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1 Introduction

In this paper we derive the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality [1] in the

case where the world-sheet has a boundary. The duality is between Witten’s sigma model

[2] for the Euclidean 2d black hole and sine-Liouville field theory. We also consider the

fermionic version of the black hole sigma model and its duality with the N = (2, 2) super-

Liouville field theory. The fermionic FZZ duality was proven as a mirror symmetry in [3].

The bosonic two-dimensional black hole is described by the H+
3 /R coset sigma model with

world-sheet coupling given by the level k. Here H+
3 = SL(2,C)/SU(2,R) is the Euclidean

version of AdS3. The geometry describes a semi-infinite cigar with asymptotic radius
√
k.
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In this paper we work in units where the string length is set to ls ≡
√
α′ = 1. The dual

sine-Liouville theory has interaction terms which are defined on a cylinder with the inverse

radius 1/
√
k. The potential gives exponential suppression in one direction of the cylinder,

but with a coupling constant which is the inverse as on the cigar side. For large k the

cigar model is at weak curvature and thus has weak world-sheet coupling, while the dual

sine-Liouville potentials give strong coupling, and vice versa.

The main motivation for studying these target space dualities is their strong/weak

coupling nature. Such dualities allow us to do calculations in the strongly coupled regions

which are normally very hard to access. Calculations at strong coupling are important in

many settings with a prominent example being the AdS/CFT duality [4]. Here the string

side with strong world-sheet coupling should be compared with a weakly coupled gauge

theory dual, and being able to calculate on both sides will allow non-trivial checks of the

conjecture. The FZZ duality involves Euclidean AdS3 and has been used to get quantum

corrections to the thermodynamics of the two-dimensional black hole via holography [5].

The fermionic version would be useful to study holography involving NS5-branes as, e.g.,

in [6].

The bosonic FZZ duality on closed world-sheets has recently been proven by Schomerus

and one of the authors [7] using a path-integral method. Let us remind ourselves of the

key steps in the proof. First the coset H+
3 /R is written as a gauged WZNW model and

embedded in the H+
3 × U(1) model [8]. One then uses the fact that the correlators of H+

3

model can be written in terms of Liouville field theory correlators with extra insertions

of degenerate fields [9, 10]. The essential non-perturbative step is here to use Liouville

theory’s strong/weak self-duality. Then, some treatments of fields and operators yield the

correlators of sine-Liouville theory. The supersymmetric version of the FZZ duality has

been derived by Hori and Kapustin [3] as mirror duality using the standard, but rather

indirect method of gauged linear sigma models. In this paper we give an alternative proof

using the method of [7] and thus establish a direct path-integral derivation of mirror duality.

This also has the advantage that we do not only get a duality for the actions, but we have

a precise relation of correlation functions including the coupling dependent normalization.

Further, it extends readily to higher genus closed world-sheets [7].

The main part of this note is devoted to extend the FZZ and mirror duality to the

case with open strings. It is certainly an important problem to understand boundary con-

formal field theories with non-compact target spaces. In eventually solving these models,

knowledge of the boundary Lagrangian complying with the boundary conditions is impor-

tant.1 In our case such a Lagrangian description is essential since we need a path integral

formulation of correlation functions to derive the dualities. Such a boundary action can

luckily be found for AdS2-type branes in the H+
3 model [19]. In our coset H+

3 /R such

branes descend to 1-dimensional branes on the cigar. Using the boundary action we can

then derive the duality in a similar manner as the bulk case. As with T-duality we expect

Dirichlet and Neumann boundary conditions to be exchanged in the circular direction. In-

1Examples of such models studied recently are deformations of Liouville field theory and H+

3 model [11],

as well as supergroup WZNW models [12–17]. Finding boundary actions is in general a difficult task and

has not been solved in generality, see however [18].
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deed, the corresponding dual branes are of the two-dimensional FZZT-type [20, 21]. As a

result correlators of sine-Liouville and the cigar coincide, and thus the known disc one-point

functions of the cigar [22] can be used to write down those of sine-Liouville. Moreover, we

obtain a Lagrangian for the boundary sine-Liouville theory which also allows to compute

correlators directly in this model.

The article is organized as follows: In section two we consider the bosonic FZZ duality

for open strings. In section 2.1 we give the action for the disk including the boundary

part when we consider D1-branes.2 In section 2.2 the vertex operators are considered and

the correlation functions are written in the path integral formalism. The correspondence

to Liouville field theory is shown in section 2.3, and using the Liouville self-duality, the

duality with sine-Liouville theory is derived in section 2.4. In section 3 we consider the

supersymmetric FZZ duality, starting with the path integral formulation in section 3.1.

Finally, the duality is derived for respectively closed and open world-sheets in sections 3.2

and 3.3. Conclusions are given in section 4. The paper is closed with five appendices.

In appendix A we recall the geometry of the branes that we consider, and their possible

boundary actions. The gauged sigma model describing the cigar is considered in appendix

B where we also explain the Chan-Paton factors appearing in our calculations. Some

Jacobians from the change of measure are calculated in appendix C. In appendix D we

derive the reflection coefficient of vertex operators that we need in the proofs of the dualities.

Finally, in appendix E we discuss branes in sine-Liouville theory.

2 Boundary FZZ duality

The FZZ duality conjecture was proven in [7] and generalized to correlation functions on

closed Riemann surfaces of arbitrary genus. In this section we would like to extend the

duality to disk amplitudes. Before proceeding let us briefly state the main result. For the

derivation of the FZZ duality with boundary, the main ingredient is to show the identity

between correlators in the cigar model and sine-Liouville theory on the disk or equivalently

upper half-plane

〈

N
∏

a=1

Ψja
ma,m̄a

(za)

M
∏

c=1

Ψlc,ic
mc

(uc)

〉cig

(2.1)

= N
〈

N
∏

a=1

e
2b(ja+1)φ+i 2√

k
(maXL−m̄aXR)

(za)
M
∏

c=1

σic√
2
e
b(lc+1)φ+i 1√

k
mc(XL−XR)

(uc)

〉sL

.

On the cigar side we have N bulk primary operators Ψja
ma,m̄a

in the positions za. These have

representation labels m, m̄, j where the discrete labels m, m̄ are related to momentum and

winding along the circular direction, and the continuous label j is related to momentum in

the semi-infinite direction. The boundary conditions in the cigar corresponds to a single

D1-brane. There are M boundary operators Ψlc,ic
mc located at the points uc. These have

labels m, l, i. Here m describes the winding in the circular direction which can be half-

integer (see figure 1 below), and l is again momentum in the non-compact direction. Further

2Since we are in Euclidean space, Dp-branes denote p-dimensional branes.

– 3 –



i = 0, 1, 2, 3 labels an SU(2) Chan-Paton factor (2.9) which will be important for us. It

is related to which branches the string ends are attached to. There is a single coupling

constant k in the cigar model which is the square of the cigar radius at infinity. The precise

definitions of the above bulk and boundary operators will be given in eqs. (2.10)–(2.18).

On the sine-Liouville side the theory is described by two scalars φ,X which are non-

compact and compact respectively. There are also N bulk fields and M boundary fields

which will depend on k under the mapping. The boundary conditions correspond to a

D2-brane (after T-dualizing the X direction), and the boundary operators will also have

Chan-Paton factors which are traced over in the evaluation of the correlator. The action

will depend on the coupling 1/b =
√
k − 2, and the exact form of the boundary action will

be derived, see eq. (2.54). Finally, there is a constant, N , relating the two correlators,

which only depends on N,M , the coupling k and the total winding number.

2.1 D1-branes in the 2d black hole

The derivation of the duality follows the method used in [7] which is based on path integral

techniques. We thus need the boundary action for D1-branes in the 2d black hole. This is

not known yet, so we first have to find it. The starting point is the H+
3 WZNW model,

where H+
3 = SL(2,C)/SU(2,R) is the Euclidean version of AdS3. The sigma model of

the 2d black hole is the H+
3 WZNW model gauged by R, and it can be embedded in

the H+
3 × U(1) WZNW model [8]. Branes in the cigar then descend from branes in the

WZNW model [22], and it was found that there are D0-, D1- and D2-branes in the 2d black

hole. The D0-branes descend from fuzzy spherical branes in H+
3 , the D1-branes from AdS2

branes, and the D2-branes from H+
2 branes. We consider D1-branes, since AdS2 branes

have a nice Lagrangian description [19]. This allows us to find an action for D1-branes

as we will now explain. In particular, we will find that a Chan-Paton factor should be

included in the boundary action.

Let us start with the bulk theory before going into the details of the boundary theory.

By the standard technique the coset model H+
3 /R can be described by the product of the

H+
3 model, a U(1) free boson X, and a (b, c)-ghost system. The action of the bulk 2d black

hole is then given by

S = SH +
1

π

∫

d2w∂X∂̄X (+Sb,c) , (2.2)

where we use the action for the H+
3 model in the free field realization as3

SH =
1

π

∫

d2w

(

∂φ∂̄φ− β∂̄γ − β̄∂γ̄ +
Qφ

4

√
gRφ− πλββ̄e2bφ

)

. (2.3)

The theory consists of a (β, γ)-system with conformal dimension (1, 0) and a free boson

φ with background charge Qφ = b = 1/
√
k − 2. As mentioned in the introduction we

3Here the measure is d2w = dxdy with w = x + iy. Thus there is a factor 2 difference from the one in

[7]. The world-sheet metric and its curvature are given by ds2 = |ρ(w)|2dw2 and
√
gR = −4∂∂̄ ln |ρ|. The

regularization at the same position is done as limw→z |w − z|2 = − ln |ρ(z)|2. In this note we set ρ = 1 and

suppress the curvature terms.

– 4 –



set α′ = 1. Namely, the operator products are given by φ(z, z̄)φ(0, 0) ∼ X(z, z̄)X(0, 0) ∼
− ln |z|. Since the (b, c)-ghost system does not appear in the following discussion, we neglect

the part associated with the action Sb,c.

D-branes in the cigar model were investigated in [22]. The semi-classical analysis

was done by using DBI actions as world-volume theories. Moreover, exact solutions were

obtained by making use of the fact that correlation functions on a disk are given by the

product of those in the H+
3 model and the U(1) free boson. In this paper we consider

D1-branes, and their classical geometry can be examined as follows. For D1-branes, it was

argued that we should assign boundary conditions corresponding to AdS2 branes in the

H+
3 model, and Dirichlet boundary condition in the U(1) direction. It is well known that

branes in WZNW models of group manifolds are described by twisted conjugacy classes

[23]. The situation is similar in a coset, as H+
3 = SL(2,C)/SU(2,R), as well as in a gauged

WZNW model, at least if we gauge by an abelian group. In appendix A.1 we explain

the geometric meaning of the branes in the product theory that descend to D1-branes in

the coset. The brane of the U(1) part is just a point eiθ0 , i.e. it has to satisfy Dirichlet

conditions. The H+
3 part is a left-translate of a twisted conjugacy class, translated by eiθ0 .

The metric of the 2d black hole may be given by

ds2 = k(dρ2 + tanh2 ρdθ2) , (2.4)

and the D1-branes are characterized by the equation

sinh ρ sin(θ − θ0) = sinh r (2.5)

with two parameters r, θ0 (see figure 1). The parameter r corresponds to the distance from

the tip of cigar (ρ = 0) to the D1-brane. The other parameter θ0 represents the position of

D1-branes in the θ-direction at ρ→ ∞. In particular, the D1-brane reaches to the infinity

ρ→ ∞ at the two point θ0, θ0 + π.

One of the important steps to generalize the FZZ duality for a disk amplitude is to

obtain the boundary action for D1-branes in the cigar. This is because we closely follow

the method used for closed strings in [7], where the path integral formulation is essential.

The D1-branes in the cigar model descend from AdS2 branes in the H+
3 model. In equation

(2.3) we have already written the action for the H+
3 model, and the boundary action for

AdS2 branes is proposed in [19] as

Sbint = iλB

∫

duβebφ , (2.6)

where the parameter λB is related to r as

λB =

√

λ

sinπb2
sinh r . (2.7)

We may treat the interaction terms perturbatively, then the boundary conditions for free

fields are Neumann boundary condition for φ, and moreover γ+ γ̄ = 0, β+ β̄ = 0. However,

it turns out that this boundary action cannot be used directly for the D1-branes in the

cigar model.
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Figure 1. The cigar with a D1-brane (drawn in black) having r 6= 0 and a 1/2 winding string

(drawn in blue) stretched between its two branches. ρ is the coordinate along the cigar axis, and θ

the angular coordinate. The tip of the cigar is located at ρ = 0. The brane parameter r describes

the minimal ρ-value for the brane, and the parameter θ0 its angular orientation.

We would like to propose the following modified version as

Sbint = iλBe
iθ0σ3

∫

duβebφ (2.8)

with Dirichlet boundary condition for X additionally. There are two differences from the

one in (2.6). One is the factor eiθ0 , which represents the position of the D1-brane in θ-

direction. This factor is not so important, and in fact we can and will remove it by the

shift of the coordinate θ. The important one is the Chan-Paton factor σ3, where we use

the notation for the Pauli matrices as

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

, (2.9)

and σ± = 1
2 (σ1 ± iσ2). The Chan-Paton factor may be realized using boundary fermions,

and the classical consistency of (2.8) is explained in appendix A.2.

We can find a reason for the Chan-Paton factor when we follow the boundary conditions

from the cigar model via the gauged WZNW model to the product theory, see appendix

B. In the cigar model we can have boundary operators corresponding to half-winding open

strings going between the two branches of the same D1-brane as in figure 1. In fact, the

spectrum of open strings between a D1-brane was obtained in [22] with the help of modular

transformation of the annulus amplitude. It was found, for instance in eq. (4.20) of that

paper, that the spectrum includes both integer and half-integer winding modes. In the

product theory such half-winding strings will not go between the same brane, but between

two different branes located oppositely on the U(1) circle and having parameters r and −r

– 6 –
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Figure 2. H+

3 seen from above with two AdS2 branes labelled r and −r. The half integer windings

strings – sketched in blue as in figure 1 – now go between the two different branes.

for the AdS2-part in H+
3 as in figure 2. The Chan-Paton factor appearing in the action

corresponds to having these two branes, and one can explicitly see how it appears in the

action when going to the product theory. See also the discussions at the end of section 4.3

of [22].

Let us remark that there are other ways to see the necessity of the Chan-Paton factors.

First consider the geometry of a D1-brane in the cigar which is characterized by (2.5). This

equation is invariant under the exchange of parameters (r, θ0) and (−r, θ0 + π). In other

words, the branes with parameters (r, θ0) and (−r, θ0 + π) should not be two different

branes, but identified. In order to realize this, we take a sum of two “fractional” branes to

construct one “bulk” brane in the cigar model, just as for bulk branes in an orbifold model.

This treatment is consistent with the presence of the Chan-Paton factor σ3. Secondly, when

we study the action, we are treating it in a perturbative way. In the asymptotic region

ρ → ∞, we can neglect the interaction term and the geometry is just a cylinder. In this

sense, the interaction terms deform the geometry in the small ρ regions. From the geometry

of D1-brane (2.5), we can see that there are two D1-branes with opposite orientations in

the ρ → ∞ region. In a flat background, it is known how to describe systems with two

branes, that is, we just need to include a 2 × 2 Chan-Paton factor for each open string

operator.

2.2 Correlation functions on a disk

In order to prove that the two theories are equivalent, we have to show that all correlation

functions in the two theories match. As in [7] we first show that correlation functions of

tachyon operators yield the same quantities. After this we just need to check that the

symmetry of the theories is the same since descendants can be generated with the help

of currents of underlying symmetry. First we need to develop the method to compute

correlation functions on a disk with D1-brane boundary conditions in the cigar model.
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According to the general formalism, the correlators are given by products of those of

H+
3 and U(1) models roughly speaking, but details should be fixed. For instance, the

boundary operators have to be associated with Chan-Paton factors, since the boundary

action includes σ3 as we have already observed. In the later subsections, we relate the

amplitudes to those of sine-Liouville theory.

We would like to compute correlation functions on a disk with insertions of bulk and

boundary operators. We calculate in the product theory where the cigar model is described

by the H+
3 × U(1) model along with the ghost. Gauge invariant bulk operators can be

constructed from the following products of operators in H+
3 × U(1) (see, for instance, [7])

Ψj
m,m̄(z) = Φj

m,m̄(z)V X
m,m̄(z) . (2.10)

Here Φj
m,m̄ is a primary operator of H+

3 model, and it is defined as

Φj
m,m̄(z) = N j

m,m̄

∫

d2µ

|µ|2µ
mµ̄m̄Vj(µ|z) , Vj(µ|z) = |µ|2j+2eµγ−µ̄γ̄e2b(j+1)φ (2.11)

with

N j
m,m̄ =

Γ(−j −m)

Γ(j + 1 + m̄)
, m =

kw + n

2
, m̄ =

kw − n

2
. (2.12)

Here n and w take integer values and correspond to momentum and winding number,

respectively. The U(1) vertex operator

V X
m,m̄(z) = e

i 2√
k
(mXL−m̄XR)

(2.13)

corresponds to a state with non-trivial winding w.

Along the boundary of world-sheet, we can insert boundary operators, which are going

to be constructed. As in the bulk case, the operators should be given by certain products

of those in the H+
3 and U(1) models. The boundary operators for AdS2 branes in the H+

3

model were constructed in [24] as4

Φl
m,η(u) = N l

m,η

∫

dν

|ν| |ν|
msgnη(ν)Vl(ν|u) , Vl(ν|u) = |ν|l+1e(νγ−νγ̄)/2eb(l+1)φ . (2.14)

Here u is the coordinate of the boundary of the world-sheet and the coefficient is

N l
m,η = 2iηΓ(−l −m) sin

π

2
(−l − 1−m− η) . (2.15)

For D1-branes in the cigar model, we would like to propose that the boundary operators

are expressed as

Ψl,i
m,η(u) =

σi√
2
Φl
m,ηV

X
m (u) , (2.16)

4 The parameter η enters in the boundary case. The integration over ν in (2.14) has a singularity at

ν = 0, so we have to separate the integration domain as ν < 0 and ν > 0. Alternatively, we assign the weight

sgnη(ν) as in (2.14). The label η is related to the behavior of operator under the parity transformation

γ → −γ. This can be easily seen from the fact that the transformation γ → −γ can be absorbed by the

change as ν → −ν and hence the operator (2.14) has a factor (−1)η under γ → −γ.
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where the U(1) boundary vertex operators with Dirichlet boundary condition are

V X
m (u) = e

i 1√
k
m(XL−XR)

. (2.17)

The non-trivial point here is the Chan-Paton factor. We have associated σi to each bound-

ary operator, since the boundary action in (2.8) includes a Chan-Paton factor σ3.

The presence of the Chan-Paton factor affects the values of parameters for the bound-

ary operator. Inserting a boundary operator changes the boundary conditions, so it also

has labels [Φl
m,η]L,L′ with the parameters of boundary conditions L = (r,M). The param-

eter r appears in (2.8) through (2.7), so the coefficient of the boundary action changes

across the boundary operator. The parameter M is related to the position of D1-brane

as M = k
2πθ0. Since X satisfies the Dirichlet boundary condition, the label m represents

the length of open string ∆θ = 2πm/
√
k stretched between two D1-branes at the infinity.

Thus, m takes value

m =M −M ′ +
kw

2
. (2.18)

In order to understand the meaning of w, let us think of open strings on the same brane,

namely with M = M ′. As illustrated in figure 1, one D1-brane reaches two points at the

infinity ρ→ ∞. If we associate σi with i = 0, 3 in (2.16), then the corresponding open string

is stretching between the same side of the D1-brane. Therefore, the length of open string

should be ∆θ ∈ 2π
√
kZ, which implies w ∈ 2Z in (2.18). In the same way, if we associate

σi with i = 1, 2 in (2.16), then the corresponding open string is between the opposite sides

of the D1-brane. Therefore, the length of open string should be ∆θ ∈ 2π
√
k(Z + 1/2),

which implies w ∈ 2Z+1 in (2.18). As argued below, we have to use η = 0 for i = 0, 1 and

η = 1 for i = 2, 3, so we may suppress the label η from now on.

Let us see how the relation between the labels η and i arises. The boundary action is

given by (2.8), and the Chan-Paton factor σ3 corresponds to having two branes. The first

and the second brane have respectively the labels r and −r without the Chan-Paton factor

in (2.8). Notice that the sign change can be absorbed by β → −β and γ → −γ. First we

consider the open strings stretched between the same branes. Then the Chan-Paton factor

should be σ̂+ for an open string on the first brane and σ̂− for an open string on the second

brane. Here we have defined σ̂± = 1
2(σ0±σ3). In other words, if we use σ0 = σ̂++ σ̂−, then

the open string is invariant under the exchange of the first and the second brane. Since

the exchange of branes can be reproduced by the parity transformation γ → −γ, the open

string associated with σ0 should be invariant under the parity transformation. Thus we

should choose η = 0 in (2.16). In the same way, the Chan-Paton factor σ3 implies a minus

sign under the parity transformation, and hence η = 1. Open strings between different

branes can be analyzed in the same way. The Chan-Paton factor σ1 is invariant under

the exchange of branes by definition, and thus the corresponding open string should be

invariant under the parity transformation. On the other hand, the Chan-Paton factor σ2
yields a minus sign under the exchange, and we should choose η = 1 in (2.16).

Now that bulk and boundary operators are constructed, we can write down the cor-

relation functions. We would like to compute a disk amplitude with D1-brane boundary

– 9 –



conditions and with the insertions of N bulk and M boundary operators
〈

N
∏

a=1

Ψja
ma,m̄a

(za)

M
∏

b=1

Ψlb,ib
mb

(ub)

〉

. (2.19)

The total winding number
∑

a

(ma + m̄a) +
∑

b

mb =
kS

2
(2.20)

is not necessarily zero due to the cigar-shape background and U-shape brane geometry. As

we will see below, the violation number is limited as |S| ≤ 2N +M − 2. If it is non-zero,

then the spectral flow operation in the H+
3 -sector is important as emphasized in [7].

Let us first recall the operator inducing the spectral flow action with S′ for the bulk

case, which is represented by vS
′
(ζ). Here we assume S′ ≥ 0, but S′ < 0 case can be

analyzed in a similar way. The insertion of vS
′
(ζ) has two effects in our free field realization

of theH+
3 model with the action (2.3). One is the insertion of a vertex operator exp(S′φ/b).

The other is the restriction of the integration domain for β, β̄ such that they have a zero

at z = ζ of order S′. See [7] for the relation to the usual definition of spectral flow action.

For the boundary case, we would like to introduce a boundary operator which induces the

spectral flow action with S units. Here we again assume that S ≥ 0. We propose that it

is given by σS1 v
S(ξ). The action of vS(ξ) is almost the same as the bulk case. Namely,

the boundary operator exp(Sφ/2b) is inserted, and the integration domain for β = −β̄ is

restricted such that it has a zero at z = ξ of order S. The boundary operator should be

associated with a Chan-Paton factor σSi . From the parity property, we should choose i = 0

or i = 1. Among them we adopt i = 1 since the spectral flow with odd S maps open strings

between the same brane to the branes with r and −r, and vise versa as mentioned in [22].

With the preparation of spectral flow operator, the correlation function (2.19) is now

written in terms of H+
3 and U(1) models as

〈

N
∏

a=1

Ψja
ma,m̄a

(za)

M
∏

b=1

Ψlb,ib
mb

(ub)

〉

(2.21)

=
N
∏

a=1

[

N ja
ma,m̄a

∫

d2µν
|µν |2

µmν
ν µ̄

m̄µ
ν

] M
∏

b=1

[

N lb
mb,ηb

∫

dνb
|νb|

|νb|mbsgnηb(νb)

]

× trP

〈

σS1 v
S(ξ)V X

− kS
2

(ξ)

N
∏

a=1

Vja(µa|za)V X
ma,m̄a

(za)

M
∏

b=1

σib√
2
Vlb(νb|ub)V X

mb
(ub)

〉

,

where P represents the path ordering of boundary operators. The spectral flow action

σS1 v
S(ξ) is inserted by using the fact that the identity operator in the cigar model can be

represented by

1 = σS1 v
S(ξ)V X

− kS
2

(ξ) . (2.22)

This is actually the very definition of the spectral flow operator. Total winding number in

the U(1) model is now conserved due to the insertion of V X
−kS/2. Notice that the end result

would not depend on the position of the insertion ξ since we have just inserted the identity

operator. For more details, see [7].
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2.3 Relation to Liouville field theory

The task is now to express the N +M point correlation function (2.19) of the boundary

cigar in terms of a N +M point correlator of sine-Liouville theory. As in the bulk case [7],

this can be achieved in two steps; The first one is to rewrite the correlator in terms of a

correlation function in Liouville field theory plus a free boson with additional degenerate

field insertions. This is the subject of this subsection. For this purpose we use the relation

between correlators of H+
3 model and Liouville field theory [9, 10], which was extended to

the case with boundary in [19, 24]. The second step is to show that after applying the self-

duality of Liouville field theory, rotations of the fields and reflection relations of operator

lead to the correlator in sine-Liouville theory. This will be done in the next subsection.

As in [7], we use the path integral form of the N +M point correlation function (2.19)

as
〈

N
∏

a=1

Ψja
ma,m̄a

(za)
M
∏

b=1

Ψlb,ib
mb

(ub)

〉

= trP

∫

DφD2βD2γDXe−S
N
∏

a=1

Ψja
ma,m̄a

(za)

M
∏

b=1

Ψlb,ib
mb

(ub) . (2.23)

Here the action S is given by (2.2) with the boundary interaction term (2.8). Now we work

on the upper half plane Im z ≥ 0 and the boundary is at the line Im z = 0. According to

the standard doubling trick, the anti-holomorphic part of fields are mapped to the region

of Im z < 0 such that the boundary conditions are satisfied along the boundary Im z = 0.

Following [10, 19], we integrate over β, γ to reduce the theory to the one with two

remaining fields φ,X. Notice that the field γ appears only linearly in the exponent of

the path integral (2.23). This is because the action includes γ only in the kinetic term of

(2.2) and the vertex operators are expressed in terms of (2.11) and (2.14). Therefore, by

integrating over γ, we would have a delta functional for ∂̄β, which implies that the field

β can be replaced by a function B(z). Integrating over the world-sheet coordinate, the

function is obtained as

B(w) =
N
∑

a=1

µa
w − za

+

N
∑

a=1

µ̄a
w − z̄a

+

M
∑

b=1

νb
w − ub

. (2.24)

In the same way, β̄(z̄) is replaced by −B̄(z̄). This form might be understood from the

operator product between β in the interaction terms and γ, γ̄ in the vertex operators. See

also [19].

One essential ingredient of the H+
3 -Liouville relation is the change of variables corre-

sponding to Sklyanin’s separation of variables as in [9, 10]. With the boundary, the formula

for the change of variables is given by (see [19, 24] and also appendix C)

B(w) = u
(w − ξ)S

∏N ′

a′=1(w − ya′)(w − ȳa′)
∏M ′

b′=1(w − tb′)
∏N

a=1(w − za)(w − z̄a)
∏M

b=1(w − ub)
. (2.25)

Here tb′ and ya′ denote zeros respectively on the boundary and in the bulk. The equality

gives a map of parameters from (µa, µ̄a, νb) to (u, ya′ , ȳa′ , tb′), where the numbers of ya′
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and tb′ satisfy the equation 2N ′ +M ′ + S + 2 = 2N +M . This follows from B(z) being a

meromorphic one-form on the full plane hence having two more poles than zeros. Notice

that the numbers N ′,M ′ would vary when we change the values of (µa, µ̄a, νb). Moreover,

since the numbers of insertions should be non-negative, we have a restriction for the total

winding number S ≤ 2N +M − 2. The presence of vS(ξ) forces β to have a zero of order

S, and this is possible only if

ℓn(ξ) =

N
∑

a=1

µa
(ξ − za)n

+

N
∑

a=1

µ̄a
(ξ − z̄a)n

+

M
∑

b=1

νb
(ξ − ub)n

= 0 (2.26)

for n = 0, 1, · · · , S. Due to the S+1 constraints, the number of parameters matches. Since

the correlation function is given by the integration over (µa, µ̄a, νb) in (2.21), we need the

formula for the Jacobian due to the change of variables. It is given by

∫ N
∏

a=1

d2µa
|µa|2

b
∏

b=1

dνb
|νb|

S
∏

n=0

δ(ℓn(ξ)) =
∑

N ′,M ′

1

N ′!M ′!

∫

du

|u|2+S

N ′
∏

a′=1

d2ya′
M ′
∏

b′=1

dtb′ |Ξ| (2.27)

with

Ξ =
∏

i<j

|zij |2
∏

i,j

(zi − z̄j)
∏

i,a

|zi − ua|2
∏

a<b

uab
∏

i′<j′

|yi′j′ |2
∏

i′,j′

(yi′ − ȳj′)
∏

i′,a′

|yi′ − ta′ |2
∏

a′<b′

ta′b′

×
∏

i,i′

|zi − yi′ |−2
∏

i,i′

|zi − ȳi′ |−2
∏

i,a′

|zi − ta′ |−2
∏

a,i′

|ua − yi′ |−2
∏

a,a′

(ua − ta′)
−1 . (2.28)

Here we should sum over N ′,M ′ with the condition 2N ′ +M ′ +S +2 = 2N +M since the

numbers N ′,M ′ depend on the explicit values of (µa, µ̄a, νb). For details, see appendix C.

The action of H+
3 model is given by (2.3), and now γ(w) are integrated over and β(w)

is replaced by a function B(w). Now the theory is like the Liouville field theory, but the

interaction term includes coordinate dependent coefficients as |B(w)|2 exp(2bφ(w)). As in

[7, 10], we change the field φ as

ϕ(w, w̄) = φ(w, w̄) +
1

2b
ln |B(w)|2 , (2.29)

then the interaction term becomes exp(2bϕ(w)) as desired. The boundary interaction term

(2.8) is now

Sbint = iλBσ3

∫

dt sgnB(t)ebϕ , (2.30)

which has a sign function sgnB(t) as noticed in [19, 24]. This implies that the parameter

of boundary interaction changes when it crosses the boundary positions ub and tb′ . As

noticed in [7], it is also necessary to shift X(w, w̄) = XL(w) +XR(w̄) as

χL(w) = XL(w) − i

√
k

2
lnB(w) , χR(w̄) = XR(w̄) + i

√
k

2
ln B̄(w̄) , (2.31)
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where χR(w̄) is the complex conjugate of χL(w). This means that X = XL+XR is changed

with −i
√
k/2 lnB/B̄ whereas the dual field X̃ = XL −XR is changed with −i

√
k/2 ln |B|2.

The action is now

S =
1

π

∫

d2w

(

∂ϕ∂̄ϕ+ ∂χ∂̄χ+

√
g

4
R(Qϕϕ+Qχ̃χ̃) + πλe2bϕ

)

(2.32)

with boundary interaction term (2.30). The dual field is denoted by χ̃ = χL − χR and

background charges are found to be shifted as Qϕ = b+ b−1 and Qχ̃ = −i
√
k as shown in

[7, 10].

The change of fields (2.29) and (2.31) also affects the kinetic terms. We write the action

as −
∫

d2wφ∂∂̄φ and insert the expression in (2.29). Then, from the term ∂∂̄ ln |B(w)|2,
we obtain delta functions localized at za, ub, ya′ , tb′ . Integrating over the world-sheet coor-

dinate, we find shifts of momenta in the existing vertex operators at za, ub and insertions

of new operators at ya′ , tb′ , since the action is in the exponent of the path integral (2.23).

The similar things happen for X due to the shift (2.31). Closely following the analysis in

[7, 10], the correlation function (2.19) is now written as

〈

N
∏

a=1

Ψja
ma,m̄a

(za)

M
∏

b=1

Ψlb,ib
mb

(ub)

〉

=
∑

M ′,N ′

1

N ′!M ′!

N ′
∏

a′=1

∫

d2ya′
M ′
∏

b′=1

∫

dtb′ (2.33)

×
N
∏

a=1

N ja
ma,m̄a

M
∏

b=1

N lb
mb,ηb

sgnηb(B(ub)) trP
〈

σS1

N
∏

a=1

Vαa(za)V
χ

ma− k
2
,m̄a− k

2

(za)

×
M
∏

b=1

Bib
βb
(ub)V

χ

mb− k
2

(ub)
N ′
∏

a′=1

V− 1

2b
(ya′)V

χ
k
2
, k
2

(ya′)
M ′
∏

b′=1

B0
− 1

2b

(tb′)V
χ
k
2

(tb′)

〉

.

The right hand side is computed using the action (2.32) with the boundary interaction

term (2.30). The bulk and boundary operators in the boundary Liouville field theory are

defined as

Vα(z) = e2αϕ(z) , Bi
β(t) =

σi√
2
eβϕ(t) , (2.34)

respectively. The shifts of parameters for bulk and boundary operators at za, ub are

αν = b(jν + 1) +
1

2b
, βν = b(lν + 1) +

1

2b
, (2.35)

and new operators are inserted at ya′ , tb′ . In the above expression B(ub) is actually not

well-defined since B(z) has a pole at z = ub. We just represent Resz→ub
B(z)(= νb) by B(ub)

for simplicity. From the terms like ln |B(w)|∂∂̄ ln |B(w)|, we would obtain a pre-factor in

the correlation function, but as found in [7] we can see that it cancels the Jacobian factor

(2.28). Moreover, the insertion exp(Sφ/2b) coming form vS(ξ) disappears due to the shift

of momenta at ξ.

The method in [7] can be applied almost straightforwardly, one exception is, however,

the insertion of the new boundary operator

B0
− 1

2b

(tb′) =
σ0√
2
e−

1

2b
ϕ(tb′ ) (2.36)
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with a non-trival factor σ0/
√
2. If we follow the analysis in [10, 19], then we obtain the

insertion of e−ϕ(t)/2b along the boundary. However, it is required to associate a Chan-Paton

factor to the insertion at the boundary. The factor should be proportional to the identity

operator σ0, but the overall normalization may differ from one. Let us first examine the

operator corresponding to the identity state. The identity state |1〉 has the norm 〈1|1〉 = 1.

On the other hand, the identity operator O1 is defined as O1 · O = O for all operators O.

Due to the state-operator correspondence, we may define |1〉 := CO1|0〉 up to an overall

factor C. For our case O1 = σ0, and 〈1|1〉 = C2 trσ20〈0|0〉 = 2C2. Therefore, we should

define as |1〉 := σ0/
√
2|0〉, and the operator corresponding to the identity state is σ0/

√
2.

This reasoning also explains the factor σ0/
√
2 in (2.36).

The aim of this subsection was to rewrite the correlation function of the cigar model

in terms of Liouville field theory and free boson with the action (2.32), (2.30) as we have

already done in (2.33). However, in order to proceed furthermore, it is convenient to

remove the sign factors sgnB(t) in the boundary action (2.30) and sgnηb(B(ub)) in front

of the correlator (2.33). This is possible by making use of the anti-commutativity of the

Pauli matrices. Since the boundary action (2.30) includes σ3, the boundary operator Bi
β(t)

commutes with it for i = 0, 3 and anti-commutes with it for i = 1, 2. As mentioned below

equation (2.30), the role of sgnB(t) is to multiply (−1) when it crosses the positions of

boundary operators. Therefore, we can remove the sign function by replacing i = 0, 3 and

i = 1, 2. Moreover, the other sign functions sgnηb(B(ub)) implies that we receive extra

minus sign when boundary operators with ηb = 0 and ηb = 1 are exchanged. Recalling

that i = 0, 1 for η = 0 and i = 2, 3 for η = 1, the effect of sgnηb(B(ub)) can be reproduced

by replacing i = 0 and i = 1 regardless of the replacement of i = 2 and i = 3. Combining

the both, the rule may be summarized such that σi in front of the boundary operator is

replaced by σ1σi. Effectively we may insert 1 = σM+M ′+S
1 with even M +M ′ + S to the

correlation function. Now the expression becomes a bit simpler5

〈

N
∏

a=1

Ψja
ma,m̄a

(za)
M
∏

b=1

Ψlb,ib
mb

(ub)

〉

=
∑

M ′,N ′

1

N ′!M ′!

N ′
∏

a′=1

∫

d2ya′

N ′!

M ′
∏

b′=1

∫

dtb′

M ′!
(2.37)

×
N
∏

a=1

N ja
ma,m̄a

M
∏

b=1

N lb
mb,ηb

trP

〈

N
∏

a=1

Vαa(za)V
χ

ma− k
2
,m̄a− k

2

(za)

×
M
∏

b=1

σ1B
ib
βb
(ub)V

χ

mb− k
2

(ub)

N ′
∏

a′=1

V− 1

2b
(ya′)V

χ
k
2
, k
2

(ya′)

M ′
∏

b′=1

B1
− 1

2b

(tb′)V
χ
k
2

(tb′)

〉

with boundary interaction term

Sbint = iλBσ3

∫

dt ebϕ . (2.38)

The function B(w) is proportional to u as defined in (2.24), but the dependence of u

disappears in the last expression. For instance, the dependence of sgn(u) can be absorbed

by the rotation of Chan-Paton factors as σ2, σ3 → −σ2,−σ3.
5The equality is up to a trivial factor.
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2.4 Duality with boundary sine-Liouville theory

In the previous subsection, we obtained a relation between the cigar model and a Liouville-

like theory, but it is not what we wanted to have. In order to relate the cigar model to the

sine-Liouville theory, we take three steps as in [7]. First step is to perform the self-duality

of the Liouville theory exchanging b ↔ b−1. With this duality the relation becomes a

strong/weak duality for k. Next step is to realize that the extra insertions at ya′ , tb′ can

be seen as an expansion of an interaction term in the action. Thus we obtain a relation

between N+M point correlation functions. The final step is to perform a rotation of fields

and utilize the reflection relation such as to arrive at the boundary sine-Liouville theory.

First step is the Liouville self-duality. It is known that the Liouville field theory is

self-dual under the exchange of b by b−1 followed by the replacement of λ by λ̃ as [25]

L = λ̃e2b
−1ϕ , πλ̃γ(1/b2) = (πλγ(b2))1/b

2

, (2.39)

where γ(x) = Γ(x)/Γ(1 − x). The self-duality is extended to the case with boundary, and

the dual interaction term is given by [20]

LB = λ̃Be
b−1ϕ , λB =

√

λ

sinπb2
cosh bs , λ̃B =

√

λ̃

sinπb−2
cosh b−1s (2.40)

for the case without Chan-Paton factor. In our case, it is convenient to rewrite the Pauli-

matrix as σ3 = σ+σ− − σ−σ+, such that the interaction term can be treated as two

single branes. Applying the formula (2.40) for each term with σ+σ− and σ−σ+, the dual

interaction term for the boundary is obtained as

LB = f(σi)e
b−1ϕ , (2.41)

with

f(σi) =

√

λ̃

sinπb−2

(

cosh

(

b−2

(

r +
πi

2

))

σ+σ− + cosh

(

b−2

(

r − πi

2

))

σ−σ+

)

(2.42)

=

√

λ̃

sinπb−2

(

cosh
r

b2
cos

π

2b2
σ0 + i sinh

r

b2
sin

π

2b2
σ3

)

.

The second equality comes from σ±σ∓ = 1
2(σ0 ± σ3). The same result may be obtained

with the method in appendix D. With the help of the self-duality, we would obtain a

strong/week duality.

Next, we focus on the extra insertions of bulk and boundary operators

V (ya′) = V− 1

2b
V χ

k
2
, k
2

= e−b−1ϕ+i
√
kχ̃ , VB(tb′) = B1

− 1

2b

V χ
k
2

=
σ1√
2
e−

1

2
b−1ϕ+i

√
k
2

χ̃ . (2.43)

The H+
3 -Liouville relation maps the parameters µa, νb to the positions of extra insertions

ya′ , tb′ . However, in the coset model, we should use the m-basis expressions as in (2.11)

and (2.14) by performing Fourier transforms. These lead to the integration over µa, νb and
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hence ya′ , tb′ after the map as in (2.37). Since the positions of the extra insertions are

integrated over the whole world-sheet ya′ and the whole boundary tb′ , we may deal with

them as a part of the interaction terms in the action. Notice that only the terms in (2.37)

contribute after expanding the interaction terms due to the momentum conservation along

the χ direction. The momentum conservation still allows different numbers of bulk and

boundary insertions N ′,M ′ if they satisfy the condition 2N ′+M ′ = 2N+M−S−2. After

the above two steps, the interaction terms for the bulk are now the sum of

L1 = λ̃e2b
−1ϕ , L2 = −e−b−1ϕ+i

√
kχ̃ , (2.44)

and for the boundary

LB,1 = f(σi)e
b−1ϕ , LB,2 = − σ1√

2
e−

1

2
b−1ϕ+i

√
k
2

χ̃ . (2.45)

Since the extra insertions are treated as the interaction terms, we now have a relation

between N +M point correlation functions of the cigar model and the theory with the

above interaction terms. However, the new theory is not yet the sine-Liouville field theory.

Fortunately, the new theory can be mapped to sine-Liouville theory as in [7]. Since

the background charges for ϕ and χ are different from those for sine-Liouville theory, we

redefine as

φ = (k − 1)ϕ− i
√
kb−1χ̃ , X̃ = −i

√
kb−1ϕ− (k − 1)χ̃ . (2.46)

The background charges then become the desired ones as Qφ = b = 1/
√
k − 2 and QX̃ = 0.

After this rotation the interaction terms are

L1 = λ̃e2b
−1(k−1)φ−2i

√
kb−2X̃ , L2 = −eb−1φ−i

√
kX̃ , (2.47)

and for the boundary

LB,1 = f(σi)e
b−1(k−1)φ−i

√
kb−2X̃ , LB,2 = − σ1√

2
e

1

2
b−1φ−i

√
k
2

X̃ . (2.48)

Here we should note that the rotation is consistent with the boundary conditions since φ

and X̃ satisfy Neumann boundary condition.

We also need to apply the reflection relations of Liouville theory to the interaction terms

in order to arrive at the sine-Liouville theory [7]. Since Liouville theory has interaction

term of the exponential type, in-coming and out-going modes are related by reflection

relations. One trick here is to treat L2 as the Liouville term instead of L1. More precisely

speaking, we introduce a new field φ̂ = −i/
√
2(b−1φ− i

√
kX̃), then L2 = −ei

√
2φ̂ becomes

a Liouville interaction term with b̂ = i/
√
2. We apply the reflection relation with (D.2) for

the b̂ = i/
√
2 theory to the bulk operator in L1 keeping intact the part orthogonal to the

φ̂ direction. Rotating back to the original fields, we have

L1 = −λ̃π−1−2b−2

γ(1 + b−2)eb
−1φ+i

√
kX̃ , L2 = −eb−1φ−i

√
kX̃ (2.49)

for the bulk interaction terms. They are the interaction terms of bulk sine-Liouville theory

as desired. More detailed explanations are given in [7]. For the boundary case we need
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the reflection amplitude with boundary interaction term LB,2 = −2−1/2σ1e
iφ̂/

√
2, which is

studied in appendix D. With the result from there, we have

LB,1 =
c̃√
2
(e

r

b2 σ+ + e−
r

b2 σ−)e
1

2b
φ+i

√
k
2

X̃ , LB,2 = − 1√
2
(σ+ + σ−)e

1

2b
φ−i

√
k
2

X̃ (2.50)

with

c̃ =

√

λ̃π−1−2b−2
γ(1 + b−2) . (2.51)

In the end of the computation we have performed a SU(2) rotation of Chan-Paton factors

as

(σ1, σ2, σ3) → (σ1,−σ3, σ2) (2.52)

just to make the expression simpler. We would like to claim that they are the interaction

terms for D2-branes in the sine-Liouville theory.

If we want to obtain a symmetric expression, then we would shift the zero mode of X̃

appropriately. For the bulk interaction we have

L1 = c̃eb
−1φ+i

√
kX̃ , L2 = c̃eb

−1φ−i
√
kX̃ , (2.53)

and for the boundary interaction

LB,1 = i

√

c̃

2

(

e
r

2b2 σ+ + e−
r

2b2 σ−
)

e
1

2b
φ+i

√
k
2

X̃ , (2.54)

LB,2 = i

√

c̃

2

(

e−
r

2b2 σ+ + e
r

2b2 σ−
)

e
1

2b
φ−i

√
k
2

X̃ .

This form of the boundary action is quite analogous to the one for B-branes in N = 2

super Liouville field theory in (5.8) with (5.27) of [26]. From this fact, we are confident in

the correctness of the boundary action for D2-branes in sine-Liouville theory. In the next

section we study the fermionic version of FZZ duality, and indeed we obtain the boundary

action for a B-brane in N = 2 super Liouville field theory from the one for a D1-brane in

the fermionic cigar model.

We should also apply the same rotation of fields and the reflection relations to the

vertex operators in order to establish the relation between correlation functions. For the

bulk operator it was done in [7] as

N j
m,m̄Vα(z)V

X
m− k

2
,m̄− k

2

(z) = −π−1−2j−m−m̄e
2b(j+1)φ+i 2√

k
(mXL−m̄XR)

. (2.55)

For the boundary operator we have in the same way

N l
mσ1B

i
β(u)V

X
m− k

2

(u) = −(−1)ηπ−l−mσie
b(l+1)φ+i 1√

k
m(XL−XR)

, (2.56)

where the pre-factor is computed by using the result in appendix D. Here η = 0 for i = 0, 1

and η = 1 for i = 2, 3 as mentioned in subsection 2.2. Combining all the results obtained
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so far, the equation (2.37) leads to the final result mentioned already in equation (2.1)

〈

N
∏

a=1

Ψja
ma,m̄a

(za)

M
∏

c=1

Ψlc,ic
mc

(uc)

〉cig

= N
〈

N
∏

a=1

e
2b(ja+1)φ+i 2√

k
(maXL−m̄aXR)

(za)
M
∏

c=1

σic√
2
e
b(lc+1)φ+i 1√

k
mc(XL−XR)

(uc)

〉sL

,

where the left hand side and the right hand side are computed in the cigar model and

sine-Liouville theory, respectively.

Up to now we have shown that the correlation functions for the cigar model and

sine-Liouville theory among tachyon vertex operators are the same. For the equivalence

of theory we have to establish the relation among descendants as well. As mentioned in

subsection 2.2, since the descendants can be constructed by the action of symmetry current

generators, we just need to show the both boundary theories preserve the same symmetry.

In the cigar model, we are considering branes preserving one pair of parafermionic currents.

As shown in [27], we can construct the generators of so-called Ŵ∞(k) algebra from the

parafermionic currents. In fact, it was already shown in [28] that the boundary actions

(2.54) in sine-Liouville theory preserve the Ŵ∞(k) symmetry.

3 Fermionic FZZ duality

In this section we study the fermionic version of the FZZ duality which relates the fermionic

2d black hole and N = 2 super Liouville field theory. In [3] the authors show that they are

related by a mirror symmetry [29]. Here we would like to give another proof by utilizing the

method developed in [7]. The motivation to consider the fermionic FZZ duality is twofold.

Firstly the N = 2 SL(2)/U(1) coset model or dual N = 2 super Liouville theory appears

frequently in the context of superstring theory. For instance, string compactification on

a singular Calabi-Yau 3-fold can be described with these models (see, e.g., [6]). Second

one is to check that the boundary action (2.54) for D2-brane in sine-Liouville theory is

the correct one. This is possible since the counterpart in the fermionic version is B-brane

in N = 2 super Liouville field theory and its boundary action has been obtained in [26].

D-branes in N = 2 SL(2)/U(1) coset and N = 2 super Liouville theory have been also

studied in, e.g., [30–33].

3.1 Fermionic 2d black hole

The fermionic 2d black hole is the N = 2 supersymmetric model based on the coset

SL(2)/U(1) which is given by the Kazama-Suzuki construction [34]. As in the bosonic

case, we start from the fermionic 2d black hole and show that it is equivalent to N = 2

super Liouville field theory. In this and the next subsections, we restrict ourselves to

the bulk case for the simplicity of expressions, and in the last subsection, the analysis is

extended to the case with boundary.

The super coset is defined by the N = 1 supersymmetric SL(2) WZNW model gauged

by a U(1) direction, where the supersymmetry is enhanced to N = 2. In addition to the
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bosonic SL(2) currents ja (a = 1, 2, 3) with level kB = k + 2, we have three fermions ψa

with OPEs ψa(z)ψb(0) ∼ δab/z. It is convenient to bosonize as

ψ± =
1√
2
(ψ1 ± iψ2) , ψ± = e±i

√
2HL , (3.1)

where HL(z)HL(0) ∼ −1/2 ln z. The U(1) direction we are gauging is generated by

J3 = j3 + ψ+ψ− = j3 + i
√
2∂HL = i

√

k

2
∂XL , (3.2)

where the last equality defines one free boson XL with XL(z)XL(0) ∼ −1/2 ln z. One of

the fermions ψ3 is also decoupled due to the gauging procedure. Above we have discussed

the holomorphic part, but the anti-holomorphic part can be defined in the same way.

In total, the action is given by

S = SH +
1

π

∫

d2w∂H∂̄H +
1

π

∫

d2w∂X∂̄X (+Sb,c) , (3.3)

where we use the action SH for the H+
3 model as in (2.3). Here we combined holomorphic

and anti-holomorphic parts as H = HL +HR and X = XL +XR. This action should be

obtained through the standard procedure of [8] as well. The ghost system with b, c enters

through the gauge fixing but it will decouple from the other parts as before. The parameter

is now set as Qφ = b = 1/
√
kB − 2 = 1/

√
k. Vertex operators invariant under the gauge

transformation are given by (see e.g. [35])

Ψj,s
m,m̄(z) = Φj

m,m̄(z)V H
s,s̄(z)V

X
m+s,m̄+s̄(z) . (3.4)

Here Φj
m,m̄ is a primary operator of the H+

3 model, which is defined in (2.11). The other

vertex operators are

V H
s,s̄(z) = ei

√
2(sHL−s̄HR) , V X

m+s,m̄+s̄(z) = e
i 2√

k
((m+s)XL−(m̄+s̄)XR)

. (3.5)

The correlation function is now written as
〈

N
∏

a=1

Ψja,sa
ma,m̄a

(za)

〉

=

N
∏

a=1

[

N ja
ma,m̄a

∫

d2µa
|µa|2

µma
a µ̄m̄a

a

]

× (3.6)

×
〈

V X
− kS

2
,− kS

2

(ζ)V H
S,S(ζ)v

S(ζ)

N
∏

a=1

Vja(µa|za)V H
sa,s̄a(za)V

X
ma+sa,m̄a+s̄a(za)

〉

.

Here S represents the violation of total winding number as
∑

a(ma+sa) =
∑

a(m̄a+ s̄a) =

kS/2 and vS(ζ) denotes the spectral flow operator as before. The operator vS(ζ) again

means that β has a zero of order S at ζ and the vertex operator exp(Sφ/b) is inserted.

3.2 Duality with N = 2 super Liouville field theory

Since the fermionic cigar model and N = 2 super Liouville theory both preserve N = 2

super conformal symmetry, we just need to show the correlators of tachyon vertex operators
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for the two theories agree. Moreover, in the correlation function (3.6), the fermion sector

with H enters only through the direct products. It is thus natural to expect that we can

apply the same method as in [7, 10] at least to the SL(2) sub-sector. With the rotation of

fields involving H, we can show that the correlator in (3.6) is mapped to the one of the

N = 2 super Liouville theory.

We follow the strategy in [7, 10], which was reviewed in the previous section. We

integrate out first γ, γ̄ and then β, β̄. Then β and β̄ are replaced by B and −B̄ with

B(w) =
N
∑

a=1

µν
w − za

= u
(w − ξ)S

∏N−2−S
a′=1 (w − ya′)

∏N
a=1(w − za)

. (3.7)

In order to remove B from the action, we perform a shift of φ as

ϕ(w, w̄) = φ(w, w̄) +
1

2b
ln |B(w)|2 . (3.8)

We furthermore perform a shift of HL along with XL as

χL(w) = XL(w) − i

√
k

2
lnB(w) , hL(w) = HL(w) + i

1√
2
lnB(w) . (3.9)

The anti-holomorphic parts χR and hR are defined by the complex conjugates. With the

above new fields, the correlation function becomes
〈

N
∏

a=1

Ψja,sa
ma,m̄a

(za)

〉

=

N−2−S
∏

i=1

∫

d2yi
(N − 2− S)!

N
∏

a=1

N ja
ma,m̄a

× (3.10)

×
〈

N
∏

a=1

Vαa(za)V
h
sa+1,s̄a+1(za)V

χ

ma+sa− k
2
,m̄a+s̄a− k

2

(za)
N−2−S
∏

a′=1

V− 1

2b
(ya′)V

h
−1,−1(ya′)V

χ
k
2
, k
2

(ya′)

〉

,

where the right hand side is computed with the action

S =
1

π

∫

d2w

(

∂ϕ∂̄ϕ+ ∂h∂̄h+ ∂χ∂̄χ+

√
g

4
R(Qϕϕ+Qh̃h̃+Qχ̃χ̃) + πλe2bϕ

)

. (3.11)

Here χ̃ and h̃ are the dual fields and background charges are Qϕ = b + b−1, Qχ̃ = −i
√
k

and Qh̃ = i
√
2. The vertex operator is Vα = exp(2αϕ) with α = b(j + 1) + 1/2b. In this

way we rewrite the correlation function (3.6) in terms of bosonic Liouville field theory with

ϕ and two additional free bosons with χ, h.

As in the bosonic case we first apply the self-duality of the Liouville field theory under

b↔ b−1, and we then treat the vertex operators inserted at ya′ as a perturbation operator.

Now we have the interactions as

L1 = λ̃e2b
−1ϕ , L2 = −e−b−1ϕ+i

√
kχ̃−i

√
2h̃ . (3.12)

The dual parameter λ̃ is defined in (2.39). Next we look for suitable field redefinitions.

First we take a linear combination of χ and h such that a new field has no background

charge. An orthogonal basis is given by

χ̃+ =
1√
kB

(√
2χ̃+

√
kh̃
)

, χ̃− =
1√
kB

(√
kχ̃−

√
2h̃
)

, (3.13)
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whose background charges are Qχ̃+ = 0 and Qχ̃− = −i√kB . With these new fields, the

interaction terms become

L1 = λ̃e2b
−1ϕ , L2 = −e−b−1ϕ+i

√
kB χ̃−

. (3.14)

Fortunately, these interactions are exactly the same as (2.43) in the bosonic case. Therefore,

the rest is almost the same as before. We perform field redefinitions as

φ = (kB − 1)ϕ − i
√

kBb
−1χ̃− , X̃− = −i

√

kBb
−1ϕ− (kB − 1)χ̃− , (3.15)

giving the background charges as Qφ = b = 1/
√
k and QX̃ = 0. Then we have

L1 = −λ̃π−1−2b−2

γ(1 + b−2)eb
−1φ+i

√
kBX̃−

, L2 = −eb−1φ−i
√
kBX̃−

, (3.16)

where we have utilized the reflection relation of Liouville theory with b̂ = i/
√
2.

In order to obtain N = 2 super Liouville field theory, we need to rotate the fields

furthermore. We consider

X̃ =
1√
kB

(√
kX̃− +

√
2χ̃+

)

, H̃ =
1√
kB

(

−
√
2X̃− +

√
kχ̃+

)

, (3.17)

such that the field content is the same as that for N = 2 super Liouville field theory.

Namely, we have φ with background charge Qφ = b = 1/
√
k, a free boson X and a

bosonized fermion H. See also appendix C of [36]. The interaction terms are changed to

L1 = −λ̃π−1−2b−2

γ(1 + b−2)e
√
k(φ+iX̃)−i

√
2H̃ , L2 = −e

√
k(φ−iX̃)+i

√
2H̃ , (3.18)

which are those for N = 2 super Liouville field theory. The coefficients of the interaction

terms can be changed by the shift of zero mode of X̃ as

L1 = c̃e
√
k(φ+iX̃)−i

√
2H̃ , L2 = c̃e

√
k(φ−iX̃)+i

√
2H̃ , (3.19)

where c̃ is as in (2.51).

Moving to the vertex operators, we rewrite them in a suitable form as

Vα(z)V
H
s+1,s̄+1(z)V

X
m+s− k

2
,m̄+s̄− k

2

(z) (3.20)

= e
2b(j+1+ 1

2b2
)φ+i 2√

kB

(

(m− kB
2

)χ−
L
−(m̄− kB

2
)χ−

R

)

· e2i
√

2

kkB

(

(
kB
2

s+m)χ+

L
−(

kB
2

s̄+m̄)χ+

R

)

in terms of the new fields (3.13). Then we observe that the first factor on the right hand

side is of the same form as in the bosonic case. Therefore, we can perform the reflection

relation in the same way. The result is

N j
m,m̄Vα(z)V

H
s+1,s̄+1(z)V

X
m+s− k

2
,m̄+s̄− k

2

(z) (3.21)

= −π−1−2j−m−m̄e
2√
k
((j+1)φ+i(m+s)XL−i(m̄+s̄)XR)+i

√
2(sHL−s̄HR)

,
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which are the vertex operators of N = 2 super Liouville field theory. In the last equation

we have used the field redefinition (3.17). Thus we have established the relation between

correlation functions as
〈

N
∏

a=1

Ψja,sa
ma,m̄a

(za)

〉fcig

= N
〈

N
∏

a=1

e
2√
k
((ja+1)φ+i(ma+sa)XL−i(m̄a+s̄a)XR)+i

√
2(saHL−s̄aHR)

(za)

〉N=2L

,

where the left hand side and the right hand side are respectively computed in the fermionic

cigar model and in the N = 2 super Liouville field theory.

3.3 Fermionic FZZ duality with boundary

The above analysis shows that the fermionic FZZ duality naturally comes from the bosonic

FZZ duality through the proper change of fields. In particular, it is easy to extend it to the

case with closed Riemann surfaces of arbitrary genus. In this subsection the fermionic FZZ

duality is generalized to disk amplitudes with proper boundary conditions. We consider

D1-branes in the fermionic 2d black hole, which should be mirror to B-branes in the N = 2

super Liouville field theory studied in [26]. Since the analysis is almost the same as before,

we explain it only briefly.

The boundary action for D1-branes is the same as the one for the bosonic case in (2.8)

Sbint = iλBσ3

∫

duβebφ , λB =

√

λ

sinπb2
sinh r , (3.22)

but with the bulk action in (3.11). We assign Dirichlet boundary conditions as β + β̄ = 0,

γ+ γ̄ = 0, and Neumann boundary conditions for φ. We also assign XL +XR =
√
kθ0 and

ψ± = e±2iαψ̄∓ for the fermions. Boundary operators are defined as

Ψl,s
m,i(z) =

σi√
2
Φl
m,ηV

H
s V X

m+s(z) , (3.23)

where the operator for H+
3 is given in (2.14) and the other operators are

V H
s (z) = ei

√
2sHL , V X

m+s(z) = e
i 2√

k
(m+s)XL . (3.24)

Since the boundary operator changes the boundary conditions generically, we may label

as [Ψl,s
m,i]L,L′ with L = (r,M,α). The labels take values s = α − α′ + S and m + s =

M −M ′ + α− α′ + k
2w with S,w ∈ Z. We should use w ∈ 2Z for i = 0, 3 and w ∈ 2Z+ 1

for i = 1, 2 as before. Similarly, η = 0 for i = 0, 1 and η = 1 for i = 2, 3.

Once we have the boundary operators, the rest is straightforward. However, to compare

with known results, let us first discuss the Chan-Paton factors. It is possible to rewrite the

non-Abelian action by an Abelian action with the introduction of boundary fermions, see

[37–40]. One good review is in section 3 of [39]. Basically, when we compute correlation

functions with an action including matrix coefficients, we have to perform a trace with

keeping path ordering. The same effect can be made with the introduction of boundary

fermions Θ, Θ̄. The kinetic term may be given by

S =

∫

duΘ∂uΘ̄ , (3.25)
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which leads to

〈Θ(u1)Θ̄(u2)〉 = 〈Θ̄(u1)Θ(u2)〉 =
1

2
sgn(u1 − u2) . (3.26)

Then the algebra of σ+, σ−, σ3 can be reproduced by
√
2Θ,

√
2Θ̄, 2(ΘΘ̄ − Θ̄Θ). However,

the off-diagonal terms become Grassmann odd in this formulation.

With the above argument in mind, we proceed further. Following the previous analysis

we find the boundary interaction terms as

LB,1 = i

√

c̃

2

(

e
r

2b2 σ+ + e−
r

2b2 σ−
)

e
1

2b
φ+i

√
kB
2

X̃−
, (3.27)

LB,2 = i

√

c̃

2

(

e−
r

2b2 σ+ + e
r

2b2 σ−
)

e
1

2b
φ−i

√
kB
2

X̃−

in terms of the fields (3.15). Applying the rotation in (3.17) and rewriting the Chan-Paton

factors, we now have6

LB,1 = i
√
c̃
(

e
r

2b2 Θ+ e−
r

2b2 Θ̄
)

ψ−e
√

k
2

(φ+iX̃) , (3.28)

LB,2 = i
√
c̃
(

e−
r

2b2 Θ+ e
r

2b2 Θ̄
)

ψ+e
√

k
2

(φ−iX̃) .

One advantage to introduce the boundary fermions is on the co-cycle factor. Since we have

fermionized as ψ± = e±i
√
2HL , we should take care of its Grassmann parity. Fortunately, we

replaced the Pauli matrices σ± by boundary fermions at the same time, thus the boundary

interaction terms remain bosonic. Notice the above interaction terms are the same as (5.8)

with (5.27) of [26]. In particular, matrix factorization suggests that the bulk cosmological

constant is the square of boundary cosmological constant.

We should work out the vertex operators as well. With the same method as before,

we find that the vertex operators are mapped to

Bl,s
m,i =

σi√
2
e

1√
k
((l+1)φ+i(m+s)(XL−XR))+i

√
2sHL . (3.29)

We should again replace the Chan-Paton factor by boundary fermions. Then, these bound-

ary operators coincide with those in [26] (see eq.(5.18) of the paper and arguments given

below). Therefore, we have reproduced the results for B-branes in N = 2 super Liouville

field theory from D1-branes in the fermionic 2d black hole.

4 Outlook

In this article, we derive the FZZ duality [1] for disc correlators, which is a strong/weak du-

ality between the cigar model and sine-Liouville field theory. For the purpose, we have used

perturbative path integral methods of [7] in combination with the strong/weak self-duality

of Liouville field theory. This was extended to the duality between the supersymmetric

6This form of boundary interactions suggests that we are dealing with a DD̄ system. Moreover, open

string tachyons between brane and anti-brane are condensed in this system. See [39, 40] in more details.
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cigar and N = 2 super-Liouville theory as in [3] both for correlators on the sphere and the

disc. There are several possible applications, generalizations and future directions.

For D1- or A-branes in N = 2 super Liouville theory, a Lagrangian description is

known [26]. We would expect these branes to be dual to branes in the cigar which wind

the circular direction. Thus for D2-branes in the (super)cigar model, it might be possible to

find a boundary Lagrangian and derive the duality with the branes in sine-Liouville (super

Liouville) theory. D0-branes in sine-Liouville theory are not covered by our derivation, so

one should study these branes directly in the sine-Liouville theory. They are of ZZ-type

[41] and thus can be studied by looking at Cardy conditions.

One should be able to apply our methods to other models. One example is the coset

OSP(1|2)/R studied in [42]. The OSP(1|2) WZNW model is in correspondence with N =

1 super Liouville field theory, and the derivation is analogous to the one between H+
3

model and Liouville field theory [12, 43]. It is likely that also the OSP(1|2)/R coset

possesses a strong/weak dual which is yet to be determined. As our derivation is quite

constructive, it might be possible to use it to find and derive the duality in one step.

The H+
3 -Liouville correspondence extends to e.g. correspondences between OSP(N|2) and

SU(M|2) supergroup WZNW models and superconformal field theories respectively with

SO(N)- and U(M)-extended supersymmetry [44]. These extended supersymmetry algebras

were introduced in [45, 46]. The derivation of these correspondence is again via the path

integral and these superconformal field theories seem to be strong/weak self-dual.7 Again

one can investigate cosets thereof [47] and look for possible weakly coupled dual theories.

This should be particularly interesting for cosets of the PSU(2|2) and OSP(4|2) WZNW

models as these supergroups are important in the AdS/CFT correspondence.
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A Branes

In this appendix we recall geometry and action of branes in the coset. Geometry of branes

in cosets has been considered in [48, 49] and the boundary action of AdS2 branes was given

in [19].

A.1 Geometry of Branes

An element in H+
3 satisfies g† = g. AdS2 branes are described by the restriction of twisted

conjugacy classes of SL(2,C) to H+
3 , i.e.

Cω
a = {haht | h ∈ SL(2,R) } . (A.1)

7Except for N = 2 super Liouville theory, which is the case in this article.
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Here, a = a† is in H+
3 and hence the same is true for every element of Cω

a . The coset H
+
3 /R

is the twisted adjoint one, consisting of elements g in H+
3 modulo the twisted adjoint action

g ∼ ugu (A.2)

where u = ut = u† in the t3 direction. Branes in cosets are now described by elements of

the form gv−1 where g is in the twisted conjugacy class describing the H+
3 brane and v in

the conjugacy class for the subgroup we mod out, i.e. R [49]. In addition, this translate

of a twisted conjugacy class has to be invariant under the twisted adjoint action defining

the coset (A.2). For us this is true for either Dirichlet (v constant) or Neumann boundary

conditions in the R directions, i.e.

uhahtv−1u = uhahtuv−1 = uhahtutv−1 = uha(uh)tv−1 . (A.3)

We choose to consider Dirichlet boundary conditions, i.e. v = eiθ0 = constant. The

embedding of the gauged WZNW model in the product theory of H+
3 × U(1) is realized

by parameterizing the gauge fields as A = i∂X, Ā = −i∂̄X and changing variables g′ =

eiXt3ge−iXt3 .

A.2 Boundary actions and Chan-Paton factors

In this subsection, we argue for consistent boundary actions including boundary fermions,

which can be seen as Chan-Paton factors. The bulk action is

Sbulk =
1

2π

∫

d2z
(

∂φ∂̄φ− γ∂̄β − γ̄∂β̄ − µb2ββ̄e2bφ
)

. (A.4)

As a boundary term, we choose

Sbdy =
iµB
2π

∫

du
(

λ∂uλ̄+ f(λ, λ̄)βebφ
)

, (A.5)

and we vary under the Dirichlet constraint β = −eiθ0 β̄. We want to determine functions

f(λ, λ̄) that are consistent with preserving current symmetry at the boundary. Then the

variation of the action has the following boundary contribution

δS
∣

∣

bdy
=

i

2π

∫

du
(

δφ((∂̄ − ∂)φ+ f(λ, λ̄)bcβebφ) + δβ(γ + e−iθ0 γ̄+

+ f(λ, λ̄)µBe
bφ) + δλ(∂uλ̄+

d

dλ
f(λ, λ̄)µBβe

bφ)+

+ δλ̄(∂uλ+
d

dλ̄
f(λ, λ̄)µBβe

bφ)
)

.

(A.6)

Moreover, the bulk equations of motion imply

µb2e2bφβ̄ = ∂̄γ and µb2e2bφβ = ∂γ̄ . (A.7)

The currents take the following form

J− = β , J3 = βγ + b−1∂φ , J+ = βγ2 + 2b−1γ∂φ− (k − 2)∂γ ,

J̄− = β̄ , J̄3 = β̄γ̄ + b−1∂̄φ , J̄+ = β̄γ̄2 + 2b−1γ̄∂̄φ− (k − 2)∂̄γ̄ .
(A.8)
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The gluing conditions for AdS2 branes are

J− = − eiθ0 J̄− , J3 = J̄3 and J+ = − e−iθ0 J̄+ . (A.9)

The vanishing of the variation of above boundary part of the action implies that classically

J− = −eiθ0 J̄− and J3 = J̄3. It also implies that J+ = −e−iθ0 J̄+ as follows. Using

J− = −eiθ0 J̄− and J3 = J̄3, we see that the conditions

J+ = − e−iθ0 J̄+ ⇔
0 = −b−1(e−iθ0 γ̄ + γ)(∂ + ∂̄)φ+ (k − 2)e−iθ0 ∂̄γ̄ + (k − 2)∂γ

(A.10)

are equivalent. Using the bulk equations of motion (A.7), β = −eiθ0 β̄ and δS = 0 (A.6),

we rewrite

∂γ + e−iθ0 ∂̄γ̄ = (∂ + ∂̄)(γ + e−iθ0 γ̄) + e−iθ0∂γ̄ − ∂̄γ

= (∂ + ∂̄)(γ + e−iθ0 γ̄) because of (A.7) and β = −eiθ0β̄
= −(∂ + ∂̄)

(

f(λ, λ̄)µBe
bφ
)

because of (A.6) .

(A.11)

Inserting this in (A.10) and using b = 1/
√
k − 2, we see that classically

J+ = −e−iθ0 J̄+ ⇔ 0 = (∂ + ∂̄)f(λ, λ̄) . (A.12)

Recall the equations of motion of λ and λ̄ from (A.6)

0 = ∂uλ̄+
d

dλ
f(λ, λ̄)µBβe

bφ = ∂uλ+
d

dλ̄
f(λ, λ̄)µBβe

bφ . (A.13)

Hence, (∂ + ∂̄)f(λ, λ̄) vanishes if it is one of the following

f(λ, λ̄) = c ,

f(λ, λ̄) = cλ ,

f(λ, λ̄) = cλ̄ ,

f(λ, λ̄) = cλλ̄

(A.14)

for some constant c. This can be related to the u(2) algebra and means that the Chan-Paton

factors σ0, σ3 and σ± = 1
2(σ1 ± iσ2) are consistent with preserving current symmetry.

B The gauged sigma model

B.1 The bulk theory

To warm up we consider the coset H+
3 /R on the sphere.
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Coset as gauged sigma model

As in [7] we write elements in H+
3 as

h = eγσ
+

eφσ
3

eγ̄σ
−
. (B.1)

The symmetries are g 7→ BhB† generated by aJ − a∗J̄ where we use8

J = −k∂hh−1, J̄ = kh−1∂̄h. (B.2)

We gauge the direction corresponding to J3 − J̄3 = tr(J − J̄)σ3, the gauged model is

S =
k

2π

∫

d2z
(

(∂̄φ+ Ā)(∂φ+A) + e−2φ(∂̄ + Ā)γ(∂ +A)γ̄
)

. (B.3)

This is invariant under the gauge symmetry

h 7→ eλ(z,z̄)σ
3/2heλ(z,z̄)σ

3/2, A 7→ A− dλ(z, z̄), (B.4)

where we have used the symbol A for the whole one-form as well as its holomorphic com-

ponent. On the fields this acts as

φ 7→ φ+ λ(z, z̄), γ 7→ eλ(z,z̄)γ, γ̄ 7→ eλ(z,z̄)γ̄ . (B.5)

To get the cigar model we note that the equations of motion for A, Ā are

A = −∂φ+ e−2φγ∂γ̄

1 + e−2φγγ̄
= −∂φ− v∂v̄

1 + vv̄
, (B.6)

Ā = − ∂̄φ+ e−2φγ̄∂̄γ

1 + e−2φγγ̄
= −∂̄φ− v̄∂̄v

1 + vv̄
, (B.7)

where we have introduced the gauge invariant coordinates

v = e−φγ , v̄ = e−φγ̄ . (B.8)

The action then takes the cigar form

S =
k

2π

∫

d2z

(

1

1 + vv̄
∂̄v∂v̄

)

. (B.9)

On the other hand we can fix the gauge field using a complex valued gauge U =

exp(α+ ix), note that x is here 2π periodic,

A = U−1∂U = ∂α+ i∂x, Ā = (A)∗ = U∗−1∂̄U∗ = ∂̄α− i∂̄x. (B.10)

The real part, α, is pure gauge and the integration over x gives the volume of the gauge

group, but the imaginary part cannot be gauged away, but can be decoupled by making a

transformation conjugate to the gauge symmetry i.e. along iJ3 + iJ̄3:

h 7→ eix(z,z̄)σ
3/2he−ix(z,z̄)σ3/2 (B.11)

8Note that the components for the anti-chiral currents in last appendix are related to this definition

with an extra minus transposed automorphism.
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which simply takes

γ 7→ eix(z,z̄)γ, γ̄ 7→ e−ix(z,z̄)γ̄ . (B.12)

This gives the action of the product theory H+
3 ×U(1)

S =
k

2π

∫

d2z
(

∂̄φ∂φ+ ∂̄x∂x+ e−2φ∂̄γ∂γ̄
)

. (B.13)

Strings without winding

Let us now consider what happens to the vertex operators. The primary fields of H+
3 in

the m-basis may be written (after a rescaling of φ)

Φj
mm̄ ∝ γm−(j+1)γ̄m̄−(j+1)e2b(j+1)φ, (B.14)

where

m =
n+ ip

2
, m̄ =

−n+ ip

2
, n ∈ Z, p ∈ R . (B.15)

Note that these are operators with no winding around the boundary of H+
3 . We must

require gauge invariance of our operators. The basis is such that J3 = −2m, J̄3 = 2m̄.

Thus we require m + m̄ = ip = 0. Under the decoupling of the imaginary gauge field we

then get

Φj
mm̄ 7→ Φj

mm̄e
(m−m̄)ix = Φj

mm̄e
nix, (B.16)

i.e. also no winding in the U(1) direction. If we introduce currents for the U(1) part

J0 = −ik∂x, J̄0 = ik∂̄x, (B.17)

we see that the total currents

JTotal
3 = J3 − 2J0, J̄Total

3 = (JTotal
3 )∗ = J̄3 + 2J̄0 (B.18)

are zero when acting on the primary fields.

Winding strings

We now consider states that wind asymptotically in H+
3 i.e. spectrally flowed states. To

this end we define the scalar field H by J3 = 2∂H. If we use the first order formalism for

H+
3 and bosonize the β, γ system such that γ = exp(YL − ZL), β = − exp(−YL + ZL)∂Z

we have

H = −φ/b− βγ = −φ/b− Y. (B.19)

This field has OPE HH ∼ −k/2 ln |z − w|2 and background charge 1/2. The w times

spectrally flowed state (i.e. w times winding) is then

Φjw
mm̄ = : ewHΦj

mm̄ : (B.20)

Under gauge transformations (B.4) we have YL 7→ YL + λ(z, z̄), YR 7→ YR + λ(z, z̄) and

hence

H 7→ H − kλ(z, z̄) . (B.21)
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Thus demanding gauge invariance of these operators means

m =
n+ kw

2
, m̄ =

−n+ kw

2
, n, w ∈ Z, (B.22)

i.e. ip 7→ w. H is invariant under the transformation decoupling the U(1) part so

Φjw
mm̄ 7→ Φjw

mm̄e
inx ≡ Φjw

mm̄Vn. (B.23)

So now we have winding in the H+
3 part, but none in the U(1) part. Again the total

currents (B.18) are zero. We can use the spectral flow covariance of the correlators to

move all spectral flow to the identity operator at infinity [50]. There will however be a

prefactor on the correlator depending on the positions of the vertex operators. To avoid

this we do a similar, but chiral spectral flow in the U(1) theory such that

Φjw
mm̄Vn 7→ Φj

mm̄Vnw ∝ γm−(j+1)γ̄m̄−(j+1)e2b(j+1)φeinx+iwkx̃, (B.24)

with x̃ = xL −xR. Doing the spectral flow in both H+
3 and U(1) also means that the total

currents (B.18) are kept zero. Further, the dimension of the operators on the left and right

hand side can be shown to be the same, and this is the reason that we get an equality of

the correlators. For the identity operator at infinity in the case of violated winding number

we have

1 7→ e−
∑

i wiHe−i
∑

i wikx̃. (B.25)

Identifying X = x/
√
k, we have now reached the operators used in the main text which

have no winding in H+
3 direction, but in U(1).

Winding by Wilson lines

As shown in [8] (see eq. (50) in section 4) there is an alternative way to make H+
3 vertex

operators with m+ m̄ 6= 0 gauge invariant – simply add Wilson lines:

∏

i

Φji
mim̄i

(ξi)e
∫

C
A, (B.26)

where C is a chain with δC =
∑

i(mi + m̄i)ξi. This is nicely gauge invariant. The demand

that m+ m̄ is real in this case comes from locality.

When one decouples the gauge field, we exactly get the states (B.24) which wind in

the U(1) direction. To show that (B.26) and (B.23) gives the same state when going to

the cigar model, one could try to construct the first order formalism for the gauged sigma

model, but we will refrain from doing that here.

B.2 The boundary theory

We now consider the gauged model where the world-sheet is a disk. We are going to argue

that the boundary action

Sbint = iλBe
iθ0σ3

∫

duβebφ (B.27)
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arises from a single brane in the cigar. The boundary conditions used for the decoupled

H+
3 model are (c and λB are proportional)

eiθ0∂γ̄ + e−iθ0 ∂̄γ = 0, (eiθ0β + e−iθ0 β̄ = 0),

e−iθ0γ + eiθ0 γ̄ = ±ceφ, ∂̄φ− ∂φ = ±cbeiθ0βebφ, z = z̄ . (B.28)

The boundary action, seen as a perturbative interaction term, will geometrically deform

the brane with c = 0 to the brane with non-zero c.

Let us start with a single brane in the cigar given by the boundary conditions

e−iθcv + eiθc v̄ = 2Re(e−iθcv) = c, (B.29)

where the coordinates v, v̄ were defined in (B.8). Of course, there is rotational invariance,

so we could simply set θc = 0. Note that for v = sinh ρei(θ−π/2) we get

sinh ρ sin(θ − θc) = c/2 ∝ sinh r , (B.30)

as in (2.5).

The boundary conditions in the gauged WZNW model would have to be a gauge

invariant version of the ones in H+
3 model. To descend to (B.29) they will be

eiθc(∂+A)γ̄+e−iθc(∂̄+Ā)γ = 0, e−iθcγ+eiθc γ̄ = ceφ, ∂φ+A−∂̄φ−Ā = cbeiθcβebφ,

z = z̄. (B.31)

Further, one needs to assign boundary conditions to A. There are two obvious choices

A = ±Ā. The boundary conditions above are gauge invariant by construction, so by

gauge-fixing A = dα + i ∗ dx we can remove α. However, we cannot separate x out of the

condition unless we choose Dirichlet boundary condition on x i.e.

∂x+ ∂̄x = 0, A− Ā = 0 , (B.32)

which will be our choice of boundary conditions.

Going to the product theory by decoupling x we get

e−i(x0−θc)∂γ̄ + ei(x0−θc)∂̄γ = 0 , (e−i(x0−θc)β + ei(x0−θc)β̄ = 0) ,

ei(x0−θc)γ + e−i(x0−θc)γ̄ = ceφ, ∂φ− ∂̄φ = cbe−i(x0−θc)βebφ, z = z̄ . (B.33)

This is just the boundary condition for the rotated brane. Here x0 is the boundary value

of x

xL + xR = x0, z = z̄ . (B.34)

Before continuing let us consider the boundary states. First, we should remove all

momentum in the circular direction, i.e. set n = 0 since our strings are attached to the

D-branes. This also easily follows using the boundary conditions on the bulk states. With

winding we expect two types of strings in the cigar. Strings with integer winding and

strings with half-integer winding of course ending on the same brane since we only have

one brane in the cigar, see figure 1 (see also figures in [22]).
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A boundary operator analogous to the bulk state (B.24) is

Φj
wVw ∝ γkw/4−(j+1)/2γ̄kw/4−(j+1)/2eb(j+1)φeikw/2 x̃. (B.35)

Now the strings in the cigar with integer/half-integer winding will correspond to strings in

the U(1) direction with integer/half-integer winding. This means that we have two branes

in the product model. One located in the U(1) space at x0 = θc − θ0, in the H+
3 directions

this will be a brane with labels (θ0, r) as we see from (B.33). Secondly there must be a

brane at x0 = θc−θ0+π and in the H+
3 directions it will have label (θ0,−r) or equivalently

(θ0 + π, r). We can label the two branes (θc − θ0, (θ0, r)) and (θc − θ0 + π, (θ0,−r)).
If we start with a string with zero winding in the cigar it will map to a string with

zero winding in the U(1) direction and which starts and ends on the same brane say

(θc − θ0, (θ0, r)). If we do a half-integer spectral flow we get a string in the cigar going

between two branches of the same brane, but in the product theory it will now be half

winding in the U(1) direction and going between the two branes in the product theory.

This is sketched in figure 2, see also figure 6 in [22].

We can also relate the above discussion to the boundary action. We know what the

boundary action looks like in the H+
3 model for a single brane. The action in a first order

formalism for the gauged theory must be exactly the same i.e.

Sbint = ieiθcλB

∫

duβebφ , (B.36)

since this is nicely gauge invariant. However when we decouple x in the rest of the action

it will still appear in the boundary term:

Sbint = iλBe
−i(x0−θc)

∫

duβebφ. (B.37)

This corresponds to eq. (B.33).

Chan-Paton factors

In order to calculate in the path integral we introduce Chan-Paton factors corresponding

to the two branes. The new feature is that the boundary action will depend on which brane

we are on, i.e. it will depend on the Chan-Paton factor. From (B.37) we see that the form

is exactly what we wanted, i.e.

Sbint = iλBe
iθ0σ3

∫

duβebφ. (B.38)

Here have taken the brane (θc − θ0, (θ0, r)) as the first brane and (θc − θ0 + π, (θ0,−r))
as the second. Boundary operators with half-integer winding in the U(1) direction should

have a Chan-Paton factor that anti-commutes with this i.e. be σ1 or σ2. To discriminate

between these two we note that the whole theory including branes is invariant under parity

transformation in the βγ-system together with a π rotation in the U(1) direction. This

will map our two branes onto each other. The map of the fields to the cigar will be exactly

the same under this conjugation. The conjugation is used in the main text to fix the

Chan-Paton factors.
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C Change of variables

When we relate the correlation functions of the cigar model to those of Liouville theory

plus a free boson, we utilize a change of variables

N
∑

a=1

µa
w − za

+

N
∑

a=1

µ̄a
w − z̄a

+

M
∑

b=1

νb
w − ub

(C.1)

= u
(w − ξ)S

∏N ′

a′=1(w − ya′)(w − ȳa′)
∏M ′

b′=1(w − tb′)
∏N

a=1(w − za)(w − z̄a)
∏M

b=1(w − ub)

as in (2.24) and (2.25) subject to constraints (2.26). The Jacobian due to the change of

variables is used as in (2.27) with (2.28), and we would like to derive it in this appendix.

For the bulk case, the Jacobian due to the change of variables was obtained in [9, 50]

and extended to the case with closed Riemann surfaces of arbitrary genus in [7]. For the

boundary case, the variables are changed from (µa, µ̄a, νb) to (u, ya′ , ȳa′ , tb′), where there

are N ′ y’s and M ′ t’s with M ′ + 2N ′ + S + 2 = M + 2N . One non-trivial point here is

that the number of ya′ and tb′ changes when we vary µa, νb. Thus we first show that the

map (C.1) gives a one-to-one map modulo permutations among ya′ and tb′ , and hence the

integral regions of the both side match. Then we obtain the weight of the integral as given

in the Jacobian (2.27). For S = 0 it was already given in [24].

In order to show that (C.1) defines a one-to-one map, we start with the map from

(u, ya′ , ȳa′ , tb′) to (µa, µ̄a, νb). From the residues of (C.1) at z = za and z = ub, we have

µa = u
(za − ξ)S

∏N ′

a′=1(za − ya′)(za − ȳa′)
∏M ′

b′=1(za − tb′)

(za − z̄a)
∏N

c=1,c 6=a(za − zc)(za − z̄c)
∏M

b=1(za − ub)
, (C.2)

νb = u
(ub − ξ)S

∏N ′

a′=1(ub − ya′)(ub − ȳa′)
∏M ′

b′=1(ub − tb′)
∏N

a=1 |ub − za|2
∏M

d=1,d6=b(ub − ud)
, (C.3)

and similarly for µ̄a. Therefore, if we choose the values of (u, ya′ , ȳa′ , tb′), then we can

obtain (µa, µ̄a, νb) uniquely from the above equations. A point here is that we can use

arbitrary numbers of ya′ and tb′ if they satisfy 2N ′ +M ′ = 2N +M − S − 2.

To show that the map is onto the whole region of (µa, µ̄a, νb) we consider a given value

of these and rewrite

N
∑

a=1

µa
z − za

+

N
∑

a=1

µ̄a
z − z̄a

+

M
∑

b=1

νb
z − ub

(C.4)

= u
(z − ξ)S(z2N

′+M ′
+ a1z

2N ′+M ′−1 + · · · + a2N ′+M ′)
∏N

a=1(z − za)(z − z̄a)
∏M

b=1(z − ub)

with u =
∑

a 2Reµaza +
∑

b νbub. The term proportional to z2N+M−1 = z2N
′+M ′+S+1

vanishes due to the delta function δ(ℓ0(ξ)), where ℓn(ξ) is given by (2.26). With the other

delta functions δ(ℓn(ξ)) with n = 1, 2, · · · , S, the left hand side can be factorized by (z−ξ)S .
Since the left hand side is always real when we set z = t with t ∈ R, the coefficients ai have

to be real. Here we use the theorem that an algebraic equation of order P with real valued
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coefficients have N ′ complex roots along with their complex conjugates and M ′ real roots

with 2N ′ +M ′ = P . Therefore, once we choose some values of (µa, µ̄a, νb), then we can

find (u, ya′ , ȳa′ , tb′) from the roots of the above algebraic equation of order 2N ′ +M ′ with

real coefficients up to permutations among ya′ and tb′ .

In this way, we have shown that the map (C.1) is one-to-one between the two regions

of parameters. Therefore, in order to establish the relation (2.27) we just need to obtain

the weight of measure. In the case with S = 0, the Jacobian for the change of parameters

was already given in [24] as (2.27) with S = 0. It can be also obtained by utilizing the

bosonization formula for (b, c)-ghosts as in appendix C of [7]. The correlation function we

should use is

〈

N
∏

a=1

c(za)c̄(z̄a)
M
∏

i=1

c(ui)
N ′
∏

a′=1

b(ya′)b̄(ȳa′)
M ′
∏

i′=1

b(ti′)

〉

. (C.5)

Notice that the point ti′ = tj′ is really a singularity since we cannot across the point

continuously contrary to the point ya′ = yb′ . Indeed, this is the point where the number

of ti′ ’s would change. The same is true for the point ya′ = ȳa′ where the number of ya′ ’s

would change. The generalization to the case with S 6= 0 is actually quite straightforward

if we utilize the method in [7]. In that paper, the Jacobian is found by induction in S, and

with the same trick the Jacobian is found as (2.27) with (2.28).

D Reflection relations of boundary operators

In the derivation of the FZZ duality, we utilize reflection relations of bulk and boundary

operators in the Liouville field theory with the action

S =
1

π

∫

d2w

(

∂φ∂̄φ+

√
g

4
RQφ+ µπe2bφ

)

+ µBσ1

∫

duebφ . (D.1)

Here the parameters are Q = b + b−1, b = i/
√
2, µ = −1 and µB = −1/

√
2. Notice that

this Liouville field theory is different from the one obtained from the relation to H+
3 model.

Rather, it is obtained by treating the extra insertions as the Liouville interaction terms.

The conformal dimension of the bulk operator Vα = exp(2αφ) is given by ∆α = α(Q− α),

which implies that Vα is related to VQ−α since they have the same conformal dimension.

In fact, we have the reflection relation as Vα = D(α)VQ−α, where D(α) can be obtained

from the two point function. With b = i/
√
2 the reflection coefficient is simplified as [7]

D(α) = −(−µπ)−1+2
√
2iαΓ(1−

√
2iα)

Γ(
√
2iα)

(D.2)

with µ = −1. In the same way, we should have reflection relations for the boundary

operators as

[Bi
β(z)]s1,s2 = d(β|s1, s2)ij [Bj

Q−β(z)]s1,s2 , Bβ(z) =
σi√
2
eβφ . (D.3)
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The aim of this appendix is to compute the coefficient d(β|s1, s2)ij with our specific values

of parameters. Since the boundary action includes the Chan-Paton factor, the relations

are different from those obtained for the case without Chan-Paton factor [20, 21]. Here we

derive the reflection relations from those without Chan-Paton factor. The idea is to change

the basis for the boundary operators such that the Chan-Paton factor in the boundary

action is diagonal and we can apply the formula for the FZZT-branes.

Before introducing the Chan-Paton factor, we summarize some useful formulas for the

FZZT-branes in [20, 21]. The action of the boundary Liouville field theory is given as

S =
1

π

∫

d2w

(

∂φ∂̄φ+

√
g

4
RQφ+ πµe2bφ

)

+ µB

∫

duebφ . (D.4)

The boundary parameter µB may be expressed by s as

coshπbs = µB

√

sinπb2

µ
. (D.5)

The reflection relation for boundary action is then written as

[Bβ(z)]s1,s2 = d(β|s1, s2)[BQ−β(z)]s1,s2 , Bβ(z) = eβφ . (D.6)

The reflection coefficient is found as

d(β|s1, s2) =
(πµγ(b2)b2−2b2)(Q−2β)/2bG(Q− 2β)G−1(2β −Q)

S(β + i
2 (s1 + s2))S(β − i

2(s1 + s2))S(β + i
2(s1 − s2))S(β − i

2(s1 − s2))
,

(D.7)

where the functions G(x) and S(x) are defined as

log S(x) =

∫ ∞

0

dt

t

[

sinh(Q− 2x)t

2 sinh(bt) sinh(t/b)
− (Q/2 − x)

t

]

, (D.8)

logG(x) =

∫ ∞

0

dt

t

[

e−Qt/2 − e−xt

(1− e−bt)(1− e−t/b)
+

(Q/2− x)2

2
e−t +

(Q/2− x)

t

]

. (D.9)

We will use the shift relations

S(x+ b) = 2 sin(πbx)S(x) , S(x+ 1/b) = 2 sin(πx/b)S(x) . (D.10)

For more details, see [20, 21].

Now we include the effects of Chan-Paton factor. The action we consider is (D.1) and

the boundary operator is in (D.3). For the boundary operators, it is convenient to take

linear combinations as

B±
β (u) =

1

2
(σ0 ± σ1)e

βφ , B
′±
β (u) =

1

2
(σ3 ∓ iσ2)e

βφ . (D.11)

Notice that they behave as

σ1B
±
β = ±B±

β , B±
β σ1 = ±B±

β , σ1B
′±
β = ±B′±

β , B
′±
β σ1 = ∓B′±

β , (D.12)
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when the Chan-Paton factor in the boundary action acts on them. Let us start with B+
β .

It is easy to see that the reflection relation is the same as for the FZZT-branes. Therefore,

we obtain B+
β = d(β|s, s)B+

Q−β , where s = i5/4b−1 from (D.5) and the explicit values of

µ, µB . Here, and in the following, we restrict the domain of s as 0 ≤ −ibs < 2 to avoid

ambiguity. For B−
β , we may shift s → s − i/b since σ1B

−
β = B−

β σ1 = −B−
β with (D.5).

Thus the reflection coefficient is

d(β|s − i
b , s− i

b) =
sin(πb (β + is − 1

b ))

sin(πb (β − is))
d(β|s, s) = −d(β|s, s) (D.13)

where we have used the shift relations (D.10). Moreover, we have set 1/b2 = −2 and

s = i5/4b−1. The reflection relations are thus

B0
β = d(β|s, s)B1

Q−β , B1
β = d(β|s, s)B0

Q−β (D.14)

in the original basis. We now move to the other cases with B
′±
β . From (D.12), we propose

that the reflection relations are given as

B
′+
β = d(β|s − i

2b , s+
i
2b)B

′+
Q−β , B

′−
β = d(β|s + i

2b , s− i
2b )B

′−
Q−β , (D.15)

where we have used s = i5/4b−1. There might be other choices, but it turns out that they

do not work well. Noticing that b−1 = −2b, we can show

d(β|s− i
2b , s+

i
2b) = cot(πbβ)d(β|s, s) = d(β|s + i

2b , s− i
2b) . (D.16)

Therefore, we have

B2
β = cot(πbβ)d(β|s, s)B2

Q−β , B3
β = cot(πbβ)d(β|s, s)B3

Q−β (D.17)

in the original basis.

Above, we have seen that the reflection coefficient in (D.3) can be written in terms

of d(β|s, s) for the FZZT-branes defined in (D.6). In fact, we can show that the function

d(β|s, s) with b = i/
√
2 and s = i5/4b−1 has a simple expression. Since it is quite difficult

to directly compute the functions (D.8) and (D.9), we take a different route. We choose to

utilize the relation shown in [20]

d(β|s, s) = c−(β)d(β + b|s, s) , (D.18)

which the reflection coefficient has to satisfy. Here c−(β) is simplified as

c−(β) = (−4µ/π) sin2(πβb) sin(πβb+ π/4) sin(πβb− π/4)

× Γ(1− 2βb)Γ(2βb − 1)Γ(3/2 − 2βb)Γ(2βb − 1/2)

= −πµ sin(πβb)
cos(πβb)

Γ(2(β + b)b)

Γ(2βb)

(D.19)

for our choice of s. The relation (D.18) can be solved quite easily. Assigning the unitarity

relation

d(β)d(Q − β) = 1 , (D.20)
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we find for the reflection coefficient

d(β|s, s) = (−µπ)(Q−2β)/(2b)

√

π

2

1

Γ(2βb) sin(πbβ + π/2)
. (D.21)

We also need

cot(πbβ)d(β|s, s) = (−µπ)(Q−2β)/(2b)

√

π

2

1

Γ(2βb) sin(πbβ)
. (D.22)

E Branes in sine-Liouville theory

Branes in sine-Liouville theory have not been investigated yet. However, it is easy to

guess what they are by two means. Firstly, one can utilize the boundary FZZ duality,

but of course we cannot use this to prove the duality itself. Secondly, one can mimic the

arguments in [26] for branes in N = 2 Liouville theory. The details may be changed, but

qualitatively they should be the same as branes in sine-Liouville theory. In particular, we

should be able to obtain the branes in sine-Liouville theory by repeating the analysis in

[26].

Following the terminology in [26], we call D1-branes for A-branes and D2-branes for

B-branes. A-branes are relatively easy since we can construct boundary states for them

only from modular transformations of annulus amplitudes. According to [26], we cannot

construct B-branes from modular invariance of annulus amplitudes, and we have to study

the factorization constraint from the two-point function on a disk. Fortunately, we have

shown that B-branes in sine-Liouville theory can be obtained from D1-branes in the cigar

model, so we just need to study A-branes.

Since the branes are labeled by the representation of sl(2,R), A-branes may be classified

according the representation as in section 3.1 of [26]. Following the paper, we have six types

as

1. Identity representation

2. Non-chiral non-degenerate representations

3. Non-chiral degenerate representations

4. Anti-chiral representations

5. Chiral representations

6. Degenerate representations

Types 2,4,5 and types 1,6 would correspond to D2-branes and D1-branes in the cigar model,

respectively. Type 3 requires some consideration. We just need to repeat the analysis

in [26] to construct boundary states for the above branes, but replacing the characters

for the N = 2 superconformal algebra by those for the Ŵ∞(k)-algebra (or equivalently

parafermions), see section 4 of [27].
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In order to go further, we need to compute two-point functions of bulk operators on

a disk with one degenerate operator and two-point functions of boundary operators on a

disk. Even though it is a very hard task to compute them directly, it is easy to guess the

boundary actions. For B-branes we have already obtained this as

Lbdy = (µBσ+ + µB̄σ−) e
1

2b
φ+i

√
k
2

X̃ + (µ̄Bσ+ + µ̄B̄σ−) e
1

2b
φ−i

√
k
2

X̃ ,

with

(µB , µB̄, µ̄B̄ , µ̄B̄) = i

√

c̃

2
(eiπ(J−M), e−iπ(J−M), e−iπ(J+M), eiπ(J+M)) . (E.1)

This form of the action implies that B-branes consist of two D2-branes and a non-trivial

Wilson loop is included. For A-branes corresponding to D2-branes in the cigar model, we

propose the following boundary action (see (5.28) in [26])

Lbdy = µAσ+e
1

2b
φ+i

√
k
2

X̃ + µ̄Aσ−e
1

2b
φ−i

√
k
2

X̃ (E.2)

with

µA =
√
2c̃ sinπ(J −M) , µ̄A =

√
2c̃ sinπ(J +M) . (E.3)

This form of the action implies that A-branes consist of two D1-branes and tachyonic states

from open strings between two branes are condensed. Following the analysis in [28] we can

show that the boundary action preserves the Ŵ∞(k) symmetry of sine-Liouville theory,

just like the boundary action for A-branes in the N = 2 super Liouville theory preserves

superconformal symmetry. Therefore, the problem left is to fix the constant coefficients

including the Chan-Paton factors. However, in order to show that our proposal is correct,

we would need to study correlation functions.
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