggested by Havriliak and Neg&minay be written as  Only two significantc,, values:ce=0.486 andc;=0.514.

lan(@) =[1+ (i 0Tin) #1177, ®)

where 7y is not necessarily equal tg, and B andy fall in 2. Discrete distribution: multiple lines
the range[0,1]. When y=1, this equation reduces to the

Cole—Cole forn?® for =1 it describes Davidson—Cole Over the years there has been considerable effort ex-

7 . pended to find ways of resolving the sum of two or more
responsé’ and for y=8=1, it degenerates to Debye re- . . ) .
. simple Debye responses with relaxation frequencies rela-
sponse. | follow ML here by using the valugs=5 and . 20,29-32 .
. . . . tively close togethel? but no satisfactory approach
(ep—€.,)=20 in generating synthetic data. The synthetic CC :
- has been demonstrated. For example, when Fourier deconvo-
data used covered the range from 18w,7,<10% a loga- . 0-22 . )
oo : i ) . lution methods are used->~??there is a problem of selecting
rithmic bandwidth of 6, with 49 points equally spaced in log . . i o
frequency. Thé=(y) DRT associated with Cole—Cole behav an appropriate window for high-frequency filtering, and
d Y- y when such methods are applied to Debye spectra they yield

ior may be writtefi as limited resolution with spectral responses of finite width and
FedY)=(27) 1 sin(¢)/[cosh By) + cog #)], 9 usually with oscillating tails as well. Further, Fourier trans-
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formation of discrete data leads to somewhat different results

than does continuous-function transformation, as analyzed /\706 ]
elsewheré? £ 1CC:0.6
In order to demonstrate the great resolution power of the \O/ -1.01 7
DV, the inversion of data arising from two very closely <
spaced lines is considered here. In the first case, the follow- o0 _1 4 -
ing values were used in Eq(Al) to generate the 3 ]
data: C;=1F R;=1(Q, C,=0.01 F, andR,=90 ). Thus, 181
the peak height of one dispersion is 100 times smaller than T
the other, and the ratio of their time constants is 1 to 0.9, ]
very close spacing. DV inversion of the original exact —2.21 R EA:1?M—19
frequency-response yielded essentially the exact input val- 1. 00060 M)ffg’ -
ues, including the time constants=1 s andn,=0.9 s. When -2.6 +Fr—a——— Y
the data were rounded to four significant figures, however, -4 =2 0 2 4
the fit yieldedS;=2x10"*, and estimates of 1.003, 0.997, Log1o(Tm/ To)

0.0069, and 129, for the above four circuit elements, respec-

tively. The colrrespondlngm values We_re thus abou_t 1_an_d FIG. 1. Log—log plots comparing the exact Cole—C@®&C) continuous
0.89 s, showing that, was better estimated than its indi- distribution function of Eq.9) (solid line) with CV inversion results ob-
vidual components. Considerably less-accurate estimatéaned using the complex nonlinear least-squares fitting program, with

were obtained with only three digits remaining in the data. M =13 and 1%y, points. Here the combination-C" denotes complex data
fitting, and 7y is a scaling relaxation time takers 4 s here and elsewhere.

For a second tesC; and R; had the same values as Tpe points denoted by asterisks are exact distribution values plotted at the
above, butC, was taken as 0.3 F arfd, as 2Q). Thus, for  same values o,,=log;(./7) as those found from th#1 =19 inversion.

this case the peak height of the second dispersion was abofgre LBW is the logarithmic bandwidth, 1@gwmayd wmin)-
a third of that of the first, and the ratio efs was 1 to 0.6.

With three(and twg significant figures, the fit estimates for ] ]
S, C;, Ry, C,, andR, were, respectively, 0.001®.014), unambiguously demonstrates that the data analyzed involve a

1.0070.011 (0.9670.090, 0.9980.014 (1.0470.116, gontinuous, not a discr'ete. DRT. Thg values of.any discrgte
0.2990.037 (0.3350.258, and 2.008.029 (1.8240.202. lines present in the distribution would remain nearly inde-
Here a number 1ikd0.037 is the relative standard deviation Pendent of the value dfl or of the span of the frequency-
estimate of the associated parameter as determined from tf@SPonse data, but we see that they do not do so here. The
fit (see Appendix A Again, ther; and, estimates are better S@me variabler, behavior was found with DV inversion of
than their individual components, and most of the relativeth®Se data, so either approach can be used to identify distri-
standard deviation estimates are appreciably greater than th&/tion type. Such a capability is absent from all previous
actual errors of estimation. These results show that althougfPProaches which use fixed points.

the accuracy is strongly degraded on going from three to two ~ Although log—log plots are useful to show behavior over
digits in the data, the estimates are still quite significant. @ Wide range, errors are better presented with a linear scale,

The present inversions indicate that DV fits of noisy, 85 in Fig. 2. Here complex-fi_t CF and C\_/ inversion errors are
discrete-distribution data can yield much greater resolutioff®mpared. Note the approximately 10-times greater errors of
than has been demonstrated before. Furthermore, discrefd® CF inversion as compared to the CV ones. The strong
distribution inversion is not constrained by the limitations of
an ill-posed problem which usually apply for continuous-
function DRT estimation.

M=19 LBW=6

3. Continuous Cole —Cole distribution

0.004

Figure 1 shows the results of two complex-fit,
proportional-weighting CV inversions of exact CC data with
B=0.6. Morgan and Lesm&Streated this same situation
with their CF method but presented their results as low- —0.001 -
resolution linear plots ot,, [called y(7) by them vs the :
ordinary logarithmic variables,,=log,¢(7/7). This vari-
able, rather thawy,,, is also employed here for plotting. Bet-

Errors

cewss OV, A
ceeeo CV, B

ter comparison between theory and predictions, particularly _0.006 | NN v ¢

in the tails of the distribution, is possible when a logarithmic MR E3 s R0 28

rather than a lineac,, scale is used, as in Fig. 1. /
Note that when atM =19 inversion point, denoted by an Log 10(7111/7—0)

open circle in Fig. 1, evenly surrounds its exact value, de- § . TP data of
; : ; ; ; IG. 2. CF and CV inversion errorfs,,— Fcc(sm) ], for the CC data of Fig.
noted by an asterisk, the inversion estimate is very gooq vs log(mn/7) for M=19. TheA, B, andC CV inversion results were

indeed, as it is for the preseM=19 inversion estimate. ptained with different end-point corrections, as discussed in the texBThe
Furthermore, comparison of thd =13 andM =19 results  curve corresponds to tHd =19 results of Fig. 1.
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TABLE I. Inversion results for water at 20 °Gy=1 s. Here quantities written a§B indicate an estimated, and its estimated relative standard deviation,

B.

Bottreauet al. (Ref. 32 DV Morgan and LesmegRef. 179 CF

This study DV

7'm‘TO dn 7'p‘TO Cp 7'm|7'0 Trn‘TO dn

4.63x10140.002 0.036 7.1%10°'40.19 0.0310.09 3.3%10 '40.45 0.02¢0.27
3.09x10712 0.014 2.9%10 50.70 0.01$0.39

8.92x107190.017 0.914 9.5510 *2 3.04 9.3%107'40.005  0.96%®.003  9.4410 40.006  0.95§€.003

2.86x10 140.09 0.051

& 80.4 80.9 80.08 80.15

€, 1.78 3.30 2.2.10 1.940.16

S 0.332 0.320

error oscillations of the CF curve are characteristic of suctC. Estimation and identification of distributions from
inversions of data involving continuous distributions. experimental data
All three of the CV inversions of Fig. 2 used a type of 1. inversion of water data

e),(tﬁn(??fd trapezcgdal'quadratur_e W|thcva\rzb_le slpé(‘zbgt Morgan and LesméSused their real-part CF method to
with different end-point corrections. Curn involved no a1t 20 °C water data compiled by Boutreaiual *? from a

such correctioqs and .there.fore shows gppreciable errors %riety of sources. These 27 data values extended over the
the two end points which arise f_rom the_ I|m|_ted range Of_thewide range from about %10° Hz to over 16° Hz and are
data. Because the numerlcql |ntegrat.|or.1 involves a f'”'t‘?quite iregular, having appreciable lacunae and some large
range ofsy, area outside this range is ignored. Cue qyliers. To allow direct comparison with earlier results,
partly corrects for these omissions by changing the factor ofhese same data were used for the present inversions, in spite
0.5 used in the integration only for the end-points to unity.of their irregularities. Before trying to invert these data, they
Finally, curveC, the best of the three, corrects the last twowere fitted, using.EvM, to the CC form of Eq(8). It was
points on each end by factors appearing in an extendefbund that an adequate fit could not be obtained by using the
quadrature formuf¥ of order 1M3. Since there is no evi- 24 lowest-frequency original data values, those employed by
dent theoretical rationale for this formula, the cuBeap-  ML. Therefore, generalized cross validatory quintic spline
proach is taken standard in thevm CV procedure. smoothing® was carried out on the full 27 points listed in

Incidentally, although spline-fitting and quadrafiffe Ref. 32. Of these, the last three points were extrapolations
could be used in place of the present quadrature method, thisom infrared data. This procedure automatically provides
approach was found to yield somewhat larger errors than digtatistically appropriate smoothing when carried out on loga-
the curveB method when the spline fitting involved natural rithmically transformed data if the original data have pre-
boundary conditions, and the use of more appropriate estdominantly proportional error$. The smoothed data are pre-
mated boundary conditions did not seem to justify the resultsented in Fig. 3 but still show appreciable irregularity.
ing complications. Although the curv@ errors are remark- An adequateN=24 CC fit was then found for the
ably small, their existence, even for exact input data, iSmoothed data. It yielded rod/7=9.33x10 *%0.006,
evidence of ill conditioning which must be expected for the 5~0.9840.004, (€y—¢..)=76.340.004, ¢..~4.240.051, and
inversion of discrete data associated with a continuous disor =0-356. Most of these results agree closely with those
tribution.

With M =19, the fit of the original synthetic frequency-
response data was very good, with 8p value of about
10>, This quantity has been found to decrease for CV fitting
as exp—aQ), wherea is a constant which depends on the
form of the convolution kernelQ=M/(LBW) (LBW is the
logarithmic bandwidth of the original exact dat&or such

= 40;
w7 o

20]

o
+we Data 3
oooooFit %

data,Sg continues to decrease Bkis increased until finally -‘Pe"

limited by the number of decimal digits carried in the data OO T 2@ ‘ 40 ' '6'0' " 8@
and calculations. There is thus always a limit on the resolu- /

tion the present CV method can deliver. This limit is usually E

unimportant for exact data but can become crucial for experi-

mental data. Then the minimui®:-, and so the maximum FIG. 3. Complex-plane plot of the smoothed 20 °C water dielectric data
useful M value, is limited by the error in the data. This obtained by many workers, and of thMe=2 DV inversion fitting points for
L . ' . these data. The arrow shows the direction of increasing frequency. The
limitation is demonstrated for the data analyzed in SeCgyominant discrete relaxation time obtained from thie inversion of these data

I1C 3. was 9.39 ps. See Table | for further results.
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quoted by Hastetf who concluded that a CC continuous

distribution fit the water data somewhat better than did a | e n—-pentanol

single-line discrete distribution. 14+ %% alcohol
Results of different analyses are summarized in Table I. -~ 1 ®

TheM =2 DV inversion points are also plotted in Fig. 3. The @ QO <+ .+ Data

most plausible estimates shown in Table | seem to be the two 101 60000 Fit

DV ones on the right, calculated witki=27. Of these, one ] ©

should choose that with two isolated spectral lines, since the : ®

parameter uncertainties are smaller than those Wth3. 1 ©

Fitting without the three extrapolated points yielded only a 6'_ A

single line with ar very close to the larger one, showing : ®®o

that the second smafine in Table | was associated with ] 0@ 005 006

these points. % —_————————
When three DV lines are extracted with=27, it is O 8.5 10.5

evident that two of them are then not well defined, especially Log 10<f/fo)

the one with7,/7,=2.93x10" 1. When four lines are esti-

mated, it is found that the relative standard deviations of fiverc. 4. The 25 °Cn-pentanol alcohok’ frequency-response data, and the
of the nine free parameters are of the order of or greater thai =2 DV inversion fitting points for these data. Hefig=1 Hz. The domi-
unity, meaningless estimates. As shown in Table I, the centrdint discrete relaxation time obtained from the inversion of these data was
- ' . . ) . ’ 0.802 ns. See Table Il for further results.

line of the three-line discrete-function-approach results of the

present study is clearly close to the first of the two peaks of

the continuous distribution estimated by ML using their CF
approach, one which usesl degrees of freedom rather than
an appreciable positive value, as always employed witl
LEvM fits. Herec, denotes the value af, at a peak of a
continuous distribution. Since the central DV line is itself not 4.+ " o \ide variety of continuous-distribution response

well defined, little credence should be given to either it or they | ion< The best fit was found for the Davidson—Cole
ML estimate. Difficulties to be expected with underdeter-response' functidd form of Eq. (8). Fitting results

mlneCd fits are dlsiuts; edin ﬁppefnglxttB. 132 with th with a smoothed and interpolatdd=74 set of data were
omparison of the results of Bottrea al." with the 5=9.54x107190.022 s,9~0.8640.011,€,~2.7870.006,

. . . T
present ones s also instuctive, These auihors used @ .)~12.3740.007, ands:~0.0207. This fit is signifi-
ISCrete-tunction Inversion approach limite =4, one Cantly worse than the DV one in Table II.

which is less accurate and much less general than the present Table 1| compares DV inversion results to two con-
independently developed one. As one might expect, their "Sinuous-function inversions obtained by earlier workers.

sults and the present DV ones are reasonably similar, but thg, -« Bt 20 were obtained by a Fourier-transform de-
present DV method yields more resolution and accuracy angonvolution method involving imaginary part data only, one

s far casier o apply. When it Waﬁlijsed to estimate 1Eou(/vhich leads to broadening of any delta-function spectral
spectral lines, one withy,/7,=1.2x10""" appeared, roughly lines present. Their values quoted in Table Il are those

correspondmg to one of th‘.a I|_nes listed _at the '?ft of _Table I'defining the peaks of their continuous distribution estimate,
The relative standard deviation associated with this valu mitting a small response for which/r.. is well above the
m

was about 0.36 and the relative standard deviation esnmaﬁeasured w70, Their peak coefficients have been
max’0-

fpr the correspondingly, was about 2, not a well-defined normalized’ such that the amplitude of the major peak was
line.

to 1.000.
The ML CF result$’ were obtained from real-part fitting
with N=M =30, again yielding-1 for the available number

this material appearing in Ref. 20; thus they may be expected
to contain errors arising from this process as well as some of
I?heir original experimental errors.

LEvM has been used to fit these frequency-response

. . set
Because the DV approach yields adequate results wnﬁ
just two spectral lines, it is not sensible to apply the CF

method to these data, which are clearly better and more aRs degrees of freedom. Thus, one might expect very poor
propriately defined by a few isolated, discrete lines than by Astimates. We see that theiy e'stimate is, in fact, apprecia-

contlnuou_s DRT. Even thqugh the data are of poor qualltyny larger than the lowest-frequency limiting data value of 15
and consistency, the combination of least-squares-fit smootl?a-

. d DV i ) ield ble i ; nd the DV estimates of, presented in Table Il. More sig-
ng an INversion yields reasonable inversion IoararT]'nificantly, their CF inversion led to a smooth, apparently
eters, but more-accurate data, extending over a very wid

) _Sontinuous, distribution curve with two peaks, very different
frequency range for several d|ffer§ nt temperatures, are des'Fésults, except for the location of the peaks, than the predic-
able for such an important material as water. tions of the DV inversions discussed below.

The DV results listed in Table Il used the original 30
data values obtained from ML, and only two significant

Morgan and Lesmes sent me the=30 real-part data spectral lines could be obtained from the inversion of these
they used’ to estimate a continuous DRT far-pentanol  data. When | attempted to extract three lines, the relative
alcohol®’ These 25 °C data, shown in Fig. 4, were producedstandard deviation estimates of one of thér's and two of

according to ML, by digitizing the graphical (w) curve for  the threed,,'s were of the order of unity or greater. Had the

2. Inversion of n-pentanol alcohol data
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TABLE II. Inversion results fom-pentanol alcohol at 25 °Ci=1 s.

Salefran and DutoitRef. 20 Morgan and LesmeRef. 17 CF This study DV
7ol T Cp 7ol T Cp Tl 7o dm
3.6x10° 1 0.056 3.4%107% 0.026 3.4%107%Y0.16 0.040.08
7.6x10°1° 1.000 8.55¢10710 2.5 8.02¢10190.014  0.9§0.007
€ 15.4 15.03
€, 2.71 2.740.007
Se 0.0143

e(w) data actually been associated with a continuous distri- Figure 5 shows some DRT estimates for thése4l
bution of some width, such as those estimated from thlycerol data. First, it is evident from the differences in the
n-pentanol data by Salefran and DufBiand by ML it M =9 and 107, values that the response involves a continu-
should have been possible to obtain many significant noneus distribution rather than a discrete one. Ko 10, theS:
zerod,, or ¢, estimates. Since this was not the case, it seemef the fit was about 0.0094, and the estimated relative stan-
virtually certain that the true distribution is discrete, and thusdard deviations of the,’s were all below 0.1 and mostly
the present DV procedure should yield good estimates for thbelow 0.06. When a fit was carried out witii =11, the
DRT coefficients. value of Sz was only slightly reduced, and the relative stan-
Although the present results clearly show that thedard deviations of six of the 1t,’'s were then above 0.1,
present data are associated with a discrete DRT rather thawith one about 0.34. The leveling &, the increase in the
with a continuous one, it is of interest to compare real-parestimated uncertainties of tleg,, and a concomitant increase
CF results with the corresponding results of ML. The presenin those of ther,,’s all indicate that the limit of CV resolution
CF inversion process witM =10 was found to yield only a determined by the present data error level has been reached
few nonzeroc,, results which matched the discrete lines of with M~10 (see the discussion at the end of Sec. 11)B 3
Table Il as closely as possible within the limitations set by  Figure 5 also shows fractional exponential DRT re-
equally spaced, /7, values. All otherc,,, estimates were ef- sponse. It was produced by first fitting the origiedlw) data
fectively driven to zero, further indication that for these datawith a capacitance and fractional-response function in paral-
a discrete DRT is appropriate and that a continuous one ikl, but using unity weighting to emphasize the peak region
not. By contrast, with a negative value for the available de-of the response. This part of the response was well fitted by
grees of freedom, none of MLs,, estimates were less than this procedure and the resulting fit parameters were used to
about 3103, generate exact, complex-response synthetic data covering the
same frequency region with 87 points equally spaced in
log;o(w/wp). These data were then used to obtain the two CV
inversion responses identified by WW in the figure.

Since only discrete DRT's were found for the two liquids  Figure 5 shows that there is a constant-slope region with
considered earlier, it seemed worthwhile to analyze one with

a continuous distribution. Professor Sydney Nagel kindly
sent me dielectric response data on salol and glycérk- 7% M=0 oo

3. Inversion of glycerol data

N /
terials of considerable current interest because of their use- g 0.8 1 gl];éOleo b
fulness in allowing the verification of an important new scal- 8 "7 {ooo0oo WW,. M=10
ing relationship for supercooled liquid®.The salol data o ]---- Ww.M=17
exhibited much more irregularity in their high-frequency tail an— | .6 ]
regions than did the glycerol, so the latter have been used for O
the inversion results shown here. Within the limitations of — —2 4 ]
the data, a similar response was found for the salol data sets T
investigated. 1

First, it was found that all the data sets examined could —3.2 Tees

be quite weII.fitted directly with continuous—distribution re- ] D,’ Glycerol, T=230\\\K
sponse functions represented by the following three circuit —4 () e
elements all in parallel at the admittance level: a capaci- -11 -9 -/ =5 =3
tance accounting foe,,, a fractional exponential response Logm(Tm/TO)

functior™® dominating the low-frequency response, and a

Havrlllak—Negaml response functﬁﬁ"lmportant at the hlgh FIG. 5. CV inversion results for glycerol at 230 K for different valuedvof
frequency end of the data. For glycerol at 230 K, the frac-Calculation of the fractional-exponential DRT responses, marked WW for
tional exponent was found to be about 0.72, and théWVilliam-Watts, is described in the text. The small, solid line, uncertainty

Havriliak—Negami function degenerated to a Davidson—Coldectangles surrounding eadh=10 {c,, 7.} point were formed by adding
and subtracting one estimated standard deviation of each quantity from the

response With}’=0-30: TheS; of the proportional weighting point, then transforming to log—log space and connecting the results with
LEVM complex data fit was about 0.022. straight lines.
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a log—log slope of about 0.72 just to the left of the peak, ahey used in their work and for providing some helpful com-
slope which is shared by the two glycerol inversion re-ments on an earlier version of the present work. | also ap-
sponses and by the fractional-exponential ones, as one migpteciate the useful suggestions of two reviewers.

expect from the aforementioned discussion. The presence of

a high-frequency tail is evident, however, in the glycerol APPENDIX A: THE LEVM DISCRETE FUNCTION

response below,,,~—7. Except for the end point, which is INVERSION METHOD

likely to be inaccurate because of the finite span of the data, A powerful instantiation of the DV discrete function in-

another nearly straight-line region is apparent, but it has e gjon approach has been included for a decade as one of a

log—log slope of nearer 0.45 than 0.3. To verify the reason—great many choices in the very generalm complex non-

ableness of this result, the direct-fit results mentioned earligf, o5, least-squares impedance spectroscopy data fitting
involving three response elements were used to generate n%’ogram‘?"‘z“‘SThis program uses the modified Levenberg—

N=87 exact data and then this data set was fitted by pmpo'i\'/larquardt algorithm of Moré® which is robust, fast con-

tional weighting CV inversion. The resultingl =10 curve \or4ing and involves implicitly scaled variablagvm has
was found to lie almost exactly over téd=10 glycerol = hoen ysed for direct impedance-spectroscopy data fitting, for
curve of the figure from the left side of the peak to the ggtimating DRT's, and as a powerful substitute for Kronig—
minimum s, value, except for the end point. These resultSy . merg transformatiof?' Nearly all the present fits with
thus show that both the direct and the inverse fitting result$ ., \, ;sed proportional or function proportional weighting,

are mutually consistent over most of the range of the datd,q fitting to full complex data or to their real or imaginary
Furthermore, they demonstrate the usefulness of CV inver;

) ) > Y arts is straightforward. Details of the many weighting pos-
sion of experimental data of the present type in bringing Ougibilities available inLEvm are given elsewher®'®47 L evm
details of a complicated, distributed DRT.

fitting yields a value of the standard deviation of the
weighted fit residualsSg (which involves the number of

lll. CONCLUSIONS AND FUTURE DIRECTIONS degrees of freedom availableestimates of the free param-
eter values, estimates of the standard deviations of the pa-

It seems likely that the identification by ML and others ] - )
of the DRT's of water andh-pentanol alcohol as continuous rameter estimates, a parameter correlation matrix, ané an
jest of the overall fit.

rather than discrete arose from the lack of a general inversio ) , o .
method that allowed the,,’s to be free rather than initially The actual discrete function approach circuit used in
fixed. The present DV and CV methods do so and can thusEVM 10 represent dielectric response response involves a
remove the chance of misidentification. Moreover, ML mayCaPacitanceC.. in parallel with M parallel branches, each
not have used sufficiently stringent convergence criteria fofONSISting of a capacitanc€,,, in series with a resistance,
their least-squares fits, and in their inversions of data foftm- WWhen the admittance of this structure is dividediby
these liquids they applied their usual least-squares proceduff€ obtains the complex capacitance
even when their number of degrees of freedom wds M

Although it has been demonstrated herein and c(, )=C,+A > C./(1+iw,CyRy), (A1)
elsewher& that DV inversion is not an ill-posed problem
and has tremendous resolving power, the maximum resolu-_ ) o
tion of CV inversion is limited by errors in the data. Prelimi- With A=1. The capacitances appearing in E41) can be
nary work indicates that resolution can be somewhat imconverted to d|elfactr|c constant form by dividing each one by
proved for experimental data inversion by first smoothing the®v: the capacitance of the empty measurement cell.
data by the method used herein for the water data, but th¥/éighted CNLS fitting of this circuit yields estimates of the
gain achieved is usually relatively small. An alternative is to2M +1 free parameters. Note that the individual relaxation
modify the present nonlinear-least-squares CV algorithm tdimes are defined as jus,=C.Rn, and the program in-
include Tikhonov regularization. Up to the present, suchcludes a choice which leads to estimate€gf(and thusd,,)
regularization has generally involved fixed independent vari&nd7m directly if desired. The number of degrees of freedom
able (here ) values. In order to avoid the need for a subjec-for discrete or continuous function fitting i@N—2M —1)
tive choice of the regularization parameter, in the combined0r complex data fitting(N—2M—1) for real-part fitting,
approach it might be taken as a free parameter of the fiting"d N—2M) for imaginary part data.
or possibly determined by thelL curve method of After the iterative f|tt|ng. process has converged, the pro-
Hanserf®*! If nonlinear least-squares inversion, including 9ram calculates the quantityC=(Co—C..) (equal to the
regularization and freer, parameters, proves successful, SUm of theCys), the 7)’'s, and the dimensionless distribu-
much larger useful values ® than now practical should be tion strengthsdy,=C/(Co—C..). The results may then be
possible, even for data with appreciable errors. expressed in just the form of E€l) with I () given by the
I of Eq. (5).

WhenLEWM is used for discrete function inversion, it not
only returns estimates of the standard deviations of the free

| greatly appreciate the helpful comments of Professodistribution parameters but also those of the relative standard
William J. Thompson and a valuable suggestion by Professatdeviations of the parameters, where for a parameter estimate
K. J. Arrow. | am also grateful to Dr. F. D. Morgan and Dr. B, the relative standard deviation is just the standard devia-
D. P. Lesmes for sending me thepentanol alcohol data tion divided by|B|. Unfortunately, such estimates have usu-

m=1
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ally been unavailable and/or unreported in the past. Incidenis known to describe error-free data exactipformation
tally, a relative standard deviation estimate as large as 0.4 grever available for experimental datdo these quantities
0.5 provides only a small degree of confidence in the relateéhvolve the true weighted errors, as opposed to the weighted
parameter estimate, and one of the order of unity or greateesiduals.
suggests that the related parameter estimate is meaningless Some of the ML inversions involved underdetermined
unless it itself is zero. systems of equations, those wheévie>N. The problem of
Although estimated relative standard deviations can bebtaining solutions under these conditions is known in
calculated for thed,, coefficients and for €,—C..) when  econometrics as the undersized sample proBigit. These
those of theC,’s and their correlation matrix are known, the authors suggest that one should not expect to obtain a unique
calculation is only approximate. It involves not only a quo- solution; they mention such techniques as singular value de-
tient of uncertain quantities, but also possibly very uncertaircomposition and the repeated use of the generalized matrix
correlation coefficient values. These values are obtained by iaverse; but they do not suggest that it is reasonable to use
linearization procedure from the off-diagonal elements of thehe same least-squares approach appropriate for an overde-
variance-covariance matrix, which is calculated after convertermined system for an undetermined one, as ML have done.
gence of the fit. A Monte Carlo stutf/has shown that in In the ML work!’ no notational distinction is made be-
calculations of the present type, the off-diagonal elementsween the DRT'sG(7) and F(y), the right side of Eq(10)
are generally much less accurate than the diagonal elementseds to be inverted; the undefined quantiy/ s the num-
the ones which lead to the parameter relative standard devider of discrete frequency valueS,, in Egs. (15 and (16)
tion estimates. Thus, this approach is not usedeivMm. should bes,,, and the term sifw7) in Eq. (14) should be
Luckily, it turns out that theelative standard deviation replaced by sitwg).
estimates of the distribution coefficients are closely the same
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