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We calculate the Schiff moments of the nuclei 199Hg and 211Ra in completely self-consistent
odd-nucleus mean-field theory by modifying the Hartree-Fock-Bogoliubov code HFODD. We allow for
arbitrary shape deformation, and include the effects of nucleon dipole moments alongside those of
a CP-violating pion-exchange nucleon-nucleon interaction. The results for 199Hg differ significantly
from those of previous calculations when the CP-violating interaction is of isovector character.
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I. INTRODUCTION

There are compelling reasons to believe in a source
of measurable CP violation from outside the Standard
Model of particle physics. Supersymmetry and other
theories that lessen the hierarchy problem1 typically in-
troduce many new fields with CP-violating phases into
Lagrangians. If unsuppressed, such phases should be ob-
servable, now or in the foreseeable future. And they are
needed if the imbalance between matter and antimatter
in the universe is the result of a CP asymmetry; in the
Standard Model CP violation is too weak to be respon-
sible [2].

As long as the CPT theorem holds, one can search
for time-reversal (T) violation in lieu of CP violation.
One of the best ways to observe T violation from be-
yond the Standard Model is by measuring nonzero static
electric dipole moments (EDMs) in systems with non-
degenerate ground states. Standard-Model CP violation
is suppressed in flavor-conserving processes, so an ob-
served EDM anywhere near current limits would imply
new physics. Experimental groups have been steadily
lowering the upper limits on EDMs to the point that
one might reasonably expect an observation in the near
future. (Much of supersymmetry parameter space has
already been covered.) For now, the nonobservation of
an EDM in the diamagnetic atom 199Hg places tight up-
per limits on CP violation, and measurements in other
diamagnetic systems — 129Xe, 223,225Ra, and 223Rn —
may soon do even better.

Whether these experiments eventually see a nonzero
EDM or just continue to set limits, their interpreta-
tion requires us to understand the dependence of atomic
EDMs on the strength of CP violation at the fundamen-
tal level. Doing so involves calculations at several scales.
QCD determines the dependence on fundamental physics

1 See. e.g., Ref. [1] for a short but clear statement of the problem.

of the neutron EDM and related quantities such as ef-
fective P- and T-violating meson-nucleon coupling con-
stants. Nuclear physics then translates these quantities
into P- and T-violating nuclear moments, which in turn
contribute to atomic EDMs.

The role of nuclear physics in this chain is more subtle
than it appears at first glance because the atomic elec-
trons screen nuclear EDMs [3]. As a result, the nuclear
quantity that plays the largest role in inducing atomic
EDMs is not the nuclear dipole moment, but rather the
“Schiff moment”,

S ≡ 〈0|Sz |0〉M=J , (1)

that is, the ground state expectation value (in the sub-
state that is fully polarized along the z axis) of the z-
component of the one-body “Schiff operator.” This vec-
tor operator is given approximately by

S = Sch + Snucleon , (2)

where

Sch =
e

10

Z∑
p=1

(
r2p −

5

3
〈r2〉ch

)
rp . (3)

Snucleon =
1

6

A∑
j=1

dj(r
2
j − 〈r2〉ch)

+
1

5

A∑
j=1

(
rj(rj · dj)−

r2j
3
dj

)
+ . . . (4)

Here e is the charge of the proton, 〈r2〉ch is the mean
squared radius of the nuclear charge distribution, dj is
the EDM of nucleon j, and the omitted terms in Eq. (4)
are smaller than those included by about the square of
the ratio of the proton radius to the nuclear radius. The
sum in Eq. (4) is over all nucleons, while that in Eq. (3)
is restricted to protons.

The two terms in Eq. (2) reflect the two ways in
which a nucleus can acquire Schiff moments. A P-
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and T-violating nucleon-nucleon interaction generates
a corresponding charge distribution and a contribution
to S from the operator Sch in Eq. (3), while nucleon
EDMs generate a contribution from Snucleon in Eq. (4).
Both contributions can be induced by effective P- and
T-violating pion-nucleon coupling constants: a pion-
exchange graph with one such coupling generates the ef-
fective nucleon-nucleon interaction and a pion loop graph
with one generates nucleon EDMs. The two-body inter-
action is

VPT =
g

8πmN

∑
i<j

{[
ḡ0 (τi · τj)−

ḡ1
2

(τzi + τzj ) (5)

+ ḡ2(3τzi τ
z
j − τi · τj)

]
(σi − σj)

− ḡ1
2

(τzi − τzj )(σi + σj)

}
·∇i

exp (−mπ|ri − rj |)
|ri − rj |

,

and the nucleon EDM operator (for nucleon j), in the
leading chiral approximation2 is

dj =
eg

4π2mN
ln
mN

mπ
(ḡ0 − ḡ2)σjτ

z
j , (6)

In these two equations ~ = c = 1, mπ is the mass of
the pion, mN is that of the nucleon, τz gives +1 when
acting on a neutron, g ≡ 13.5 is the strong πNN coupling
constant, and the ḡi are dimensionless isoscalar (i = 0),
isovector (i = 1), and isotensor (i = 2) P- and T-violating
πNN coupling constants. These last quantities depend on
the unknown fundamental source of CP violation, and so
are primitive in our treatment. A QCD calculation can
in principle relate them to quantities in extra-Standard-
Model theories.

Since VPT is extremely weak and the nucleon EDM in
Eq. (6) is extremely small, the Schiff moment, to very
high accuracy, is linear in the πNN couplings ḡi. We
write it as

S = (a0 + b) gḡ0 + a1 gḡ1 + (a2 − b) gḡ2 . (7)

The ai specify the dependence of S on the P- and T-
violating interaction VPT , and b specifies its dependence
on the nucleon dipole moments dj . All relevant nuclear
structure information is encoded in these coefficients.

The ai have been calculated before, with varying de-
grees of sophistication, in nuclei used in or considered
for experiments. Except in a few nuclei with strong oc-
tupole deformation, all prior has proceeded in two steps:
some kind of mean-field calculation in which the polar-
izing effects of the last (valence) nucleon were neglected,

2 Nucleons can get EDMs in other ways, e.g. from quark EDMs
[4], but we assume here for simplicity that the ḡ’s are the only
relevant low-energy CP-violating parameters. The dependence of
nuclear Schiff moments on the nucleon EDMs, no matter what
their source, can be extracted from our analysis by dividing out
the ḡ-dependent prefactor in Eq. (6).

followed by an explicit treatment of the correlations in-
duced by the interaction of the valence nucleon with the
rest. Ref. [5], the first such calculation, used a phe-
nomenological Wood-Saxon potential as the mean field
and allowed the valence-core interaction to excite only
non-collective one-particle one-hole configurations. Refs.
[6] and [7] obtained the mean field through an approxi-
mate Hartree-Fock calculation and used a simple resid-
ual strong interaction and linear-response theory (that
is, the random phase approximation (RPA)) to include
collective corrections to the simple excitations considered
in Ref. [5]. Finally, Ref. [8] carried out a self-consistent
Skyrme-interaction-based calculation to obtain the mean
field, and followed that with a diagrammatic treatment
(with the same Skyrme interaction) of most but not all
of the quasiparticle-RPA (QRPA) response generated by
the valence-core interaction.

In the work reported here, we modify the Hartree-
Fock-Bogoliubov code HFODD [9] to carry out completely
self-consistent mean-field calculations directly in the nu-
clei of interest. That is, we

1. treat VPT on the same footing as the strong inter-
action,

2. treat all the nucleons, including the last, on the
same footing in mean-field theory.

These steps make our treatment essentially equivalent
to a fully self-consistent treatment of the even nucleus
followed by the self-consistent inclusion of all linear-
response collectivity induced by the valence-core interac-
tion. Thus, unlike the work of Refs. [6, 7] our calculation
is completely self consistent, and unlike the work of Ref.
[8] it includes all core-polarization effects, in a unified way
to boot. In addition, our mean-field can (and often will)
be deformed. All prior calculations in systems without
octupole deformation assumed spherical ground states.
In nuclei such as 199Hg the quadrupole deformation may
well be large enough to affect Schiff moments; the suc-
cessful Möller-Nix phenomenology [10] predicts deforma-
tion parameters β2 = −0.122 and β4 = −0.032, values
that are hardly negligible. Finally, we project our states
onto those with well-defined angular momentum (after
variation), going beyond the usual rigid-rotor approxi-
mation. This step is essential in nuclei that are only
weakly deformed.

II. METHOD AND TESTS

We begin with a more precise statement of the re-
lation between the perturbative treatment of interac-
tions within linear-response theory, that is, the RPA or
QRPA, and a non-perturbative treatment in mean-field
theory. Consider, for example, an even-even nucleus with
Z + N = A nucleons, neglecting pairing temporarily to
simplify the situation. It is not hard to show [11, 12] that
the one-body density matrix obtained from a Hartree-
Fock (HF) calculation in the neighboring odd nucleus
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with one more neutron is related to that obtained from a
corresponding (much easier) calculation in the even nu-
cleus by:

ρA+1
a,b = ρAa,b + ρva,b +

∑
c,d

RAab,cd h
v
cd + . . . (8)

where ρA+1 and ρA are density matrices (isoscalar or
isovector) for the odd and even nuclei, ρv is the density
matrix associated with the valence neutron in the first
empty orbit produced by the even-nucleus mean field, hv

is the additional mean-field Hamiltonian created by that
valence nucleon, RA is the zero-frequency RPA response
function for the even-even core, and the neglected terms
are higher order in hv. Eq. (8) generalizes predictably
when pairing is included via Hartree-Fock-Bogoliubov
(HFB) theory and the QRPA. When the interaction VPT
is included, it affects Schiff moments only through the
last term.

We can now more precisely characterize previous calcu-
lations, which were based on approximate representations
of the right-hand side of Eq. (8). Refs. [6, 7] used a sim-
ple Landau-Migdal strong interaction and approximate
self consistency in determining the densities and RPA
response function RA, and treated VPT without further
approximation. Ref. [8] used full-fledged Skyrme inter-
actions and retained self consistency everywhere, but ob-
tained the response function RA by first neglecting VPT ,
then adding first-order corrections through a series of di-
agrams, some of which were omitted. Both calculations
imposed spherical symmetry everywhere. Here we calcu-
late the left-hand side of Eq. (8) directly in mean field
theory, without the intermediary of response functions
and with no approximations or imposed symmetries. Of
course, the Skyrme interactions we use are not perfect,
but they are the current state of the art.

Mean-field calculations in odd nuclei are notoriously
tricky [13]. Because the valence nucleon can polarize the
rest, odd systems are more likely than their even-even
neighbors to have complicated triaxial shapes; 129Xe,
which has a tight limit on its atomic EDM, is an ex-
ample. Unless one projects triaxial intrinsic states onto
states with good angular momentum before the mean-
field variation, it is difficult to ensure that the component
with the correct angular momentum is a significant part
of the wave function. Moreover, triaxial systems are of-
ten soft, meaning that the wave function corresponding
to the absolute minimum energy may not more signifi-
cantly represent the nuclear state than other wave func-
tions with only slightly higher energies. We therefore will
restrict ourselves to axially symmetric systems in which
the spin aligns along the symmetry axis; in such states
we can ensure a significant component with a given J by
selecting states for which the intrinsic angular momen-
tum z-projection K is equal to J . We sometimes pay the
price that the desirable configurations are not the lowest
ones and that are solutions are marginally unstable; we
discuss those difficulties below.

To implement our procedure, we employ a modi-
fied version of the state-of-the-art code HFODD (see Ref.
[9] and references therein), which uses a symmetry-
unrestricted three-dimensional harmonic-oscillator (HO)
basis to carry out Skyrme HF or HFB calculations. Our
modification is to add VPT to the Skyrme interaction, al-
lowing the calculation of Schiff moments. An initial step,
reported in Ref. [14], was to represent VPT as a sum of
Gaussians in order to ease calculation in the HO basis,
and evaluate its expectation value at the end of the calcu-
lation in octupole-deformed nuclei. Here we extend that
scheme and incorporate it into the self-consistent loop;
the code evaluates the expectation value of VPT and the
corresponding mean fields, which are the new ingredient,
at every iteration. (We have actually coded the mean
fields only in the normal particle-hole mean channel; we
deal with the pairing field through a trick discussed be-
low.) It then adds the P- and T-violating mean fields
to those coming from the Skryme interaction, so that all
forces are treated in the same way. The resulting P- and
T-violating polarization produces a nonzero expectation
value for the Schiff operator Sch

z in Eq. (3). To calculate
the expectation value of Snucleon

z , we simply use the HF
or HFB wave functions obtained without the addition of
VPT .

To check the results, we also incorporate the direct
part of VPT in a completely different way. The direct P-
and T-violating mean field can be written3 as

vdPT =
g

8πmN

∫
dr′

e−mπ|r−r′|

|r − r′|
(9)

×
{

[ḡ1 − (ḡ0 + 2ḡ2)τz]∇ · s1(r′)

+ στz · {(ḡ0 + 2ḡ2)∇ρ1(r′)− ḡ1∇ρ0(r′)}
}
,

where s1 is the isovector spin density (see the appendix of
Ref. [16], where the density is called s10, for the exact def-
inition), and ρ0, ρ1 are the usual isoscalar and isovector
number densities. This representation as the folding of a
Yukawa function with a source density is similar to the
representation of the Coulomb potential as the folding of
the function 1/|r−r′| with the charge density. We there-
fore adapt the existing Green-function-based routine for
calculating the direct Coulomb potential in HFODD to the
evaluation of the direct P- and T-violating mean field
vdPT .

Finally, to further check the self-consistent solution,
we note that before projection in an axially symmetric
nucleus, one should obtain the same Schiff moment to
leading order in an arbitrary constant λ by

a) Solving self-consistent field equations with H ≡
HSkyrme + λVPT , and then evaluating the expec-
tation value of Sch

z /λ,

3 The term containing s1 was omitted in Ref. [15]
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b) Solving the mean-field equations with H ≡
HSkyrme + λSch

z and then evaluating the expecta-
tion value of VPT /λ.

c) Solving the mean-field equations with H ≡ HSkyrme

and then evaluating

∑
i

〈0|Sch
z |i〉RPA 〈i|VPT |0〉RPA

(E0 − Ei)
+ c.c , (10)

where the subscripts on the kets mean that the transition
matrix elements are evaluated in RPA (or QRPA). Pro-
cedure a) above defines the problem we’re tyring to solve.
Procedure b) serves as a check and, moreover, is our pri-
mary procedure in nuclei with pairing. The reason, as
mentioned above, is that although we can evaluate the
expectation value of VPT (including the pairing parts),
we cannot evaluate the corresponding pairing field, so
that we cannot include all the effects of pairing in proce-
dure a). Finally, regarding the RPA or QRPA: although
we cannot do an RPA or QRPA calculation in a deformed
or odd-A nucleus, we can use procedure c) as a test in a
spherical nucleus. A full odd-A QRPA evaluation, even
there, would involve adding all the complicated diagrams
in Ref. [8], so we make our test in the approximation that
last nucleon feels the strong mean-field from the other
nucleons but acts on them in turn only weakly (through
VPT ). This makes it sufficient to apply the QRPA to the
even-even core.

To implement this “weak-valence-field” approxima-
tion, in a closed-shell+1 nucleus such as 57Ni, we first
calculate the self-consistent ground-state in the even-even
neighbor 56Ni without including VPT in the Hamiltonian,
and then allow the valence neutron to occupy the first
empty neutron orbit. We then calculate the P- and T-
violating mean field that that neutron produces (restrict-
ing ourselves for simplicity to the dominant direct part)
by evaluating its contribution to vdPT in Eq. (9). We
then use this mean field as an external P- and T-violating
source for the 56Ni core. The Schiff moment of 57Ni in
the weak-valence-field approximation is then the moment
of the A = 56 core induced by the external source.

We can implement the procedure in mean-field theory
by adding the external source vdPT or Sch

z for 56Ni to
HSkyrme as in procedure a) or b) above, or in the RPA
by substituting vdPT for VPT in procedure c). The first
two routes are straightforward and give identical results
but the spherical RPA requires a decomposition of vdPT
into spherical multipoles. To make that simpler, we use
the zero-range (infinite pion-mass) approximation, which
reduces the Yukawa function in Eq. (9) to a delta func-
tion, when carrying out any of the three procedures a),
b), and c). Even so, we can always expect slight differ-
ences between the results of procedure c) and the others
because of slight differences in the single-particle spaces
underlying the mean-field and RPA calculations. In the
former, we include single-particle HO basis states with
up to 22 ~ω of excitation energy. In the latter, which we

TABLE I: HFODD and RPA results with the Skyrme inter-
action SkM∗ for the coefficients ai, in e fm3, in the weak-
valence-field approximation (see text) in 57Ni and 209Pb. We
have omitted exchange terms in VPT and taken the zero-range
limit of the interaction. In this approximation a2 = 2a0.

a0 a1
57Ni HFODD -0.0222 -0.0536

RPA -0.0226 -0.0529
209Pb HFODD -0.0466 -0.1059

RPA -0.0507 -0.1048

carry out with the spherical HFB code HFBRAD [17] and
the QRPA code QRPAsph [18], we include single-particle
spherical-box states with energies up to 100 MeV. De-
spite the single-particle differences, the results of the pro-
cedures a) and c), displayed in Tab. I for the Skyrme
interaction SKM∗ [19], are extremely close.

The table also compares the results of procedures4 b)
and c) for 209Pb, again with SkM∗. In this heavy nu-
cleus we can include orbits with up to only 12 ~ω in
HFODD, and while the mean-field and RPA results for
a1 agree very well, those for a0 differ by about 10%. This
small discrepancy is almost certainly due to the limited
HFODD model space. Overall, the level of agreement,
particularly in Ni where we are able to do the best job,
convinces us that both kinds of calculations are essen-
tially correct.

The weak-valence-field approximation is equivalent to
including only “diagram A” from Ref. [8] in the RPA-
based diagram sum that yields the Schiff moment. We
should note that our results for 209Pb are significantly
different from those for diagram A in the same nucleus
given in the Ph.D. dissertation on which Ref. [8] was
based. We discuss possible reasons for the discrepancy,
which also exists in 199Hg, towards the end of this paper.
For now, we simply note that accurate RPA calculations
require a more careful job than one might think. Figure
1 shows the summed contributions of excited RPA states
in Eq. (10) to the ai. The coefficient a1 is nearly constant
after 50 MeV, but a0 continues to decreases even at 80
MeV. Most RPA calculations do not go that high in ex-
citation energy, or if they do they make approximations
that can alter results significantly.

III. RESULTS

We turn now to the full calculations in nuclei of inter-
est for experiment. We apply our mean-field techniques
to 211Ra and 199Hg. The first is one of the Radon iso-
topes to be explored at TRIUMF [20] and the second is

4 In this nucleus, an accurate mean-field result requires dealing
with the center-of-mass shift that results from the fixed external
source vdPT ; the task is easier in procedure b) than in a).
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FIG. 1: (Color online.) The summed RPA contributions to
the ai in 57Ni, in the “weak-valence-interaction” approxima-
tion, as a function of excited-state energy.

the nucleus with the best current limit on its Schiff mo-
ment. We use several Skyrme interactions: SLy4 [21],
SkM∗ [19], SV [22], and SIII [22]. The last of these may
not be as trustworthy as the others; Ref. [8] showed that
the interaction was less able to reproduce a related ob-
servable, the distribution of isoscalar E1 strength in even
nuclei. In previous work we have employed SkO’ [23]. We
were not able to find an axially symmetric ground state
in 199Hg with that interaction, however, and so do not
use it here.

The nucleus 211Ra is spherical, so the calculation there
is relatively straightforward. We start with an HFB cal-
culation with HSkyrme only. Since the ground state has

Jπ = 1
2

−
, we must block the lowest Ωπ = 1

2

−
level, which

because of the spherical shape is essentially the 3p1/2 or-
bit (Ω is the z-projection of the angular momentum in the
intrinsic frame). We then obtain the coefficient b by sim-
ply evaluating the expectation value of Snucleon

z /ḡ0, with
an arbitrary value chosen for ḡ0 and ḡ2 set to zero. To
obtain the coefficients ai, we follow procedure a) above,
successively setting each of the ḡi to one. The results for
several Skyrme interactions appear in Table II.

The three Skyrme interactions we use give similar re-
sults, though the value of a1 produced by SIII is no-
ticeably suppressed. The coefficient b is apparently less
sensitive and usually somewhat smaller than the ai. It
is not small enough, however, to be neglected, as it has
been in all prior work.

In 199Hg the calculation is harder because the nucleus

TABLE II: Results for coefficients ai and b, in e fm3, in 211Rn.

a0 a1 a2 b

SLy4 0.042 -0.018 0.071 0.016

SkM* 0.042 -0.028 0.078 0.015

SIII 0.034 -0.0004 0.064 0.015

TABLE III: Results for coefficients ai (in e fm3) in 199Hg,
with the Skyrme interaction SLy4, in various approximations.
The solution is axially symmetric with β = −0.13 and an

excitation energy for the Ωπ = 1
2

−
state of 0.97 MeV

a0 a1 a2

One HF iteration with VPT 0.045 0.049 0.090

Full HF, no projection 0.039 -0.019 0.066

Full HF, projected 0.013 -0.006 0.022

may not be spherical, and is almost certainly soft. The
energy as a function of deformation is probably very flat,
and the energies of several mean-field minima may not
be very different. For this reason, we do several calcu-
lations, some at deformed minima and some at spherical
minima. Another issue is that HFODD cannot carry out
angular-momentum projection if pairing is included. We
can estimate the effects of projection, or turn pairing off
and carry it out explicitly. We follow both courses here
and compare the results. We sometimes encounter the
further problem that the state with the correct ground-

state quantum numbers (Ωπ = 1
2

−
) is not the lowest state

in our calculation. In a soft nucleus, such an occurrence
is not totally surprising.

Finally, the inclusion of VPT causes some problems
that are not present without it. Although VPT is very
weak, the iterative HF energy sometimes eventually di-
verges, probably because our axially symmetric excited-
state solution is very slightly unstable against some kinds
of asymmetric deformation. In such cases, however, the
solution converges for awhile, coming quite close to self
consistency, before the weak instability leads it in a dif-
ferent direction. We can therefore extract an axially-
symmetric result from the relatively early iterations, dur-
ing which the solution apparently converges. Although
we don’t have a truly self-consistent solution here, we
do obtain a kind of “most nearly self-consistent axially-
symmetric” solution, which is the best we can do with-
out the more difficult and possibly less meaningful task
of considering triaxial shapes for soft systems.

Table III displays the results for the interaction SLy4 in
successively better approximations. The first line shows
the results after including VPT for one Hartree-Fock it-
eration (starting from the converged solution with VPT
omitted). In this limit, VPT can excite the core, but the
excited nucleons do not further interact before contribut-
ing to the Schiff moment; that is, no core collectivity is
included. A comparison of the first two lines shows, in
agreement with Refs. [6–8], that collectivity has a large
effect on the a’s. But in contrast to those investigations,
we find that collectivity has a large enough effect on a1
to change its sign. This change in sign appears in many
of our other Hg calculations as well, even for spheri-
cal minima. Its appearance there is surprising because
the diagrammatic calculation of Ref. [8] used the same
Skyrme interactions and essentially the same spherical-
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FIG. 2: (Color online.) The change in proton density induced

by the ḡ1 term in VPT , as a function of r⊥ ≡
√
x2 + y2 and

z. The units are arbitrary because of the arbitrariness in the
constant ḡ1. Only 1/4 of the nuclear profile is shown; the den-
sity change is symmetric in r⊥ and antisymmetric in z. The
densities were actually evaluated at 132 Gaussian integration
points, a fact that explains the spikiness of the plot.

HFB starting point5, and included much of the same col-
lective physics. We have already remarked, though, that
where we can check the QRPA results (in 209Pb) we do
not agree with them.

Another surprising result is that projection reduces the
coefficients by a factor that is very close to three, the
same factor as in the rigid-rotor model. The reduction
factor is nearly three with other Skyrme interactions as
well. The relatively small deformation of 199Hg led us to
expect a milder reduction.

What is unsurprising is that the ai are delicate and
very hard to predict ahead of time. Figure 2 shows the
change in proton density δρp caused by the inclusion
alongside SLy4 of the ḡ1 term in VPT (that is, the other
ḡ’s are set to zero). The integral of this density difference

over z and r⊥ ≡
√
x2 + y2, weighted by (r2−5/3 〈r2〉ch)z,

is what gives the intrinsic Schiff moment (before projec-
tion). The oscillations are actually even wilder than the
figure shows; a deep trough is hidden behind large peak
at small r⊥. These oscillations make it hard to supply
an explanation for the sign and magnitude of a1.

We turn finally to the full results obtained by using the
HO basis of up to 12 ~ω of excitation energy, displayed
in Tab. IV. The top three lines give the results of de-
formed HF calculations (the calculation with SKM* does
not give a convergent axially-symmetric result). All the
interactions under-bind the nucleus; the measured bind-
ing energy is 1573.19 MeV. With the interactions SLy4
and SV, the ground state, as discussed above, does not
have the correct quantum numbers, and we are forced to
use an excited particle-hole configuration that does. As
also mentioned, the energy eventually begins to diverge
from our solution, presumably because of a very weak

5 One difference is that the last neutron was in a canonical-basis
quasiparticle state in that work.

triaxial instability. By contrast, SIII gives the correct
ground state, and no long-term divergence. After projec-
tion, all three calculations produce similar coefficients a0
and a2, but a1 varies significantly, even in sign. We are
unable to project the one-body densities that yield the b
coefficient, so we take the reduction from the unprojected
value to be the same as that of the ai’s.

The middle two lines of Tab. IV show the results of
HFB calculations, in which pairing is included. The SLy4
solution is deformed, and as mentioned above, we cannot
project HFB states; we therefore use the rigid rotor limit
to obtain the projected results in line 4. SkM∗ has a
spherical minimum when pairing is included, so no pro-
jection is necessary. The results of that calculation are
similar to the unprojected results from deformed solu-
tions. We conclude that the presence of deformation, at
least in our approach, significantly decreases calculated
Schiff moments.

We should note that we do not include the O(α2)
corrections to the Schiff moment (generating the “local
dipole moment” [24]). Work in simple models suggests
that these corrections to the ai are on the order of 25%,
though they could be a larger fraction if the lowest-order
ai are suppressed.

Our 199Hg results have some significant differences
from those obtained previously. Those of the two most
comprehensive calculations appear at the bottom of Tab.
IV, with the average of several calculations presented for
Ref. [8]. Our values of a0 and a2 are in reasonable agree-
ment with those of Ref. [8], but, as already mentioned,
those for a1 are smaller in magnitude and sometimes have
the opposite sign. Deformation, of course, is one cause,
but, as noted above, there is disagreement even with our
spherical calculations. One source of difference may be
our treatment of core polarization, which is more com-
plete and self-consistent than that of the earlier papers;
the use of a canonical basis state for the last neutron
in Ref. [8] may be another. Finally, the disagreement

TABLE IV: Results for coefficients ai and b, in e fm3, in
199Hg. The third column gives ground-state energy in MeV,
the fourth the deformation, and the fifth the excitation en-
ergy (also in MeV) of the lowest configuration with the same
value of Ωπ as the experimental ground state. The first three
lines are in the HF approximation, while the next two are in
the HFB approximation. The last two lines report results of
previous work, with the numbers for Ref. [8] representing the
average over several interactions.

Egs β Eexc. a0 a1 a2 b

SLy4 -1561.42 -0.13 0.97 0.013 -0.006 0.022 0.003

SIII -1562.63 -0.11 0 0.012 0.005 0.016 0.004

SV -1556.43 -0.11 0.68 0.009 -0.0001 0.016 0.002

SLy4 -1560.21 -0.10 0.83 0.013 -0.006 0.024 0.007

SkM∗ -1564.03 0 0.82 0.041 -0.027 0.069 0.013

Ref. [6] — — — 0.0004 0.055 0.009 —

Ref. [8] — — — 0.007 0.071 0.018 —
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between our QRPA tests discussed above and those in
the framework of Ref. [8] suggest the possibility of an
error in that calculation (which used an early version of
QRPAsph that no longer exists). Our many tests of the
current approach make it unlikely that our calculations
contain outright errors. The delicacy of a1, is noteworthy,
however, both because of the complicated spatial PT -
odd density distribution (see fig. 2) and the sometimes
marginally stable convergence to axially symmetric solu-
tions, a feature that is particularly pronounced for that
coefficient.

How much can we trust the physical approximations
underlying our results? The calculations presented here
are unquestionably more sophisticated and inclusive than
any yet attempted, but it may very well be that still
more sophistication is required. The apparent softness of
199Hg implies that the true ground state is best thought

of as a superposition of many different mean-field states,
and a generator-coordinate-based approach [25] may be
required to adequately represent the mixing. Though
generator-coordinate calculations are no longer rare, they
have not, to our knowledge, been attempted yet in odd
nuclei. The future of EDM calculations for this kind of
nucleus lies in the generalization of codes like HFODD. We
will need to move beyond mean-field theory, and ought to
expect our current best numbers to be noticeably revised
when we do.
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