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Abstract
There is an extensive literature on magnetic gradient induced spin relaxation. Cates, Schaefer and Happer (CSH, [9]), in a

seminal paper, have solved the problem in the regime where diffusion theory (the Torrey equation [6]) is applicable using an
expansion of the density matrix in diffusion equation eigenfunctions and angular momentum tensors. McGregor [10] has solved
the problem in the same regime using a slightly more general formulation using Redfield theory formulated in terms of the
auto-correlation function of the fluctuating field seen by the spins and calculating the correlation functions using the diffusion
theory Green’s function. The results of both calculations were shown to agree for a special case, [10]. In the present work we
show that the eigenfunction expansion of the Torrey equation yields the expansion of the Green’s function for the diffusion
equation thus showing the identity of this approach with that of Redfield theory. The general solution can also be obtained
directly from the Torrey equation for the density matrix. Thus the physical content of the Redfield and Torrey approaches are
identical. We then introduce a more general expression for the position autocorrelation function of particles moving in a closed
cell, extending the range of applicability of the theory.

PACS numbers: 76.60 -k, 82.56 -b
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I. INTRODUCTION

The problem of relaxation in nuclear magnetic resonance due to field gradients has been discussed by many authors
but continues to be a topic of current research. Recently attention has been focussed on this subject in connection
with searches for new P,T violating forces mediated by the hitherto unobserved Axion [1], [2].

We give a short, very incomplete, summary of how the field developed until now. In 1950 Hahn [3] used his just
invented spin echo technique to study the effect of translational diffusion on relaxation in nmr. Torrey, in 1953 [4]
gave a derivation of the effect of translational diffusion that had been alluded to by Hahn. In 1954 Carr and Purcell [5]
presented a more elaborate method for measuring diffusion constants using relaxation due to translational diffusion
in an inhomogeneous field with known gradient. Then in 1956 Torrey [6] introduced a specific partial differential
equation (Torrey equation) describing the effects of diffusion on relaxation. He showed that under conditions when
diffusion theory was valid the physics was described by adding a diffusion term to the usual Bloch equations. These
treatments of diffusion did not take into account the effect of the boundaries of the measurement cell. Ten years later
(1966) Baldwin Robertson [7] gave an approximate solution of the Torrey equation in a relatively small region, defined
by 2 parallel planes, where the influence of the boundaries was important. Using the method of phase accumulation
and assuming the phase distribution to be Gaussian, Neuman, in 1973 [8] gave an approximate solution for planar,
cylindrical and spherical geometries and showed this was in agreement with Robertson’s results.

In 1987, Cates, Schaefer and Happer (CSH) [9] calculated the relaxation for parameters where the diffusion theory
is appropriate using second order perturbation theory and an expansion in eigenfunctions of the Torrey equation
applied to the density matrix. At high densities the perturbation theory breaks down and at low densities (λ & R)
the diffusion theory is invalid. (The present work shows how to go beyond this latter limit.) The authors start with
the equation of motion for the density matrix in the presence of diffusion, (Torrey equation) [6]

∂ρ

∂t
=

1

i~
[H, ρ] +D∇2ρ (1)

They consider the deviations of the magnetic field from the volume averaged field as a perturbation and the volume
averaged field (taken along z) as the unperturbed system. Then, expanding ρ in the ’eigenpolarizations’ of the
unperturbed problem and carrying out a perturbation expansion in the field variation, taken to be varying linearly
with position, they obtain a solution valid to second order in the perturbation.

McGregor [10] has given a slightly more general treatment based on Redfield’s relaxation matrix theory [11] , as
presented by Slichter [12]. The starting point of this treatment is the equation of motion for the density matrix
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expanded to second order in a perturbation ([12], equation 5.313)

∂ρ∗

∂t
=

1

i~
[H∗1 (t) , ρ∗ (0)] +

(
i

~

)2 ∫ t

0

[[ρ∗ (0) , H∗1 (t′)] , H∗1 (t)] dt′ (2)

where H∗1 represents the deviation of the field from its volume averaged value and starred quantities are expressed in
the interaction representation with the volume average field considered as the unperturbed system.

The results show that the relaxation depends on the auto-correlation function of the fluctuating field (frequency
spectrum of the field fluctautions) as seen by the spins as they move through the measurement cell and the correlation
function is determined by the diffusion theory Green’s function for the case when diffusion theory is valid.

For high densities, when the boundary conditions do not play a role, the exact solution obtained by Torrey [6] is
valid.

Following this work in 1991, Stoller, Happer and Dyson [13] have shown how to use the exact eigenfunctions of the
Torrey equation (Airy functions) to get exact solutions in one dimension. de Swiet and Sen [14] have used this and
other approaches to study a wider range of geometries. Hayden et al (2004) give a nice discussion of the Gaussian
phase distribution work along with experimental confirmation in a cylindrical geometry [15].

McGregor [10] has shown that the results of his Redfield theory treatment are equivalent to those obtained from the
Torrey equation [9] for the special case of the high pressure limit in a spherical cell. Nevertheless it is illuminating to
note that the expansion in the diffusion equation eigenfunctions obtained by CSH [9] is in fact the usual eigenfunction
expansion of the Green’s function and hence the results based on the Torrey equation [9] and those of the Redfield
theory [10] are identical for all cases considered by CSH. We show this in the next section, with details confined to
an appendix. Thus the physical content of the two approaches are identical in spite of their rather different starting
points.

We then show how these results can be applied beyond the diffusion theory limits by giving an analytic expression
for the trajectory correlation functions valid for a range of pressures wider than that for which diffusion theory is
applicable.

II. EQUIVALENCE OF THE TORREY EQUATION AND REDFIELD THEORY RESULTS WHEN DIF-
FUSION THEORY IS VALID.

In the appendix we review the calculation of CSH applied to spin 1/2 and using a slightly altered notation. We
expand the density matrix in the spin 1/2 operators, σ0,±1.

The result for T1, equation (79), compare equation (50), CSH:

1

T1
=

4

V
Re

∫ ∫ [
Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+

∑
β′

(
φβ′ (
−→r ′)φβ′ (−→r )

(Dk2
β′ − i2Ωo)

)
d3r′d3r (3)

is seen to contain the Fourier transform of the eigenfunction expansion of the Green’ function, equation (83 )

G̃ (−→r ,−→r ′, ω) =
∑
β′

(
φβ′ (
−→r ′)φβ′ (−→r )

(Dk2
β′ − iω)

)
(4)

so that we have (equation 85, eqn.9 in [10])

1

T1
=
γ2

2

∫ ∞
−∞

dτeiωoτ
〈

[B1 (t)]x [B1 (t+ τ)]x + [B1 (t)]y [B1 (t+ τ)]y

〉
(5)

Similarly the results for T2 (93) are also equivalent to McGregor’s results (eqn. 10 in [10]) when we take (4) in the
form

∑
β′

(
φβ′ (
−→r ′)φβ′ (−→r )

Dk2
β′

)
= G̃ (−→r ,−→r ′, ω = 0) =

∫ ∞
0

dτG (−→r , t|−→r ′, t′) (6)
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A. Direct solution using Green’s function

As we have shown that the CSH result in terms of diffusion equation eigenfunctions is identical with the McGregor
result using the Redfield theory and the diffusion theory Green’s function it should be possible to derive the result
starting with the Torrey equation, (1) (equation (42) in Appendix A) using (44)

∂ρ

∂t
=

1

i
Γ0ρ+

η

i
Γ1ρ+DO2ρ (7)

We expand ρ as in (56)

ρ (−→r , t) =
∑
j

σjfj (−→r , t) (8)

taking the trace with σTi obtaining

∂f ′i
∂t
−D∇2f ′i = − i

αi

∑
j

[Γ1]ij f
′
je
i(Λi−Λj)t (9)

with

fi = f ′i(x, t)e
−iΛit (10)

Λi = 2ΩoMi (11)

We will treat the sum on the r.h.s. as a perturbation introducing the Green’s function for the unperturbed problem,
G0 (x, τ) , satisfying

∂G0 (x, t)

∂t
−D∇2G0 (x, t) = δ(3) (x) δ (t) (12)

and the boundary condition

−→n · −→OG0 = 0 (13)

Then we can convert (9) to an integral equation for f ′i

f ′i(x, t) = f
′(0)
i +

∫
G0 (x− x′, t− t′) 1

iαi

∑
j

[Γ1 (x′)]ij f
′
j (x′, t′) ei(Λi−Λj)t

′
dx′dt′ (14)

which can be solved by iteration (f
′(0)
i being a solution of (9) with the r.h.s. set equal to 0)

f ′i(x, t) = f
′(0)
i +

∫
G0 (x− x′, t− t′) 1

iαi

∑
j

[Γ1 (x′)]ij f
′(0)
j (x′, t′) ei(Λi−Λj)t

′
dx′dt′ + ...

..

∫ ∫
G0 (x− x′, t− t′) 1

iαi

∑
j

[Γ1 (x′)]ij e
i(Λi−Λj)t

′
G0 (x′ − x′′, t′ − t′′)× ...

...
1

iαj

∑
k

[Γ1 (x′′)]jk f
′(0)
k (x′′, t′′) ei(Λj−Λk)t′′dx′′dt′′dx′dt′ (15)

If we now operate on this with ∂/∂t and use (12), noting that we will eventually integrate the result over d3x so that
terms containing D∇2G0 will vanish because of the boundary condition, we find for the second order term:

ḟ ′i(x, t) =
1

iαi

∑
j,k

[Γ1 (x)]ij e
i(Λi−Λj)t

∫
G0 (x− x′′, t− t′′)× ...

1

iαj
[Γ1 (x′′)]jk e

i(Λj−Λk)t′′f
′(0)
k (x′′, t′′) dx′′dt′′ (16)
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and averaging over d3x, 〈...〉 = 1
V

∫
d3x (...):〈

ḟ ′i(x, t)
〉

=
1

V iαi

∫ ∫
d3xd3x′′dt′′

∑
j,k

[Γ1 (x)]ij e
i(Λi−Λj)tG0 (x− x′′, t− t′′)× ...

...
1

iαj
[Γ1 (x′′)]jk e

i(Λj−Λk)t′′f
′(0)
k (x′′, t′′) (17)

To investigate relaxation we set i = k. As we are interested in relaxation of a spatially homogeneous gas we put

f
′(0)
i (x′′, t) = f

′(0)
i (t) = const and take it out of the integral since it is the solution of (9) with the r.h.s.=0. Then the

relaxation rate will be given by〈
ḟ ′i(x, t)

〉
f
′(0)
i (t)

= − 1

V αi

∫ ∫
d3xd3x′′dt′

′∑
j,k

[Γ1 (x)]ij e
i(Λi−Λj)tG0

(
x− x′

′
, t− t

′′
)
× ...

..
1

αj

[
Γ1

(
x′
′
)]

jk
ei(Λj−Λk)t′′ (18)

where i = 0 will give 1/T1 and i = 1 (+) will give 1/T2.
Using equations (77, 78, 87, 88) it is easy to see that we obtain eqn.(79, 84) for 1/T1 and (90, 91) for 1/T2.
Thus direct solution of the Torrey equation (42) containing a diffusion term, using the conventional second order

perturbation theory based on the Green’s function for the unperturbed equation yields results in agreement with those
obtained by McGregor [10] by applying second order perturbation theory to the equation of motion for the density
matrix (Redfield theory), where diffusion theory only enters through the correlation functions of the magnetic field
and the physical content of the two theories is identical.

III. BEYOND DIFFUSION THEORY

Having shown the equivalence of the CSH treatment based on the Torrey equation to the calculation based on
Redfield theory when diffusion theory is used in evaluating the correlation functions, we widen the range of applicability
by introducing a form of the correlation function which is also valid when the diffusion theory breaks down, i.e. when
the condition λc � L no longer holds (λc = vτc is the collision mean free path and L is a typical size of the containing
vessel).

A. Correlation functions for motion in a closed cell.

Defining a correlation function as

Rfg (τ) = 〈f (t) g (t+ τ)〉 (19)

with 〈...〉 representing an ensemble and time average, we have the following relations [16]

Rxv (τ) =
d

dτ
Rxx (τ)

Rvv (τ) = − d2

dτ2
Rxx (τ) (20)

so the determination of any one will determine the whole family.
Barabanov et al [17] have calculated the velocity auto-correlation function for particles moving in a closed vessel

with specularly reflecting walls. The effect of gas collisions are taken into account. The method was initially [17]
applied to cylindrical vessels for a case where only the motion normal to the axis is relevant, and then to rectangular
shaped vessels [18]. The results have been checked by numerical simulations for many cases [17], [18], [19]. The
function Rxv (τ) obtained from Rvv (τ) by means of equation (20), has been applied to the study of a false electric
dipole moment effect that arises in magnetic resonance experiments in the presence of an electric field [17], [19]. The
result can easily be applied to spherical cavities, the only modification being that the distribution of the angle, α, (the
angle between the trajectory and the normal to the reflecting surface) will be different in the case of a sphere. The
correlation function, initially obtained for a single velocity, can be averaged over the appropriate velocity distribution.
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For simplicity we will concentrate on a rectangular vessel in this work. In that case the motions in each of the 3
directions are independent [18], so we concentrate on one dimension to begin. Equations (27, 36 and 37) of [17] can
be combined to give (note the r.h.s. of (33) in that paper should be set equal to unity),

Rvv (τ) =
8v2
i

τ2
w

∑
n=1,3,5..

[
ψn (τ)

ω2
n

]
(21)

where the wall collision time, τw = 2R sinα/v, for particles with velocity v (in the plane of the trajectory), moving
in a cylinder or sphere of radius R. For the rectangular case we take α = π/2 and R = Li/2, (the length of the cell
along direction xi) and then τw = Li/vi for particles in a rectangular vessel, moving along direction xi with velocity
vi.

ωn =
nπvi
Li

ψn (τ) =
η1e
−η1τ − η2e

−η2τ

η1 − η2
(22)

and

η1,2 =
1

2τc
(1± sn) (23)

sn =
√

1− 4ω2
nτ

2
c (24)

with τc, the mean time between collisions. We see that ωnτw = nπ so that

Rvv (τ) = 8v2
i

∑
n=1,3,5..

[
ψn (τ)

(nπ)
2

]
(25)

and Rvv (0) = v2
i (104).

Using equations (20) we find

Rxx(τ) =
8

π2
v2τc

∑
n=1,3,5..

1

n2sn

[
e−η2τ

η2
− e−η1τ

η1

]
(26)

where the constant of integration has been chosen to satisfy Rxx(∞) = 0 and we see that (102)

Rxx(0) =
8L2

π4

∑
n=1,3,5..

1

n4
=
L2

12
=
〈
x2
〉

(27)

in agreement with McGregor’s result ([10], eqn. 24) from diffusion theory.
If we introduce dimensionless time τ ′ = τ/τc and note that

ωnτc =
nπ

l′
(28)

sn =

√
1−

(
2nπ

l′

)2

(29)

with l′ = Li/λc where the collision mean free path, λc = viτc we can write (26) as

Rxx(τ ′) =

(
L2

12

)
12 · 16

π2l′2

∑
n=1,3,5..

1

n2sn

[
e−(1−sn)τ ′/2

(1− sn)
− e−(1+sn)τ ′/2

(1 + sn)

]
(30)

Note that sn can be real or complex representing the transition between diffusive and ballistic behavior.

Figure 1) shows a plot of Rxx(τ ′)/Rxx(0) for various values of l′.
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B. Spectrum of the correlation functions.

We start with the velocity auto-correlation function equation (21) and take the Fourier transform of (22) using the
definition of Fourier integral used by McGregor [10]:

ψn (ω) =

∫ ∞
−∞

ψn (τ) e=iωτdτ (31)

so that

ψn (ω) = 2
ω2

τc

1

(ω2 − ω2
n)

2
+ ω2/τ2

c

(32)

and following (21)

ψ (ω) =
8v2
i

τ2
w

∑
n=1,3,5..

[
ψn (ω)

ω2
n

]
(33)

Then the spectrum of the position auto-correlation function, Gxx (ω), which determines the relaxation is given by,
following (20)

Gxx (ω) =
ψ (ω)

ω2
=

16v2
i

τ2
wτc

∑
n=1,3,5..

 1

ω2
n

[
(ω2 − ω2

n)
2

+ ω2/τ2
c

]
 (34)

=
16L4

λviπ6

∑
n=1,3,5..

1

n6

1[(
ω′

nπ

)2 − 1
]2

+
[
ω′l′

(nπ)2

]2 (35)

where the last equation is written in terms of a normalized frequency, ω′ = ωL/vi and length, l′ = L/λ.
Figure 2) shows S (ω′, l′) = Gxx (ω) /Gxx (0) as a function of ω′ with l′ as a parameter. Note this is for a single

velocity. Averaging over the velocity distribution is straightforward.
Taking the limit of (35) for ω′ << 1/π and reintroducing ω, we find

Gxx (ω) = 16D1

∑
n=1,3,5..

1

n6

1

ω2 +
(

(nπ)2D1

L2

)2 (36)

where D1 = viλ is the diffusion constant for one dimension. This is the Fourier transform of the diffusion theory
Green’s function for this problem as obtained by McGregor [10], eqn. (24). For high frequencies, assuming l′ large,
we obtain (neglecting the 1 in the denominator in (35):

Gxx (ω) =
2v2
i τc

ω2 (1 + ω2τ2
c )

(37)

which is identical to McGregor’s eqn. (13) [10] for the high frequency limit. In obtaining equation (37) we assumed

ωL

vnπ
>> 1

which of course cannot hold for all n. This means we are not properly accounting for the high n modes, which in
reality would have a contribution of the form (36), which is anyway small for large n, and is responsible for the fact
that (37) is independent of the size of the vessel. See the discussion under Fig. 3) in [9].

IV. DISCUSSION

The approaches of the two calculations are quite different. We have seen that Cates, Schaefer and Happer [9] solved
the Torrey equation (38) by assuming an exponential form for the time dependence of ρ and expanding the decay
constant and amplitude in a power series in the fluctuating field, treated as a perturbation. McGregor’s approach
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is based on the Redfield treatment of the equation of motion for the density matrix, eqn. (38) without the explicit
introduction of a diffusion term. Recursion is used to get a second order approximation to this equation and the
second order term is written in terms of the correlation functions of the fluctuating field components as seen by the
nuclei [12]. The diffusion theory is then introduced in the calculation of these correlation functions. Lastly we have
shown that the same results follow from the recursive expansion of the integral equation, derived by use of the Green’s
function, in the manner of the Born expansion.

Working out the details of the diffusion theory for a spherical cell McGregor showed that his result is equivalent
to that of [9] in the high pressure limit with Neuman boundary conditions. We have shown that the two approaches
give identical results whenever eqn. (38) and the perturbation theory is valid, thus clearing up any possible confusion
as to when one or the other of the two quite different approaches is valid. The physical content of both theories is
identical.

We have also presented a more general form of the position auto-correlation function for the case of a rectangular
cell which is valid beyond the region of validity of diffusion theory.
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VII. APPENDIX A

A. Perturbation theory of Cates, Schaefer and Happer [9].

The authors start with the equation of motion for the density operator, ρ, in diffusion approximation:

∂ρ

∂t
=

1

i}
[H, ρ] +DO2ρ (38)
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The Hamiltonian H is broken up into an main term, H(0) and a perturbation H(1) :

H = H(0) +H(1) (39)

H(0) = }Ωoσz (40)

H(1) = η}
−→
Ω 1 · −→σ (41)

where Ωo is chosen so that the volume average of
−→
Ω 1 is zero and η is an expansion parameter. (Note: normally

Ωo = γBo so here Ωo,1 are 1/2 the usual values, Ωo,1 = γBo,1/2)
We rewrite 38 as

∂ρ

∂t
=

1

i
[Ωoσz, ρ] +

η

i

[−→
Ω 1 · −→σ , ρ

]
+DO2ρ (42)

We will approach the problem using time independent perturbation theory, that is we substitute ρ = ρ′e−γt and
obtain (ρ′ 6= f(t))

0 =

(
γ +

1

i
Γo +DO2 +

η

i
Γ1

)
ρ′ (43)

where Γo,1 are linear operators (we now drop the prime on ρ′, using ρ to indicate the time independent solution)

Γoρ = [Ωoσz, ρ]

Γ1ρ =
[−→

Ω 1 · −→σ , ρ
]

(44)

We will then expand ρ in the spherical components of the spin 1/2 operators −→σ :

σ± = (σx ± iσy) /2 = σ1,2 (45)

σ0 = σz (46)

The σi are seen to have the following properties

Tr(σTi σj) = δij + δjoδio = δijαj (47)

[σ0, σi] = [σz, σi] = 2Miσi (48)

with M1,2 = ±1,M0 = 0, and

αj =

{
1 (j = 1, 2)
2 (j = 0)

}
(49)

Thus

Γoσi = 2ΩoMiσi (50)

We now follow CSH, [9], by introducing a perturbation expansion for ρ(−→r ) and γ into (43):

ρ(−→r ) = ρ(0) + ηρ(1) + η2ρ(2) (51)

γ = γ(0) + ηγ(1) + η2γ(2) (52)

As this must hold for any value of η we collect terms in equal powers of η :

0 =

(
γ(0) +

1

i
Γo +DO2

)
ρ(0) (53)

0 =

(
γ(0) +

1

i
Γo +DO2

)
ρ(1) +

(
1

i
Γ1 + γ(1)

)
ρ(0) (54)

0 =

(
γ(0) +

1

i
Γo +DO2

)
ρ(2) +

(
1

i
Γ1 + γ(1)

)
ρ(1) + γ(2)ρ(0) (55)
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We look for a solution in the form

ρ(0) = σjf
(0)
j (−→r ) (56)

Substituting into (53) and applying Tr(σTi ·) to the resultant equation yields(
γ

(0)
i − i2ΩoMi +DO2

)
f

(0)
i (−→r ) = 0 (57)

fi(
−→r ) has to satisfy boundary conditions on the surface of the measurement cell. CSH, [9], have taken the von Neuman

conditions (zero current at the walls) but as they point out the method can be applied to the case where depolarization
takes place at the walls. In any case equation (57), along with the boundary conditions form an eigenvalue problem.
The solutions are given by the solution to (

O2 + k2
α

)
φα = 0 (58)

where the eigenvalues kα are determined by the boundary conditions. Then (57) implies

γ
(0)
i,α = i2MiΩo +Dk2

α (59)

In order to solve for the higher order correction terms to the solution it is useful to expand the corrections to fi(
−→r )

in a series of the zero order functions, f
(0)
iα (−→r ) = φiα, (the eigenfunctons of (58)).

ρ
(n)
iα (−→r ) =

∑
jβ′

σjφβ′a
(n)
jβ′,iα (60)

which form a complete set of functions satisfying the boundary conditions. n = 1 or 2 indicates the order of the
correction. Thus (54) becomes

0 =

(
γ

(0)
i,α +

1

i
Γo +DO2

)∑
j,β′

σjφβ′a
(1)
jβ′,iα +

(
1

i
Γ1 + γ

(1)
i,α

)
σiφα

0 =
∑
j

(
γ

(0)
i,α +

1

i
2MjΩo +DO2

)
σj
∑
β′

φβ′a
(1)
jβ′,iα +

(
1

i
Γ1 + γ

(1)
i,α

)
σiφα

where we used (50 ). Taking Tr(σTg ·) of this last equation yields

0 = αg

(
γ

(0)
i,α − i2MgΩo +DO2

)∑
β′

φgβ′a
(1)
gβ′,iα +

1

i
[Γ1]g,i φα + γ

(1)
i,αφαδgiαg (61)

where

[Γ1]g,i = Tr(σTg Γ1σi) = TrσTg

[−→
Ω 1 · −→σ , σi

]
(62)

Making use of the orthogonality of the φα, and taking them to be normalized∫
V

d3xφ∗βφα = δβα (63)

we multiply (61) by φ∗β and integrate over the volume:

0 = αg

(
γ

(0)
i,α − i2MgΩo −Dk2

β

)
a

(1)
gβ,iα +

1

i
〈β| [Γ1]g,i |α〉+ γ

(1)
i,αδgiδαβαg

0 = αg

(
γ

(0)
i,α − γ

(0)
g,β

)
a

(1)
gβ,iα +

1

i
〈β| [Γ1]g,i |α〉+ γ

(1)
i,αδgiδαβαg (64)

using (59), where

〈β| [Γ1]i,j |α〉 ,
∫
V

d3xφ∗β [Γ1]i,j φα (65)
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We note that kα=0 = 0, corresponding to a uniform distribution in the cell, is a valid solution and we will seek the
decay parameters for this mode. Thus we put α = β = 0, and i = g in (64) obtaining

0 =
1

i
〈0| [Γ1]i,i |0〉+ γ

(1)
i,0 αi (66)

0 = γ
(1)
i,0 (67)

a
(1)
gβ,i0 =

i 〈β| [Γ1]g,i |0〉

αg

(
γ

(0)
i,0 − γ

(0)
g,β

) (68)

The matrix element in (66) is seen to be zero for perturbing fields with a volume average of zero.
Now we use (55) to evaluate the second order corrections

0 =

(
γ

(0)
i,α +

1

i
Γo +DO2

)∑
jβ′

σjφβ′a
(2)
jβ′,iα+

(
1

i
Γ1 + γ

(1)
i,α

)∑
jβ′

σjφβ′a
(1)
jβ′,iα + γ

(2)
i,ασiφα (69)

Again taking Tr
(
σ∗g ·
)

of this equation

0 = αg

(
γ

(0)
i,α +

2

i
MgΩo +DO2

)∑
β′

φβ′a
(2)
gβ′,iα +

∑
jβ′

1

i
[Γ1]g,j φβ′a

(1)
jβ′,iα + ..

+

γ(1)
i,α

∑
β′

φβ′a
(1)
gβ′,iα + γ

(2)
i,αδgiφα

αg (70)

0 = αg

(
γ

(0)
i,α − γ

(0)
g,β

)
a

(2)
gβ,iα +

∑
j,β′

1

i
〈β| [Γ1]g,j |β

′〉 a(1)
jβ′,iα + αgγ

(1)
i,αa

(1)
gβ,iα + ..

+ γ
(2)
i,αδgiδαβαg (71)

where the last result comes from multiplying by φ∗β and integrating over volume. Now taking α = β = 0, i = g, we
find

0 =
∑
j,β′

1

i
〈0| [Γ1]i,j |β

′〉 a(1)
jβ′,i0 + γ

(2)
i,0 αi

αiγ
(2)
i,0 = −

∑
j,β′

〈0| [Γ1]i,j |β
′〉
〈β′| [Γ1]j,i |0〉(
γ

(0)
i,0 − γ

(0)
j,β′

)
αj

(72)

Our derivation has followed the method of time independent Rayleigh-Schroedinger perturbation theory. The ’states’
are characterized by two ’quantum numbers’ a spin index i and a spatial index α, which can stand for 3 indices, which
appear when we solve the diffusion equation in 3 dimensions.

B. Calculation of relaxation times, relation to McGregor’s result

We begin by evaluating (72) for i = 0. Since σo = σz this will be equal to 1/T1. We have then
(
φα=0 = 1/

√
V
)

〈β′| [Γ1]j,i |0〉 =
1√
V

∫
d3rφβ′ (

−→r ) [Γ1]j,0 (73)
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We write

−→
Ω 1 · −→σ =

(
[Ω1]+ σ− + [Ω1]− σ+

)
+ [Ω1]z σz (74)[−→

Ω 1 · −→σ , σo
]

= 2
(
[Ω1]+ σ− − [Ω1]− σ+

)
(75)

[Γ1]j,0 = TrσTj

[−→
Ω 1 · −→σ , σo

]
(76)

[Γ1]−,0 = 2 [Ω1]+ (77)

[Γ1]+,0 = −2 [Ω1]− (78)

Thus

γ
(2)
i=0,0 =

1

T1
= − 1

αo

∑
j,β′

〈0| [Γ1]0,j |β
′〉
〈β′| [Γ1]j,0 |0〉(
γ

(0)
0,0 − γ

(0)
j,β′

)
αj

=
4

V αo

∫ ∫ [
Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+

∑
β′

φβ′
(−→
r′
)
φβ′ (
−→r )

(Dk2
β′ − i2Ωo)

 d3r′d3r

+ cc

1

T1
=

4

V
Re

∫ ∫ [
Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+

∑
β′

φβ′
(−→
r′
)
φβ′ (
−→r )

(Dk2
β′ − i2Ωo)

 d3r′d3r

(79)

Now the Green’s function for the diffusion equation can be written (see Morse and Feshbach, [[20]] chapter 7)

G (−→r , t|−→r ′, t′) = u (t− t′)
∑
β

φβ

(−→
r′
)
φβ (−→r ) e−Dk

2
β(t−t′) (80)

with u (t) , the unit step function. Then the time Fourier transform is (τ = t− t′)

G̃ (−→r ,−→r ′, ω) =

∫ ∞
0

dτeiωτG (−→r , t|−→r ′, t′) (81)

=

∫ ∞
0

dτeiωτ
∑
β

φβ

(−→
r′
)
φβ (−→r ) e−Dk

2
βτ (82)

=
∑
β′

φβ′
(−→
r′
)
φβ′ (
−→r )

(Dk2
β′ − iω)

 (83)

Comparing to the sum in (79) we see that we can write (α0 = 2)

1

T1
= Re γ

(2)
i=0,0

=
4 Re

V

∫ ∫ [
Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+ G̃ (−→r ,−→r ′, 2Ωo) d
3r′d3r

= 4
Re

V

∫ ∞
0

dτei2Ωoτ

∫ ∫ [
Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+G (−→r , t|−→r ′, t′) d3r′d3r

= 4 Re

∫ ∞
0

dτeiωoτ
∫ ∫ [

Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+G (−→r , t|−→r ′, t′) po(r′, t′)d3r′d3r

(84)

Where ωo = γBo and po(r
′, t′) = 1/V is the uniform density of magnetization. Then the joint probability distribution

of an atom being at −→r at time t and being at −→r ′ at time t′ is G (−→r , t|−→r ′, t′) po(r′, t′) and we see that (following
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McGregor’s notation)

1

T1
= γ

(2)
i=0,0 = 4 Re

∫ ∞
0

dτeiωoτ
〈
[Ω1 (t)]− [Ω1 (t+ τ)]+

〉
= 4

∫ ∞
0

dτeiωoτ
〈

[Ω1 (t)]x [Ω1 (t+ τ)]x + [Ω1 (t)]y [Ω1 (t+ τ)]y

〉
=
γ2

2

∫ ∞
−∞

dτeiωoτ
〈

[B1]x [B1 (t+ τ)]x + [B1 (t)]y [B1 (t+ τ)]y

〉
(85)

This is the result of the Redfield theory given as equation (9) in McGregor.

To calculate T2 we have to evaluate γ
(2)
i=+,0.

γ
(2)
i=+,0 = −

∑
j,β′

〈0| [Γ1]+,j |β
′〉
〈β′| [Γ1]j,+ |0〉(
γ

(0)
+,0 − γ

(0)
j,β′

)
αj

(86)

The non-zero matrix elements are

[Γ1]+,+ = 2 [Ω1]z (87)

[Γ1]o,+ = −2 [Ω1]+ (88)

so that

γ
(2)
i=+,0 =

1

T2
= −Re

∑
β′

 〈0| [Γ1]+,+ |β′〉
〈β′|[Γ1]+,+|0〉(
γ
(0)
+,0−γ

(0)

+,β′

)+

〈0| [Γ1]+,0 |β′〉
〈β′|[Γ1]0,+|0〉

2
(
γ
(0)
+,0−γ

(0)

0,β′

)

 (89)

= −Re
∑
β′

 4
〈0|[Ω1]z|β′〉〈β′|[Ω1]z|0〉(

γ
(0)
+,0−γ

(0)

+,β′

) +

4
〈0|[Ω1]−|β′〉〈β′|[Ω1]+|0〉

2
(
γ
(0)
+,0−γ

(0)

0,β′

)


= 4 Re

∑
β′

 〈0| [Ω1]z |β′〉 〈β′| [Ω1]z |0〉(
Dk2

β′

) +
〈0| [Ω1]− |β′〉 〈β′| [Ω1]+ |0〉

2
(
Dk2

β′ − iωo
)


1

T2
=

4 Re

V

∫ ∫ [
Ω1

(−→
r′
)]

z
[Ω1 (−→r )]z

∑
β′

φβ′
(−→
r′
)
φβ′ (
−→r )

Dk2
β′

 d3r′d3r+

2 Re

V

∫ ∫ [
Ω1

(−→
r′
)]
−

[Ω1 (−→r )]+

∑
β′

φβ′
(−→
r′
)
φβ′ (
−→r )

(Dk2
β′ − iωo)

 d3r′d3r

(90)

From (83) we write

G̃ (−→r ,−→r ′, ω = 0) =
∑
β′

φβ′
(−→
r′
)
φβ′ (
−→r )

Dk2
β′


=

∫ ∞
0

dτG (−→r , t|−→r ′, t′) (91)

so that the first term in (90) can be written

γ2 Re

2

∫ ∞
−∞

dτ

∫ ∫ [
B1

(−→
r′
)]

z
[B1 (−→r )]z G (−→r , t|−→r ′, t+ τ) po (r′) d3r′d3r

=
γ2

2

∫ ∞
−∞

dτ 〈[B1 (t)]z [B1 (t+ τ)]z〉 (92)
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in agreement with the second term in equ (10) of McGregor.
From (79) we see that the second term is 1/2T1 so that equation (90) is equivalent to

1

T2
=

1

2T1
+
γ2

2

∫ ∞
−∞

dτ 〈[B1 (t)]z [B1 (t+ τ)]z〉 (93)

which is equivalent to equation (10) of [10].

VIII. APPENDIX B, SPIN RELATIONS AND MATRIX ELEMENTS

[σ1, σz] = −2σ1 [σ2, σz] = 2σ2 [σ1, σ2] = σz

−→
Ω 1 · −→σ = [Ω1]+ σ− + [Ω1]− σ+ + [Ω1]z σz

(
σ± =

1

2
(σx ± iσy)

)
(94)[−→

Ω 1 · −→σ , σz
]

= 2
(
[Ω1]+ σ− − [Ω1]− σ+

)
(95)

[Γ1]g.i = Tr
(
σTg

[−→
Ω 1 · −→σ , σi

])
(96)

[Γ1]+.z = −2 [Ω1]− [Γ1]−.z = 2 [Ω1]+ (97)[−→
Ω 1 · −→σ , σ+

]
= − [Ω1]+ σz + [Ω1]z 2σ+ (98)

[Γ1]z,+ = −2 [Ω1]+ [Γ1]+,+ = 2 [Ω1]z (99)[−→
Ω 1 · −→σ , σ−

]
= [Ω1]− σz − [Ω1]z 2σ− (100)

[Γ1]z,− = 2 [Ω1]− [Γ1]−,− = −2 [Ω1]z (101)

Note

∞∑
n=0

1

(2n+ 1)
4 =

1

96
π4 (102)

∞∑
n=0

1

(2n+ 1)
6 =

1

960
π6 (103)

∞∑
n=0

1

(2n+ 1)
2 =

1

8
π2 (104)
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FIG. 1: The autocorrelation function for particle position for particles moving in a rectangular box as a function of dimensionless
delay time, τ ′, with l′ = Lx/λ, where Lx is the length of the cell in the x direction and λ is the mean free path between collisions,
as a parameter.
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FIG. 2: Frequency spectrum of the auto-correlation function of fig.1 as a function of reduced frequency and l′.
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