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Abstract: Angiogenesis plays a key role in cancer progression and correlates with disease 

aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage 

display random peptide libraries can be engineered to molecularly target tumor blood 

vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, 

we tested the ability of a phage-display-selected peptide sequence recognizing specifically 

bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled 

with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission 

tomography (PET). To prepare the targeted PET tracer we modified QFP-phage with the 

DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to 

obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific 

activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c.) Lewis lung 
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carcinoma (LLC) mouse model and conducted tissue distribution, small animal PET/CT 

imaging study, autoradiography, histology, fluorescence imaging, and dosimetry 

assessments. The results from this study show that, in the context of the s.c. LLC 

immunocompetent mouse model, the QFP-tracer can target tumor blood vessels 

selectively. However, further optimization of the biodistribution and dosimetry profile of 

the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the 

biological specificity of the QFP-peptide. 

Keywords: development of new 64Cu radiolabeled peptide; radiopharmaceuticals;  

targeted radioconjugates; positron emission tomography (PET) imaging; tumor angiogenesis; 

tumor aggressiveness; responses to therapy 

 

1. Introduction 

Angiogenesis is a hallmark of cancer and is generally associated with aggressive cancer growth and 

poor patient prognosis. Tumors form new blood vessels either from pre-existing mature ones or de 

novo by recruiting circulating endothelial and hematopoietic precursor cells [1]. Stromal cells of bone 

marrow origin have been identified in the vasculature of several pre-clinical models [2–4]. As shown 

in a bone marrow transplant model with Id1+/-Id3-/- tumor-resistant mutant mice, transplanted bone 

marrow endothelial and hematopoietic precursor cells are fully capable of supporting tumor growth [5]. 

In humans, bone marrow-derived endothelial cells have been detected in patients with multiple 

myeloma [6], primary breast cancer [7], non-small cell lung cancer [8], and malignant gliomas [9]. 

According to a report by the Voest group [10] increased levels of immature precursors in the 

peripheral blood of patients with breast, colon, prostate, head and neck, renal and ovarian cancer 

correlate with aggressive disease. Furthermore, circulating progenitor cells of bone marrow origin have 

been exploited as a potential biomarker to guide the applications of antiangiogenic therapy in cancer 

patients [11]. Together, these studies suggest that circulating tumor-homing cells participate in tumor 

angiogenesis and represent a valuable target for development of diagnostic and therapeutic agents with 

improved tumor selectivity. 

Screening of phage display random peptide libraries has emerged as a powerful approach for the 

discovery of new peptide ligands that can bind with high affinity and specificity to a variety of targets 

including angiogenic blood vessels [12–15]. When radiolabeled, such phage-display-derived peptides 

hold promise as molecularly targeted imaging agents for noninvasive tumor characterization and early 

assessment of responses to therapy. Although antibodies and proteins have been considered as targeted 

imaging agents, these high molecular weight biologicals demonstrate poor accumulation and 

penetration in solid tumors, slow in vivo clearance, and sensitivity to labeling conditions. To overcome 

these limitations, development efforts have focused on smaller moieties such as peptides. In addition to 

good transport properties, and the ability to both penetrate rapidly into solid tumors and recognize 

hidden or uncommon epitopes, compared to antibodies and antibody fragments, peptides have low 

toxicity and immunogenicity, and can be synthesized in large quantities at low cost. In parallel to 

screening peptide libraries, combinatorial strategies have been devised for selection of engineered 
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affinity protein scaffolds. A protein scaffold utilizes a protein framework that can carry altered amino 

acid residues to impart new binding specificity [16]. The most thoroughly investigated and successful 

protein scaffolds include: affibody molecules [17], adnectins [18], anticalins [19], peptide aptamers [20], 

avimers [21], and darpins [22]. Because of their inherent target specificity peptide ligands and 

engineered affinity proteins are considered highly promising for in vivo diagnostics as imaging agents. 

A radiolabeled molecular agent can specifically target disease-associated marker and this interaction 

can be visualized in vivo noninvasively by gamma- or positron emission tomography (PET). 

Molecular PET is a highly sensitive imaging modality that relies on the delivery to a tissue or organ 

of interest of a targeted probe containing a positron-emitting radionuclide. Several radioisotopes, 

including radiometals have been developed for use in PET imaging in conjunction with biological 

targeting vectors [23,24]. Copper radioisotope, 64Cu, has the advantage of emitting very low energy 

positrons, with an average energy of 0.28 MeV and maximum β+ energy of 0.655 MeV. Because the 

maximum β+ energy of 64Cu is almost identical to the energy of the clinically validated PET nuclide, 
18F, the resulting images are of very good quality. In addition to molecular imaging, 64Cu has 

promising applications in targeted radiotherapy as well [25,26]. Moreover, 64Cu can be produced via a 

variety of reaction pathways with either a nuclear reactor or a cyclotron. The relatively long 64Cu  

half-life of 12.7 h (as opposed to 18F half-life of 1.6 h) allows the 64Cu isotope to be distributed from a 

central production station, thus making it available to radio-pharmaceutical scientists and clinicians 

who can work with it without having in-house access to a cyclotron.  

New and innovative diagnostic imaging approaches have been developed during the past decade 

utilizing 64Cu-metallated peptides. In contrast to the most commonly used PET tracer,  
18F-fluorodeoxyglucose (FGD), 64Cu-labeled peptides are more specific than FDG in oncology studies 

providing for noninvasive in vivo visualization and characterization of various receptor-expressing 

tumor tissues. Pioneering efforts of 64Cu radiochemistry and radiopharmaceutical development have 

been based upon bombesin (BBN) to noninvasively characterize expression of gastrin releasing 

peptide (GRP) receptors [27]. More recently the Smith group at the University of Missouri [28] 

designed and characterized new 64Cu-labeled bombesin targeting vector for molecular imaging studies 

in GRP-expressing tumor models and demonstrated high in vivo affinity and selectivity in prostate  

PC-3 tumor-bearing mouse model. Intensive work has been undertaken on the development of  
64Cu-radiolabeled peptides for imaging integrin expression [29]. Most molecular imaging studies of 

integrins exploit the minimal binding amino acid sequence, Arg-Gly-Asp (RGD), of several 

extracellular matrix proteins, e.g., vitronectin, laminin, and fibronectin, as the lead structure to impart 

specificity to integrin receptors. Various design approaches to optimize the lead RGD vector for 

improved in vivo pharmacokinetics and tumor accumulation and retention have been implemented in a 

variety of tumor bearing mouse models. Dumont et al. [30] designed a 64Cu-RGD conjugate and 

characterized it as an attractive alternative to 18F-labeled compounds because 64Cu-labeled RGD tracer 

allowed for delayed imaging with improved tumor-to-background ratios. Another strategy to target 

cellular integrins is the utilization of the knottin peptide. Nielsen et al. [31] developed 64Cu-DOTA-

knottin tracer and conducted head-to-head comparison with FDG in a transgenic mouse model of lung 

cancer. Compared to FDG, 64Cu-DOTA-knottin 2.5F tracer produced statistically higher tumor-to-

background ratio which resulted in high-contrast, high-quality micro PET images.  
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Numerous applications of 64Cu radionuclide have been reported for PET radioimmunoimaging and 

radioimmunotherapy. Antibodies that are clinically relevant, e.g., Abergin and Cetuximab, have been 

labeled with 64Cu for PET imaging [32–34]. 64Cu-DOTA cetuximab was evaluated in mice bearing 

epidermal growth factor receptor (EGFR) –positive and EGFR-negative tumors for quantitative  

PET imaging [34]. Investigators found that 64Cu-DOTA-cetuximab exhibited notable uptake in  

EGFR-expressing tumors and low accumulation in EGFR-negative tumors. On a clinical level the  
64Cu-TETA-1A3 radioimmunoconjugate was used to evaluate 36 patients with suspected primary or 

advanced colorectal cancer [35]. All patients had computed tomography (CT) and PET scans at 4 h p.i. 

and 36 h p.i. The study detected 11 new tumor sites that were previously not detected by CT or 

molecular resonance (MR) imaging demonstrating that PET radioimmunoimaging with 64Cu may have 

important applications in clinical oncologic imaging especially for detection of smaller lesions that are 

undetected by CT or MRI. Although radioimmunoimiganing with 64Cu has showed satisfactory results 

it is considered that 64Cu seems to be more suitable candidate for imaging in conjunction with 

engineered targeting vectors such as affinity protein scaffolds and short peptide ligands [34]. 

The purpose of the present study is to prepare peptide-based PET tracer radiolabeled with 64Cu, and 

to characterize its biodistribution and imaging properties in vivo. By screening a phage display 

dodecapeptide library in vivo, we were first to discover a novel amino acid sequence, the QFP-peptide 

(QFPPKLTNNSML), that specifically binds with high affinity to bone marrow-derived circulating 

tumor-homing cells [36] and hence the motivation to pursue further characterization. Herein, we will 

evaluate the ability of the QFP-peptide labeled with a positron emitter, to selectively image tumor 

vasculature in vivo by positron emission tomography (PET). We utilize the phage particle as a scaffold 

on which multiple copies of the QFP-peptide are displayed (see Figure 1). The phage coat proteins 

allow for facile orthogonal radiolabeling without interference with the binding properties of the  

QFP-peptide. To prepare the targeted PET tracer, QFP-phage was modified with the chelator DOTA. 

QFP-phage-DOTA construct was purified and radiolabeled with 64Cu to yield a targeted 

radioconjugate with high radiochemical efficiency and specific activity. In vivo evaluation of the 

targeted tracer was performed in a subcutaneously implanted Lewis lung carcinoma (LLC) model in 

immunocompetent C57Bl6 mice and included tissue distribution, small animal PET/CT imaging 

studies, autoradiography, histology, fluorescence microscopy, and dosimetry assessments. Control 

experiments were run in parallel with a nontargeted radiotracer and the results were compared. 

2. Results and Discussion 

2.1. Synthesis and Characterization of 64Cu-Radiolabeled Tracers 

Because phage have their own in vivo biodistribution patterns, QFP-peptide displayed on the 

surface of a phage particle should be validated against a control phage construct that displays no 

peptide, i.e., the wild type phage analog. For this reason, we synthesized the targeted QFP-phage-

DOTA-64Cu tracer and the nontargeted, wild type -phage-DOTA-64Cu control and compared their 

properties in vivo. 

In Figure 1, the synthetic route and the reaction conditions for preparing the targeted and the control 

tracers are presented. The amino groups on the phage scaffold coat protein pVIII reacted with the 
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thioisocyanate group of the bifunctional DOTA ligand to yield a thiourea bond. The conjugation 

reaction was carried in carbonate-bicarbonate buffer (pH 9.0) at 35 °C overnight. Under these reaction 

conditions, approximately five DOTA ligands were attached per phage particle [36]. Unbound DOTA 

was separated by ultracentrifugation.  

Figure 1. Flow chart outlining the synthetic route and the reaction conditions for preparing 

the QFP-targeted and the control tracers. First, the M13 phage scaffold was modified with 

the macrocyclic chelator DOTA by coupling the amino groups exposed on the phage 

surface with the bifunctional p-SCN-Bn-DOTA derivative. In a second step, the  

QFP-phage-DOTA or the control-phage-DOTA constructs were radiolabeled with the 64Cu 

radioisotope. 

 

For radiolabeling, the QFP-phage-DOTA or control-phage-DOTA were re-suspended in 0.1 M 

sodium acetate buffer (pH 5.5). 64CuCl2 solution was added, and the reactants were heated at 50 °C for 

50 min. Unbound 64Cu was quenched with EDTA and separated from the radiolabeled tracer by 

ultracentrifugation. The radiochemical yield was greater than 98% and the specific activity ranged for 

both tracers from 20 to 50 Ci/mmol (740 to 1850 GBq/mmol) based on calculations per phage particle. 

An alternative to the DOTA-Bn-SCN bifunctional chelator used in this study is the  

DOTA-NHS-ester derivative. Although both functional groups allow for straightforward and efficient 

labeling procedures there are differences in the ability of the two bifunctional chelators to form stable 

complexes with 64Cu. Compared with the only three carboxylate groups of the DOTA-NHS-ester 

available for complexation, the presence of four carboxylate arms and an additional benzyl 

functionality attached to the carbon backbone of the DOTA-Bn-SCN will produce more stable  
64Cu-DOTA complex. Radiometal-chelator complex stability in vivo is of critical importance for 

clinical success of a metal-based tracer and should be further investigated in more detail. 

2.2. In Vivo Biodistribution Studies 

Biodistribution of the QFP-phage-DOTA-64Cu and control-phage-DOTA-64Cu tracers was 

examined in immunocompetent C57Bl6 mice bearing subcutaneously implanted Lewis lung carcinoma 
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(LLC) tumors and the results were compared. The tumor and normal organ distribution properties of 

the radiolabeled tracers at 2 h, 6 h, 18 h, and 28 h p.i. are summarized in Figure 2 and Table 1. In vivo 

kinetics revealed tumor-to-muscle (T/M) radioactive uptake ratio for the targeted tracer of 4.10 ± 1.56 

at 2 h p.i., 7.33 ± 0.65 at 6 h p.i., 5.1 ± 0.57 at 18 h p.i., and 4.03 ± 1.47 at 28 h p.i. The  

tumor-to-muscle (T/M) ratios for the control nontargeted tracer were 4.65 ± 0.64, 4.00 ± 2.55, 2.57 ± 1.40, 

and 1.53 ± 1.37 at 2 h p.i., 6 h p.i., 18 h p.i., and 28 h p.i., respectively. Significant differences between 

the targeted and the control tracer were detected at 6 h p.i., 18 h p.i., and 28 h p.i. indicating the ability 

of QFP-peptide to specifically bind to tumor tissue and contribute to tumor retention of the 

radioactivity from the QFP-tracer. The tumor-to-muscle ratio for the QFP-tracer peaked at 6 h p.i. 

(7.33 ± 0.65). In contrast, the tumor-to-muscle ratio for the control continuously diminished with time 

post-injection, indicating a significant tumor washout rate. Furthermore, tumor accumulation of the 

targeted compared to nontargeted tracer increased with time p.i. (Figure 2B). Notably, the QFP-tracer 

yielded 83% more tumor accumulation than the control tracer at 6 h p.i., 99% more accumulation at  

18 h p.i., and 163% more accumulation at 28 h p.i. These data provide evidence for the specific 

binding and retention of the QFP-tracer to s.c. LLC tumors in C57Bl6 mice.  

Figure 2. Ability of the QFP-tracer to specifically accumulate in tumor tissue based on 

direct tumor sampling. (A) Tumor-to-muscle (T/M) uptake ratios: Significant differences 

in tumor accumulation between the QFP-targeted and the control tracer were detected at  

6 h p.i., 18 h p.i., and 28 h p.i. (p < 0.05); (B) Specific tumor accumulation is expressed as 

fold change of targeted-to-nontargeted tracer as a function of time p.i. Prolonged retention 

of the targeted tracer and tumor washout of the control lead to the upward trend.  
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Table 1. Biodistribution of QFP-phage-DOTA-64Cu tracer and control-phage-DOTA-64Cu 

tracer in C57Bl6 mice bearing Lewis lung carcinoma tumors subcutaneously implanted in 

the inguinal region. Data are presented as the organ-to-muscle uptake ratios (mean ± SD,  

n = 3). * indicates statistical significance compared to the nontargeted control (p < 0.05). 

Organ 2 h p.i. 6 h p.i. 18 h p.i. 28 h p.i. 

QFP-tracer 
Tumor 4.10 ± 1.56 7.33 * ± 0.65 5.1 * ± 0.57 4.03 * ± 1.47 
Liver 94.80 ± 23.19 58.77 ± 20.91 48.10 ± 15.70 38.43 ± 20.88 
Lung 14.05 ± 3.61 10.40 ± 3.49 8.85 ± 0.21 6.20 ± 4.91 

Kidney 19.95 ± 0.07 17.67 ± 8.14 11.95 ± 2.90 7.93 ± 2.22 
Heart 4.55 ± 0.35 4.53 ± 0.87 4.53 ± 0.87 3.10 ± 0.95 
Blood 6.02 ± 3.37 5.28 ± 2.15 3.97 ± 2.52 3.7 ± 0.28 

Control-tracer
Tumor 4.65 ± 0.64 4.00 ± 2.55 2.57 ± 1.40 1.53 ± 1.37 
Liver 108.45 ± 16.90 82.37 ± 23.29 19.23 ± 8.77 24.43 ± 1.27 
Lung 10.80 ± 0.14 10.20 ± 1.23 4.77 ± 2.91 6.6 ± 0.49 

Kidney 16.95 ± 2.47 14.57 ± 1.46 10.73 ± 2.35 11.57 ± 0.29 
Heart 3.65 ± 0.49 4.43 ± 0.78 3.70 ± 0.79 4.37 ± 1.20 
Blood 4.83 ± 0.95 4.82 ± 1.36 3.72 ± 3.23 4.75 ± 0.35 

As seen in Table 1, normal organ uptake of QFP- and control tracer was low with the exception of 

the liver. High uptake in the liver for both tracers can be explained by hepatobiliary excretion. This 

observation is consistent with findings from other groups who reported that phage and phage analogs 

are cleared by receptor mediated endocytosis in the liver [37]. There was very little radioactive 

retention in the remaining other vital organs including the heart. Based on this biodistribution profile, 

the QFP-tracer is not anticipated to cause any cardio-toxicity. 

2.3. Small Animal PET/CT Imaging 

The tumor targeting properties of QFP-phage-DOTA-64Cu and the control-phage-DOTA-64Cu 

tracers were further evaluated in s.c. LLC tumors in C57Bl6 mice by noninvasive PET/CT imaging. A 

whole body PET/CT scan was conducted 18 h p.i. (Figure 3A,B). At 18 h after injection, radioactivity 

from blood had cleared, resulting in low levels of background activity and improved image contrast. 

Indeed the tumor was clearly visualized with the targeted tracer as was the liver which is consistent 

with the biodistribution studies (Figure 2 and Table 1). On the other hand, the control nontargeted 

radiotracer accumulated less in the tumor. As shown in Figure 3C differences in tumor accumulation 

of the QFP-targeted and the control radiotracer, quantified by T/M standardized uptake values (SUVs), 

were statistically significant which is in good agreement with the data obtained from direct tissue 

sampling. At 18 h p.i. the specificity of the QFP-tracer determined as the ratio of the tumor SUV for 

the QFP- and the control tracers was more than 3-fold greater (see Figure 3D). Together, these data 

confirm that binding of the QFP-peptide displayed on the surface of the phage scaffold has a direct 

influence on the tumor accumulation and retention of the QFP-tracer. 
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Figure 3. Ability of the QFP-tracer to specifically accumulate in tumor tissue based on 

PET/CT imaging. Twenty minute whole body static PET scans of C57Bl6 mice bearing s.c. 

LLC tumors were taken 18 h p.i. (A) Representative images using the QFP-tracer, and  

(B) the control tracer are displayed; (C) Quantification of the tumor-to muscle (T/M) 

uptake as determined by the ratio of tumor SUV-to-muscle SUV (p < 0.05); (D). Specific 

tumor accumulation expressed as fold change of tumor SUV for the QFP-targeted and 

tumor SUV for the control tracer (p < 0.05). 

 

A common approach to establish specificity of a targeted vector is to conduct a PET blocking study 

via pre- or co-administration of nonradiolabeled peptide together with the radiotracer. Because the 

twelve amino acid QFP-sequence has circulation half-life of only several minutes and the large QFP-

phage-DOTA-64Cu particle has orders of magnitude slower clearance kinetics the traditional approach 

for determining specificity of binding to a target on a molecular level is not applicable here. Instead we 

used a control with matched pharmacokinetic properties, i.e., the wild type – phage – DOTA - 64Cu 
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construct, and compared tumor-to-background ratios for the targeted and nontargeted vehicle (Figures 

2 and 3) to establish specificity on a tissue level. 

In the present study PET imaging was performed 18 h after injection of QFP-phage-DOTA-64Cu 

tracer. However, favorable tumor-to-muscle ratios were already achieved at 6 h p.i. (Table 1 and 

Figure 2). Because visualization of angiogenic LLC tumors will depend both on tumor-to-background 

ratios and the 64Cu radioactive decay characteristics, the optimal time for imaging with this new tracer 

will be determined by multiple factors. We took advantage of the decay properties of the64Cu 

radionuclide to allow for delayed imaging with potentially improved image contrast and carried out the 

imaging study at 18 h p.i. Indeed the PET images of s.c. LLC tumor taken at 18 h p.i. reveal focal sites 

of radioactivity uptake and retention with relatively high resolution and background contrast. Also the 

micro PET images were able to discriminate necrotic regions of the tumor demonstrating the utility of 

this tracer to image very fine structures in vivo. 

Noninvasive PET/CT imaging and direct tumor sampling independently provided evidence of 

ability of the QFP-tracer to bind tumor tissue specifically. In addition, PET/CT images showed that 

uptake of the QFP-phage-DOTA-64Cu in the tumor was heterogeneous and nonuniform. 

Heterogeneous tracer distribution within the tumor explains the observation that the magnitude for the 

T/M ratio for the targeted tracer calculated by the standardized uptake values is higher than the 

corresponding ratio determined from the tissue distribution study. Molecular PET provides information 

on a sub-tissue level, preferably details on cellular and molecular events, while the radioactivity values 

measured from the explanted tumor are averaged across the tumor mass. Thus in addition to being 

noninvasive in nature compared to ex vivo biopsy sampling, PET provides more accurate sub-tissue 

detail characterization of large heterogeneous tumors.  

From the results of the PET studies performed here, it follows that QFP-tracer would be  

appropriate for imaging lower abdomen. If major metastatic sites such as the liver and the GI tract are 

of interest, the entire QFP-conjugate should be re-designed for fast renal clearance with minimized 

liver accumulation. 

2.4. Ex-Vivo Analysis of Intra-Tumoral Tracer Distribution  

To explore on a microscopic level the biodistribution patterns of the QFP-tracer within the tumor 

mass, we performed ex vivo autoradiography followed by histology and blood vessel visualization. 

After completion of the PET scan the tumor was retrieved, sectioned, and prepared for 

autoradiography, H & E histology, and lectin staining. Shown in Figure 4A,E are representative tumor 

sections from the autoradioagraphic analysis revealing the distribution patterns of the QFP- and the 

control tracer at 18 h p.i. Histology of the corresponding tumor sections is presented in Figure 4B,F. 

The tracers primarily localize at the edge of the tumors with no accumulation in the center of the tumor 

mass. H & E staining confirmed that the centers are necrotic. The morphological components of the 

LLC tumors in C57Bl6 mice observed here are in agreement with findings from Tanaka et al. [38], 

who reported a large necrotic core surrounded by viable LLC cells. Histologic sections at higher 

magnifications are presented in Figure 4C,G. Blood vessel networks identified by lectin staining are 

displayed in Figure 4D,H. Visual analysis indicates that the highly vascularized regions on the tumor 

edge seem to contain the highest tracer uptake. Detailed studies are underway to determine localization 
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of the QFP-tracer to specific cellular population(s) within the tumor microenvironment. Additionally, 

the molecular target to which the QFP-peptide binds remains to be determined. Future studies are 

therefore warranted to identify and characterize biological events underlying molecular imaging of 

tumor neovasculature with the QFP-tracer. 

Figure 4. Representative images from ex vivo electronic autoradiography of regional tracer 

distribution (A and E), H & E histology (B, C, F, and G), and tumor blood vessels 

identified by lectin staining (D and H). Top row: distribution of the QFP-tracer; Bottom 

row: distribution of the control tracer. Scale bar on panels A, B, E, and F is 2 mm; Scale 

bar on panels C, D, G, and H is 200 µm. The yellow squares on panels B and F indicate 

areas which are magnified and presented on panels C and G, respectively. 

 

2.5. Dosimetry Calculations 

Human-absorbed dose estimates extrapolated from the rodent data were based on the biodistribution 

of the QFP-tracer in C57Bl6 mice obtained by direct tissue sampling at different time points. The 

absorbed activity for a given organ per hour and the MIRD S-value for 64Cu [39] were used to estimate 

human absorbed doses. Because most of the radiation dose from 64Cu is due to emission of positrons, 

the S-value assumption that positrons are locally absorbed within each organ (i.e., with no contribution 

from cross-organs) was made. Results from the dosimetry analysis for liver, kidney and lung are 

summarized in Table 2. The absorbed radiation doses represent the normal dose per unit injected 

activity to the normal organs of an adult human male. Based on these data, the liver appears to be the 

dose-limiting organ with an average radiation dose of 0.641 Rad/mCi (0.173 mGy/MBq). This 

relatively high dose absorbed by the liver poses a potential concern. High liver accumulation of 
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radioactivity reflects clearance patterns associated with the large phage particle [37] but also may be a 

consequence of limited in vivo stability of the 64Cu-DOTA complex. Under physiologic conditions, 
64Cu may transchelate from the DOTA ligand and may become associated with copper binding 

proteins such as superoxide dismutase which can explain the relatively high liver uptake. Alternative 

chelator entities that form stable in vivo complexes with 64Cu represent a viable option to design  

QFP-based tracer with improved biodistribution and dosimetry profile. 

Table 2. Human-absorbed radiation dose estimates resulting from administration of  

QFP-phage-DOTA-64Cu extrapolated from the mouse biodistribution data. 

Organ Organ uptake µCi.h/organ.mCi S-factor Rad/µCi.h Absorbed dose Rad/mCi (mGy/MBq) 

Liver 3375 1.90E-04 0.641 (0.173) 
Kidney 140 1.00E-03 0.140 (0.038) 
Lung 222 3.00E-04 0.067 (0.018) 

3. Experimental  

3.1. Cell Culture, Animals and Tumors 

Murine Lewis lung carcinoma (LLC) cell line was obtained from the American Type Culture 

Collection (Manassas, VA, USA). The LLC cells were grown in Dulbecco’s modified Eagles medium 

(DMEM) supplemented with 10% fetal bovine serum. Cells were maintained at 37 °C in a 5% CO2 

humidified incubator. Sub-culturing was performed using standard trypsinization procedures. 

Five to 6-week-old, immunocompetent C57BL/6 female mice were obtained from Jackson 

Laboratories, Inc. (Bar Harbor, ME, USA). The mice were supplied food and water ad libitum and 

were used within one month following initial acclimation. To establish tumors, mice were anesthetized 

by intraperitoneal administration of 0.2 M Avertin (approx. 0.2 mL per mouse). LLC cells were 

trypsinized, washed three times in DMEM, counted and re-suspended in 500 µL growth factor reduced 

Matrigel basement membrane matrix (BD Biosciences, Bedford, MA, USA). Approximately 1 × 106 LLC 

cells were implanted subcutaneously via a 23-gauge needle in the right inguinal region of each mouse. 

Solid tumors were established over a period of seven days, resulting in mice with approximately  

0.6 cm3-sized tumors for all experiments.  

Animal studies were conducted according to protocols approved by the Institutional Animal Care 

and Use Committee at the University of North Carolina at Chapel Hill and conform to the Guide for 

Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publication 

No. 85-23, revised 1996). 

3.2. Radiotracer Synthesis 

3.2.1. Phage Propagation and Functionalization with DOTA 

To obtain high titer stocks, QFP-phage or control wild type M13 phage were amplified in E. coli 

and purified by double precipitation with polyethylene glycol (PEG-8000) as described previously [36,40]. 

The phage titer was determined by a plaque assay. The isothiocyanate derivative of the macrocyclic 

bifunctional chelator 2-(4-isothiocyanato benzyl)-1,4,7,10 tetraazacyclododecane-1,4,7,10-tetraacetic 
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acid (p-SCN-Bn-DOTA) (Macrocyclics, Dallas, TX, USA) was used for modifying M13 phage coat 

protein pVIII. To carry out this functionalization procedure, PEG-precipitated phage (1 × 1012 pfu) 

were re-suspended in 400 µL conjugation buffer (carbonate-bicarbonate buffer, pH adjusted to 9.0 

with NaOH) and 4 µL p-SCN-Bn-DOTA (100 mM stock) added. The reaction mixture was incubated 

in a heat block at 35 °C overnight. Unbound DOTA was separated using 50 kDa Centiprep (YM-50) 

centrifugal filters (Millipore, Billerica, MA, USA) by centrifugation at 14,000 g for 10 min. For 

radiolabeling with 64Cu, QFP-phage-DOTA or control-phage-DOTA conjugates were re-suspended in 

0.1 M sodium acetate buffer (pH 5.5) the titer was determined by a plaque assay, and solution 

concentration was adjusted to 2.5 × 1011 pfu/mL. 

3.2.2. Radiolabeling with 64Cu 

High specific activity 64Cu (half-life t1/2 of 64Cu = 12.7 h, specific activity 14000 ± 7600 Ci/mmol or 

518 ± 28 TBq/mmol) was obtained from the Washington University School of Medicine (St. Louis, 

MO, USA). 64Cu was produced on a CS-15 biomedical cyclotron by the 64Ni(p,n)64Cu nuclear reaction 

using previously published methods [41]. 64Cu in chloride solution was delivered overnight on the 

production date. Radiolabeling was performed at the UNC Small Animal Imaging Facility as follows: 

QFP-phage-DOTA (1011 pfu) or control phage-DOTA (1011 pfu) were radiolabeled with 2 mCi  

(74 MBq) 64Cu in sodium acetate buffer (0.1 M, pH 5.5) in a final volume of 400 µL at 50 °C for  

50 min. Unreacted 64Cu was complexed by adding an aliquot of 2 mM EDTA (10 µL). The resulting 

radiolabeled conjugates were purified and concentrated by ultracentrifugation as described above. Both 

radioconjugates were obtained with radiolabeling efficiency of 98% or greater. QFP-phage-DOTA-64Cu 

or control-phage-DOTA-64Cu was reconstituted in sterile PBS (1 mCi/mL or 37 MBq/mL) and passed 

through a 0.22 µm filter immediately before injecting into the mice.  

3.3. Biodistribution Studies of 64Cu-Labeled Tracers in the s.c. LLC Tumor Model 

Eight groups of mice (n = 3) bearing s.c. LLC tumors were injected intravenously via the tail vein 

with approximately 0.150 mCi (5.5 MBq) of the radiolabeled targeted or control tracer in a total 

volume of 150 µL in PBS. The tracer was allowed to circulate in the mice for 2 h, 6 h, 18 h, and 28 h. 

The mice were then sacrificed by cervical dislocation under anesthesia. The following tissues were 

collected, weighted, snap-frozen in liquid nitrogen, and counted in a WIZARD2 automated gamma 

counter (Perkin Elmer Life Sciences, Gaithesburg, MD): liver, kidney, lung, heart, skeletal muscle 

(quadriceps), and tumor. Uptake of radioactivity in the tumor and normal tissues per gram was normalized 

by the uptake of radioactivity of a gram of skeletal muscle and reported as the tumor-to-muscle ratio.  

3.4. Small Animal PET/CT Studies 

3.4.1. Experimental Protocol 

MicroPET scans were performed on a small animal PET/CT scanner (eXplore Vista, GE 

Healthcare, Inc., Waukesha, WI, USA) with center resolution of 1.2 mm and a 46 mm axial field of 

view. At seven days post-implantation, mice bearing s.c. LLC tumors were injected with 0.5 mCi  

(18.5 MBq) QFP-phage-DOTA-64Cu or control-phage-DOTA-64Cu into the tail vein at a volume  
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150 µL (n = 3 per condition). Eighteen hours post-tracer injection, the animal was anesthetized using 

an isoflurane/air mixture (3% isoflurane for induction and 1.5% for maintenance), placed in a prone 

position on a supporting cradle, and advanced into the scanner. The animal’s respiratory rate was 

monitored by a respiratory probe placed underneath the belly, and body temperature was monitored 

through a rectal temperature probe during PET. A CT scan was first acquired for 7 min for subsequent 

attenuation correction and anatomical registration. All PET scans consisted of twenty minute static 

collection. After the scan was complete, the tumor was removed and snap-frozen in liquid nitrogen for 

autoradiography, histology, and fluorescence studies.  

3.4.2. PET Image Analysis 

Raw PET images were reconstructed using 2D ordered subset expectation maximization (OSEM) 

algorithms with scatter correction, random correction, and attenuation correction using the 

manufacturer proprietary software on the scanner console computer. A standardized uptake value 

(SUV) was calculated based on the calibrated counts, the injection dose, and animal body weight. 

Regions of interest (ROI) were drawn around the viable tumor area, i.e., from the right lateral, actively 

perfused shell of the tumor, avoiding the very low or absent intensity regions which were presumed to 

be necrotic. The muscle ROI was selected in the uniform central region of the femur, placed away 

from the edges to avoid partial volume effect due to limited resolution in the PET images.  

3.5. Autoradiography, Histology and Fluorescence Imaging 

The frozen tumor samples were cryo-sectioned at 14 µm thickness. For each tumor at least 4 

consecutive slides were cut (2 for autoradiography and 2 for lectin staining) and processed using 

standard methods. 

Electronic autoradiography was performed on a digital phosphor imager (Cyclone Plus, Perkin 

Elmer, Inc., Shelton, CT, USA). After cryo-sectioning the tissue, slides were exposed to a storage 

phosphor screen for one week at room temperature. The phosphor screen was then read in the 

phosphor imager system to visualize the intra-tumoral distribution of the targeted and the control 

tracer. After autoradiography, all slides were stained with haematoxylin and eosin as described 

previously [42]. To view the corresponding histology whole H & E sections were scanned on an 

Aperio Scanscope FL digital platform. 

Blood vessels were visualized with TRITC-conjugated Triticum vulgaris lectin following protocols 

described previously [43]. Briefly, tumor sections were incubated in the dark with TRITC-lectin in 

PBS (50 mg/mL) for 1 h at room temperature. The samples were rinsed four times for 5 min in PBS 

and then one time for 5 min in distilled water. Sections were mounted with Prolong Gold reagent, and 

examined under an Olympus BX61 upright fluorescence microscope. Digital images were captured 

with a CCD camera.  

3.6. Dosimetry  

Biodistribution data for the QFP-phage-DOTA-64Cu tracer in C57Bl6 mice obtained from direct 

tissue sampling were used for the dosimetry calculations. The assumption was made that the mouse 
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biodistribution, determined as %ID/organ at various time points post-injection, is the same as the 

human distribution. Physical decay was assumed for activity remaining in organs beyond 28 h p.i. The 

organ values were decay-corrected using the appropriate decay constant, converted into 

µCi/organ/mCi, and plotted versus time. For each organ, the uptake in units µCi.h/organ/mCi was 

determined by measuring the area under the curve by the trapezoidal method. Human-absorbed dose 

estimates were calculated according to the Medical Internal Radionuclide Dose (MIRD) methodology 

by multiplying the organ uptake in µCi.h/mCi by the appropriate MIRD-provided S-values 

(Rad/µCi.h) for 64Cu distribution within each organ [39]. Absorbed radiation dose to the organs was 

calculated assuming homogeneous activity distribution throughout the organ.  

3.7. Statistical Analysis 

All quantitative data are presented as mean ± standard deviation. For statistical analysis of the 

differences between the targeted and the control tracer, two-tailed Student’s unpaired t-test was 

performed. Differences were considered statistically significant at a value of p < 0.05.  

4. Conclusions 

The results from this study indicate that in the context of the s.c. LLC mouse model, the  

QFP-peptide can target tumor blood vessels selectively. However, further optimization of the 

pharmacokinetic and dosimetry profile of the tracer is necessary to ensure efficient 

radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide. 
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