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Theoretical models for the liquid-vapor and metal-
nonmetal transitions of alkali fluids are investigated. Mean-
field models are considered first but shown to be inadequate,
apparently due to their inability to allow a microscopically
consistent treatment of coexisting localization and delocaliza-
tion of the valence electrons in the materials. An alternate ap-
proach is then studied in which each statistical configuration
of the material is treated as inhomogeneous, with the energy
of each ion being determined by its local environment. Non-
additive interactions, due to valence electron delocalization,
are a crucial feature of the model. This alternate approach is
implemented within a lattice-gas approximation which takes
into account the observed mode of expansion in the materi-
als of interest (a change in the average coordination rather
than a change in the average nearest-neighbor distance) and
which is able to treat the equilibrium density fluctuations. We
have carried out grand canonical Monte Carlo simulations, for
this model, which allow a unified, self-consistent, study of the
structural, thermodynamic, and electronic properties of alkali
fluids. Applications to Cs, Rb, K, and Na yield results in good
agreement with experimental observations.

PACS numbers: 61.25.Mv, 64.70.Fx, 71.30.+h

INTRODUCTION

Until recently little has been known regarding the in-
terrelation of the structural, thermodynamic, and elec-
tronic properties of metal-atom fluids. However, such
knowledge has been being developed in a substantial
body of experimental data which has been crying out for
theoretical interpretation and guidance. The electronic,
structural, and thermodynamic properties of such fluids
have been shown to be intimately related and the interde-
pendence of the metal-nonmetal and liquid-vapor transi-
tions has posed a challenge to theoretical understanding.
Detailed experimental studies are available for those ma-
terials with the lowest liquid-vapor critical temperatures:
Hg (1751 K), Cs (1924 K), and Rb (2017 K)1, with data
on K (2178 K) becoming available most recently2. The
data have become precise and reliable in the last decade
and span thermodynamic and electrical measurements
under the same conditions. Such data show that the
liquid-vapor coexistence curve of metal-atom fluids are

different from those of Lennard-Jones-like ones2,3, pre-
sumably due to many-body effects associated with va-
lence electron delocalization. For example, the law of
corresponding states is not obeyed when metal-atom flu-
ids are compared with pair-interacting ones. Also, the
liquid and vapor branches of the coexistence curves are
strongly asymmetrical and the rectilinear diameter law
breaks down over a substantial temperature range, not
only very close to the critical points. These materials
also undergo a metal-nonmetal (M-nM) transition. This
body of data, however, still seeks microscopic theoretical
foundations4. This paper presents a study of theoret-
ical approaches seeking to comprehensively understand
the alkali fluids. After demonstrating that a series of ap-
proaches, which would seem appropriate, fail to explain
the general features observed, a simple model is described
which does appear to contain the basic ideas required to
reproduce, in a unified manner, the peculiar characteris-
tics observed in the alkali fluids. This paper presents a
detailed treatment of our results, improving and detailing
the information in our recent letter5.
The goal of the present work – a unified understanding

of the structural, thermodynamic, and electronic proper-
ties of metal-atom fluids – poses a considerable scientific
challenge. Its various aspects are coupled since it is the
electrons which determine interatomic interactions and
thus the material structure and thermodynamic data.
The ionic structure, in turn, determines the electronic
properties. In the study of metal-atom fluids it is diffi-
cult to impose a structure, since it is so intimately related
to electronic effects and there is no long-range symmetry
to simplify the problem. Also, because in such materials
the interactions are not pairwise ones for large and in-
termediate densities, due to electron delocalization over
some regions, the problem is more complicated than that
for simple, Lennard-Jones-like, fluids in which the inter-
actions are not state dependent. Similarly, as these ma-
terials also undergo a M-nM transition, the traditional
techniques used to study free-electron-like fluids are not
applicable over many of the conditions of interest. The
microscopic theory required for these materials should
seek to explain the essential interdependence of thermo-
dynamic, structural, and electronic properties.
Previous theoretical efforts to comprehensively explain

the available experimental data on metal-atom fluids
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have been sparse. The points of view taken were usually
based on the limiting cases of either a metallic, dense,
liquid or solid, or alternatively of a nonmetallic, dilute,
vapor. Attempts were then made to describe the fluid,
or some of its properties, in a limited density and tem-
perature range6–8. General arguments based on electron
correlation effects (Hubbard model) and/or disorder in-
duced localization (Anderson model)9 are useful to study
the M-nM transition in systems with frozen ionic struc-
ture but probably not in metal-atom fluids; at least, we
are unaware of calculations attempting to link the struc-
tural, thermodynamic, and electronic properties using
such methods.
A first step towards a theoretical treatment of metal-

atom fluids, which is intended to apply to both low and
high densities at temperatures above approximately 2000
K, extended concepts and techniques of plasma physics,
in a mean-field approach, and introduced the required
neutral atoms and small clusters10. These authors have
recently claimed partial quantitative success in linking
their calculations and a spectrum of experimental data.
We also proposed such an approach11,12, not limited to
high temperatures and including a discussion of the M-
nM transition. We showed that a toy model gives a
liquid-vapor coexistence and a critical point with some
correct features, but we were far from reproducing the
peculiar coexistence curve of alkali fluids. In preliminary
work13, we followed this approach including a quantita-
tively good description of the charged particle system:
a standard description of liquid metals near their melt-
ing point14. Extension of this treatment to high tem-
perature and low density gave a liquid-vapor coexistence
with a very high critical temperature (around four times
the experimental value), very low critical densities and
pressures (by about an order of magnitude, compared to
experiment), and a very different shape for the coexis-
tence curve than that observed. To deal with the M-nM
transition, we then extended the model, using a statisti-
cal treatment, to allow for chemical coexistence of neutral
atoms with the ions. Phenomenological ion-atom inter-
actions have been used, in work to be reported below,
instead of the neglect of atom interactions assumed in
the previous toy model. However, reasonable values of
the parameters have not improved the previous results,
in contrast to claims by others10. Details of this ap-
proach will be given in this paper. We have concluded
that a mean-field theory is not capable of reproducing
the structure or phase diagram of the alkali fluids. The
physical reason for this failure is discussed below.
An unanswered question in a mean-field approach,

with an atomic and a metallic component, is: Why do
some fraction of the valence electrons choose to be bound
in atoms while others are delocalized, at fixed tempera-
ture and chemical potential? The answer must lie in a
hitherto ignored underlying structure. An important clue
is that clustering effects are strongly enhanced for metal-
atom systems, compared to nonmetallic ones, due to their
high cohesion, which arises from the valence electron de-

localization over the cluster. In contrast, to retain its
valence electron an atom should have no near neighbors
to which that electron can be favorably delocalized. Fur-
ther, experimental neutron scattering data15 have shown
that the materials expand by changing their average coor-
dination, rather than their average nearest-neighbor (nn)
distance. This fact is especially important in systems in
which valence electrons delocalize since such delocaliza-
tion leads to contributions to cluster energies which go
beyond merely additive effects in the local coordination;
metal-atom clusters are strongly bound and their cohe-
sion is a non-linear function of their density. Thus, in
contrast to a mean-field characterization, structural and
electronic effects are intimately related when equilibrium
density fluctuations can be appreciable; this is the case
in the expanded metal-atom liquid and vapor cases.
Based on the above, we have explored a model which

takes into account, from the beginning, that expansion
in the materials of interest takes place through a change
in the average coordination, rather than by changing the
nn distance, and which allows treatment of equilibrium
density fluctuations. We have begun with the simplest
model which seeks to give a recipe for the energy of an
ion in a specific local environment, including effects due
to possible valence electron delocalization. The recipe
is to treat each local environment as a macroscopic one
with an average density equal to that due to the ion in
question and its local coordination. The possibility of
valence electron localization, to form an atom, is taken
into account by choosing the lower energy arising from
treating the system as a metal of low density or an atom,
dimer, etc. By treating each statistical configuration of
the material as inhomogeneous, such a recipe provides
the basis with which a self-consistent treatment of the
material structure may be sought. To implement the
self-consistent structural treatment, we have begun with
a lattice-gas approximation and obtained its equilibrium
properties using grand canonical Monte Carlo (MC) sim-
ulations. This approach yielded results showing the ob-
served peculiarities of the alkali fluids5. That work has
been improved and full details will be given here. Results
for Cs, Rb, K, and Na have been obtained and will be
presented.
To orient the reader, we summarize the contents of this

paper. In section I we discuss the mean-field treatment,
for its own sake and with a view to an application dis-
cussed later. We begin discussing a hypothetical metal
at an assumed arbitrary density. Thermal effects due
to the delocalized electrons are examined. Pseudopoten-
tial parametrizations are discussed and compared. Hard-
sphere and one-component-plasma reference systems for
the ions are compared and contrasted. Then, atoms are
introduced in thermal equilibrium with the metallic com-
ponent. Results, conclusions, and criticism of this ap-
proach follow. The crux of the model which proves suc-
cessful follows. Section II discusses our approach and
its implementation within the lattice-gas approximation.
The grand canonical Monte Carlo treatment of the lat-
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tice gas follows; results of its application to the spectrum
of alkali fluids are then given. Phase coexistence, struc-
tural features, and conductivity results are displayed and
discussed. The paper concludes with a summarizing dis-
cussion and suggestions for further work.

I. MEAN-FIELD TREATMENT

A. Metal

At first, we consider a hypothetical system, entirely
composed of ions and a neutralizing sea of valence elec-
trons; this system exhibits a liquid-vapor transition.
Atoms, with their localized valence electrons, in thermal
equilibrium with the ions and delocalized electrons will
be added as a next step. A mean-field treatment for a
system of positive ions, at a mean density ρ, and delocal-
ized, neutralizing electrons is the normal one used for liq-
uid alkali metals14. It is based on the Gibbs-Bogoliubov
inequality:

f ≤ fo+ < H −Ho >o /V = fo + u(ρ) ,

where f is the free energy per unit volume V , H is the
system Hamiltonian, and the subscript indicates an ionic
reference system. For the present problem we use an
ionic reference system and a jellium treatment of the de-
localized valence electrons, a pseudopotential vps is then
associated with the ions and the screened ion-electron
and ion-ion interactions (minus reference system effects)
are treated by perturbation theory. Hence, we can write:

u(ρ) = usi(ρe) +

2πρ2
∫

∞

0

drr2g0(r; ρ)φ(r; ρe),

where ρe = Zρ is the electronic density, usi is the sum of
all structure-independent terms including the kinetic, ex-
change and correlation electronic energies of the jellium
reference system and the first order pseudopotential per-
turbation term; φ(r; ρe) is the total interatomic potential
which is given by:

φ(|R−R
′|; ρe) =

Ze2

|R−R′|
+

∫
drdr′vps(|r−R|)χ(|r− r

′|; ρe)vps(|r
′ −R

′|),

where χ is the electronic linear response function. For
the ions, a hard-sphere (HS), or alternatively a one-
component-plasma (OCP), reference gives entropy con-
tributions fo and a pair distribution function go(r; ρ). If
using the HS reference for the ions, one makes use of the
Gibbs-Bogoliubov inequality by choosing the ion HS ra-
dius to minimize the system free energy at the density
and temperature which correspond to the melting point
for the liquid metal. This radius can also be used to

minimize the free energy at higher temperatures, though
the change in the obtained radius is negligible except at
high densities. In the OCP choice, the ionic system is de-
scribed via the parameter Γ = (4πρ/3)1/3e2/kBT , which
is not treated as a variational parameter. The free energy
estimates then allow discussion of the liquid-vapor phase
diagram of the hypothetical material. Model results can
be judged in a partial manner, here and later, by their
approximate predictions for the vapor-liquid critical pa-
rameters; when such parameters are reasonable, a more
detailed comparison with experiment can be sought.
In our calculations, thermal effects on the delocalized

electrons are not taken into account. However, these
effects had been probed in calculations of the phase
diagram of a delocalized electron system, neutralized
by jellium, in the temperature-dependent Hartree-Fock
approximation16; an ideal-gas reference for the ions was
also incorporated. Such a treatment yields a critical
point at 2550 K with a density of 1.3× 10−4 (a.u.). Re-
placing the temperature-dependent electron gas with a
zero-temperature one, and maintaining exchange as the
only net interaction, resulted in an increase of about
100 K in the critical temperature, a near-negligible cor-
rection. Further, if the correlation energy due to the
zero-temperature electron gas is incorporated into such
a calculation, the critical point temperature rises sub-
stantially. An ion ideal gas added to a zero-temperature
electron gas, which includes correlations, gives critical
parameters of 4184 K and 1.8 × 10−4. Use of Padé
approximants10, for the finite temperature electron gas,
only changes the previous coexistence curve slightly, with
the critical conditions then being given by 4500 K and
1.6 × 10−4. Such, ten per cent, corrections suggest that
thermal effects due to the electron gas are not impor-
tant to the calculation of near-critical conditions in these
systems.
Pseudopotential effects are then required. In the study

of alkali liquid metals near their melting point, it has been
common to simplify the ionic pseudopotential, which
characterizes the material, by choosing one which is local
and energy independent. In our previous calculations5 we
used the empty-core Ashcroft pseudopotential. Here we
investigate the differences which arise from that choice
and a Shaw pseudopotential (constant in the core and
continuous at the cutoff radius). Both pseudopotentials
only depend on one parameter, which is chosen to fit
some experimental result for the liquid at the melting
point, and then checked against a set of other experi-
mental features. The set of experimental data of interest
at the melting point consists of: the packing fraction
(since the hard-sphere diameters are fixed to minimize
the energy at the experimental density), the ionization
potential of the atom (as a pseudopotential should re-
produce the energy spectrum of states outside the core),
the cohesive energy, the electrical conductivity (using
the Ziman formula), the excess entropy over that of the
ideal gas, and the pressure (one atmosphere). A common
treatment of liquid metals14 uses the Ashcroft pseudopo-
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tential fitted to the conductivity; many of the parame-
ter choices reflect a fit to the conductivity in the solid.
However, for some liquid alkali metals, such parameter
choices yield a nonphysical packing fraction and are then
reparametrized to fit a packing fraction of 0.45. This was
the parametrization we used in previous work5. However,
in attempting to deal with the alkali family, rather than
only one or two alkalis, we decided that fitting the presure
at the melting point should be preferable. Also, we no-
ticed that the previous parametrizations tended to sub-
stantially overestimate the cohesive energy of the liquids
(relative to separated atoms) at the melting point. Af-
ter examining the results of such parametrizations, and
requiring that adjustments of the parameter to fit one
property not result in spoiling the agreement with oth-
ers, we have opted to use the alternate Shaw approach,
fitted to the experimental pressure at the melting point.
The ionization potentials, the cohesive energies, and the
pressure are improved and we believe that such improve-
ments are important for our purposes. Table I compares
the results of the Ashcroft pseudopotential (fitted to the
packing fraction or conductivity) and the Shaw alterna-
tive (fitted to the pressure) when applied to the liquid
alkali metals at the melting point. We shall later com-
pare results we have obtained using both approaches in
the present application.
We have also explored the relative effects of the HS

and OCP reference systems for the ions. There are two
features which have an influence on the results obtain-
able: the excess entropy beyond the ideal gas, and the
pair distribution function which enters in calculating the
screened pseudopotential contributions. We have found
that the excess entropy term is substantially different in
the two choices of an ionic reference system, while the
pair distribution and associated interaction energies are
not a strong cause of differences between them. One must
be careful in the comparison to note that, if the screened
pseudopotential terms are excluded, the HS system only
has the excess entropy but the OCP has such a term
and the classical interaction of the ions in the electron
sea. To quantify the effects of the ionic reference sys-
tem, we have performed a series of calculations. We first
sought the temperature and density of the critical point
of an unspecified metallic system, excluding the screened
pseudopotential terms, with the electron system treated
at zero temperature. The HS reference yielded: 4200 K
and a density of 1.8×10−4; it should be noted that these
results are almost identical to those using an ideal-gas ref-
erence, thus the excess entropy of HS over the ideal gas
has a very small effect on the critical parameters, the den-
sity being so small. The OCP, however, yielded: 10600
K and 3.2 × 10−3; the strong effect of the ionic interac-
tions in the OCP leads to the higher critical temperature.
Then, the effects of the screened pseudopotential were
introduced. The results are then as follows, if one uses
parametrizations with an empty-core and a cut-off radius
of 1.70 a.u. (appropriate for Na). For HS, the calculated
critical parameters change to 9000 K and 6 × 10−5. For

the OCP, the results become 4600 K and 1.5×10−4. The
interactions raise the HS critical temperature, while the
partial cancellation of the classical ion interactions lowers
that appropriate to the OCP. Since, recalling the Gibbs-
Bogoliubov inequality, the free energy estimates are an
upper bound to the correct ones, obviously the better ref-
erence system is that which yields a lower value for the
free energy. Hence, it is of interest to compare the free
energies themselves, instead of focusing on a comparison
of the above results to experimental data. Fig. 1 shows
the free energy difference, with the sodium parametriza-
tion as an example of the result typical of all alkalis, for
HS minus OCP as a function of density for three temper-
atures. It is clear that for the density range of interest
here, ρ > 10−5, the HS reference system is to be pre-
ferred, having a substantially lower free energy of one to
three eV per particle. A criticism of previously noted
work10 is that it uses the OCP reference system.
In table II we present the critical parameters, for

the hypothetical alkali metals (labeled as MF-hs), ob-
tained with the Shaw parametrization, the HS refer-
ence system, and the electronic system treated at zero
temperature. In fig. 2 we show the coexistence curve
for rubidium, obtained with the Shaw and the Ashcroft
parametrizations; the difference here is relatively small.
Also, it is clear that this type of result is in poor agree-
ment, quantitatively and qualitatively, with experimental
observations1–3. These results are typical of all alkalis.
However, there are no atoms in the system, an impor-
tant feature according to previous work10,11 and crucial
to incorporate the M-nM transition observed.
Since, physically, at moderately low densities the sys-

tem must have the valence electrons localized on the ions
but delocalized at high densities, the valence electrons
must coexist in localized and delocalized states at fixed
total chemical potential, pressure, and temperature, for
phase coexistence. Thus, we proceed to consider a ther-
modynamic equilibrium mixture. We will restrict the
mixture to a metallic component, as above, and atoms,
without further complicating the treatment by consider-
ing diatomic molecules or other types of aggregates in
this mean-field approach.

B. Equilibrium with atoms

The general approach followed here is along the lines
previously noted11. The procedure uses an approxima-
tion to the system free energy in which ideal-gas terms
for ions and atoms are first explicitly separated, the re-
mainder of the free energy is denoted as fe:

f ≡ kBT [ρa(ln(ρaΛ
3/2)− 1) + ρi(ln(ρiΛ

3)− 1)] +

fe(ρi, ρa, T ).

The atom and ion densities are denoted by ρ, with ap-
propriate subscripts, and Λ is their thermal de Broglie
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wavelength. Then, the grand potential per unit volume
is given by:

Ω/V = f − µaρa − µiρi =

f −
E

2
(ρa − ρi)−

µaρa − µiρi
2

(ρa + ρi),

where µ are the chemical potentials and E is the vacuum
ionization potential of the atom in question. Ω is first
extremized with respect to the difference between atom
and ion densities, with the sum of the densities being kept
constant. The result of this procedure is an equilibrium
relation between atom and ion densities:

ρa = 2ρiexp[(µe + E)/kBT ],

where µe = ∂fe/∂ρi − ∂fe/∂ρa. Using this equilibrium
relation then leaves the sum of atom and ion densities and
the temperature as the only variables which can yield a
liquid-vapor transition of the composite system. A jump
in the relative ion to atom density, at fixed sum of den-
sities, characterizes a resulting, first-order, M-nM transi-
tion, but this transition, and its critical point, can only
take place hidden under the liquid-vapor phase coexis-
tence of the composite system.
At first we considered a free energy with contributions

from the electron gas, a neutralizing ionic system, and
an ideal gas of atoms, with the atoms experiencing no
interactions with the charged-particle system; thermal
equilibrium with the metallic component was demanded.
The work previously reported11 showed that such an in-
troduction of atoms would merely shift the critical point
to higher density and pressure, from the conditions ob-
tained without the atoms, without affecting the critical
temperature. Although that work included only the elec-
tronic kinetic energy and exchange in fe, the addition of
correlation energies and the ionic terms would leave the
above conclusion unchanged: the introduction of an ideal
gas of atoms in thermal equilibrium with the charged
particle system yields a liquid-vapor critical temperature
which is that due to the system of charges and is inde-
pendent of the ionization potential of the atoms. It has
already been noted that such a temperature is extremely
high, compared to the experimental results.
We proceeded, in a modification appropriate to Cs,

by merely adding a HS reference for atoms with a di-
ameter (10 a.u.) different than that of the ions (pre-
viously noted to be 8.80 a.u.); we used the method of
Mansoori et al17. The dashed line of fig. 3 shows the
coexistence curve obtained. A very high critical temper-
ature resulted, and moreover the shape of the coexistence
curve became clearly unphysical: with a density for the
vapor branch nearly independent of the temperature and
pinned by the mean-field, first-order, M-nM transition
line. We conclude that only atom-atom and atom-charge
interactions can change the critical temperature appre-
ciably from that due to the charged particle system. The
effect of such terms is to influence the relative populations

of the atomic and metallic components in the system, as
thermodynamic equilibrium between them is demanded.
As the interactions due to atoms tended to affect the

coupling between the M-nM and liquid-vapor transitions,
our main purpose in this investigation was to observe the
influence of the atom interactions on the liquid-vapor
critical point of the system. To carry out this investi-
gation in full detail is quite complicated; for example, to
include the polarization of atoms by the charged particles
requires calculation of a micro-electric field distribution.
The polarization energy of a neutral atom arises from the
square of the sum of the (vector) electric fields to which it
is exposed; it cannot be written as the sum of interaction
energies with the individual charged particles (in contrast
to previous assumption10). Given this complication and
also the fact that a pseudopotential treatment of atom-
electron interactions has doubtful validity (as it treats
the localized valence electron as frozen), we decided to
begin by investigating a phenomenological treatment for
the atom-charges interactions: a sum of a constant coeffi-
cient times the square of the atom density plus a second
constant times the product of the atom density and a
power of the charged particle density; the second term
would be of dominant importance. Various exponents in
the second term were considered.
Treating the atoms as hard spheres, with a diameter

different than that of the ions, and further including (in
fe) their virial interaction with the charges, aρaρi, gives
a first example of the type of effects obtainable. We used
the empirical prefactor a as a free parameter and ana-
lyzed the changes it induced in the critical temperature.
This temperature, as a function of a, has a minimum
which is less than five percent lower than the value with
a = 0, for whatever value may be chosen for the HS
diameter of the atoms. Thus, this virial type effective
interaction between ions and atoms can easily increase
the critical temperature, but it cannot lower it in any
substantial amount. We next studied the effects of other
empirical forms for the interactions; for example aρaρ

β
i

with β = 2/3 and 1/3, which could conceivably result
from the interaction between atoms and delocalized elec-
trons. Again using a as a variational parameter to mini-
mize the critical temperature, we found that the critical
temperature may be lowered by a significant amount (up
to 60 percent) for β = 1/3 and a around -1900 a.u.. The
full line of fig. 3 shows the coexistence curve for a ce-
sium parametrization of the metallic component and this
empirical form for the intactions with the atoms, with
the optimal value of a being used. Although the shape
of the coexistence curve clearly improves compared to
including the atoms only as hard spheres, the curve is
far from having the experimental shape. Moreover, the
critical temperature is still too high, even with the pa-
rameter a taking the above, unphysical, value. The op-
timal value for a implies that, at the critical density, an
atom in the system has an energy which is 2.5 eV below
that of a free atom; in contrast, an electron ion-pair are
bound to the metal at the melting point (relative to a
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free atom) by less than one eV. We conclude that such,
atom-charges, effective interactions are unable to bring
the mean-field results into quantitative agreement with
experimental observations.

C. Criticism

The above description of our efforts to integrate the
M-nM transition with that of the liquid-vapor one suffers
from internal inconsistencies as well. Not only did our ef-
forts fail to yield results in semi-quantitative agreement
with observations, but also it is hard to understand how a
mean-field treatment can adequately describe the coexis-
tence of localized and delocalized occupation of the states
available to the valence electrons in the systems of inter-
est. Clearly the statistical mechanics of the treatment
are a straight-forward demand for thermal equilibrium
between valence electrons localized in atoms and coex-
isting delocalized valence electrons, but there is a lack of
a microscopic description which can allow for this coex-
istence. It seems clear that density fluctuations are the
microscopic element which permits such a coexistence.
Then, structural features can allow for valence electron
localization in atomic states or a sharing of valence elec-
trons, which will lead to metallic properties when the
delocalization becomes macroscopic. Occupation of the
atomic valence state requires a structural environment
unfavorable to delocalization, that is a low density lo-
cal environment. In contrast, high density local environ-
ments are favorable to valence electron delocalization on
energetic grounds. On this basis, and recalling that the
data relevant to the expansion of liquid metals (a change
in coordination) is in conflict with a mean-field approach,
we decided to investigate a model which explicitly con-
siders equilibrium density fluctuations and their impli-
cations. The crucial point, however, is to calculate the
energy of the system not in mean field but taking into
account the strong inhomogeneities due to clustering and
atom formation. We believe that the energy of each ion
can be represented as depending on the local density of
its environment; the functional dependence of this en-
ergy is extremely important in determining the resulting
material structure and phase coexistence.

II. MODEL

A. Configurational energies

As previously noted, our main problem consists in be-
ing able to calculate the energy of a given statistical con-
figuration of the system. Such a configuration will be
inhomogeneous, containing regions of high local density
(clusters), in which the valence electrons are delocalized
over the region, and regions with the valence electrons
localized on the ions, i .e. atoms. Clearly, on trying to

calculate the energy of such a configuration, one may
not use pair interactions, as the energy in the clusters
is far from being describable in this manner. Similarly,
using a macroscopic mean-field average, with the energy
as function of the macroscopic average density, has al-
ready been discussed and found unsatisfactory. Thus, we
proceed to take into account the inhomogeneity of the
configurations in the following way. We describe the en-
ergy of a configuration by the sum: Uc = Σui, over all
the ions in the system i = 1, ..N , and look for a workable
approximation for the contribution of each ion, ui.
The mean-field approach, described in the previous

section, takes the energy ui to be a function of the global
density ρ and is thus equal for all the ions in the config-
uration, ui = u(ρ). On the other hand, in a system with
pair interactions, the exact form for ui is given by the
integral of the pair potential, φ(r), with the local density
around the ion:

ui =
1

2

∫
dr φ(|r− ri|) g(r, ri) ρ(r),

where g(r, ri) is the radial distribution function. The
mean-field approximation for the system with pair in-
teraction takes g(r, ri) = 1 and gives a linear depen-
dence of the energy per ion with the global density,
u(ρ) = Φo ρ/2; Φo is the total integral of the interac-
tion potential. The exact result may be written in an
intuitive way as ui = umf(ρ̂i), where ρ̂i is an effective
density:

ρ̂i =
1

Φo

∫
dr φ(|r− ri|) ρ(r),

which describes the local enviroment of each ion. In a
metal-atom fluid the energy cannot be described as pair
interactions and the mean-field energy per ion is not a
linear function of the average density. However, we still
may try to find an approximate form for the energy per
ion in terms of a local effective density.
As a preliminary step, which checks the form of this

energy in a system with mixture of localized and delocal-
ized electronic states, we carried out exact diagonaliza-
tions of tight-binding calculations on a finite body cen-
tered cubic (bcc) lattice, with a single orbital per site,
and calculated the ground state energy. The samples
have a partial occupation of the lattice sites by monova-
lent atoms (site energy −E, of order the alkali ionization
potential) and the remaining sites are empty (site energy
0); the hopping matrix element between all nn sites (t)
is taken to be a constant. A spectrum of realizations
were examined choosing randomly disordered lattice-site
occupations. Ensembles with a total number of 128 to
1024 sites were examined, at an occupation which ranged
from nearly empty to nearly full. Values of E/t from 12
to 24 were examined. In all cases the ensembles yield an
electronic structure which depends on the specific real-
ization. For given E/t, we calculated the total ground
state electronic energy shift (from E/t) per occupied site
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for all realizations in our ensemble. As a function of the
average occupation density, this shift has a scatter over
the realizations which is substantial for low densities, see
fig.4(a). However, if the data is replotted as a function
of the average fractional occupation of nn sites to the oc-
cupied ones in each realization, the scatter is found to be
reduced by as much as a factor of ten, see fig.4(b). The
total ground state energy shift per ion for the entire en-
semble can then be described by a single curve. The data
can be equally well fitted by a single function which only
depends on the fraction of occupied sites with n occupied
nn (n = 0 to 8). Thus, the total ground state energy of
the system can be well approximated by a description
in terms of an energy u(ρ̂i) per ion, with a local effec-
tive density ρ̂i which gives a measure of the coordination
number of each ion.
The independent electron tight-binding model, de-

scribed above, suggests that the energy per ion for ran-
dom configurations may be described in terms of the nn
configurations of each ion. However, that model is, of
course, a very poor representation of a metal-atom fluid.
For a given environment of an ion, a local effective den-
sity, its energy should be reasonably well described, if the
valence electrons are delocalized over the local region,
by the previously discussed second order pseudopoten-
tial calculation with the electronic exchange, correlation,
and screening effects taken into account, and assuming
that the local environment is replaced by a macroscopic
one of the same density. Our proposal, then, is to use
the mean-field energy per ion u(ρ), calculated as in the
previous sections, to approximate the energy per ion via
ui = u(ρ̂i); the effective density, ρ̂i, is to be a simple func-
tion of the coordination number. Thus, for a given ion
and limiting the number of its nn to eight (as observed
experimentally for high densities and low temperatures),
we shall take ρ̂ = (n + 1)ρ0/9 with n being the number
of its nn (between 0 and 8); ρ0 is taken to be the density
of the liquid metal at the melting point, thus assuming
that equilibrium density fluctuations are due to a change
in coordination rather than to nn distance changes.
For ions without any nn (n = 0), this energy calculated

as in a metal is suspect due to the long screening length,
so it is compared with that of a free atom (i .e. minus the
ionization energy) and in a variational spirit the lower
value is chosen (this choice is along the lines noted in
our previous work11,12). Although the calculated energy
difference is small in this comparison, the atomic state
is lower for all the alkalis. For a single nn, the metal-
lic energy is found to be lower than that of the isolated
dimer, for all alkalis. This approach thus includes the
structurally-based possibility of valence electron local-
ization, to form atoms, or some degree of delocalization.
Results for u(n) calculated in this manner, for the alkalis,
are shown in fig. 5, using the Shaw pseudopotential fitted
to one bar at the melting point; an example is also given
of results arising from use of the Ashcroft pseudopoten-
tial fitted to 0.45 packing fraction at the melting point.
These data have the same functional dependence, with

coordination, as the tight-binding results quoted previ-
ously, as can be appreciated by comparing fig. 5 with
the previously noted data in fig. 4; in both cases there
is a clearly nonlinear dependence of the energy with lo-
cal density, reflecting the non-additive character of the
interactions arising from valence electron delocalization.

B. Structural background

Having proposed a recipe to calculate the energy of an
ion in a given environment and thus the energy of any in-
homogeneous statistical configuration of the system, we
wish to use it to self-consistently calculate the equilib-
rium structures of the materials of interest at chosen ther-
modynamic conditions. The simplest manner in which
to implement the calculations we propose is as follows.
A theoretical construction which will yield a material ex-
pansion through a change in the average coordination (as
observed), which simplifies the study of a fluid with equi-
librium density fluctuations, and which is known to al-
low for a phase transition without broken symmetry, the
liquid-vapor type, is a model in which particles (atoms
and ions) are constrained to partially occupy the sites in
a chosen lattice. Thus disorder is an intrinsic feature of
such a treatment and need not be inserted in an adhoc

manner, such as a Gaussian, or other, distribution of site
energies and/or of transfer elements, typical of Ander-
son model treatments. As we are interested in treating
structural, thermodynamic, and electronic properties on
a similar footing, a completely adhoc treatment of the
disorder would be inimical to our purpose.
Experimental data15 on the nn distance and average

coordination of coexisting liquid cesium indicates that
the lattice gas is an adequate treatment of short-range
effects. The measurements show a nn distance which
changes little from the liquid at the triple point to near-
critical conditions, while expansion takes place though a
changing average coordination number. It is clear, how-
ever, that long-range effects due to the imposition of a
lattice treatment on a fluid problem will tend to underes-
timate the system entropy and thus, among other effects,
lead to an overestimate of the critical temperature. Nev-
ertheless, such an approach seems a suitable first step.
It has been noted that near-critical effects in metal-atom
fluids appear to be partially due to nonadditive effects in
the interactions19,20, a feature we include in the model.
Improvements to our model will certainly be possible.
In our model, we allow the ions to partially occupy the

sites of a bcc lattice, which allows for the correct coor-
dination of the sites when compared to the dense, alkali,
liquid metals. The lattice parameter is determined by the
condition that, at full occupation, the maximum density
be that of the liquid at the melting point, ρ0. The energy
for each ion is taken to be u(ρ̂); that is, the free energy
per ion previously calculated, in the continuum mean-
field description, for a macroscopic average density ρ̂ and
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setting the temperature to zero. The equilibrium proper-
ties are then obtained using grand canonical Monte Carlo
simulations; we can then proceed to calculate the equi-
librium structures, phase coexistence, and other features
of interest.
As a test of the dependence of coexistence data on the

functional dependence of u(ρ̂), we note the following. A
lowest-order approximation scheme, to treat the problem
of interest to us, could be based on experimental param-
eters only by assuming that the energy for an ion with no
nn would be the atomic energy while that for one with
the full complement of occupied neighbors (eight) would
correspond to the cohesive energy uc of the liquid at the
melting point. A linear interpolation for the intermediate
cases, n occupied neighbors, would give the equivalent of
an Ising model, with a pair potential, at nn only, be-
ing given by the cohesive energy of the liquid metal at
the melting point (relative to separated atoms) divided
by four. The coexistence curve and critical parameters
in that case are obtainable using well-known methods18.
Using the results of the Ising model mapped to a bcc lat-
tice gas yields, for example, kBTc = 0.79385(E − uc)/2.
The resulting critical temperatures for the alkalis would
then be of order twice the experimental ones for all the
alkalis and with the observed systematics, as can be ver-
ified by using the experimental cohesive energies of the
liquid metals at their melting point (table I). The critical
densities resulting from this approximation would then
be half of ρ0. It should be noted that this approach gives
critical temperatures which, though high, are an improve-
ment over the even higher mean-field results. However,
the coexistence curve would be found to be symmetri-
cal, in contrast to observations, and the critical densities
would be too large. The decrease in the critical tempera-
ture of this Ising model, when compared to macroscopic
mean-field results, is due to clustering induced by the
pair interactions. The symmetry of the coexistence curve
arises from the symmetry between occupied and empty
sites. Such an approximation scheme fails to take into
account many-body effects due to valence electron delo-
calization, which yield the concave-up u(n) vs n curves.
The enhanced cohesion of intermediate clusters, implied
by such curvature, further enhances clustering. However,
the curvature implies that clusters may be more strongly
or more weakly bound, relative to nearby local densities,
than the above Ising approach. The local tangent to the
u(n) curve is an effective Ising coupling at that local den-
sity; for low n this coupling is stronger than that due to
connecting the end points, and for large n it is weaker.
Thus, although the curvature yields more clustering, the
critical temperature due to a model with such curvature
need not be higher than that of the straight-line Ising
model. Also, the curvature breaks the symmetry between
occupied and empty sites. Both effects could yield im-
provements in calculated data, allowing closer approach
to observations. We have found that this is indeed the
case. We proceeded to discuss the test of our proposed
scheme on various alkalis and a spectrum of their prop-

erties.

C. Monte Carlo Simulations

We will present the results of grand canonical Monte
Carlo simulations for this model, applied to the alkalis
from cesium through sodium. First, with an energy per
ion taken to be u(ρ), a mean-field lattice treatment, we
have compared the critical data with that of the previ-
ous, continuous, metallic model to explore the influence
of the lattice. The results are given in table II (labeled
MF-lg) and are found to be quite close to those of the
continuous model; this is due to the low critical den-
sity resulting from the mean-field approximation, which
makes the entropy of the reference system close to the
ideal-gas entropy. However, the crucial point is to take
the inhomogeneities in the statistical configurations into
account. Simulations were then performed using the en-
ergy per ion u(ρ̂); this function has been previously dis-
cussed and is shown in fig.5. We have used a simulation
cube with twelve bcc cells on each side (3456 sites) and
periodic boundary conditions. Some results have been
checked using a larger cube (8192 sites), without appre-
ciable changes in the results. The simulations, carried
out at fixed temperature and chemical potential, give
the equilibrium density and internal energy of the sys-
tem. The pressure is obtained by thermodynamic inte-
gration. All results which follow are obtained using the
Shaw pseudopotential fitted to 1 bar of pressure at the
melting point.

1. Coexistence

Calculations of the coexistence curves of the alkalis
were carried out. Once again we first examine the critical
parameters as an approximate test of the results, before
continuing to a more detailed comparison with observa-
tions. The critical parameters obtained are also given
in table II and labeled as MC. The critical temperatures
from our model are higher (by about 400 K) than those of
the real fluids, a result one might expect from the lattice-
gas treatment of the configurational entropy. However,
the results in table II show that the correlation effects in-
cluded in the present model produce very large decreases
of the critical temperatures compared with the previously
mentioned mean-field approach, and also compared to
the Ising approximation. Also, the critical densities and
pressures are brought into reasonable agreement with ex-
periments. Moreover, the relative critical parameters of
the various alkalis, in our model, are very similar to the
relative experimental ones. These results, it should be
noted, also exhibit quantitative improvements relative to
those, using the Ashcroft pseudopotential, reported in
the table of our letter5. Finally, they are used to scale
the coexistence curves reported below.
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In fig. 6, we show the coexistence curves, in criti-
cal reduced units, calculated and observed for cesium,
this data should be compared with that shown in fig. 1
of our previous work5. Using the present methods, the
shape of the coexistence curve is in good agreement with
experiments. It recovers the strong liquid-vapor asym-
metry. The figure also presents the diameter function
ρd = (ρL + ρV )/2ρC . The errors in the simulations,
near critical point, prevent us from a detailed analysis
of the deviation of this function from a linear law, ob-
served in the experimental results3. We have also calcu-
lated the coexistence curves for other alkalis. The results
are shown in fig. 7; in reduced critical units, they are
all very similar. In agreement with experiments, our re-
sults for different alkali fluids give similar reduced phase
diagrams. The accuracy in our critical density determi-
nations is poor and does not allow for a discrimination
of the small differences observed2,3 in the shape of the
coexistence curves. In our calculations, we estimate an
uncertainty of ±10 percent in ρc and half that value for
Tc; the relative values among the alkalis should be reli-
able, as they are all estimated in the same manner. These
relative values show the experimentally observed system-
atics, as can be seen from the comparison shown in table
II.
There are no qualitative changes between the coexis-

tence curves reported here and those, using the alter-
nate Ashcroft pseudopotential, of our previous work5.
However, quantitatively, for example, the critical tem-
peratures are lowered, approaching observations, on us-
ing the present rather than the previous approach. The
reduction of the critical temperatures on using the Shaw,
rather than Ashcroft, pseudopotential is about 1200 K,
leaving our results about 400 K too high when compared
to experiment. We believe the relative effect is due to
the reduction of the discrepancy between the calculated
and observed cohesive energies of the liquid metal at the
melting point (see table I), the general shape of the u(n)
curves staying generally invariant, as can be seen by the
example shown in fig. 5.

2. Structural features

Gross structural aspects such as a nearly-linear de-
crease in the average coordination of ions in the ex-
panded, coexisting, liquid result from this calculation,
see fig. 8. The mean-field result (dotted line) underes-
timates the mean coordination number obtained on ap-
proaching the critical point, this is an effect of clustering.
The analyses of experimental neutron scattering data15,
along the liquid line at coexistence, yield pair correla-
tion functions which show a mean-field linear behavior
on reducing the density from the triple point to a den-
sity of about one-half of that value. Such data, at even
lower densities, are difficult to analyze, due to the broad-
ness and lack of definition of the first peak in the de-

duced pair correlation function, and, so far, there is no
strong evidence for clustering from that data. On the
other hand, inverse MC calculations21, based on the ex-
perimental structure functions themselves, do show evi-
dence of clustering, even though such calculations tend
to underestimate clustering effects because of the aver-
aging inherent in the method. Also, dimerization ef-
fects have been invoked to analyze magnetic suscepti-
bility measurements22, though such an analysis is more
speculative than the results of the inverse MC. If low
density structural measurements are possible, we await
their results for further comparison with our theoretical
predictions.
Other structural features which result from our calcu-

lations are exemplified by data such as that given in fig.
9. The figure shows the fraction of occupied lattice sites
within clusters of a given size, as a function of that size.
A cluster here is defined as a set of occupied sites which
have no nn outside the cluster and which are connected
by nn within the cluster. The figure is calculated for
low density cesium vapor, at the critical temperature ob-
tained from the model and at two average density values:
0.023 and 0.10 ρo. The smaller density is well below the
critical density and the obtained probability of finding a
large cluster decays exponentially with the cluster size.
The larger density is near the percolation threshold and
the calculated probability of a given cluster decays only
as a power of the cluster size. Effects due to such percola-
tion will be discussed later in connection with electrical
conductivity estimates. The fraction of the total num-
ber of occupied sites in clusters of a given size decreases
with the cluster size at fixed average system density. The
scatter of points results from data due to various realiza-
tions of the MC simulations: small clusters have high
probability, they are obtained in most of the realizations
and thus show little scatter; large clusters are improba-
ble, they are only observed in some realizations, and thus
show a substantial scatter. This latter effect is due to the
limited size of the simulation box. Note the reduction in
the number of atoms, clusters of size one, as the aver-
age system density is increased; there is no jump in this
number with density variations, for temperatures above
the phase coexistence.

3. Electrical Conductivity

We have next explored electronic transport properties
related to structure. The experimental signature of a M-
nM transition in these systems is a decrease of several
orders of magnitude in the conductivity of the expanded
fluid. In our model, such behavior is driven by the perco-
lation of the ionic cluster structure, which can be inter-
preted as leading to macroscopic delocalization of valence
electrons, rather than by considerations such as those of
Mott or Anderson. Such percolation, however, need not
be unrelated to the physical basis in the Mott and An-
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derson pictures. From typical configurations of our MC
simulations, we have obtained the cluster structure at
different temperatures and pressures. The electrical con-
ductivity was then estimated following the Kirchoff’s law
model proposed by Nield et al21, with a fitting of the ex-
perimental conductivity at the maximum density.
The details of the approach we have used are the fol-

lowing. For a given equilibrium configuration of the oc-
cupied sites in our simulation box, nn occupied sites are
replaced by a bond resistance of fixed value, no other
effects are taken into account. An electrical potential
difference is then assumed to be applied to two paral-
lel faces of the box, while periodic boundary conditions
are applied to the other sets of box faces. The potential
difference would cause a current to flow, through the re-
sistor network, using Ohm’s law and requiring that the
net current into each site must be zero (Kirchoff’s law).
The equations are then solved for the current as a func-
tion of the potential difference and, taking into account
the box size, the conductivity is calculated as a function
of the assumed bond resistance. Appropriate averages
are carried out for a set of realizations of the simulation
at each set of conditions. Clearly a finite conductivity is
only found if there is at least one bond-percolation clus-
ter traversing the potential difference. These conductiv-
ity estimates are intended to probe the effects of the ob-
tained cluster structure on the transport properties. The
estimates are based on an imposed macroscopic treat-
ment of each nn bond in the material, a resistor, instead
of a direct quantum treatment. At first glance such an
approach appears to be a gross simplification, yet there
is some reassurance: the bond resistance required to fit
the experimental data at high densities is 15000 Ω, a re-
sult rather similar to the quantum of resistance, without
dissipation, per electron, in a single channel (h/(2e2) ):
12906 Ω; the appropriate classical resistance should in-
deed be greater than the quantum of resistance, due to
a transmission coefficient effect. Further justification of
this approach is our conjecture that the electron mean
free path is rather short in the physical cases, at the con-
ditions considered, so that direct transport between sites
separated by distances larger that that of nn sites would
only yield negligible contributions.
The results in fig. 10 show the conductivity estimated

in this manner along the obtained critical isotherm, for
Cs, versus the pressure. They are in excellent agreement
with the experimental observations1, as is shown in the
figure. The figure also shows the calculated conductivity
versus density at the critical temperature, and that which
would arise from a random occupation of the lattice. The
difference clearly shows the effects due to energy-driven
clustering. The percolation density (at which the con-
ductivity goes to zero) at Tc is less than half of that ob-
tained with random occupation. These results are almost
unchanged from those reported in fig. 2 of our letter5,
which arose from the Ashcroft pseudopotential. A line
delimiting the densities and temperatures for the perco-
lation onset is shown in fig. 6, accompanying our coex-

istence calculations for Cs. It is clear that this line does
not intersect the coexistence curve at the critical point,
as has been speculated. The results for the percolation
line are similar in the spectrum of alkali fluids.

4. Summary

We have presented a lattice-gas implementation of a
model allowing a unified study of the structural, ther-
modynamic, and electronic properties of metal-atom flu-
ids. The model takes into account the inhomogeneity of
statistical configurations of the system. Nonadditive in-
teractions, due to valence electron delocalization, are in-
cluded. A self-consistent procedure is used to determine
the equilibrium structures: a MC simulation which goes
beyond mean-field, as is required. Although the model
is a very simplified representation of a metal-atom fluid,
comparisons of results obtained, for the alkali family and
a spectrum of data, show that the model contains the
basic ingredients to allow reproduction of the peculiar
behavior observed in these systems. These peculiarities
include the M-nM and liquid-vapor transitions and the
connection between ionic and electronic structures. Our
results for the scaled coexistence curves are in good agree-
ment with observations. The calculated critical temper-
atures are still somewhat high and the critical pressures
low, the densities being adequate. It is reasonable to
expect that, with a more realistic (non-lattice) descrip-
tion of the fluid entropy, a similar model (though more
cumbersome to study) would give a quantitatively good
result for all system properties. Our simplified model
appears to allow a unified understanding of the peculiar
characteristics of the alkali fluids. The model also shows
the similarities and differences between these materials
and pairwise interacting ones.

III. CONCLUSION

This paper reports investigations of theoretical models
which attempt to probe the liquid-vapor and M-nM tran-
sitions in the alkali fluids from a unified point of view.
Mean-field attempts were investigated first, as an exten-
sion of previous work. Although, based on statistical
mechanics, they are capable of unifying the two tran-
sitions, they are lacking a microscopic basis for treat-
ing the coexistence of occupation of the valence electron
states localized in atoms and those shared by various
ions, which eventually result in accounting for metal-
lic properties. Further, such models do not yield semi-
quantitative agreement with observations of the structure
and coexistence curves of alkali fluids.
Our model was then discussed. It includes treatment

of the equilibrium density fluctuations driven by interac-
tions, which include nonadditive effects due to, at least,

10



partial valence electron delocalization. This model al-
lows a unified, self-consistent, treatment of structural,
thermodynamic, and electronic properties. The lattice-
gas implementation of this model via a MC simulation
method was then undertaken. The results of such a treat-
ment do reproduce the spectrum of peculiar features ob-
served in alkali fluids, including the coupling of structural
and electronic properties. It should be emphasized that
except for the nonadditive effects, due to valence elec-
tron delocalization, the model is no different from that
applicable to insulating fluids. Thus we no longer con-
sider that the treatment for both types of materials is
intrinsically different, except for effects due to electron
delocalization. We believe that our model contains the
basic ideas required for an adequate treatment of such
fluids.
The energy recipe we have used is a strong simplifica-

tion of nature, treating electrons which are delocalized
over various ions as macroscopically delocalized and also
neglecting thermal effects. Further, although our calcu-
lations with the model treat the short-range structure of
the material in a manner we believe to be reasonably ad-
equate, the long-range structure is oversimplified by the
imposition of a lattice. Improvements are required for a
full quantitative treatment. The main features of such
improvements should seek to give a better treatment of
entropy effects with no lattice-like effects in the long-
range fluid structure. Such an improvement should be
treatable in an improved, non-lattice, MC simulation for
a fluid. We urge that such a calculation be undertaken.
Also, it would be interesting to attempt an extension of
the ideas we have presented in order to seek an improved
understanding of polyvalent atoms; mercury can clearly
be the testing ground of such extensions. Finally, at-
tempts to integrate Anderson and Mott treatments with
the work presented here could yield a deeper understand-
ing of metal-atom fluids. We hope our calculations are a
useful stepping-stone to allow guidance of experimental
efforts and that extensions of this work will allow theo-
retical extrapolations to materials at experimental condi-
tions other than those achievable with static techniques.
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FIG. 1. Difference between the mean-field free energy
of Na (Ashcroft pseudopotential) with a HS reference sys-
tem and that with the OCP (eV) vs density (a.u.), for var-
ious temperatures: solid line, T = 2000K; long-dashed line,
T = 4000K; short-dashed line, T = 6000K.

FIG. 2. Coexistence curve obtained for metallic rubidium
in the mean-field approximation, with a HS reference system.
Solid line: Shaw pseudopotential, dotted line: Ashcroft pseu-
dopotential. Temperature in K, density in a.u..

FIG. 3. Coexistence curves obtained for metallic cesium in
equilibrium with its atoms, mean-field treatment: The dashed
line shows the results on treating the atoms as hard spheres,
with a diameter (10a.u.) different than that of the ions
(8.80a.u.), but not otherwise interacting with the charges;
for this case the temperature scale should be doubled. The
full line present the results when, in addition, an empirical
interaction with the charges (aρaρ

β

i ) is included. The param-
eters, a = −1900a.u. and β = 1/3, are tuned to minimize the
critical temperature. The open points show the experimental
coexistence curve of cesium (ref.[3]).

FIG. 4. Ground state, tight-binding, energy shifts per ion
(∆E/t) calculated for a set of random occupation realizations
in a bcc lattice, with E/t = 24: (a) as function of the average
occupation density, (b) as a function of the average occupation
of a nn site for each occupied site in the various realizations.

FIG. 5. Energy per ion in the alkalis, with the
Shaw pseudopotential, u(ρ) vs density normalized to den-
sity of the liquid metal at the melting point ρ0. Solid
line: cesium (ρ0 = 1.84g/cm3), dotted line: ru-
bidium (ρ0 = 1.47g/cm3), dashed line: potassium
(ρ0 = 0.828g/cm3), and dashed-dotted line: sodium
(ρ0 = 0.924g/cm3). The crosses at the end each curve are the
experimental cohesive energies. For comparison, the circles
show the results for Cs using the Ashcroft pseudopotential,
which were used in ref. [5]. Energies are in eV. The ρ/ρ0=1/9
(i.e., n=0) values are experimental data for the free atoms.

FIG. 6. Liquid-vapor coexistence curve of cesium, in re-
duced critical units. Filled circles: present MC simulation;
full line: fit to the experimental results of ref.[3]. The MC
simulation diameter function ρd is also plotted (crosses). The
triangles, joined by a line to guide the eye, delimit the region
of cluster percolation. Note the slight differences with fig.1 of
ref. [5], due to a change in the pseudopotential choice.

FIG. 7. Calculated liquid-vapor coexistence curves for the
alkali fluids, using the Shaw parametrization, in reduced criti-
cal units; circles: cesium, squares: rubidium, triangles: potas-
sium, and stars: sodium.

FIG. 8. Average coordination number versus normalized
density, along the the liquid branch of the coexistence curve
of cesium, resulting from the MC treatment of the lattice
gas. The dotted line shows the mean-field result, with average
coordination number equal to 8 ρ/ρ0.

FIG. 9. Fraction of ions in clusters of each cluster size
(number of ions) in a log-log plot. The calculations use the
MC lattice-gas treatment, for cesium at the critical temper-
ature, at two average densities: 0.023 ρo (solid points) and
0.10 ρo (open points).

FIG. 10. On the left we show the electrical conductivity
σ for cesium versus the reduced pressure along the critical
isotherm. Crosses from our model, open circles are experi-
mental values from ref [1], both normalized to the conductiv-
ity σ0 at our highest density ρ0. On the right we show our
calculated electrical conductivity but now versus the normal-
ized density; points are our results for T = TC , and triangles
for the random occupation of the lattice. Note the slight
differences with fig. 2 of ref. [5], due to a change in the
pseudopotential choice.
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TABLE I. Comparison of the calculated results for the liquid alkali metals, at their melting point, using the Ashcroft and
Shaw pseudopotentials (the core radii marked by an asterisk are fitted to a 0.45 packing fraction for the liquid metal at the
melting point). Core radius (rc) and hard-sphere diameter (dHS) in a.u., packing fraction (η) and excess entropy ( SE/kB
) are dimensionless, atomic energy (E) and liquid cohesive energy (u) (referred to ion cores and valence electrons at infinite
separation) in eV, conductivity (σ) in 105(Ωcm)−1, and pressure (P ) in bar. Note the systematic improvement in u, and to a
lesser extent in E, on fitting to P – Shaw rather than to σ (or packing fraction) – Ashcroft.

CESIUM RUBIDIUM
rc dHS η E u σ SE/kB P rc dHS η E u σ SE/kB P

Ashcroft 2.62∗ 8.80 0.45 -3.89 -5.12 0.70 3.81 -6260 2.40∗ 8.19 0.45 -4.23 -5.39 0.53 3.81 -7380
Shaw 4.73 8.82 0.44 -3.93 -4.73 0.68 3.79 1.0 4.30 8.18 0.44 -4.16 -5.05 0.64 3.77 1.0
Exp – – – -3.89 -4.69 0.28 3.56 1.0 – – – -4.18 -5.01 0.45 3.63 1.0

POTASSIUM SODIUM
rc dHS η E u σ SE/kB P rc dHS η E u σ SE/kB P

Ashcroft 2.12 7.51 0.42 -4.48 -5.76 0.60 3.40 -9230 1.70 6.17 0.44 -4.86 -6.61 1.0 3.80 -10700
Shaw 3.92 7.60 0.43 -4.37 -5.36 0.63 3.65 1.0 2.92 6.11 0.43 -4.97 -6.45 0.63 3.50 1.0
Exp – – – -4.34 -5.26 0.77 3.45 1.0 – – – -5.14 -6.25 1.0 3.45 1.0

TABLE II. Estimated critical conditions: using continuum
mean-field with hard-sphere (MF-hs) and lattice-gas (MF-lg)
reference system entropy, Monte Carlo (MC) simulation for
the present theory (Shaw pseudopotential), and the experi-
mental results of ref. [2] and [3]. The temperature T is in
Kelvin, the pressure P in bar, and the density ρ in g cm−3.
The MC results are later used to normalize the results pre-
sented in various figures.

CESIUM RUBIDIUM
Tc ρc Pc Tc ρc Pc

MF-hs 6330 0.022 6.7 6820 0.019 9.3
MF-lg 6540 0.030 8.3 7060 0.025 11.9
MC 2350 0.47 60 2475 0.35 73
Exp 1924 0.38 92.5 2017 0.29 124.5

POTASSIUM SODIUM
Tc ρc Pc Tc ρc Pc

MF-hs 7310 0.011 13.0 9020 0.014 34.6
MF-lg 7580 0.014 16.2 9390 0.018 45.4
MC 2550 0.22 70 2970 0.22 128
Exp 2178 0.18 148 2485 0.30 248
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