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ALGEBRAIC BETHE ANSATZ FOR THE ELLIPTIC

QUANTUM GROUP Eτ,η(sl2)

G. FELDER AND A. VARCHENKO

Abstract. To each representation of the elliptic quantum group Eτ,η(sl2)
is associated a family of commuting transfer matrices. We give common
eigenvectors by a version of the algebraic Bethe ansatz method. Special
cases of this construction give eigenvectors for IRF models, for the eight-
vertex model and for the two-body Ruijsenaars operator. The latter is
a q-deformation of Hermite’s solution of the Lamé equation.

1. Introduction

The Bethe ansatz is a method to construct common eigenvectors of com-
muting families of operators (transfer matrices) occurring in two-dimensional
models of statistical mechanics. Faddeev and Takhtadzhan [TF] reformu-
lated the problem into a question of representation theory: commuting fami-
lies of transfer matrices are associated to representations of certain algebras
with quadratic relations (now called quantum groups). Eigenvectors are
constructed by properly acting with algebra elements on “highest weight
vectors”. In this form, the Bethe ansatz is called algebraic Bethe ansatz.

Whereas this construction has been very successful in rational and trigono-
metric integrable models, its extension to elliptic models has been problem-
atic, although the Bethe ansatz, in the case of the eight-vertex model, is
known since Baxter’s work [B]. For elliptic models associated to slN , an al-
gebra with quadratic relations has been introduced by Sklyanin [S], but the
notion of highest weight vector is not defined for its representations, which
makes a direct application of the algebraic Bethe ansatz impossible.

Recently, a definition of elliptic quantum groups Eτ,η(g ) associated to any
simple classical Lie algebra g was given [F]. It is related to a q-deformation of
the Knizhnik–Zamolodchikov–Bernard equation on tori. The representation
theory of Eτ,η(sl2) was described in [FV3].

In this paper we describe the algebraic Bethe ansatz for Eτ,η(sl2). The
construction is very close to the construction done in the trigonometric case
in [TF]. The main difference is that transfer matrices act on spaces of
vector-valued functions rather than on finite dimensional vector spaces.

The basic results in this paper are Theorems 4 and 5. We present them
in Sect. 3 after a summary of the representation theory of Eτ,η(sl2) in Sect.
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2. In Sect. 4 we formulate our result in the discrete case, which gives a
construction of eigenfunctions for interaction-round-a-face models (Sect. 5).

In Sect. 6 we introduce a version of Baxter’s vertex-IRF transformation.
With the help of this, we show how to obtain eigenvectors of the eight-
vertex model transfer matrix from our eigenvectors. From this point of
view, our construction is very reminiscent to Baxter’s transformation of the
eight-vertex model into an inhomogeneous six-vertex model [B]. Also, this
vertex-IRF transformation shows a very close relation of Eτ,η with Sklyanin’s
algebra in the sl2 case. Note however that Sklyanin’s algebra can only be
defined for slN , whereas the elliptic quantum group exists (at least) for all
classical simple Lie algebras.

Another class of problems in which the Bethe ansatz has been applied
successfully is the class of Calogero–Moser–Sutherland quantum many body
problems on the line with elliptic potentials, see [FV1], [FV2]. In the case
of two bodies, the Bethe ansatz goes actually back to Hermite, who solved
in this way the generalized Lamé equation, cf. [WW]. These integrable
Schrödinger operators admit a q-deformation due to Rujsenaars [R]. In
Sect. 7 we present a q-deformation of Hermite’s result, i.e., we give eigen-
functions for the two-body Rujsenaars operator. These eigenfunctions are
parametrized by a spectral curve, similarly to the differential case. It is a
double covering of a hyperelliptic curve. This result follows from our result
and the observation that the transfer matrix associated to an evaluation
representation is equal to the Ruijsenaars operator up to a scalar factor de-
pending on the spectral parameter. A similar observation, relating transfer
matrices to Ruijsenaars operators, has been made recently by Hasegawa [H]
in the context of Sklyanin’s algebra, indicating that our construction should
be extendable to the N -body case.

2. Modules over Eτ,η(sl2) and transfer matrices

In this paper, we construct eigenvectors of the transfer matrix of the ellipic
quantum group Eτ,η(sl2), [F, FV3], associated to certain highest weight
modules.

Let us recall the definitions: we fix two complex parameters τ, η, such
that Im(τ) > 0. The definition of Eτ,η(sl2) is based on an R-matrix R(z, λ)
which we now introduce. Let

θ(t) = −
∑

j∈Z

eπi(j+
1

2
)2τ+2πi(j+ 1

2
)(t+ 1

2
), (1)

be Jacobi’s theta function and

α(z, λ) =
θ(λ+ 2η)θ(z)

θ(λ)θ(z − 2η)
, β(z, λ) = −θ(λ+ z)θ(2η)

θ(λ)θ(z − 2η)
,

Let V be a two dimensional complex vector space with basis e[1], e[−1],
and let Eije[k] = δjke[i], h = E11 − E−1,−1. Then, for z, λ ∈ C, R(z, λ) ∈
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End(V ⊗ V ) is the matrix

R(z, λ) = E11 ⊗ E11 + E−1,−1 ⊗ E−1,−1 + α(z, λ)E11 ⊗ E−1,−1

+ α(z,−λ)E−1,−1 ⊗ E11 + β(z, λ)E1,−1 ⊗ E−1,1 + β(z,−λ)E−1,1 ⊗E1,−1.

This R-matrix obeys the dynamical (or modified) quantum Yang–Baxter
equation

R(12)(z−w, λ−2ηh(3))R(13)(z, λ)R(23)(w, λ−2ηh(1))=

R(23)(w, λ)R(13)(z, λ−2ηh(2))R(12)(z−w, λ)

in End(V ⊗V⊗V ), z, w, λ ∈ C. The meaning of this notation is the following:
R(12)(λ− 2ηh(3))v1 ⊗ v2 ⊗ v3 is defined as

(R(z, λ− 2ηµ3)v1 ⊗ v2)⊗ v3,

if hv3 = µ3v3. The other terms are defined similarly: in general, let
V1, . . . , Vn be modules over the one dimensional Lie algebra h = Ch with
one generator h, such that, for all i, Vi is the direct sum of finite di-
mensional eigenspaces Vi[µ] of h, labeled by the eigenvalue µ. We call
such modules diagonalizable h -modules. If X ∈ End(Vi) we denote by

X(i) ∈ End(V1 ⊗ · · · ⊗ Vn) the operator · · · ⊗ Id ⊗ X ⊗ Id ⊗ · · · acting
non-trivially on the ith factor, and if X =

∑

Xk ⊗ Yk ∈ End(Vi ⊗ Vj)

we set X(ij) =
∑

X
(i)
k Y

(j)
k . If X(µ1, . . . , µn) is a function with values in

End(V1 ⊗ · · · ⊗ Vn), then X(h(1), . . . , h(n))v = X(µ1, . . . , µn)v if h(i)v = µiv,
for all i = 1, . . . , n.

Now, by definition, a module over Eτ,η(sl2) is a diagonalizable h -module
W = ⊕µ∈CW [µ], together with an L-operator L(z, λ) ∈ Endh(V ⊗ W ))

(a linear map commuting with h(1) + h(2)) depending meromorphically on
z, λ ∈ C and obeying the relations

R(12)(z−w, λ−2ηh(3))L(13)(z, λ)L(23)(w, λ − 2ηh(1))=

L(23)(w, λ)L(13)(z, λ−2ηh(2)) R(12)(z−w, λ)

For example, W = V , L(w, λ) = R(w − z0, λ) is a module over Eτ,η(sl2),
called the fundamental representation, with evaluation point z0. In [FV3]
more general examples of such modules were constructed: in particular,
for any pair of complex numbers Λ, z we have an evaluation Verma module
VΛ(z). Also, we have a notion of tensor products of modules over Eτ,η(sl2).
The main examples considered in this paper will be tensor products VΛ1

(z1)⊗
· · · ⊗ VΛn(zn) of evaluation Verma modules and some of their subquotients.

For any module W over Eτ,η(sl2), we define the associated operator alge-
bra, an algebra of operators on the space Fun(W ) of meromorphic functions
of λ ∈ C with values in W . It is generated by h, acting on the values, and
operators a(z), b(z), c(z), d(z). Namely, let L̃(z) ∈ End(V ⊗Fun(W )) be the

operator defined by (L̃(z)(v ⊗ f))(λ) = L(z, λ)(v ⊗ f(λ− 2ηµ)) if hv = µv.
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View L̃(z) as a 2 by 2 matrix with entries in End(Fun(W )):

L̃(z)(e[1] ⊗ f) = e[1] ⊗ a(z)f + e[−1]⊗ c(z)f,

L̃(z)(e[−1]⊗ f) = e[1] ⊗ b(z)f + e[−1]⊗ d(z)f.

The relations obeyed by these operators are described in detail in [FV3] (in

[FV3] these operators are denoted by ã(z), b̃(z) and so on).

Theorem 1. [FV3] For any module W over Eτ,η(sl2), the transfer matri-
ces T (z) = a(z) + d(z) preserve the space H = Fun(W )[0] of functions
with values in the zero weight space W [0], and commute pairwise on H:
T (z)T (w) = T (w)T (z) on H.

Theorem 2. [FV3] Let W = VΛ1
(z1)⊗· · · ⊗VΛn(zn) be a tensor product of

evaluation modules, and let Λ = Λ1+ · · ·+Λn. Then W [Λ] = Cv0, where v0,
viewed as a constant function in Fun(W ) obeys the following highest weight
condition: for every z, c(z)v0 = 0, a(z)v0 = A(z, λ)v0, d(z)v0 = D(z, λ)v0,
with highest weight functions

A(z, λ) = 1, D(z, λ) =
θ(λ− 2ηΛ)

θ(λ)

n
∏

j=1

θ(z − pj)

θ(z − qj)
, (2)

where we set pj = zj + η(−Λj + 1), qj = zj + η(Λj + 1)

A highest weight module W of highest weight (Λ, A,D), is a module
with a highest weight vector v0 ∈ Fun(W ) such that c(z)v0 = 0, a(z)v0 =
A(z, λ)v0, d(z)v0 = D(z, λ)v0, for all z, λ, and so that Fun(W ) is spanned
by the vectors of the form b(t1) · · · b(tj)v0, as a vector space over the field of
meromorphic functions of λ. It is shown in [FV3] that if A,D are of the form
(2), for some pk, qk, then every irreducible highest weight module of weight
(Λ, A,D) is isomorphic to a subquotient of ⊗VΛi

(zi), where the parameters
zj,Λj are related to pk, qk as in the theorem. If pk, qk are generic under the
condition that

∑

(pi − qi) = 2ηΛ, then all highest weight modules of weight
(Λ, A,D) are isomorphic to ⊗VΛi

(zi) itself.

3. Bethe ansatz

In this section we fix a highest weight module W of weight (Λ, A,D) of
the form (2), with highest weight vector v0. We assume that Λ is an even
integer 2m ≥ 0, so that the zero-weight space W [0] can be nontrivial.

We follow the strategy of [TF]: we seek common eigenvectors of T (w)
in the form b(t1) · · · b(tm)v, where v ∈ Fun(W )[Λ]. The problem is to find
conditions for t1, . . . , tn, v so that we have an eigenvector. The question of
completeness, i.e., whether “all” eigenvectors can be obtained in this way,
will not be addressed here, except in the example of the q-analogue of the
Lamé equation discussed below.

Any non-zero vector v ∈ Fun(W )[Λ] is of the form v = g(λ)v0, for some
meromorphic function g 6= 0. To find for which values of t1, . . . , tm and which
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choice of v we get an eigenvector we commute a and d with the b’s using
the relations of the quantum group. The relevant commutation relations are
(see [FV3])

a(w)b(t) = r(t− w, λ)b(t)a(w) + s(t− w, λ)b(w)a(t),

d(w)b(t) = r(w − t, λ− 2ηh)b(t)d(w) − s(t− w, λ− 2ηh)b(w)d(t).

The functions r, s are defined by the formulae

r(t, λ) =
θ(t− 2η)θ(λ)

θ(t)θ(λ− 2η)
, s(t, λ) =

θ(t+ λ)θ(2η)

θ(t)θ(λ− 2η)
.

Note that these coefficients have poles for t ∈ Z + τZ, so we have to be
careful to avoid infinities in the calculations: we assume that w, t1, . . . , tm
are all distinct modulo Z+ τZ. Using repeatedly the commutation relations
to bring a to the right of the b’s, we get

a(w)b(t1) · · · b(tm) = A0b(t1) · · · b(tm)a(w)

+

n
∑

j=1

Ajb(t1) · · · b(tj−1)b(w)b(tj+1) · · · b(tm)a(tj)

for some complex coefficients Aj = Aj(w, t1, . . . , tm, λ). The first term is
called the “wanted” term, and the others are “unwanted” terms. Similarly,
we have

d(w)b(t1) · · · b(tm) = D0b(t1) · · · b(tm)d(w)

+

n
∑

j=1

Djb(t1) · · · b(tj−1)b(w)b(tj+1) · · · b(tm)d(tj)

for some complex coefficients Dj = Dj(w, t1, . . . , tm, λ). The coefficients A0

and A1 are easy to compute, since they are products of coefficients appearing
in the commutation relations:

A0 =

m
∏

j=1

r(tj − w, λ+ 2η(j − 1)),

A1 = s(t1 − w, λ)
m
∏

j=2

r(tj − t1, λ+ 2η(j − 1)).

A similar calculation gives

D0 =

m
∏

j=1

r(w − tj, λ− 2η(j − 1)),

D1 = −s(t1 − w, λ)
m
∏

j=2

r(t1 − tj , λ− 2η(j − 1)).

A direct calculation of the other coefficients is more complicated. However
the answer is simple, thanks to the
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Lemma 3. For any permutation σ of m letters, and all j = 1, . . . ,m,

Aj(w, tσ(1), . . . , tσ(m), λ) = Aσ(j)(w, t1, . . . , tm, λ),

Dj(w, tσ(1), . . . , tσ(m), λ) = Dσ(j)(w, t1, . . . , tm, λ),

The proof of this Lemma is deferred to Sect. 8.
The next step is to find conditions for cancellation of unwanted terms.

We have, with v(λ) = g(λ)v0,

T (w)b(t1) · · · b(tm)v = C0b(t1) · · · b(tm)v (3)

+
n
∑

j=1

Cjb(t1) · · · b(tj−1)b(w)b(tj+1) · · · b(tm)v

for some coefficients Cj . The condition of cancellation is Cj = 0, j ≥ 1. Let
us first consider C1. It is given by

C1(w, t, λ) = A1(w, t, λ)
g(λ + 2η(m− 1))

g(λ+ 2ηm)

+D1(w, t, λ)D(t1, λ+ 2ηm)
g(λ + 2η(m+ 1))

g(λ + 2ηm)
.

The condition C1 = 0 is then equivalent to

r(t2−t1, λ+ 2η) · · · r(tm−t1, λ+ 2η(m− 1))g(λ + 2η(m − 1))

= r(t1−t2, λ− 2η) · · · r(t1−tm, λ− 2η(m− 1))D(t1, λ+ 2ηm)g(λ + 2η(m+ 1))

which can be written as
m
∏

j=2

θ(tj − t1 − 2η)

θ(tj − t1 + 2η)

n
∏

k=1

θ(t1 − qk)

θ(t1 − pk)

θ(λ+ 2η(m− 1))θ(λ+ 2ηm)g(λ + 2η(m− 1))

θ(λ)θ(λ− 2η)g(λ + 2η(m + 1))
= 1

In particular, the left-hand side of this equation should be independent of
λ. This holds if g is taken in the form

g(λ) = ecλ
m
∏

j=1

θ(λ− 2ηj)

θ(2η)
.

Thus C1 vanishes if g has this form and the ti obey the equation

n
∏

j=2

θ(tj − t1 − 2η)

θ(tj − t1 + 2η)

n
∏

k=1

θ(t1 − qk)

θ(t1 − pk)
= e4ηc

Using Lemma 3 we find the conditions for Cj to vanish for j = 1, . . . ,m.
The result is:

Theorem 4. Let W be a highest weight module over Eτ,η(sl2) of highest
weight (Λ, A,D) with A,D of the form (2) and Λ = 2m ∈ 2Z≥0. Let
T (w) ∈ End(H), w ∈ C, be the corresponding transfer matrices. Let
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v(λ) = ecλ
∏m

j=1 θ(λ − 2ηj)v0. Then, for any solution (t1, . . . , tm) of the
Bethe ansatz equations

∏

j:j 6=i

θ(tj − ti − 2η)

θ(tj − ti + 2η)

n
∏

k=1

θ(ti − qk)

θ(ti − pk)
= e4ηc, i = 1, . . . ,m, (4)

such that, for all i < j, ti 6= tj mod Z + τZ, the vector b(t1) · · · b(tm)v is a
common eigenvector of all transfer matrices T (w) with eigenvalues

ǫ(w) = e−2ηc
m
∏

j=1

θ(tj − w − 2η)

θ(tj − w)
+ e2ηc

m
∏

j=1

θ(tj − w + 2η)

θ(tj − w)

n
∏

k=1

θ(w − pk)

θ(w − qk)

What is left to prove is the formula for the eigenvalue, which is given by
C0 in (3). By definition

C0 = A0
g(λ+ 2η(m− 1))

g(λ+ 2ηm)
+D0

g(λ+ 2η(m+ 1))

g(λ + 2ηm)
D(w, λ+ 2ηm).

By inserting the formulas for A0,D0, g,D, we see that the λ dependence
disappears for the same reason as before, and we are left with the formula
for ǫ given in the theorem.

We conclude this section by giving an explicit formula for b(t1) · · · b(tm)v.
It is sufficient to consider the case where W = VΛ1

(z1) ⊗ · · · ⊗ VΛn(zn),
for any other highest weight module considered in the previous Theorem
is a quotient of the submodule of a module of this form generated by the
product of highest weight vectors. Recall [FV3] that VΛ(z) is defined to
be the infinite dimensional vector space with basis e0, e1, e2, . . . , such that
hej = (Λ − 2j)ej , and with the action of the generators of Eτ,η(sl2) given
by explicit formulae.

Theorem 5. With the notations as in the previous theorem,

b(t1) · · · b(tm)v = (−1)mec(λ+2ηm)
∑

I1,...,In

n
∏

l=1

∏

i∈Il

n
∏

k=l+1

θ(ti − pk)

θ(ti − qk)

×
∏

k<l

∏

i∈Ik,j∈Il

θ(ti − tj − 2η)

θ(ti − tj)

×
n
∏

k=1

∏

j∈Ik

θ(λ+tj−qk+2ηmk−2η
∑n

l=k+1(Λl−2ml))

θ(tj − qk)
em1

⊗ · · · ⊗emn .

The summation is over all partitions of {1, . . . ,m} into n disjoint subsets
I1, . . . , In. The cardinality of Ij is denoted by mj.

In particular, we see that our eigenvector ψ(λ) is an entire function of λ
obeying ψ(λ + 1) = (−1)mecψ(λ). The proof of this Theorem is contained
in Section 8.
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4. Discrete models

The construction of the transfer matrix admits the following variation.
The difference operators a(w), . . . , d(w) shift the argument of functions by
±2η. Therefore we may replace Fun(W ) by the space Funµ(W ) of all func-
tions from the set Cµ = {µ + 2ηj, j ∈ Z} to W . The operators are then
well-defined on Funµ(W ) if µ is generic. Also, it follows from Theorem 5
that the restriction to Cµ of the Bethe ansatz eigenfunctions is well defined
for all µ. We thus have:

Corollary 6. Suppose t1, . . . , tm is a solution to the Bethe ansatz equations
(4). Then, for generic µ, the restriction to Cµ of b(t1) · · · b(tm)v is a common
eigenfunction of the operators T (w) ∈ End(Funµ(W )[0]).

5. Interaction-round-a-face models

In this section, we consider a special case of the above construction, and
relate T (w) to the transfer matrix of the interaction-round-a-face (IRF) (also
called solid-on-solid) models of [B], [ABF]. Therefore, our formulae give in
particular eigenvectors for transfer matrices of IRF models.

Notice first (see [F]) that if we define1 a “Boltzmann weight” w(a, b, c, d; z),
depending on complex parameters a, b, c, d, z, such that a− b, b− c, c−d, a−
d ∈ {1,−1}, by

R(z,−2ηd)e[c − d]⊗ e[b− c] =
∑

a

w(a, b, c, d; z)e[b − a]⊗ e[a− d],

(the sum is over one or two allowed values of a) then the dynamical quantum
Yang–Baxter equation translates into the star-triangle relation

∑

g w(a, b, g, f ; z −w)w(f, g, d, e; z)w(g, b, c, d;w)

=
∑

g w(f, a, g, e;w)w(a, b, c, g; z)w(g, c, d, e; z − w).

We letW = V ⊗n be the tensor product of fundamental representations with
evaluation points z1, . . . , zn. Then

L(z, λ) = R(01)(z−z1, λ−2η
n
∑

j=2

h(j)) · · ·R(0,n−1)(z−zn−1, λ−2ηh(n))R(0n)(z−zn, λ).

In this formula the factors of V in V ⊗W = V ⊗n+1 are numbered from 0 to
n. The module W is a highest weight module with highest weight functions
of the form (2) with pj = zj, qj = zj + 2η.

Let us now introduce a basis |a1, . . . , an〉 of Funµ(W [0]), labeled by ai ∈
µ+Z with ai − ai+1 ∈ {1,−1}, i = 1, . . . , n− 1, and an − a1 ∈ {1,−1}. We
let δ(λ) = 1 if λ = 0 and 0 otherwise. Then we define

|a1, . . . , an〉(λ) = δ(λ+ 2ηa1)e[a1 − a2]⊗ e[a2 − a3]⊗ · · · ⊗ e[an − a1].

1We adopt here a convention for the definition of the Boltzmann weights which is
slightly different than in [F] and in better agreement with the literature.
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z
b1

a1
zn

bn

an
zn−1

· · ·

· · ·
z3

b3

a3
z2

b2

a2
z1

b1

a1

Figure 1. Graphical representation of the row-to-row trans-
fer matrix of an IRF model. Each crossing represents a Boltz-
mann weight w whose arguments are the labels of the adjoin-
ing regions and the difference of the parameters associated
to the lines.

If Γ is the shift operator Γf(λ) = f(λ − 2η), then Γ|a1, . . . , an〉 = |a1−
1, . . . , an − 1〉. Using this, and the fact that h(j)|a1, . . . , an〉 = (aj+1 −
aj)|a1, . . . , an〉, we get

T (z)|a1, . . . , an〉 =
∑

b1,...,bn

n
∏

j=1

w(bj , aj , aj+1, bj+1; z−zj)|b1, . . . , bn〉,

with the understanding that bn+1 = b1, an+1 = a1. The (finite) sum is over
the values of the indices bi for which the Boltzmann weights are defined.
Comparing with [B], we see that T (z), in this basis, is the row-to-row transfer
matrix of the (inhomogeneous) interaction-round-a-face model associated
to the solution w(a, b, c, d; z) of the star-triangle equation (see [B]). The
situation is best visualized by looking at the graphical representation of Fig.
1.

This construction can be in principle extended to higher representations,
and we obtain in this way eigenvectors of transfer matrices of the IRF models
of [DJMO].

6. The eight-vertex model

We show in this section how to obtain from our result eigenvectors for
the transfer matrix of the eight-vertex model.

The eight-vertex model is based on Baxter’s solution

R8V (z) = a8V (z)(E1,1 ⊗ E1,1 + E−1,−1 ⊗E−1,−1)

+b8V (z)(E1,−1 ⊗E1,−1 + E−1,1 ⊗ E−1,1)

+c8V (z)(E1,−1 ⊗E−1,1 + E−1,1 ⊗ E1,−1)

+d8V (z)(E1,1 ⊗ E−1,−1 + E−1,−1 ⊗ E1,1),
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of the Yang–Baxter equation. The coefficients are

a8V (z) =
θ0(z)θ0(2η)

θ0(z − 2η)θ0(0)
, b8V (z) =

θ1(z)θ0(2η)

θ1(z − 2η)θ0(0)
,

c8V (z) = − θ0(z)θ1(2η)

θ1(z − 2η)θ0(0)
, d8V (z) = − θ1(z)θ1(2η)

θ0(z − 2η)θ0(0)
,

in terms of the theta functions with characteristics

θ1(z) = −
∑

j∈Z

e2πi(j+
1

2
)2τ+2πi(j+ 1

2
)(z+ 1

2
), θ0(z) = ie−iπi(z+τ/2)θ1(z).

Remarks. Baxter uses −z instead of z. The classical Jacobi notation, used
by Baxter, is θ1(z) = H(2Kz), θ0(z) = Θ(2Kz).

For any (generic) z1, . . . , zn, one then defines commuting transfer matrices

T8V (z) = tr0R8V (z − z1)
(01) · · ·R8V (z − zn)

(0n). (5)

acting on (C2)⊗n. The relation with our transfer matrices is based on the
following identity, which is a version of Baxter’s vertex-IRF transformation:

Proposition 7. Let S(z, λ) be the matrix

1

θ(λ)

(

θ0(z − λ+ 1/2) −θ0(−z − λ+ 1/2)
−θ1(z − λ+ 1/2) θ1(−z − λ+ 1/2)

)

.

Then

S(w, λ)(2)S(z, λ−2ηh(2))(1)R(z−w, λ) = R8V (z−w)S(z, λ)(1)S(w, λ−2ηh(1))(2)

Proof : We need to recall some well-known facts about the functions θα and
Baxter’s R-matrix R8V .

The functions θα, α = 0, 1 are entire, and uniquely determined up to nor-
malization by the properties θα(z+1) = (−1)αθα(z), θα(z+τ) = ie−πi(z+τ/2)θ1−α(z).
Also, θα(−z) = (−1)αθα(z), and the zeros of θα are simple and of the
form r + 2sτ if α = 1 and r + (2s + 1)τ if α = 0, (r, s ∈ Z). We have
θ0(z)θ1(z) = C(τ)θ(z) for some constant C(τ), as one can see comparing
transformation properties under translations by Z+ τZ.

Let A =

(

−1 0
0 1

)

, B =

(

0 1
1 0

)

. Then R8V (z) commutes with A ⊗

A and B ⊗ B. Moreover R8V (z + 1) = A(1)R8V (z)A
(1), R8V (z + τ) =

e−2πiηB(1)R8V (z)B
(1), and R8V (0) = P , the flip u ⊗ v 7→ v ⊗ u. As a

function of z, R8V is meromorphic. Its poles are simple and are at 2η
modulo Z + τZ. The residue of R8V (z) at z = 2η is θ(2η)/θ′(0) times the
anstisymmetrization operator Π : u⊗ v 7→ u⊗ v − v ⊗ u.

Let φ(z) = (θ1(z), θ0(z)). This vector is the (up to normalization) unique
vector with entire holomorphic components such that φ(z + 1) = Aφ(z),

φ(z + τ) = ie−iπ(z+τ/2)Bφ(z).
We claim that the statement of the Proposition is equivalent to the fol-

lowing set of identities, which, incidentally, is essentially the standard form
of the vertex-IRF transformation.
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Lemma 8. Let φ±(z, λ) = φ(∓z − λ+ 1
2). Then

R8V (z − w)φ±(z, λ∓ 2η)⊗ φ±(w, λ) = φ±(z, λ)⊗ φ±(w, λ ∓ 2η)

R8V (z − w)φ±(z, λ± 2η)⊗ φ∓(w, λ) = α(z − w,±λ)φ±(z, λ) ⊗ φ∓(w, λ∓ 2η)

+β(z − w,±λ)φ∓(z, λ) ⊗ φ±(w, λ ± 2η).

The (known) proof of this lemma consists in comparing transformation
properties under lattice translations and poles of both sides of the equations
as functions of z, w, and using the uniqueness of φ.

It remains to show that these identities are equivalent to the statement
of the Proposition. Let us write them in matrix form: Let Ŝ(z, λ) be the 2
by 2 matrix whose columns are φ+ and φ− then the previous lemma reads

R8V (z−w)Ŝ(w, λ)(2)Ŝ(z, λ−2ηh(2))(1) = Ŝ(z, λ)(1)Ŝ(w, λ−2ηh(1))(2)R(z−w, λ)t.
The transposed of a matrix in End(C2⊗C2) is defined by the rule (X⊗Y )t =
Xt ⊗ Y t, X,Y ∈ End(C2). The statement of the Proposition is proved

by transposing both sides of the equation, and inverting the matrices Ŝ.
The identity we need is (Ŝt)−1 = constS, which follows from the identity

det Ŝ(z, λ) = const θ(z)θ(λ). The latter formula can be proved by comparing
the transformation properties under lattice translations of z and λ, and
using the fact that θ is the unique function (up to normalization) such that

θ(z + 1) = −θ(z) and θ(z + τ) = −e−πi(τ+2z)θ(z). ✷

The transfer matrix T (z) of the previous section has the form T (z)ψ(λ) =
a(z, λ)ψ(λ− 2η) + d(z, λ)ψ(λ+2η), where a(z, λ), d(z, λ) ∈ End((C2)⊗n[0])
are the diagonal matrix elements of L(z, λ).

Corollary 9. Fix generic z1, . . . , zn ∈ C. Let

Sn(λ) = S(zn, λ)
(n)S(zn−1, λ− 2ηh(n))(n−1) · · · S(z1, λ− 2η

∑

j≥2

h(j))(1).

Then, for all generic complex z, λ,

T8V (z)Sn(λ) = Sn(λ+ 2η)a(z, λ + 2η) + Sn(λ− 2η)d(z, λ − 2η),

on the zero weight space (C2)⊗n[0].

Proof : Let us write T8V (z) = tr0L8V (z), see (5). The matrix L8V (z) acts on
the tensor product of n+1 copies of C2, numbered from 0 to n. By iterating
Proposition 7, we obtain

Sn(λ)S(z, λ − 2ηh)(0)L(z, λ) = L8V (z)S(z, λ)
(0)Sn(λ− 2ηh(0)). (6)

In this formula Sn(λ) acts on the factors numbered from 1 to n, and h =

h(1) + · · · + h(n). Let Lβ
α(z, λ) be defined by

L(z, λ)e[α] =
∑

β=±1

e[β] ⊗ Lβ
α(z, λ),
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and set ψα = S(z, λ + 2ηα)e[α]. Replacing λ by λ + 2ηα in (6) and acting
on a vector of the form e[α]⊗ u, α ∈ {1,−1}, where hu = 0, yields

∑

β

ψβ ⊗ Sn(λ+ 2ηα)Lβ
α(z, λ + 2ηα)u = L8V (z)(ψα ⊗ Sn(λ)u),

where we used the fact that L(z, λ) commutes with h(0) + h. Since, for
generic parameters, ψ1, ψ−1 form a basis of C

2, and L1
1(z, λ) = a(z, λ),

L−1
−1(z, λ) = d(z, λ), the proof is complete. ✷

Theorem 10. Let f 7→
∫

f(λ) be a linear function on a space F of functions
of λ ∈ C, such that

∫

f(λ+2η) =
∫

f(λ) for all f ∈ F . Extend
∫

to vector-
valued functions by acting componentwise. Then for each eigenfunction ψ(λ)
of T (z), the vector

∫

Sn(λ)ψ(λ), if defined, is an eigenvector of T8V (z) with
the same eigenvalue.

This theorem is an easy consequence of the previous corollary. What is
left to do is to find linear forms

∫

defined on the components of S(λ)ψ(λ)
for the Bethe ansatz eigenfunctions ψ of Theorems 4, 5.

This can be done easily in two situations: notice that both S(λ) and ψ(λ)
are periodic in λ with period 2, if the parameter c belongs to πiZ. 1. If
η = p/q is rational, we may choose

∫

f(λ) =

q−1
∑

j=0

f(µ+ 2ηj),

for any generic µ.
2. If η is real, we set

∫

f(λ) =

∫ 2

0
f(µ+ λ)dλ,

for generic µ.

7. q-deformed Lamé equation

We consider here the special case where W is the evaluation module
V2m(0) with positive integerm. Then the zero weight space is one-dimensional.
From the expression for a and d given in [FV3], we see that the transfer ma-
trix has the form (cf. [H], where a similar observation is made in the context
of the Sklyanin algebra)

T (z) =
θ(z − η)

θ(z − (2m+ 1)η)
L, (7)

where the difference operator L is independent of z and is given by

Lψ(λ) =
θ(λ+ 2ηm)

θ(λ)
ψ(λ− 2η) +

θ(λ− 2ηm)

θ(λ)
ψ(λ+ 2η).
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This operator is in fact conjugated to the two-body Ruijsenaars operator
[R]. It obeys (Lφ,ψ) = (φ,Lψ) with respect to the symmetric bilinear form

(φ,ψ) =

∫

φ(λ)ψ(−λ)
∏m

j=1 θ(λ− 2ηj)θ(λ + 2ηj)
,

where
∫

is a linear function invariant under shift by 2η, and change of sign
of the argument, defined on a suitable space of functions. If η is real, we
may take

∫

to be the integral over γ = γ+ + γ−, where the straight path γ+
goes from τ/2 to 1 + τ/2 and γ− goes from −1− τ/2 to −τ/2. This linear
form is defined, say, on the space of meromorphic functions whose poles are
contained in {2ηj + k + lτ, j, k, l ∈ Z}, which is preserved by the action of
L.

Note that L has periodic coefficients, and therefore preserves the space
of Bloch functions ψ such that ψ(λ + 1) = µψ(λ). The bilinear form is
well-defined on this space of functions.

We consider the eigenvalue problem

Lψ = ǫψ. (8)

It is a q-deformation of the generalized Lamé equation: we have the expan-
sion of L in powers of η:

Lη = 2 Id + 4η2(
d2

dλ2
− 2m

θ′(λ)

θ(λ)
+m2 θ

′′(λ)

θ(λ)
) +O(η4).

The differential operator appearing in the second order coefficient is the
generalized Lamé operator (up to conjugation by θ(λ)m). Our Bethe ansatz
solution is a q-deformation of Hermite’s solution of the (generalized) Lamé
equation (see the last pages of [WW]).

Theorem 11. Let (t1, . . . , tm, c) be a solution of the Bethe ansatz equations:

θ(ti − η(1 + 2m))

θ(ti − η(1− 2m))

∏

j:j 6=i

θ(tj − ti − 2η)

θ(tj − ti + 2η)
= e4ηc, i = 1, . . . ,m, (9)

such that ti 6= tj mod Z+ τZ if i 6= j. Then

ψ(λ) = ecλ
m
∏

j=1

θ(λ+ tj − η), (10)

is a solution of the q-deformed Lamé equation Lψ = ǫψ with eigenvalue

ǫ = e−2ηc θ(4ηm)

θ(2ηm)

m
∏

j=1

θ(tj + (2m− 3)η)

θ(tj + (2m− 1)η)
.

Proof : This theorem is a special case of Theorem 4. It follows from (7)

that the formula for the eigenvalue is ǫ = θ(z−(2m+1)η)
θ(z−η) ǫ(z), where ǫ(z) is

the function in Theorem 4. Since this expression is independent of z, we
can evaluate it at any z. The formula given in this theorem is obtained by
taking z = (1− 2m)η, so that the second term in ǫ(z) vanishes. ✷
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The Bethe ansatz equations have the form bi(t) = e4ηc, i = 1, . . . ,m. We
may eliminate c and consider the set of (t1, . . . , tm) obeying the equations
bi(t)bj(t)

−1 = 1. The functions bi(t)bj(t)
−1 are doubly periodic meromorphic

functions with periods 1 and τ in each of the variables tj. Also, eigenfunc-
tions corresponding to solutions related by shifts of the variables ti by 1 or
τ are proportional. Therefore the set

X = {t ∈ (C/Z+ τZ)m/Sm|bi(t) = bj(t) 6= ∞, i = 1, . . . ,m, ti 6= tj(i 6= j)}
is an algebraic subvariety of the symmetric power of our elliptic curve, which
parametrizes our eigenfunctions. We call it the Hermite–Bethe variety. On
this variety, we have a single-valued function ǫ2, the square of the eigenvalue,
which is the restriction to X of a doubly periodic function. Therefore it is
an algebraic function ǫ2 : X → C. The eigenvalue, which is the square
root of this function, is two-valued on X. This is connected to the fact that
generically there are two eigenfunctions corresponding to a single point of the
Hermite–Bethe variety: a point of X determines c only modulo (4η)−12πiZ.

If ψ is an eigenfunction corresponding to a point of X, then eπiλ/2ηψ(λ)
is an eigenfunction with the opposite eigenvalue corresponding to the same
point but with c translated by 2πi/4η.

Note that the space of meromorphic solutions of the difference equation
(8) is a vector space over the field K of meromorphic 2η-periodic functions
of λ. If (t1, . . . , tm, c) is a solution of the Bethe ansatz equations, then, for
all k ∈ Z, (t1, . . . , tm, c + 2πik/2η) is also a solution with the same value
of ǫ. The corresponding eigenfunction is proportional (with a 2η-periodic
coefficient) to the original eigenfunction. Therefore we should consider c
modulo πiη−1

Z.
Note also that we have an involutive automorphism σ of X, sending

(t1, . . . , tm) to (2η − t1, . . . , 2η − tm). If (t, c) is a solution of the Bethe
ansatz equations, then also (σ(t),−c). The corresponding eigenfunctions
are related by the “Weyl reflection” ψ(λ) 7→ ψ(−λ) and have the same
eigenvalue.

We now turn to the question of completeness. Let SmEτ = (Z+τZ)m/Sm
be the symmetric power of the elliptic curve.

Theorem 12. Suppose that η ∈ C is generic. For generic ǫ ∈ C, there are
precisely two solutions

(t1, . . . , tm, c) and (2η − t1, . . . , 2η − tm,−c),
in SmEτ × (C/πiη−1

Z) of the Bethe ansatz equations (9) with given ǫ. The
corresponding eigenfunctions ψ± are linearly independent over the field K
of 2η-periodic meromorphic functions of λ, and all solutions of the q-Lamé
equation (8) are linear combinations of ψ+, ψ− with coefficients in K.

Proof : It is straightforward to check that the reflection ti 7→ 2η−ti, c 7→ −c,
maps solutions to solutions preserving the value of the eigenvalue ǫ.

Let X̄ be the closure of X in the symmetric power of the elliptic curve.
Then X̄ contains the point P = ((1−2m)η, . . . ,−3η,−η). In a neighborhood
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of P we can introduce local coordinates u1 = t1−(1−2m)η, uj = tj− tj−1−
2η, 2 ≤ j ≤ m. In these coordinates, X̄ is described by the equations uj =

cju
m−j+1
m (1+O(um)), j = 1, . . . ,m−1, for some constants cj . Therefore, in

this neighborhood, X̄ is a non-singular curve, and um is a local parameter
at P . The eigenvalue has the form

ǫ = const u−1/2
m (1 +O(um))

in a neighborhood of P . Therefore ǫ is a non-constant function on X. Sim-
ilarly one shows that c appearing in the Bethe ansatz equation is a non-
constant function on X (c diverges at P ). Since ǫ2 is algebraic, we have, for
any generic value of ǫ, a solution (t1, . . . , tm, c) of the Bethe ansatz equations,
and thus an eigenfunction ψ+. Let ψ− be the eigenfunction with the same
eigenvalue associated to the reflected solution (2η−t1, . . . , 2η−tm,−c). Since
generically ψ+ and ψ− have different multipliers, they are linearly indepen-
dent over K: suppose ψ+ = Cψ− for some C ∈ K. Then C is 2η-periodic
and obeys C(λ+1) = e2cC(λ). If η is real and irrational and e2c 6= 1, we get
a contradiction, so ψ+ and ψ− are linearly independent. The case of generic
η is treated by analytic continuation.

Next we show that every solution is a linear combination of ψ+ and ψ−.
The (difference) Wronskian W (f, g) of two functions f , g is the function
f(λ + 2η)g(λ) − f(λ)g(λ + 2η). Two meromorphic functions are linearly
dependent overK if and only if their Wronskian vanishes. If f, g are solutions
of (8) then their Wronskian obeys the difference equation W (λ + 2η) =
u(λ)W (λ), where the function u is a combination of the coefficients of the (8).
Thus for any solution f , the functions A± = ±W (f, ψ∓)/W (ψ+, ψ−) are 2η-
periodic. On the other hand, A±(λ) are (by Cramer’s rule) the coefficients
in the expression of (f(λ), f(λ+2η)) as a linear combination of the linearly
independent vectors (ψ±(λ), ψ±(λ+ 2η)). In particular,

f(λ) = A+(λ)ψ+(λ) +A−(λ)ψ−(λ).

Therefore f is a linear combination of ψ± with 2η-periodic coefficients.
It remains to prove that for each generic ǫ there are not more than two

solutions of the Bethe ansatz equation with given ǫ. Suppose that there were
a third solution (t′1, . . . , t

′
m, c

′) distinct from the two we have constructed.
In particular (t′1, . . . , t

′
m) represents a point in the symmetric power of the

elliptic curve which is distinct from the two points represented by (t1, . . . , tm)
and (2η− t1, . . . , 2η− tm). Let ψ′ be the corresponding eigenfunction. Thus
ψ′ = aψ+ + bψ− with 2η-periodic coefficients a, b. We have that a =
W (ψ′, ψ−)/W (ψ+, ψ−). The three functions ψ′, ψ+, ψ− have all the form
(10). Therefore the meromorphic function a obeys the equations a(λ+2η) =
a(λ), a(λ + 1) = C1a(λ), a(λ + τ) = C2a(λ) for some constants C1, C2. If

η is generic, this implies that a is of the form a0e
sπi/η for some constant

a0 and some integer s (a cannot have poles since it would have a dense set
of singularities). Similarly, b has the same form. We may moreover assume
that ec is generic, so comparing multipliers we see that either a = 0 or b = 0.
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But the zeros of ψ′ are not equal to the zeros of ψ+ or to the zeros of ψ−, a
contradiction. ✷

We see from the proof of this result that the irreducible component(s) of
X̄ containing P and its reflected point σ(P ) form a curve Y ⊂ X̄. On this
part of X̄ , ǫ2 takes every generic value precisely twice.

Let us summarize our results.

Theorem 13. The closure X̄ in SmEτ of the Hermite–Bethe variety con-
tains an algebraic curve Y . It is a two-fold ramified covering ǫ2 : Y → P

1 of
the Riemann sphere. It has an involutive automorphism σ : Y → Y permut-
ing the sheets and preserving ǫ2. For each generic point t ∈ Y , there are two
solutions (t, c), (t, c+ iπ/2η) of the Bethe ansatz equation in Y ×C/πiη−1

Z.

The corresponding eigenfunctions are related by ψ(λ) → eπiλ/ηψ(λ), and the
eigenvalues are the two square roots of ǫ2(t).

One way to formulate this result is that eigenfunctions are parametrized
by the spectral curve, the double covering of Y on which ǫ is single-valued.

8. Proofs

This section contains the proofs of Lemma 3 and Theorem 5. These proofs
are based on the following technical result.

Lemma 14. Let V (z) with basis e[1], e[−1] denote the fundamental repre-
sentation of Eτ,η(sl2) with evaluation point z (see Sect. 2). Let t1, . . . , tm,
z1, . . . , zm, τ, η be generic complex numbers, such that Im(τ) > 0, and let
W = V (z1)⊗ · · · ⊗ V (zm). Then the 2m vectors

(

∏

j∈J

b(tj)
)

(e[1] ⊗ · · · ⊗ e[1]) ∈ Fun(W ),

where J runs over all subsets of {1, . . . ,m}, are linearly independent over
the field of meromorphic functions of λ.

Proof : Let us denote these vector by wJ . It is sufficient to show that the
values wJ(λ) are linearly independent for some value of λ, and some value
of the parameters. This will be shown by considering the matrix relating
wJ(λ) to the basis eJ = e[σ1] ⊗ · · · ⊗ e[σm] with σj = 1 iff j ∈ J , and
showing that, in some limit of the parameters, this matrix is upper triangular
with respect to the lexicographical ordering of binary numbers: J ≥ K iff
∑

j∈J 2
j ≥ ∑

j∈K 2j . The limit is obtained by first taking τ → i∞ which

amounts to replacing θ(x) by sin(πx), then λ → ∞. In this limit, b(t) acts
on V (z) as b(t)e[−1] = 0, b(t)e[1] = B(η)(1− exp(−2πi(z− t+2η)))−1e[−1]
for some constant B(η) 6= 0. Now let us choose tj = zj + ǫ for some fixed

generic ǫ, and set zj =
√
−1Nj, j = 1, . . . ,m. Let e[σ]k be basis vectors

of V (zk). Then, as N → ∞, the vector b(tj)e[1]k tends to zero if j < k
and tends to a nozero multiple of e[−1]k if j = k. On the other hand, the
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matrix elements of a and d tend to non-zero finite values in this limit. But
the action of b(t) on a tensor product u1⊗ · · ·⊗um consists of m terms, the
j’th one being given by the action of b on the jth factor and the action of a
or d on the other m− 1 factors (see [FV3]).

It follows that b(tj1) · · · b(tjr) is a linear combination of vectors eK where
K = {k1, . . . , kr} with k1 ≥ j1, . . . , kr ≥ jr, and that the diagonal matrix
elements (such that K = {j1, . . . , jr}) are non-zero. ✷

Proof of Lemma 3. The coefficients Aj , Dj can be in principle computed
using the commutation relations repeatedly, giving them as some universal
polynomials in the values of the functions α, β, independent of the high-
est weight modules we are considering. Since the b’s commute, we ob-
tain m! ways of representing a(w)b(t1) · · · b(tm) as a linear combination of
b(t1) · · · b(tj−1)b(w)b(tj+1) · · · b(tm)a(tj) (and similarly for d). Since by the
previous Lemma there exists a vector in a module so that these operators
applied to this vector yield linearly independent vectors, it follows that all
these representations must coincide. ✷

Proof of Theorem 5. We have to write an explicit formula for b(t1) . . . b(tm)v0,
where v0 is a tensor product of highest weight vectors of some highest weight
modules. Let us first consider the case where v0 = u⊗v is the tensor product
of two highest weight vectors. Then, using the rules for the action on ten-
sor products (see [FV3]) and the commutation relations, we obtain a linear
combination of terms of the form

Γ(−2ηh(2))[b(ti1) · · · b(tis)a(tj1) · · · a(tjm−s
)]u⊗b(tk1)...b(tkm−s

)d(tl1)...d(tls)v,

where I = {i1 < ... < is}, J = {j1 < ... < jm−s}, I ∪ J = {1, 2, ...,m},
K = {k1 < ... < km−s}, L = {l1 < ... < ls}, K ∪ L = {1, 2, ...,m}.
The notation Γ(−2ηh(2)) indicates that the argument of the matrix valued
function of λ in the square bracket must be shifted by −2η times the weight
of the vector in the second factor.

The coefficients can be computed using only the commutation relations
and are therefore independent of the choice of highest weight modules. It is
convenient to take u and v to be vectors of the form of the previous Lemma,
since it then follows from the linear independence that the coefficients are
uniquely determined.

Suppose that we compute the coefficients by first applying b(tm) to the
tensor product, then b(tm−1) and so on, and then use the commutation
relations to shift d’s and a’s to the right of the b’s. Then it is clear that the
coefficients of the terms with I ∋ 1 and K ∋ 1 vanishes. Similarly, if we use
the fact that the b’s commute to act with b(tj) at the end, we see that the
coefficients of the terms with I ∩K ∋ j must vanish. We conclude that the
only terms appearing with non-vanishing coefficients must have I ∩K = ∅.
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Therefore

b(t1) · · · b(tm)(u⊗v) =
∑

I

CI Γ(−2ηh(2))





∏

i∈I

b(ti)
∏

j 6∈I

a(tj)



 u⊗
∏

j 6∈I

b(tj)
∏

i∈I

d(ti)v,

for some universal, uniquely defined, coefficients CI(t1, . . . , tm), I ⊂ {1, . . . ,m}.
By the commutativity of the b’s, these coefficients can be computed in dif-
ferent ways with the result that

Cσ(I)(t1, . . . , tm) = CI(tσ(1), . . . , tσ(m)),

for all permutations σ ∈ Sm. Therefore, it is sufficient to calculate CI for I =
{1, . . . , s}, for all s ∈ {1, . . . ,m}, which can be done straightforwardly using
the tensor product and commutation rules. Taking u equal to the highest
weight vector of an evaluation representation VΛ(z) and v a tensor product
of such highest weight vectors gives a recursive procedure to compute all
coefficients given in Theorem 5. ✷
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