
ar
X

iv
:1

00
5.

49
43

v1
  [

m
at

h.
A

P]
  2

6 
M

ay
 2

01
0

WAVE OPERATOR BOUNDS FOR 1-DIMENSIONAL SCHRÖDINGER OPERATORS

WITH SINGULAR POTENTIALS AND APPLICATIONS

VINCENT DUCHÊNE, JEREMY L. MARZUOLA, AND MICHAEL I. WEINSTEIN

Abstract. Boundedness of wave operators for Schrödinger operators in one space dimension for a class of
singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented
to, for example, dispersive estimates and commutator bounds.

1. Introduction

Wave operators provide a means for converting operator bounds for a “free” dynamics generated by a
constant coefficient Hamiltonian, H0 = −∆ to analogous operator bounds about “interacting” dynamics
associated with a variable coefficient Hamiltonian, H = −∆ + V , on its continuous spectral subspace.
Indeed let W± and W ∗

± denote wave operators associated with the free and interacting Hamiltonians H0

and H (defined by (2.1) and (2.2)). Then we have

W±W
∗
± = Pc, W ∗

±W± = Id(1.1)

f(H)Pc =W±f(H0)W
∗
±, f(H0) =W ∗

±f(H)W±, f Borel on R .(1.2)

It follows that bounds on f(H)Pc acting between W k1,p1(Rd) and W k2,p2(Rd) can be derived from bounds
on f(H0) between these spaces if the wave operatorsW± are bounded betweenW k1,p1(Rd) andW k2,p2(Rd)
for kj ≥ 0 and p ≥ 1. Here, W k,p(Rd), k ≥ 1, p ≥ 1 denotes the Sobolev space of functions having
derivatives up to order k in Lp(Rd).

Applications along the lines of the above discussion have appeared in [17]. For example,
∥

∥e−iHtPc(H)f
∥

∥

Lp(Rd)
=

∥

∥W±e
−iH0tW ∗

±f
∥

∥

Lp(Rd)
≤ C |t|− d

2
−d

p ‖f‖Lq(Rd) , p−1 + q−1 = 1, p ≥ 1.

Boundedness of wave operators in W k,p(Rd), under smoothness and decay assumptions on V (x) was
proved in [28] in dimensions d ≥ 2. Weder [27] proved boundedness in dimension one; see also [3]. In [27]
it is assumed that V ∈ L1

γ(R), the space of all complex-valued measurable functions φ defined on R such
that

‖φ‖L1
γ
=

∫

|φ(x)|(1 + |x|)γdx <∞.(1.3)

For V falling into a class of generic potentials, the assumption is γ > 3/2, otherwise it is assumed γ > 5/2.

Schrödinger operators with singular potentials arise in models, which have recently been extensively
investigated. See, for example, [17, 7, 14, 10, 11, 12], where Dirac delta function potentials are considered.
Boundedness of wave operators for singular potentials satisfying the hypotheses of Theorem 3 is used
implicitly in references [14] and [7], but this boundedness appears not to have been addressed previously.
This gap in the literature is addressed by the current work. Another motivation for the present work is
the study of scattering for highly oscillatory structures in the homogenization limit [5], where bounds on
(m2+H)−1Pc(H)(m2−∂2x), where H = −∂2x+V (x) is a Schrödinger operator with a singular (distribution)
part to the potential V (x), are required; see section 7.
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This article is devoted to an extension of the one-dimensional results [27] to the case of singular potentials.
In particular, our results apply to Hamiltonians of the form

H = −∂2x + V (x),

where V (x) satisfies:

Hypotheses (V)

V (x) = Vsing(x) + Vreg(x),(1.4)

Vsing(x) =
N−1
∑

j=0

qj δ(x− yj), qj , yj ∈ R, yj < yj+1, qj 6= 0,(1.5)

‖V ‖L1
3
2
+
(R) ≡

∫

R

(1 + |s|) 3
2
+|Vreg(s)| ds < ∞.(1.6)

The paper is structured as follows. In section 2 we state our main result, Theorem 1, concerning
boundedness of wave operators. In section 3 the strategy of proof is outlined. Section 4 summarizes
facts about Jost solutions, distorted plane waves, reflection and transmission coefficients etc. Some related
technical results are contained in Appendix A. In section 5 we state a general result, Theorem 3, from
which Theorem 1 follows. The proof of Theorem 3 is given in section 6. Finally, in section 7 we present
examples (multi- delta function potentials) and applications to dispersive estimates, commutator bounds
and well posedness.

Acknowledgements: JLM was supported, in part, by a U.S. National Science Foundation Postdoc-
toral Fellowship in the Department of Applied Physics and Applied Mathematics (APAM) at Columbia
University. MIW was supported, in part, by U.S. NSF Grant DMS-07-07850. JLM and MIW wish to
acknowledge the hospitality of the Courant Institute of Mathematical Sciences, where MIW was on sab-
batical during the preparation of this manuscript. VD was supported, in part, by Agence Nationale de la
Recherche Grant ANR-08-BLAN-0301-01. VD would like to thank APAM for its hospitality during the
Spring of 2008, when this work was initiated.

2. Main results

We first define and review properties of the wave operators. For basic results on wave operators see, for
example, [1, 20, 22].

Introduce the self-adjoint operators H0 = −∆ and H = −∆ + V . Here, V is a real-valued potential,
satisfying assumptions given below; see Section 5. Let Pc = Pc(H) denote the continuous spectral projection
associated with H . The wave operators, W± and their adjoints W ∗

± are defined by

W± ≡ s− lim
t→∞

eitHe−itH0(2.1)

W ∗
± ≡ s− lim

t→∞
eitH0e−itHPc.(2.2)

The wave operators satisfy the properties (1.1) and (1.2). The notion of wave operators is intimately related
to the idea of distorted Fourier bases, which are discussed in detail in [1], [13], [21]. In one dimension, this
is directly related to the Jost solutions. These objects are studied in general in [21] and generalized to even
a certain class of non-self-adjoint operators in [16].

Our main result, Theorem 3, combined with the calculations of Section 7.1, implies the following:
2
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Theorem 1. Consider the Schrödinger operator with a potential, V (x), satisfying Hypotheses (V). Then
W± and W ∗

± originally defined on W 1,p ∩ L2, 1 ≤ p ≤ ∞, have extensions to bounded operators on W 1,p,
1 < p <∞. Moreover, there are constants Cp such that:

‖W±f‖W 1,p(R) ≤ Cp‖f‖W 1,p(R), ‖W ∗
±f‖W 1,p(R) ≤ Cp‖f‖W 1,p(R), f ∈ W 1,p(R), 1 < p <∞.(2.3)

Remark 2.1. In general, the wave operators are not bounded on L1. The constraint p > 1 is due to the
Hilbert transform, H not being bounded on L1; see [27].

3. Strategy of Proof

We use the approach for wave operators on R initiated by Weder in [27]. The heart of the matter concerns
the detailed low and high frequency behavior of Jost solutions, worked out by Deift and Trubowitz [4],
or a consequence of their methods. The idea is to split the wave operators into high and low frequency
components:

W± =W±,high +W±,low.

For the high frequency component we prove for φ ∈ S,

W±,highφ =
∑

j

SAj
φ, where SAφ ≡

∫ ∞

−∞

A(x, y)φ(y)dy.

For each A = Aj , we use the criterion (Young’s inequality [6]) for Lp, 1 ≤ p ≤ ∞ boundedness:

CA ≡ sup
x∈R

∫

R

|A(x, y)| dy + sup
y∈R

∫

R

|A(x, y)| dx < ∞

=⇒ ‖SAφ‖Lp ≤ CA ‖φ‖Lp .

to prove

(3.1) ‖W±,highφ‖Wk,p ≤ Cp ‖φ‖Wk,p , 1 < p <∞, k ≥ 0.

For the low frequency components, we have

W±,low ∼ H +
∑

j

SAj
,

where SAj
is as above and H denotes the Hilbert Transform

(Hφ)(x) =
1

π
P.V.

∫

φ(x− y)

y
dy =

∫ ∞

−∞

eikx (−i sgn(k)) φ̂(k)dk(3.2)

Here, F and F−1 denote the Fourier Transform on R and its inverse, defined by

(3.3) φ̂(k) ≡ Fφ(k) =
1

2π

∫

e−ikxφ(x)dx, Φ̌(x) ≡ F−1Φ(x) =

∫

eikxΦ(k)dk.

Thus, for low frequencies, boundedness

(3.4) ‖W±,lowφ‖Wk,p ≤ Cp ‖φ‖Wk,p , 1 < p <∞, k ≥ 0

reduces to the boundness properties of the Hilbert transform [24]:

Theorem 2. H :W k,p →W k,p, for 1 < p <∞ and k ≥ 0, with ‖Hφ‖Wk,p(R) ≤ Kp ‖φ‖Wk,p(R).

Estimates (3.1) and (3.4) then imply the theorem. The proof of (3.1) and (3.4) is given in section 6.
We now develop some background for implementing the strategy.

3
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4. Background spectral theory of H = −∂2x + V

4.1. Distorted plane waves, e±(x; k). Consider the operator H = −∂2x + V (x), defined as a self-adjoint
operator on L2(R). Denote by Pd and Pc the discrete and continuous spectrum projections. Pd and Pc are
orthogonal projections with Pc = Id− Pd.

Denote by R0 the outgoing “free” resolvent operator R0(k) = (−∂2x − k2)−1 with kernel

R0(k)(x, y) = −(2ik)−1 exp(ik|x− y|)

and finally introduce the distorted plane waves, e±(x; k):

Definition 4.1. u = e±(x; k) are the unique solutions to (H − k2)u = 0 satisfying

(4.1) e±(x; k) = e±ikx + outgoing(x),

where a function U is said to be outgoing as |x| → ∞ if

( ∂x ∓ ik )U = 0, x→ ±∞.

Thus, e±(x, ; k) is given by the integral equation:

e±(x; k) = e±ikx −R0(k)V e
±ikx.

The continuous spectral projection, Pc, is given by

Pcf(x) =
1

2π

∫ ∫ ∞

0

(

e+(x, k) e+(y, k) + e−(x, k) e−(y, k)
)

f(y)dkdy.(4.2)

see, for example, [26].

We write

Pcf ≡ F ∗
+ F+ f, where it follows from (4.2) that

F+f ≡
∫

R

Ψ+(y, k) f(y) dy, F ∗
+f ≡

∫

R

Ψ+(y, k) f(y) dy and(4.3)

Ψ+(y, k) =
1√
2π

{

e+(x; k) k ≥ 0,
e−(x;−k) k < 0

(4.4)

We also define Ψ−(x, k) = Ψ+(x,−k).

4.2. Jost solutions. To make direct use of the arguments in [27] and [4], we express the results of the
preceding subsection in terms of Jost solutions, commonly introduced for one-dimensional Schrödinger
operators.

Given the Schrödinger equation

− d2

dx2
u+ V u = k2u, k ∈ C,(4.5)

we define the Jost solutions, fj(x, k), j = 1, 2, Imk ≥ 0, to be the unique solutions of (4.5) satisfying the
conditions:

f1(x, k) − eikx → 0, x→ ∞, and

f2(x, k) − e−ikx → 0, x→ −∞.(4.6)

4
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The Jost solutions are linearly independent solutions of (4.5) for k 6= 0. Therefore, there are unique
functions T (k), Rj(k), j = 1, 2 such that for k ∈ R \ 0

f2(x, k) =
R1(k)

T (k)
f1(x, k) +

1

T (k)
f1(x,−k),(4.7)

f1(x, k) =
R2(k)

T (k)
f2(x, k) +

1

T (k)
f2(x,−k)(4.8)

For a potential, V , with compact support within (−r, r), Rj(k) and T (k) are defined via the solutions:

u1(x; k) =

{

eikx +R2(k)e
−ikx, x < −r,

T (k)eikx, x > r
(4.9)

u2(x; k) =

{

T (k)e−ikx, x < −r,
e−ikx +R1(k)e

ikx, x > r
(4.10)

Generically,

(4.11) T (k) = αk + o(k), 1 +Rj(k) = αjk + o(k), j = 1, 2, k → 0.

T (k) is called the transmission coefficient associated with H . R1(k) is the right to left reflection coefficient,
and R2(k) the left to right reflection coefficient.

It follows from (4.1), (4.6) and (4.7) that

Ψ+(x, k) =
1√
2π

{

T (k) eikx m1(x, k) k ≥ 0,
T (−k) eikx m2(x,−k) k < 0,

(4.12)

where m1(x, k) − 1 → 0 as x → ∞ and m2(x, k) − 1 → 0 as x → −∞. The detailed smoothness and
decay properties, in x and k, of mj(x; k)− 1 are required in estimates. These are given in Appendix A.

5. Statement of the Main Theorem

Our main result, from which Theorem 1 follows, is:

Theorem 3. Let H = −∂2x + V (x) be self-adjoint on L2(R), where V = Vsing(x) + Vreg(x) for which the
transmission and reflection coefficients (see (4.7)) satisfy the bounds:

|R(k)|, |T (k)− 1|, |∂kR(k)|, |∂kT (k)| ≤
C

〈k〉 .(5.1)

Assume further that there exists a > 0 sufficiently large such that

|∂αxm1(x, k)|+ |∂αxm2(x, k)| ≤ C(a) for |x| ≤ a, α = 0, 1,(5.2)

| m1(x; k)− 1 | + | ∂km1(x; k) | + | ∂xm1(x; k) | ≤ C

∫∞

x
|Vreg(t)|(1 + |t|) dt

1 + |k| , x ≥ a,(5.3)

| m2(x; k)− 1 | + | ∂km2(x; k) | + | ∂xm2(x; k) | ≤ C

∫ x

−∞
|Vreg(t)|(1 + |t|) dt

1 + |k| , x ≤ −a .(5.4)

Then W± and W ∗
± originally defined on W 1,p ∩ L2, 1 ≤ p ≤ ∞, extend to bounded operators on W 1,p,

1 < p <∞. Furthermore, there are constants Cp such that:

‖W±f‖W 1,p ≤ Cp‖f‖W 1,p , ‖W ∗
±f‖W 1,p ≤ Cp‖f‖W 1,p , f ∈W 1,p ∩ L2, 1 < p <∞.(5.5)

5
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Remark 5.1. Deift and Trubowitz [4] establish the bounds (5.3) and (5.4) for any potential V (x), for
which (1 + |x|) |V (x)| ∈ L1(R) with a = 0. Their proof applies to a potential of the type in Hypothesis
(V), V = Vsing + Vreg, where Vsing has a finite set of Dirac masses within an interval (−A,A), and such

that (1 + |x|) |Vreg(x)| ∈ L
3
2
+(R). In this case the bounds (5.3) and (5.4) hold with a = A, C depending

on A and V replaced by Vreg.

Remark 5.2. In fact, less restrictive bounds on Vreg as developed in [3] would suffice. However, for
simplicity we will follow the work of [27] as it makes some computations more explicit.

6. Proof of Main Theorem 3

We follow the strategy described in section 3.

Let χ(x ≥ 1) ∈ C∞(R) denote non-decreasing cut-off functions such that

χ(x ≥ 1) =

{

0 x ≤ 1
2 ,

1 x ≥ 1 .
(6.1)

To localize in frequency space, introduce ψ (|k| ≤ k0) ∈ C∞
0 (R) be a compactly supported cut-off

function, depending on a parameter, k0, to be chosen, such that

ψ (|k| ≤ k0) =

{

1 |k| ≤ k0,
0 |k| ≥ 2k0 .

(6.2)

We decompose any φ ∈ L2(R) into its low and high frequency parts:

(6.3) φ(x) = φlow(x) + φhigh(x), where using D ≡ −i∂x,

φlow(x) ≡ ψ(|D| ≤ k0)φ(x) ≡
∫

R

eikxψ (|k| ≤ k0) φ̂(k) dk,(6.4)

φhigh(x) ≡ ( 1 − ψ (|D| ≤ k0)) φ(x) ≡
∫

R

eikx ( 1− ψ (|k| ≤ k0) ) φ̂(k) dk .(6.5)

6.1. Bounds on W+φlow. For x ≥ 0, we can express W+φlow(x), in terms of m1(x, k) which satisfies the
bounds (5.3), and for x ≤ 0, we can express W+φlow(x), in terms of m2(x, k) which satisfies the bounds
(5.4). Since the cases x ≥ 0 and x ≤ 0 are very similar, we only carry this calculation out in detail for
x ≥ 0. We have, using the notation Pf(x) = f(−x),

W+φlow = F ∗
+F ψ(|D| ≤ k0)φ

=

∫ ∞

0

eikx T (k) m1(x, k) ψ (|k| ≤ k0) φ̂(k) dk +

∫ 0

−∞

eikx T (−k) m2(x,−k) ψ (|k| ≤ k0) φ̂(k) dk

=

∫ ∞

0

eikx T (k) m1(x, k) ψ (|k| ≤ k0) φ̂(k) dk

+

∫ 0

−∞

eikx [R1(−k)e−2ikx m1(x,−k) +m1(x, k)] ψ (|k| ≤ k0) φ̂(k) dk

=

∫ ∞

0

eikx m1(x, k) [T (k) +R1(k)P ] ψ (|k| ≤ k0) φ̂(k) dk +

∫ 0

−∞

eikx m1(x, k) φ̂(k) dk, x ≥ 0,

where we have applied (4.3) and (4.12).
6
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We continue by using that
∫∞

0 [. . . ] dk = 1
2

∫∞

−∞
(1 + sgn(k)) [. . . ] dk, we have

W+φlow =
1

2

∫ ∞

−∞

(1 + sgn(k)) eikx(m1(x, k) − 1)T (k) ψ (|k| ≤ k0) φ̂(k)dk(6.6)

+
1

2

∫ ∞

−∞

(1 + sgn(k)) eikx(m1(x, k)− 1)R1(k)P ψ (|k| ≤ k0) φ̂(k)dk

+
1

2

∫ ∞

−∞

(1− sgn(k)) eikx(m1(x, k)− 1) ψ (|k| ≤ k0) φ̂(k)dk

+
1

2

∫ ∞

−∞

(1 + sgn(k)) eikxT (k) ψ (|k| ≤ k0) φ̂(k)dk

+
1

2

∫ ∞

−∞

(1 + sgn(k)) eikxR1(k)P ψ (|k| ≤ k0) φ̂(k)dk

+
1

2

∫ ∞

−∞

(1− sgn(k)) eikx ψ (|k| ≤ k0) φ̂(k)dk, x ≥ 0.

For x ≤ 0 an analogous representation holds with m1(x, k) replaced by m2(x, k).

We now show that W+,1,low is a bounded operator on W k,p(R+). Each term in the first three lines of
(6.6) is of the form:

(6.7) φ 7→ Sj ◦ (I ± i H) ◦ Ψ(D) φ ,

and each term in the last three lines is of the form

(6.8) φ 7→ (I ± i H) ◦ Ψ(D) φ ,

where

Ψ(D) = F−1 Ψ̂(k) F and

Ψ̂(k) = T (k) ψ(|k| ≤ k0) or R1(k) P ψ(|k| ≤ k0) or ψ(|k| ≤ k0),

(SjΦ) (x) ≡
∫

R

Rj(x, y) Φ(y) dy,(6.9)

Rj(x, y) ≡
∫

R

eikx (mj(x, k) − 1) e−iky dk.(6.10)

By hypotheses on T (k) and R(k), Ψ̂(k) is a multiplier on W k,p(R) for 1 < p < ∞ [24]. Therefore,
the boundedness of the operators in (6.7) and (6.8) on W k,p for 1 < p < ∞, and therefore the bound on
W+φlow, follows from

Lemma 6.1. S1 is bounded on W 1,p(R+) and S2 is bounded on W 1,p(R−) for 1 < p <∞.

Proof of Lemma 6.1: We focus on the bound for S1 on W k,p(R+). The bound for S2 is bounded on
W k,p(R−) is similar.

Using the representation formula (A.1) we have

Rj(x, y) ≡
∫

R

eik(x−y)

∫ ∞

0

e2ikz B1(x, z) dk dz = B1

(

x,
y − x

2

)

and thus the operator S1 simplifies to

(S1Φ) (x) =

∫ ∞

x

B1

(

x,
y − x

2

)

Φ(y)dy =

∫ ∞

0

B1

(

x,
ζ

2

)

Φ(ζ − x) dζ, x ≥ 0 .

7
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Since we must estimate S1 on W 1,p we also compute

∂x (S1Φ) (x) =

∫ ∞

0

B1

(

x,
ζ

2

)

(−∂ζ)Φ(ζ − x) dζ +

∫ ∞

0

∂xB1

(

x,
ζ

2

)

Φ(ζ − x) dζ

=

∫ ∞

x

B1

(

x,
y − x

2

)

(−∂y)Φ(y) dy +

∫ ∞

x

∂xB1

(

x,
y − x

2

)

Φ(y) dy, x ≥ 0 .

To prove boundedness of S1 and ∂S1 on Lp of the operator we use that the operator

SRΦ(x) =

∫

R

R(x, y) Φ(y) dy,

is bounded on Lp with estimate

(6.11) ‖SRΦ ‖Lp ≤ CR ‖Φ‖Lp , 1 ≤ p ≤ ∞

if

(6.12) CR ≡ sup
x≥0

∫

R

|R(x, y)| dy + sup
y≥0

∫

R

|R(x, y)| dx < ∞ .

Note that by (A.2) and (A.4) we have

|B1(x, z)| .

∫ ∞

x+z

|Vreg(s)|ds and |∂xB1(x, z)| . |Vreg(x)| +

∫ ∞

x+z

|Vreg(s)|ds.(6.13)

Therefore,

sup
x≥0

∫

1y≥x

∣

∣

∣

∣

B1

(

x,
y − x

2

)
∣

∣

∣

∣

dy + sup
y≥0

∫

1y≥x

∣

∣

∣

∣

B1

(

x,
y − x

2

)
∣

∣

∣

∣

dx

≤ 2 sup
x≥0

∫ ∞

0

∫ ∞

x+y
2

|Vreg(s)|ds dy

≤ 2

∫ ∞

0

(

1 +
x+ y

2

)− 3
2
− ∫ ∞

x+y
2

(1 + s)
3
2
+|Vreg(s)|ds

≤ const× ‖Vreg‖L1
3
2
+
(R).

A similar bound applies to the kernel 1x≥y∂xB1

(

x, y−x
2

)

. Thus, we have

‖S1Φ‖W 1,p(R+) ≡ ‖S1Φ‖Lp(R+) + ‖∂x (S1Φ) ‖Lp(R+) ≤ C‖Vreg‖L1
3
2
+
(R) ‖Φ‖W 1,p(R+) .

Applying similar arguments with S1 replaced by S2 for x ≤ 0 yields boundedness of S2 on W 1,p, from
which we conclude

(6.14) ‖W+φlow‖W 1,p(R) ≤ C ‖Vreg‖L1
3
2
+
(R) ‖φ‖W 1,p(R) .

This completes the low frequency analysis.
8
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6.2. High Frequencies. We have, using (4.7) and the notation Pf(x) = f(−x),
W+φhigh = F ∗

+F (1− ψ(|D| ≤ k0))φ

=

∫ ∞

0

T (k)eikxm1(x, k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

+

∫ 0

−∞

T (−k)eikxm2(x,−k)(1− ψ (|k| ≤ k0))φ̂(k)dk

=

∫ ∞

0

T (k)eikxm1(x, k)(1 − ψ (|k| ≤ k0))φ̂(k)dk

+

∫ 0

−∞

eikx[R1(−k)e−2ikxm1(x,−k) +m1(x, k)](1 − ψ (|k| ≤ k0))φ̂(k)dk

=

∫ ∞

0

eikxm1(x, k)[T (k) +R1(k)P ](1 − ψ (|k| ≤ k0))φ̂(k)dk +

∫ 0

−∞

eikxm1(x, k)φ̂(k)dk.

For x ≥ 0 we rewrite this expression as

W+φhigh =
1

2

∫ ∞

−∞

eikx (1 + sgn(k)) (m1(x, k)− 1)T (k)(1− ψ (|k| ≤ k0))φ̂(k)dk

+
1

2

∫ ∞

−∞

eikx (1 + sgn(k))(m1(x, k)− 1)R1(k)P (1 − ψ (|k| ≤ k0))φ̂(k)dk

+
1

2

∫ ∞

−∞

eikx (1− sgn(k))(m1(x, k)− 1)(1− ψ (|k| ≤ k0))φ̂(k)dk

+
1

2

∫ ∞

−∞

eikx (1 + sgn(k))T (k)(1− ψ (|k| ≤ k0))φ̂(k)dk

+
1

2

∫ ∞

−∞

eikx (1 + sgn(k))R1(k)P (1− ψ (|k| ≤ k0))φ̂(k)dk

+
1

2

∫ ∞

−∞

eikx (1− sgn(k))(1 − ψ (|k| ≤ k0))φ̂(k)dk, x ≥ 0.

An analogous expression, with m1(x, k) replaced by m2(x, k), is used for x ≤ 0. We proceed now to show
that each term is bounded on W 1,p(R+), p ≥ 1.

Each summand in this decomposition of W+φhigh is of the form:

φ 7→ Sj ◦ ρ(D) φ, or φ 7→ ρ(D)φ.(6.15)

where ρ(D) = F−1ρ̂(k)F . Here, Sj, j = 1, 2, defined in (6.9) and (6.10), is bounded on W 1,p(R+) for
1 < p < ∞, as proved in the previous section. Moreover, ρ(k) is a multiplier on W 1,p(R) for 1 < p < ∞
due to hypotheses on R(k), T (k) − 1, ∂kR(k) and ∂kT (k), and the fact that 1 − ψ(|k| ≤ k0) is smooth,
asymptotically constant as k → ∞ and vanishing in a neighborhood of 0. It follows that

(6.16) ‖W+φhigh‖W 1,p(R+) ≤ C‖Vreg‖L1
3
2
+
(R) ‖φ‖W 1,p(R+).

An estimate analogous to (6.16), similarly proved using a representation of W+φhigh(x) for x ≤ 0, in terms
of S2, also holds. Thus,

(6.17) ‖W+φhigh‖W 1,p(R) ≤ C‖Vreg‖L1
3
2
+
(R) ‖φ‖W 1,p(R) .

The decomposition (6.3) and the bounds (6.14) and (6.17) imply the result. This completes the proof
of the main result, Theorem 3.
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WAVE OPERATOR BOUNDS V. DUCHÊNE, J.L. MARZUOLA, AND M.I. WEINSTEIN

7. Examples and Applications

7.1. V (x) = a sum of Dirac delta masses. In this section we verify hypotheses (5.1), (5.3), (5.4) for
the case of a potential, which is the sum of Dirac delta functions, thereby establishing the applicability of
our main results to this case.

We follow the analysis from [10] and [26], see also [8], [9] for specific examples. Seek solutions of the
form

(

H~q,~y −
1

2
k2

)

e±(x, k) = 0,(7.1)

whereH~q,~y =
∑N−1

j=0 qjδ(x−yj) when ~q = (q0, · · · , qN−1), ~y = (y0, · · · , yN−1), and where e±(x, k) represent

the distorted Fourier basis functions as defined (4.1). Thus,

e+(x, k) =



















eikx +B0e
−ikx for x < y0,

A1e
ikx +B1e

−ikx for y0 < x < y1,
...

ANe
ikx for x > yN−1,

(7.2)

where we have taken A0 = 1 and BN = 0. With this choice of notation, we have, referring to (4.9) and
(4.10), AN = T the transmission coefficient and B0 = R1 the reflection coefficient for the “incoming” plane
wave eikx from −∞. Then, we have the following system of equations implied by continuity and jump
conditions at the points {yj} for j = 0, . . . , N − 1:

eiky0 +B0e
−iky0 = A1e

ikx0 +B1e
−iky0

ik
[

A1e
iky0 −B1e

−iky0 − eiky0 +B0e
−iky0

]

= 2q0
[

A1e
iky0 +B1e

−iky0
]

...

AN−1e
ikyN−1 +BN−1e

−ikyN−1 = ANe
ikyN−1

ik
[

ANe
ikyN−1 − AN−1e

iky0 +BN−1e
−iky0

]

= 2qN−1

[

ANe
ikyN−1

]

.

Note, the above system guarantees unitarity, or that

|B0|2 + |AN |2 = 1.(7.3)

We can define similarly

e−(x, k) =



















D0e
−ikx for x < y0,

C1e
ikx +D1e

−ikx for y0 < x < y1,
...

CNe
ikx + e−ikx for x > yN−1,

(7.4)

where now the incoming wave is e−ikx from ∞ and the scattering matrix is determined by the transmission
coefficients D0 = T and the reflection coefficient CN = R2 for the “incoming” plane wave e−ikx from ∞.

7.1.1. Bounds on m1, m2: In addition, for general singular potentials with compact support, we have

m1(x, k) = e−ikxf1(x, k) =

{

e−ikx e+(x,k)
T (k) for x < yN−1,

1, for x > yN−1,

m2(x, k) = eikxf2(x, k) =

{

eikx e−(x,k)
T (k) for x > y0,

1, for x < y0.

10
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Hence, there exists constants C1
α(yN−1) and C

2
α(y0) such that

|∂αkm1(x, k)| ≤ C1
α(yN−1) for yN−1 > x ≥ 0,(7.5)

|∂αkm2(x, k)| ≤ C2
α(y0) for y0 < x ≤ 0.(7.6)

As a result, we see that an arbitrary collection of δ functions satisfies assumptions (5.2) , (5.3) and (5.4)
as required for the proof of Theorem 3.

We conclude this subsection with explicit computations of the transmission and reflection coefficients
for single and double δ well potentials:

7.1.2. Single δ potential (Hq = −qδ(x)): Setting up the appropriate equations, we have

R1 = rq =
q

ik − q
,(7.7)

T = tq =
ik

ik − q
,(7.8)

where rq, tq are the reflection and transmission coefficients for Hq respectively. We must show the bounds
from (5.1) hold, however such bounds follow clearly for (7.8), (7.7).

7.1.3. Double δ potential (Hq,L = −q(δ(x+ L) + δ(x− L))): Setting up the appropriate equations, we
have

R1 = rq,L =

(

q(ik − q)e2ikL + q(ik + q)e−2ikL

q2e2ikL − (ik + q)2e−2ikL

)

e−2ikL,(7.9)

T = tq,L =

(

k2

q2e2ikL − (ik + q)2e−2ikL

)

e−2ikL,(7.10)

where rq,L, tq,L are the reflection and transmission coefficients for Hq,L respectively.

Again, we must verify bounds (5.1), hence we must prove for instance

ṫq,L(k) ≤ C(1 + |k|)−1,

provided qL 6= 1/2. Indeed, we have

ṫq,L(k) =
2k(k2 − 2ikq + q2(e4ikL − 1))− 2ik2(2Lq2e4ikL − (ik + q))

(k2 − 2ikq + q2(e4ikL − 1))2
,

which satisfies

|ṫq,L(k)| ∼ O(|k|−1)

as k → ∞ and

|ṫq,L(k)| ∼ O(
1

4q2L− 2q
)

as k → 0. A similar computation holds for rq,L.

Remark 7.1. Such bounds can be verified for a more general δ function potential using the expressions

T (k) = 1 +

∫∞

−∞
V (t)dt

2ik
+O(k−2),

Rj(k) =
T (k)

∫∞

−∞
e±2iktV (t)dt

2ik
+O(k−2),

which can be derived from the expressions for m1,m2 as in [4].
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7.2. Commutator / Resolvent type bounds. In [5], where homogenization of high contrast oscillatory
structures with defects is studied, bounds on (H0 + 1)−1(H~q,~y + 1) are required to estimate a Lipmann
Schwinger equation. We have, by our main theorem that

(H0 + 1)−1(H~q,~y + 1)Pc = (H0 + 1)−1W+(H0 + 1)W ∗
+ : L2 → L2.

7.3. Dispersive and Strichartz estimates in H1 for δ-NLS. We may represent

e−itHPcf =
1

2π

∫ ∫ ∞

0

e−
itk2

2

(

e+(x, k) e+(x, k) + e−(x, k) e−(x, k)
)

f(y)dkdy.(7.11)

From here, we may use direct computations to arrive at Strichartz estimates and apply Weder’s results on
wave operators since the potentials are all in L1 with compact support.

Using the properties of wave operators, we have

‖eiHtPcf‖Lp = ‖W±e
itH0W ∗

±f‖Lp(7.12)

and using standard dispersive estimates for the linear Schrödinger operator (see for instance [25] for a
concise overview) arrive at

‖eiHtPcf‖Lp ≤ Cpt
−( 1

2
− 1

p
)‖f‖W 1,p .(7.13)

Define a Strichartz pair (q, r) to be admissible if

2

q
=

1

2
− 1

r
(7.14)

with 2 ≤ r <∞. Then, we arrive at the celebrated Strichartz estimates

‖eiHtPcu0‖LqW 1,r . ‖u0‖W 1,2(7.15)

and
∥

∥

∥

∥

∫ t

0

eiH(t−s)Pcf

∥

∥

∥

∥

LqW 1,r

. ‖f(x, t)‖
L

q̃
tW

1,r̃
x

(7.16)

using duality techniques and once again the boundedness of the wave operators.

As a side note, using positive commutators and well crafted local smoothing spaces, from [18] we have
the Strichartz estimate

∥

∥

∥

∥

∫ t

0

eiH(t−s)Pcf

∥

∥

∥

∥

L∞L2

. ‖f(x, t)‖Lp̃
tL

q̃
x
.(7.17)

Now, by boundedness of wave operators on W 1,p spaces for singular potentials as proved in Theorem 3, we
have the following useful relation

∥

∥

∥

∥

∫ t

0

eiH(t−s)Pcf

∥

∥

∥

∥

L∞H1

. ‖f(x, t)‖Lp̃
tW

1,q̃
x
,(7.18)

where (p̃, q̃) is a dual Strichartz pair without first going through the dispersive estimates.
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7.4. Local Well-Posedness in H1 for δ-NLS. Consider the nonlinear Schrödinger / Gross-Pitaevskii,
with a potential consisting of a finite set of Dirac delta functions:

{

i∂tu+H~q,~yu− |u|2σu = 0,
u(x, 0) = u0(x) ∈ H1,

for 0 < σ <∞. We seek a solution in the following sense:

u = Λ[u],

where

Λ[u](t) = e−iH~q,~ytu0 − i

∫ t

0

e−iH~q,~y(t−s)|u|2σu(s)ds.(7.19)

We claim that local well-posedness can be established via the contraction mapping principle in the space
C0([0, T );H1(R)) for T sufficiently small. To prove the necessary boundedness and contraction estimates,

it is natural to apply the operator (I+H~q,~y)
1
2Pc, which commutes with the group e−iH~q,~yt to (7.19). Then,

estimates follow in a straightforward way, using that H1(R) is an algebra, provided the space

(7.20) H1(R) =
{

f : (I +H~q,~y)
1
2Pcf ∈ L2(R)

}

is equivalent to the classical Sobelev space H1. This follows from the relations

(I +H)
1
2Pc =W (I − ∂2x)

1
2W ∗, W ∗(I +H)

1
2W = (I − ∂2x)

1
2

and our results on the boundedness of wave operators associated with H~q,~y on H1.

7.5. Long time dynamics for NLS with a double δ well potential. In [17], the long time dynamics
of solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation

i∂tu = (−∆+ V (x))u + gK
[

|u|2
]

u,(7.21)

where V is a symmetric, double well potential, are studied. In particular, under appropriate spectral
assumptions on the operator H = −∂2x + V (x), in a neighborhood of a symmetry breaking bifurcation
point, there are different classes of oscillating solutions (7.21) which shadow periodic orbits of a finite
dimensional reduction on very long, but finite, time scales. These solutions correspond to states with
mass concentrations oscillating between the two wells of a symmetric potential well. The proof requires
dispersive / Strichartz type estimates. The results of this paper imply that the results of [17] extend to
(7.21) for the case of singular potentials, such as

V (x) = −q[δ(x− L) + δ(x + L)].

Appendix A. Bounds on mj(x; k), j = 1, 2

Denote by m1(x, k) = e−ikxf1(x, k) and m2(x, k) = eikxf2(x, k). Then, we have

m1(x, k) = 1 +

∫ ∞

x

Dk(y − x)V (y)m1(y, k)dy,

m2(x, k) = 1 +

∫ x

−∞

Dk(x− y)V (y)m2(y, k)dy,

Dk(x) =

∫ x

0

e2ikydy.
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We remark the derivation for m1(x, k), x ≥ 0. Similar remarks apply to m2(x, k) on x ≤ 0. By results in
[4], for V ∈ L1

3
2
+
(R) the function m1(x, k)−1 is in the Hardy space, and therefore there exists B1 ∈ L2(R+)

such that

m1(x, k) = 1 +

∫ ∞

0

B1(x, y)e
2ikydy.(A.1)

Moreover,

|B1(x, y)| ≤ C eγ1(x)

∫ ∞

x+y

|V (t)|dt, x, y > 0,(A.2)

γ1(x) =

∫ ∞

x

(t− x)|V (t)|dt.(A.3)

Similarly,

|∂xB1(x, y)| ≤ C eγ1(x)

(

V (x+ y) +

∫ ∞

x+y

|V (t)|dt
)

, x ∈ R, y > 0,(A.4)

γ1(x) =

∫ ∞

x

(t− x)|V (t)|dt.(A.5)

The proof of [4] extends to the case where V (x) = Vsing(x) + Vreg(x), where V ∈ L1
3
2
+
(R) and Vsing(x)

consists of a finite sum of delta functions. Indeed, for V (x) = δ(x) we have

B1(x, y) =

∞
∑

n=0

Kn(x, y)

for

K0(x, y) =

∫ ∞

x+y

V (t)dt, Kn+1(x, y) =

∫ y

0

∫ ∞

x+y−z

V (t)Kn(t, z)dtdz, n = 0, 1, . . . .

Hence,

K0 =

∫ ∞

x+y

δ(t)dt =







1, x+ y < 0
1
2 , x+ y = 0
0, x+ y > 0.

As a result,

K1(x, y) =

∫ y

0







0, x+ y − z > 0
1
2K(0, z), x+ y − z = 0
K(0, z), x+ y − z < 0

= 0

since K(0, z) = 0 for any z > 0. Similar computations can be done for larger collections of δ functions.
Hence, for V = δ, we have

B1(x, y) = K0(x, y)

for which the bounds (A.2), (A.4) hold obviously in the sense of distributions.
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V. DUCHÊNE, J.L. MARZUOLA, AND M.I. WEINSTEIN WAVE OPERATOR BOUNDS

References

[1] S. Agmon. Spectral properties for Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4), 2 (1975), 151-218.

[2] T. Cazenave. Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10. New York University,
Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003).

[3] P. D’Ancona and L. Fanelli. L
p boundedness of the wave operators for the one dimensional Schrödinger operator,

Communications in Mathematical Physics, 268, Number 2 (2006), 415-438.
[4] P. Deift and E. Trubowitz. Inverse scattering on the line, Commun. Pure Appl. Math., 32 (1979), 121-251.
[5] V. Duchêne and M.I. Weinstein. Scattering and homogenization for truncated periodic structures with defects, in prepa-

ration.
[6] G.B. Folland Partial Differential Operators , Princeton University Press
[7] R. Goodman, P. Holmes and M.I. Weinstein. Strong NLS soliton-defect interactions, P hys. D, 192, No. 3-4 (2004),

215-248.
[8] D.J. Griffiths and C.A. Steinke. Waves in locally periodic media, Am. J. Physics, 69 , No. 2 (2000), 137–154.
[9] D.J. Griffiths and N.F. Taussig. Scattering from a locally periodic potential, Am. J. Physics, 60 , No. 10 (1992),

883–888.
[10] J. Holmer, J.L. Marzuola and M. Zworski. Fast soliton scattering by delta impurities, Communications in Mathematical

Physics, 274, Number 1 (2007), 187-216.
[11] J. Holmer, J.L. Marzuola and M. Zworski. Soliton splitting by external delta potentials, Journal of Nonlinear Science,

17, Number 4 (2007), 349-367.
[12] J. Holmer and M. Zworski. Slow soliton interaction with delta impurities, J. Mod. Dyn. 1, No. 4 (2007), 689-718.
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