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ABSTRACT

The H II complex N159 in the Large Magellanic Cloud (LMC) is used to

study massive star formation in different environments, as it contains three giant

molecular clouds (GMCs) that have similar sizes and masses but exhibit different

intensities of star formation. We identify candidate massive young stellar objects

(YSOs) using infrared photometry, and model their SEDs to constrain mass and

evolutionary state. Good fits are obtained for less evolved Type I, I/II, and II

sources. Our analysis suggests that there are massive embedded YSOs in N159B,

a maser source, and several ultracompact H II regions. Massive O-type YSOs are

found in GMCs N159-E and N159-W, which are associated with ionized gas, i.e.,

where massive stars formed a few Myr ago. The third GMC, N159-S, has neither

O-type YSOs nor evidence of previous massive star formation. This correlation

between current and antecedent formation of massive stars suggests that energy

feedback is relevant. We present evidence that N159-W is forming YSOs spon-

taneously, while collapse in N159-E may be triggered. Finally, we compare star

formation rates determined from YSO counts with those from integrated Hα and

24 µm luminosities and expected from gas surface densities. Detailed dissection

of extragalactic GMCs like the one presented here is key to revealing the physics

underlying commonly used star formation scaling laws.
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1. Introduction

Despite significant progresses in understanding the physics of single star formation, we

still have only crude ideas about why some giant molecular clouds (GMCs) form clusters,

some form distributed associations, and some form very few stars. To make headway, key

properties of GMCs displaying various intensities of star formation must be explored obser-

vationally in detail. After massive stars are formed, their energy feedback through ionizing

fluxes, fast stellar winds, and supernova explosions can alter the physical conditions of a

GMC, subsequently enhancing or inhibiting further star formation. If a knowledge of stellar

content and energy feedback is obtained, it is then possible to assess the relative importance

of self-propagating, triggered, and spontaneous star formation, and even further estimate the

star formation efficiency of a GMC. It is thus crucial to inventory massive stars and young

stellar objects (YSOs) associated with GMCs. The YSOs are particularly important as they

provide the most direct probes for causal relationship between the initial condition (gas) and

the end product (stars).

Such study is straightforward in concept, but difficult in practice because in distant

galaxies the stellar content is not resolved, and in the Milky Way the distances and associ-

ations among stars and their interstellar environments are uncertain. The Large and Small

Magellanic Clouds (LMC and SMC) are the only nearby star-forming galaxies in which stars

are at common, known distances and can be resolved individually. Recent high-sensitivity

mid-IR Spitzer Space Telescope (SST) observations make it possible to study a large sample

of YSOs in the MCs (e.g., Whitney et al. 2008; Gruendl & Chu 2009; Simon et al. 2007).

The nearly face-on orientation and thin disk structure of the LMC make it easy to identify

physical associations between YSOs and their interstellar environments. All objects in the

LMC can be considered to be at a uniform distance, with <10% error, of 50 kpc (Feast

1999). In our recent study of massive YSOs in the LMC H II complex N44 (Chen et al.

2009, hereafter Paper I), we examined three GMCs with different star formation properties:

the central and southern GMCs are associated with bright H II regions and have O-type

YSOs, while the northern GMC contains only a few faint, small H II regions and has no

O-type YSOs. The close association of massive YSOs with H II regions in GMCs suggests

that massive stars preferentially form in regions where massive stars have been formed pre-

viously, within the last few Myr. It is not clear whether this result is a special case for N 44

or can be generalized.
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We have thus selected more LMC H II complexes with different morphologies of ionized

gas and molecular clouds to examine their YSO content and distribution. This study reports

massive star formation in the H II complex LHα 120-N 159 (hereafter N159; Henize 1956).

N 159 is located between two regions with contrasting activities: to its north are a string of

active star formation regions such as 30 Doradus, N 158, and N160, and to its south lies a

large molecular ridge with little star formation activity (e.g., Indebetouw et al. 2008). The

ionized gas of N 159 shows two prominent lobes in the central region, surrounded by smaller

H II regions (Figure 1a). The two prominent H II lobes exhibit filamentary arcs resultant

from interactions with stellar winds and a supernova remnant (SNR) in the northern lobe

(Chu et al. 1997; Williams et al. 2000). The northern and southern lobes appear to be

separated by dark clouds, but their independent systems of circular filaments do not suggest

a common origin for their photoionization and dynamic shaping. The stellar content of N 159

has been identified loosely as an OB association, i.e., LH105 (Lucke & Hodge 1970). Based

on integrated colors and association with discrete H II regions in N159, Bica et al. (1996)

identified three young clusters of ages < 10 Myr in the A, F, and D components, and an OB

association in the C component (see Figure 1a for the identification of H II components).

Surveys of CO toward N159 (Figure 1b) show three molecular concentrations whose

peaks correspond to three GMCs, N159-E, N 159-W, and N159-S, respectively (Johansson et al.

1998). The similarity in their radial velocities, Vlsr = 234.1−238.5 km s−1, suggests that they

are likely physically related. N 159-E is associated with the central prominent H II regions

of N 159, the bulk of the OB association LH105 (Lucke & Hodge 1970), which include the

young cluster in the D component. N 159-W, an immediate neighbor of N 159-E, hosts a

few small, bright H II regions and the western part of LH105, which includes the two young

clusters in the A and F components. In sharp contrast, the GMC N159-S shows a much

lower level of star formation with only a couple of very faint diffuse H II regions and no OB

associations, although it is similar in size and even larger in mass compared with each of its

northern neighbors at ∼ 3′ away. A recent study by Nakajima et al. (2005) identified can-

didate Herbig Ae/Be (HAeBe) stars in GMC N159-S and suggested that cluster formation

had just begun in this GMC. However, it is not clear whether the scarcity in massive stars

seen in the optical and near-IR wavelengths in this GMC is caused by massive stars being

still at infancy and deeply embedded in circumstellar material, or not being formed actively

at all.

To study the current massive star formation in N159, we have used archival Spitzer mid-

IR observations and obtained complementary ground-based optical and near-IR observations.

These observations have been analyzed and the results are reported in this paper. Section 2

describes the observations and data reduction. Section 3 reports the identification and

classification of YSO candidates. In Section 4 we determine the physical properties of the
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YSOs by modeling their spectral shapes. In Section 5 we discuss the massive star formation

properties. A summary is given in Section 6.

2. Observations and Data Reduction

We have used Spitzer mid-IR observations to diagnose YSOs. To extend the spectral

energy distribution (SED) and to improve the angular resolution, we have further obtained

ground-based optical and near-IR imaging observations of N 159. We have also retrieved

available images in the Hubble Space Telescope (HST) archive to examine the optical coun-

terparts and environments of the YSOs.

2.1. Spitzer IRAC and MIPS Observations

Archival Spitzer observations from the Legacy Program Surveying the Agents of a

Galaxy’s Evolution (SAGE; Meixner et al. 2006) and GTO Program 124 (PI: Gehrz) were

used to study YSOs in N159. These observations include images taken with the Infrared

Array Camera (IRAC; Fazio et al. 2004) at 3.6, 4.5, 5.8, and 8.0 µm and the Multiband

Imaging Photometer for Spitzer (MIPS; Rieke et al. 2004) at 24, 70, and 160 µm. The ob-

servation summary is listed in Table 1, in which the program ID, principal investigator, and

typical observation parameters are given.

We have adopted the Spitzer photometry of point sources from Gruendl & Chu (2009).

The photometric data are used to construct SEDs, and the images are used to examine

the structure of cold and partially ionized interstellar matter. To cover regions associated

with the three GMCs around N159, the field we have analyzed is 12′×12.′5 and is shown in

Figure 2 in the 3.6, 8.0, and 24 µm bands. The 3.6 µm image is dominated by stellar emission,

the 8.0 µm image shows the polycyclic aromatic hydrocarbon (PAH) emission, and the 24

µm image is dominated by dust continuum emission (Li & Draine 2001, 2002; Draine & Li

2007). To better illustrate the relative distribution of emission in different bands, we have

produced a color composite with 3.6, 8.0, and 24 µm images mapped in blue, green, and

red, respectively. In this color composite (Figure 2d), dust emission appears red and diffuse,

stars appear as blue point sources, red supergiants appear yellow, and dust-shrouded YSOs

and evolved stars appear red.
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2.2. CTIO 4 m ISPI Observations

We obtained near-IR images in the J and Ks bands with the Infrared Side Port Imager

(ISPI; van der Bliek et al. 2004) on the Blanco 4 m telescope at Cerro Tololo Inter-American

Observatory (CTIO) on 2006 November 9. The images were obtained with the 2K × 2K

HgCdTe HAWAII-2 array, which had a pixel scale of 0.′′3 pixel−1 and a field-of-view of 10.′25×

10.′25. N 159 was observed in one field with ten 30 s exposures in the J band and twenty 30

s exposures in the Ks band (each of the latter was coadded from two 15 s frames to avoid

background saturation). The observations were dithered to aid in the removal of transients

and chip defects. The sky observations were made before and after each set of ten on-source

exposures. All images were processed using the IRAF package cirred for dark and sky

subtraction and flat-fielding. The astrometry of individual processed images was solved with

the routine imwcs in the package wcstools. The astrometrically calibrated images are then

coadded to produce a total exposure map for each filter. The flux calibration was carried

out using 2MASS photometry of isolated sources.

As some of the YSOs appear extended in the ISPI images, we have used additional J and

Ks images taken with the Nasmyth Adaptive Optics System and Near-Infrared Imager and

Spectrograph (NACO) on the 8.2 m Very Large Telescope (VLT) at the European Southern

Observatory (ESO) (Testor et al. 2006, 2007). These images have a pixel size of 0.′′027-0.′′054

pixel−1 and a superb resolution of 0.′′11-0.′′25, and are thus used to resolve compact groups

of YSOs.

2.3. Archival HST Images

We have searched the HST archive for Wide Field Planetary Camera 2 (WFPC2) and

Advanced Camera for Surveys (ACS) images in the field of N 159. These observations are

listed in Table 2, in which the coordinate, program ID, PI, detector, filter, and total exposure

time are given. Each observation contains multiple exposures for the same pointing and filter,

and these images have been pipeline-processed to remove cosmic rays and to produce a total

exposure map, which is available in the Hubble Legacy Archive1.

Four fields have observations, but not all are useful; for example, the wide U band

1Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble

Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the

Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre

(CADC/NRC/CSA).
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(F300W) images have very low S/N. The most useful images are those taken with the Hα

filter (WFPC2/F656N or ACS/F658N) or broad-band filters at longer wavelengths such as

Strömgren y (F547M) or WFPC2 V I (F555W and F814W). The former show ionized gas

and the latter show stars at high resolution.

2.4. Other Available Datasets

To construct SEDs for sources in the Spitzer catalog from Gruendl & Chu (2009), we

have expanded the catalog by adding optical UBV I photometry from the Magellanic Cloud

Photometric Survey (MCPS; Zaritsky et al. 2004) and near-IR JHKs photometry from the

Point Source Catalog of the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006). As

the 2MASS catalog is relatively shallow with a photometric limit of Ks ∼ 14.5, we have also

used the point source catalog from the InfraRed Survey Facility (IRSF; Kato et al. 2007),

which is ∼ 2 mag deeper than the 2MASS catalog, to match the IRAC sources that do

not have 2MASS counterparts. When merging the datasets, we allow a 1′′ error margin for

matching Spitzer sources with optical or near-IR sources. Thus, for each Spitzer source, the

magnitudes from U to 70 µm can be converted to flux densities using the corresponding

zero-magnitude flux listed in Table 3 and then used to construct the SED.

We have used Hα images of N 159 from the Magellanic Cloud Emission-Line Survey

(MCELS; Smith & The MCELS Team 1999) to examine the large-scale distribution of dense

ionized gas and to compare with images at other wavelengths. As the angular resolution of

this survey is ∼ 2′′, we have used additional Hα images taken with the MOSAIC cam-

era on the CTIO Blanco 4 m telescope that cover the northern part of our working field

(Seward et al. 2010). These images, with a pixel size of 0.′′27 pixel−1, are used to show the

immediate environments of YSOs. Finally, as stars are formed from molecular gas, we have

also used the CO observations from the Magellanic Mopra Assessment (MAGMA; Ott et al.

2008; Hughes et al. 2010) to examine the distribution of molecular clouds in N159.

3. Identification of Massive YSOs

3.1. Selection of Massive YSO Candidates

YSOs are enshrouded in dust that absorbs stellar UV and optical radiation and re-

radiates in the IR. Thus, YSOs can be distinguished from normal stars, i.e., main-sequence,

giant, and supergiant stars, from their excess IR emission; they are positioned in redder

parts of the color-color and color-magnitude diagrams (CMDs) than normal stars. However,
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background galaxies and evolved stars such as asymptotic giant branch (AGB) stars can

also be red sources, and these contaminants exist in non-negligible numbers. In Paper I

and Gruendl & Chu (2009), we have demonstrated that using two color-magnitude criteria

([4.5]−[8.0]) ≥ 2.0 and [8.0] < 14−([4.5]−[8.0]), galaxies and evolved stars can be effectively

excluded for the initial selection of massive YSOs. We have thus applied the same criteria to

select YSO candidates in N159. Note that although the full LMC catalogs of YSO candidates

have been constructed using similar methods (Whitney et al. 2008; Gruendl & Chu 2009), as

will be discussed in §3.4, a detailed analysis on small regions together with new information

such as deep near-IR photometry as we perform here will be more complete and also useful

in diagnosing sources that might have been previously mis-identified.

Figure 3a displays the [8.0] versus ([4.5]−[8.0]) CMD of all sources detected in N159.

To illustrate the locations of AGB stars in the CMD, models for Galactic C- and O-rich AGB

stars (Groenewegen 2006) are also plotted. Although the LMC metallicity is only 1/3 solar,

as confirmed in Blum et al. (2006), these Galactic models should be good approximations for

LMC objects since the chemistry of AGB atmospheres is dominated by nucleosynthesized

material. To avoid crowding, we plot only models for a stellar luminosity of 3000 L⊙ to

illustrate the range of colors. For a luminosity range 1 × 103 − 6 × 104L⊙ (Pottasch 1993),

the expected loci of AGB stars in the CMD can move vertically from 1.2 to −3.3 mag.

We have also searched the known evolved stars in N159 in the SIMBAD database and

found 4 confirmed AGB stars at various evolutionary stages: 2 carbon stars and 2 OH/IR

stars. These 4 objects are marked with open squares in the [8.0] versus ([4.5]−[8.0]) CMD

(Figure 3a). Their locations overlap with AGB stellar models and our selection criteria

indeed exclude them.

We obtain a list of 52 YSO candidates from the above selection criteria, however, they

still include a significant number of small dust knots, obscured evolved stars, and bright

background galaxies. These contaminants need to be examined closely to assess their nature

and to be excluded from the YSO list. Following the procedures outlined in Paper I, to better

resolve these IR sources and their environments, we examine the HST, CTIO 4m ISPI JKs,

and CTIO 4m MOSAIC Hα images. We further use the multi-wavelength catalog described

in §2.4 to construct SEDs from the U -band to 70 µm. Using these images and SED data,

we have assessed whether the candidates are truly YSOs.

3.2. Identification of Contaminants

Background galaxies can be identified from their morphologies if they are resolved. Two

of our CMD-selected YSO candidates, sources 054037.09−694521.5 and 054044.66−694550.9
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show elongated, extended emission around the point sources in high-resolution MOSAIC

and ISPI images. The SEDs of these two sources are similar to those of late-type galaxies,

i.e., characterized by two broad humps, one from stellar emission over optical and near-IR

wavelength range and the other from dust emission over mid- to far-IR range. In addition,

the interstellar environment around these two sources are relatively dust free as they have

little diffuse 8 µm emission in the surroundings. Based on these considerations, these two

CMD-selected YSO candidates are reclassified as background galaxies.

Warm interstellar dust may show mid-IR SEDs indicative of PAH emission (e.g., Gorjian et al.

2004), similar to those of circumstellar dust in YSOs. As the angular resolution of IRAC im-

ages is ∼ 2′′, corresponding to 0.5 pc for a LMC distance of 50 kpc, some small dust clumps

may be identified as point sources and included in the YSO candidate list. In addition, a

main-sequence star projected near a dust clump or superposed on dust filaments may also

make its way into our YSO candidate list. To identify these two types of YSO imposters,

we use our high angular resolution (0.′′3 pixel−1) ISPI JKs images. In the ISPI images,

stars or YSOs appear unresolved and can be further differentiated with the J − Ks color

as stars are brighter in J and YSOs brighter in Ks. Dust clumps may appear as extended

emission or have no point-like counterparts in the ISPI Ks image. These dust clumps are

unlikely to have highly embedded massive YSOs since none of them have bright 24 µm point

sources as would have been expected for such YSOs; however, they may have YSOs with

lower masses. As a reference, Herbig Ae stars of A0-type at different evolutionary stages

would have been detected, because AB Aur and Lk Hα 25 (Hillenbrand et al. 1992) placed

at the LMC distance would have Ks = 16.9 and 18.6, respectively, and the photometric

limit of our Ks images at 10-σ level is ∼ 17.6 mag and the 3-σ detection limit is . 19.0 mag

(Gruendl & Chu 2009). Aided by the ISPI images, we find that 16 of our 52 YSO candidates

are interstellar dust clumps, and another 7 are stars projected near dust clumps.

3.3. Massive YSOs and Their Classification

The results of our examination of 52 YSO candidates are given in Table 4, which lists

source name, ranking of the brightness at 8 µm, magnitudes in the 3.6, 4.5, 5.8, 8.0, 24,

and 70 µm bands, source classification, and remarks. Each source’s magnitudes in the U , B,

V , I, J , H , Ks bands are given in Table 5. Note that some of the YSOs appear as single

sources in IRAC images but are resolved into multiple sources in high-resolution ISPI and

VLT/NACO images; for these sources, the photometric measurements in Table 5 were made

for the dominant YSO sources, i.e., the brightest Ks sources with the reddest J −Ks colors.

The “Flag” in Table 5 gives the origin of data from which JHKs are measured. The results
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of YSO identification are shown in the [8.0] versus ([4.5]−[8.0]) CMD (Figure 3b). Among

the 52 YSO candidates, we identified 2 background galaxies, 16 dust clumps, and 7 stars

superposed on dust. After excluding these sources, 27 YSO candidates remain. As these are

most likely bona fide YSOs, we will simply call them YSOs in the rest of the paper.

Following the classification scheme proposed in Paper I, we have further categorized

these YSOs into Type I, II, and III by analyzing their properties and corresponding SED

plots. Type I YSOs have SEDs with a steep rise from the near-IR to 24 µm as the radiation

is mostly from their circumstellar envelopes. They are generally not visible in the optical

or J-band, but are visible in the Ks-band and bright at 24-70 µm. Type I YSOs are often

found in or behind dark clouds. Type II YSOs have SEDs with a low peak in the optical and

a high peak at 8-24 µm corresponding to stellar core and circumstellar disk, respectively,

after the envelope has dissipated. Type II YSOs are faint in the optical, but bright in the

J-band to 8 µm, and then faint again at the 24 µm. Type III YSOs have SEDs peaking in

the optical with a modest amount of dust emission in the near- to mid-IR as they are largely

exposed but still possess remnant circumstellar material. Their brightness fades in the longer

wavelength and they are often surrounded by H II regions. The results of our classification

of 27 YSOs are also given in Table 4. Multi-wavelength images and SEDs of these YSOs

have been shown in Gruendl & Chu (2009), though differences exist in some SEDs between

theirs and this study due to the inclusion of aforementioned deeper near-IR catalogs and

that 24 µm upper limits were estimated for a few YSOs in order to better constrain model

fitting to these SEDs as discussed later in §4.

3.4. Comparison with YSO Samples Identified by Others

N159 contains the first extragalactic protostar discovered by Gatley et al. (1981) us-

ing ground-based near- to mid-IR JHKL′ photometry; this protostar corresponds to our

YSO 053959.34−694526.3. Using sensitive Spitzer observations, more YSOs in N159 have

been identified using various methods by Jones et al. (2005), Whitney et al. (2008), and

Gruendl & Chu (2009). Gruendl & Chu (2009) used the same Spitzer data and selection

criteria, and identified 25 YSOs. Our assessments retain two more sources in the YSO sam-

ple, 053952.60−694517.0 and 054050.85−695001.9, which were classified as a diffuse source

and a background galaxy in their list. The reclassification is aided by the ISPI JKs images

and IRSF JHKs photometry. For source 053952.60−694517.0 which was previously consid-

ered as (bright) stars superposed on a dust clump, the ISPI images show a faint red source

(Ks ∼ 17.0 and J − K ∼ 0.3) resolved from nearby bright stars within the IRAC PSF.

For source 054050.85−695001.9 whose SED was once composed of only a nearly flat slope
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over 3.6–24 µm, the inclusion of IRSF JHKs photometry makes its SED (Figure 5) more

consistent with a YSO than a galaxy.

Jones et al. (2005) identified YSO candidates by comparing source locations in the

([3.6]−[4.5]) versus ([5.8]−[8.0]) color-color diagram with those expected from low-mass YSO

models (Allen et al. 2004) . They studied a smaller region centered on the prominent central

H II regions, within which we find 21 YSOs while they find only five YSO candidates. In

Figure 4a, we mark the locations of their five YSO candidates and our YSOs in the 8 µm

image of N 159, and in Figure 4b we compare their sources with ours in the [8.0] versus

([4.5]−[8.0]) CMD. All of their five YSO candidates fall within the YSO wedge bounded by

[4.5]−[8.0] ≥ 2.0 and [8.0] ≥ 14.0−([4.5]−[8.0]), and form a subset of our YSO sample. To

investigate why the majority of our YSOs in N159 are missed in their study, we further

compare our sources with their photometric catalog (Tables 1 and 2 in Jones et al. 2005).

We find that the discrepancy between our and their YSO lists is attributed to both different

selection criteria for point sources and different criteria for YSOs. Jones et al. used stringent

parameters in the automated search for point sources, discarding any source that appear

irregular compared with the IRAC PSF; this omitted eight of our YSOs, including three

bright sources with [8.0] < 8.0. Only 13 of our 21 YSOs were identified as point sources in

their catalog, and only five of these were also classified as YSOs by Jones et al. Of the re-

maining eight point sources, four were classified by Jones et al. as H II regions because their

8 µm images were slightly more extended than the PSF; three sources were not classified

as they did not have photometric measurements in all four IRAC bands; and one was not

selected as YSO because its [5.8]−[8.0] color was ∼ 0.2 mag bluer than those expected for

Class I low-mass YSOs. However, we find the SED of this last source, 053940.78−694632.0

in Figure 5, to be consistent with those of bona fide YSOs.

The comparison with the YSO sample of Whitney et al. (2008) is not straightforward

as they used a complex set of criteria. Within N159, they found only 4 YSO candidates.

These four YSO candidates are also marked in Figure 4. The differences between our and

their YSOs can be summarized as the following:

1. Within the YSO wedge bounded by [4.5]−[8.0] ≥ 2.0 and [8.0] ≥ 14.0−([4.5]−[8.0]), we

find 27 YSOs, while Whitney et al. (2008) find only 3 YSO candidates, a subset of our

sample. To investigate why the majority of the YSOs in N159 are missed in Whitney

et al., we further compare our sources with their original catalog, i.e., the SAGE point

source catalog. We find that only one missed YSO results from different selection

criteria, and the rest from defining point sources and applying signal-to-noise (S/N)

thresholds when making final lists in these two studies. The SAGE catalog, similar to

Jones et al., used stringent parameters for the automated search for point sources and
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Whitney et al. applied a high S/N threshold to select YSO candidates. The former

discards any irregular point sources compared to IRAC PSFs, resulting in only 14 of our

27 YSOs retaining in the SAGE catalog. The latter tends to exclude sources near bright

neighbors or over bright background, since varying backgrounds (Figure 4a) raises

photometric uncertainties and the SAGE pipeline reports conservative S/N ratios. The

S/N ratios are further reduced by applying additional 10% and 30% uncertainties

respectively to 5.8 and 8.0 µm measurements (Whitney et al. 2008), resulting in only 4

of the 14 sources being included in their list of YSO candidates. One of these 4 sources

does not match their set of selection criteria and hence is not included as a YSO in the

Whitney et al. (2008) catalog. However, the SED of this source, 054000.69−694713.4

in Figure 5, is consistent with bona fide YSOs.

2. One YSO candidate, W991 (SSTISAGE1CJ053945.37−694802.3), of the Whitney et al.

sample was rejected by our more restrictive color-magnitude criteria for YSO selection

that are intended to increase reliability though at the expense of missing some of the

more evolved YSOs.

The photometric extraction method used for this work (from Gruendl & Chu 2009) and

Paper I has allowed the inclusion of marginally extended sources and sources amid a complex

interstellar background in our initial photometric catalog. Considering that 1′′ =0.25 pc in

the LMC, it is often inevitable that within the IRAC PSF a YSO is blended with circum-

stellar outflows or interstellar features. Furthermore, YSOs in multiple systems or YSOs in

ultracompact or compact H II regions (see §4.2.2 for a detailed discussion) are likely to be

measured as a single source. While it is necessary to relax the search criteria for point sources

in the LMC to obtain the most complete census of YSOs possible, the relaxed search also

requires that individual sources are examined carefully in order to remove diffuse sources or

local peaks in the dusty interstellar medium.

The color criteria commonly used for identifying low-mass YSOs, as applied in Jones et al.

(2005), are too stringent for massive YSOs, particularly when they are at early evolution-

ary stages. As shown in models of massive YSOs, such emission is dominated by massive

envelopes and hence SEDs peak toward wavelengths longer than 24 µm. These SEDs have

a generally rising slope at shorter wavelengths such as IRAC bands of 3.6–8.0 µm, but show

structures depending on, e.g., the detailed geometry of the dust distribution (Whitney et al.

2004). The YSO selection method used in our study should make our YSO list relatively

complete for the region of the [8.0] vs. ([4.5]−[8.0]) CMD analyzed. It will however miss

sources outside this region, i.e., the less embedded, more evolved, or less massive (. 4M⊙)

YSOs, as discussed in Paper I. The Whitney et al. (2008) analysis covers bluer and fainter re-

gions in the [8.0] vs. ([4.5]−[8.0]) CMD, and thus may find YSOs that we have not analyzed,
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but confusion from evolved stars and background galaxies in these regions is more severe and

careful consideration of complementary information is needed to distinguish between YSOs

and contaminants.

4. Determining YSO Properties from Model Fits of SEDs

4.1. Modeling the SEDs

The observed SED of a YSO can be compared with model SEDs, and the best-fit models

selected by χ2 statistics can be used to infer the probable ranges of physical parameters for the

YSO. We use a grid of dust radiative transfer models calculated with the HOCHUNK Monte-

Carlo code (Whitney et al. 2003), each containing a point source photospheric emitter (pre-

main-sequence or main-sequence spectrum), a flared circumstellar disk, a flattened rotating

envelope, and a bipolar cavity (see Robitaille et al. 2006, for details). The fitting can be

carried out with the fitting tool Online SED Fitter2 (Robitaille et al. 2007). The input

parameters of the SED fitter include the fluxes of a YSO and uncertainties of the fluxes.

The uncertainty of a flux has two origins: the measurement itself and the absolute flux

calibration. The fluxes and their measurement errors are given in Tables 4 and 5. The

calibration errors are 10% in U , 5% in B, V , 10% in I, J , H , Ks, 5% in 3.6, 4.5, 5.8, and 8.0

µm, 10% in 24 µm, and 20% in 70 µm (Zaritsky et al. 2004; Skrutskie et al. 2006; Kato et al.

2007; IRAC Data Handbook; MIPS Data Handbook). The total uncertainty of a flux is thus

the quadratic sum of the measurement error and the calibration error. We have used the

above SED fitting tool to analyze the 27 YSOs in our sample. 22 of them appear single or

are clearly the dominant source within the IRAC PSF, making comparisons with single-YSO

models plausible. The remaining five either have no dominant YSOs or contain luminous

non-YSO sources such as background stars or dust clumps within the IRAC PSF, making

single-YSO models suspect. Although the total luminosities from well-reproduced SED fits

to these five YSOs should still be good approximations, given the complicated nature, they

are not discussed further in detailed comparisons with models.

The best-fit and acceptable SED models of the 27 YSOs are shown in Figure 5, in which

the 22 “single” YSOs are arranged in the order of Types I, I/II, II, II/III, and III from our

empirical classification, and within each type by order of increasing [8.0] magnitude, and the

5 “multiple” YSOs are arranged by order of increasing [8.0] magnitude. In each panel, data

points are plotted in filled circles and upper limits are plotted in filled triangles; error bars

2The Online SED Fitter is available at http://caravan.astro.wisc.edu/protostars/sedfitter.php.

http://caravan.astro.wisc.edu/protostars/sedfitter.php
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are plotted but they are usually smaller than the plot symbols. The best-fit models, with

minimum χ2 (χ2
min, see Robitaille et al. 2007, for definitions of χ2), is shown in solid black

line, and the radiation from the stellar core reddened by the best-fit foreground extinction

AV is shown in dashed black line. For most YSOs, their SEDs can be fitted similarly well by

a range of models. We have used a cutoff of χ2 − χ2
min ≤ 3 for acceptable models and they

are plotted in gray lines.

The results of the SED model fits are given in Table 6, where the YSOs are listed in

the same order as Figure 5. The source name, [8.0] magnitude, and type from our empirical

classification are listed on the left of the table, and selected physical parameters of the

best-fit models are listed to the right, i.e., the stellar parameters in mass, temperature, and

radius (M⋆, T⋆, and R⋆), envelope accretion rate (Ṁenv), disk mass (Mdisk), AV , and total

luminosity (Ltot). In addition to the parameters of the best-fit model, we have also used

the acceptable models to show a possible range of stellar mass and total luminosity. We

calculated weighted average M̄⋆ and L̄tot using the χ2 values as weights, and defined the

uncertainty to be the weighted standard deviation ∆M⋆ and ∆Ltot of the accepted models.

For each accepted model, we have also calculated the evolutionary stage using Ṁenv/M⋆

and Mdisk/M⋆ ratios as defined in Robitaille et al. (2006), i.e., Ṁenv/M⋆ > 10−6 yr−1 for

Stage I sources, Ṁenv/M⋆ < 10−6 yr−1 and Mdisk/M⋆ > 10−6 for Stage II sources, and

Ṁenv/M⋆ < 10−6 yr−1 and Mdisk/M⋆ < 10−6 for Stage III sources. We then calculated the

range of evolutionary stage, Stage Range, with the same weighted scheme for average and

standard deviation. These ranges of stellar mass, total luminosity, and evolutionary stage

are also given in Table 6. Among these three quantities, total luminosity is most robust.

Mass depends on pre-main-sequence evolutionary tracks, which may introduce a sysmtematic

offset, and although the mass of warm circumstellar dust is relatively robust, its translation

into an accretion rate and evolutionary state depends on the applicability of the single-YSO

dust geometry used in our radiative transfer models.

The SED fits of the 22 “single” YSOs, as displayed in Figure 5, show different degrees

of goodness-of-fit among our empirically defined YSO types. The 18 Type I, I/II, and II

YSOs show good agreement between model and observed SEDs, though a number of them

demonstrate that the observed fluxes are systematically lower than the modeled ones at 4.5

µm. Among the four Type III YSOs analyzed, two of them show reasonable agreement in the

SED fits, while the other two exhibit significant discrepancies between models and observed

SEDs. The above-mentioned discrepancies and possible causes are discussed below in §4.2.
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4.2. Significant Discrepancies Between Model and Observed SEDs

4.2.1. PAH Emission in Massive YSOs

A number of YSOs in N159 show a brightness dip at 4.5 µm in their SEDs (Figure 5).

This is similar to YSOs in Paper I, and has been suggested that the apparent dip is not

an absorption feature but caused by raised fluxes from PAH emission at 3.3, 6.2, 7.7, and

8.6 µm in the other three IRAC bands, and the difference between observed and modeled

SEDs is due to models not including PAHs or small grains. The existence of PAH emission

in massive YSOs in the LMC has been confirmed in a recent study using Spitzer InfraRed

Spectrometer (IRS) observations (Seale et al. 2009). Furthermore, PAH emission appears

to almost ubiquitously present among massive YSOs, as it is detected in 87% of 277 IRS

spectra of massive YSOs. We examined the IRS spectra of Seale et al. (2009) and found

that 28 of 29 YSOs in N44 (Paper I) and 11 of the 11 YSOs in N159 show PAH emission in

their IRS spectra, confirming our explanation of the 4.5 µm dip in SEDs as a result of PAH

emission in the other three IRAC bands.

While including PAHs and small grains in YSO models is in progress (e.g., Wood et al.

2008), we can use IRS spectra to estimate the uncertainty in deriving physical parameters of

YSOs with current models. We have selected YSO 053935.99−694604.1 for illustration since

this source is bright enough to ensure accurate photometric measurements and its SED shows

an obvious dip at 4.5 µm. Furthermore, this YSO has no silicate absorption at 10 µm in the

IRS spectrum (Seale et al. 2009) so that the contribution of PAH emission can be estimated

by direct comparison between photometric data and the spectrum. The photometric SED

and IRS spectrum of YSO 053935.99−694604.1 are shown in Figure 6a, where PAH emission

at 6.2, 7.7, 8.6 and 11.3 µm are marked. Although 4.5 µm is outside of IRS’s spectral range,

this photometric datapoint appears to be consistent with the continuum level extending from

those around 10 and 15 µm. We thus assumed that the difference between the photometric

datapoints at 5.8 and 8.0 µm and the underlying continuum level is entirely due to PAH

emission and derived a factor of 1.8 for the (PAH+continuum)/continuum ratio. We divided

the observed fluxes at 3.6, 5.8, and 8.0 µm by this factor and modeled the PAH-corrected

SED. The model fits to the YSO’s SED before and after the PAH correction is shown in

Figures 6b and c; the PAH-corrected SED is well reproduced by YSO models.

The results of the fits are listed in Table 7, including χ2-weighted average and standard

deviation of stellar mass, total luminosity, envelope accretion rate, and Stage Range. All

four but one parameter inferred from fits to SEDs before and after PAH correction are in

good agreement. The exception is Ṁenv, whose value is larger before the PAH correction;

however, this parameter is poorly constrained. This result is understandable since the raised



– 15 –

fluxes from PAH emission in the three IRAC bands is compensated by additional amount of

larger dust grains incorporated in the models and hence the larger Ṁenv, and the ambiguous

geometry of dust distribution (in disk or envelope) causes the large uncertainties in Ṁenv.

Nonetheless, the other three main parameters are not sensitive to this contamination and

thus the conclusions based on stellar mass, total luminosity, and Stage Range derived from

model fits to observed SEDs without PAH corrections are not compromised.

4.2.2. Discrepancies in Type III YSOs

Among the four Type III YSOs, two show significant discrepancies between the best-fit

models and the observed SEDs: 053945.18−694450.4 and 054004.40−694437.6 (Figure 5).

These two YSOs have SEDs agreeing with the stellar photospheric emission in near-IR

but deviant in optical bands. To understand the cause of this discrepancy, we examine

available high-resolution optical images, i.e., the 4m MOSAIC Hα and archival HST im-

ages. These images show that both YSOs have already formed compact H II regions. YSO

053945.18−694450.4 has a small H II region of diameter ∼ 4.′′8 (=1.2 pc), resolved in the

MOSAIC Hα image. YSO 054004.40−694437.6 coincides with the compact H II region the

Papillon Nebula (Heydari-Malayeri et al. 1999) of diameters ∼ 4.′′4×2.′′8 (= 1.1pc × 0.7 pc),

resolved in both MOSAIC and HST images.

For both YSOs, the optical UBV I photometry were adopted from MCPS catalog. This

catalog used broad-band images taken with a CCD camera of a 0.′′7 pixel−1 scale and under

seeings of 1.′′2-1.′′8 (Zaritsky et al. 2004). Thus, compact H II regions of radii . 2′′ are

unlikely to be resolved from the central stars. Bright nebular emission lines such as Hβ

would have significant contribution to B and V bands, and hence these fluxes deviate from

stellar models, resulting in larger uncertainties in physical parameters inferred from SED

fits. Furthermore, the presence of H II regions also suggests that the dust emission can have

an interstellar, instead of circumstellar, origin. Thus, the inferred envelope accretion rate

and disk mass are less reliable, and so is the Stage. This is similar to the YSO associated

with a small H II region resolved by HST in N44, YSO052207.3−675819.9 (Paper I). These

results signify the importance of using high-resolution Hα images to reveal small H II regions

that are responsible for the dust emission and indicate the last evolutionary stage as a YSO

approaches the main sequence stage. On the other hand, the good agreement among mass

estimates for YSO052207.3−675819.9 using different independent methods demonstrates

that for a SED relatively well reproduced by models (and hence a good estimate for the total

luminosity of the system), the mass of the central star inferred from SED fits remains reliable.

This is likely the case for YSO 053945.18−694450.4. As for YSO 054004.40−694437.6, the
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system is more complicated and will be discussed in §4.3.

4.3. Multiplicity Effect on SED Fits – Modeling a Group of YSOs

At the LMC’s distance of 50 kpc, IRAC’s ∼ 2.′′0 angular resolution translates into 0.5

pc, which can hide a small group of YSOs. Indeed, 10 of the YSOs are resolved by our ISPI

images (with a 0.′′3 pixel−1 scale) into multiple sources or even small clusters within the IRAC

PSF. Another 10 YSOs appear more extended than the ISPI PSF; two of these have NACO

images available and both are resolved into multiple sources. These results suggest that at

least 44% and up to 74% of the IRAC-identified YSOs are multiple sources. Similarly high

fractions, 50–65%, have been reported for YSOs in N44 (Paper I) and for 82 LMC YSOs

which have archival HST Hα images available (Vaidya et al. 2009). While the ISPI and

NACO JKs images allow us to identify the dominant YSO in a multiple system for accurate

photometric measurements, the IRAC measurements correspond to the integrated light of

all sources within the PSF. This mismatch is not problematic if one YSO dominates the

emission in IR bands; however, if two or more YSOs are present within the IRAC PSF, the

SED modeling can produce very uncertain results. Below we use two examples to illustrate

the extent of errors caused by multiplicity.

The YSO 053941.89−694612.0 in N159 appears extended in the ISPI JKs images and

is resolved into four sources within 0.′′6 in the NACO J images. Among these four, the two

brightest sources (#123 and #121 in N159-A7, Testor et al. 2006), have Ks = 13.31 and

13.52 and J − Ks = 4.80 and 4.22, respectively; the extremely red colors originate from

infrared excess unless the foreground extinction was exceedingly high, so these are most

likely YSOs. Therefore, 053941.89−694612.0 can be used to assess uncertainties in SED

fitting for cases where two YSOs of comparable properties exist within the IRAC PSF. We

construct SEDs for these two bright sources, 053941.89−694612.0a and b, using JKs from

Testor et al. (2006) and IRAC/MIPS fluxes proportioned according to their Ks mag; the

latter assumption is reasonable since both YSOs have very red J−Ks colors indicating early

evolutionary stages. Model fits to these two SEDs are shown in Figure 7, along with fits to

the SED of integrated fluxes of the multiple system. All three SEDs have similarly good fits.

The results of the SED fits are listed in Table 7. The stellar mass inferred from the

SED of integrated fluxes is 32 M⊙, and those for the individual a and b components are 27

and 25 M⊙, respectively. Component a makes up . half of the total light in near-IR and

has an inferred mass ∼ 84% of that from the SED of integrated fluxes. Thus, for a source

containing multiple YSOs at similar evolutionary stages such as 053941.89−694612.0, the

inferred mass for individual (most massive) YSO could be overestimated by ∼ 20%, and the
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total YSO masses may be underestimated by ∼40%.

The second example of multiplicity in a YSO source is 054004.40−694437.6 in N159B,

or the Papillon Nebula (Henize 1956; Heydari-Malayeri et al. 1999). HST images revealed

a complex H II region around 054004.40−694437.6. Heydari-Malayeri et al. (1999) used

the integrated Hβ flux of the H II region (assuming ionization-bounded) and determined

that the spectral type of the ionizing source(s) of N 159B is at least O8V or earlier, while

Indebetouw et al. (2004) reported an O6V ionizing star based on the integrated radio cen-

timeter continuum flux of N 159B. The clumpy morphology seen in the HST images suggests

that ionizing photons may leak from this region; thus the O8V spectral type is a lower limit.

As illustrated in Figure 7d, our single-YSO model fails to simultaneously reproduce the mid-

IR dust emission and the optical light. The latter, adopted from the relatively low-resolution

MCPS catalog, is almost certainly contaminated with nebular line emission from the ionized

gas that is not included in the YSO models.

To separate the central point source of 054004.40−694437.6 from the surrounding nebu-

losity, we use photometric measurements made with HST images in the optical and VLT/NACO

adaptive optics images in Ks. At other IR bands, we use the IRSF JH measurements as

upper limits, and IRAC and MIPS fluxes as they are. The resultant SED and model fits are

shown in Figure 7e, and the inferred YSO mass is ∼ 21 M⊙ (Table 7). The SED fitting is

biased toward HST data points as they have smaller errors compared with those of Spitzer

data points. It is thus not surprising that the YSO mass is consistent with the B0/O9 spec-

tral type implied by the HST UbyI photometry. In fact, Heydari-Malayeri et al. (1999) and

Testor et al. (2007) have already suggested that the point source detected in HST images,

which is also the brightest source in the VLT/NACO Ks image within the IRAC PSF, does

not account for the full luminosity or the centimeter radio flux of the nebula.

As the optically brightest star in 054004.40−694437.6 may not be the YSO contributing

to the observed mid-IR emission, we decouple the mid-IR part of the SED from the rest and

make SED fits to only the mid-IR segment. This is essentially using the luminosity of dust

emission as a calorimeter to infer the effective luminosity of the main energizing source(s)

without specifically trying to separate those sources from the H II region. The result should

be consistent with the spectral type derived from the total radio continuum emission from the

H II region. Figure 7f shows that the mid-IR part of the SED can be reproduced by models

reasonably well, and the inferred mass, ∼ 41 M⊙ (Table 7), is indeed in agreement with the

O6V spectral type derived from radio observations (Indebetouw et al. 2004). Therefore, the

main ionizing sources of the Papillon Nebula are still hidden behind a large amount of dust.

In summary, when a YSO is in a multiple system, it is crucial to use high-resolution

optical and near-IR images to assess whether the multiple components are at different evolu-
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tionary stages. If the dominant sources are at similar YSO stages, model fits of the integrated

SEDs would overestimate the mass of the most massive YSO but underestimate the total

mass of the YSOs. On the other hand, if multiple sources at different evolutionary stages are

present, the optical and near-IR emission may be dominated by the exposed stars and the

mid-IR emission dominated by more embedded YSOs. Under these circumstances, model

fits to the mid-IR portion of the SED can still provide useful information on the dominant

heating sources. Lastly, we note that since only one case in each of these two types of sys-

tem is investigated, our estimates on mulitiplicity effect is thus approximate and a better

quantification requires a larger sample. A cautionary corollary of our result is that the un-

certainties would be even larger in mass estimates for YSOs of three or more comparably

bright objects, such as the 5 multiple YSOs that are already resolved in the ISPI JKs images

since each single source could be further resolved into multiples in even higher resolution

(e.g., the aforementioned NACO) images.

4.4. Evolutionary Stage of YSOs

4.4.1. Comparisons among Empirical, Theoretical, and Spectral Classifications

We use our analysis of 22 “single” YSOs to compare our empirical classification, Type,

with the theoretical classification, Stage (Robitaille et al. 2006). As listed in Table 6, Types

and Stages are only loosely correlated. This lack of overwhelming correspondence is also

seen in Paper I and may be attributed to two reasons primarily related to the relatively

large distance of the LMC. In an unresolved cluster treated as a single source, details of the

circumstellar dust geometry may not correspond extremely well to our model prescription,

making the translation of fitted dust mass into an accretion rate (quantitative Stage) less

certain. On the other hand, a Type determined from environmental morphology on parsec

scale may also not accurately reflect the evolutionary state of a single YSO. The methods

are both useful, neither definitive. Second, limited angular resolution may cause inclusion of

extraneous dust emission from unresolved H II regions. This is particularly relevant to YSOs

at a late evolutionary stage, such as the three Type III YSOs that show small H II regions

in the MOSAIC Hα images; the mid-IR emission from unresolved H II regions would have

been erroneously modeled as circumstellar disks or envelopes. Nevertheless, we expect the

extreme Stage I YSOs to correspond to our Type I YSOs, since they are deeply embedded

in massive envelopes. Indeed, Table 6 shows that Type I YSOs are well fitted by Stage I

models. We also expect Type III YSOs without H II region confusions to correspond to

Stage III YSOs, and indeed this is the case for 054000.69−694713.4.

We also use the 11 YSOs with IRS observations to compare our empirical classification
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with the classification based on spectral features (Seale et al. 2009). Table 8 lists their

spectral classification and the presence of silicate absorption. Among the 11 YSOs, 10

have spectral type PE, whose spectra show PAH and fine-structure line emission, and 1 has

spectral type P, whose spectrum shows PAH emission but not fine-structure line emission.

Our empirical classification for the 10 YSOs with PE-type spectra cover Types I, I/II, II,

and III, indicating that the ionized gas can be present early on. Compared with PE-Type

YSOs, the P-Type YSOs may have an earlier evolutionary stage because of a higher accretion

rate that quenches the formation of an H II region or have a stellar temperature too low

to provide ionizing flux (Seale et al. 2009). The P-type YSO in N159, 053929.21−694719.0,

is classified as Type I, and additional evidence is presented in §4.4.2 to suggest that this

P-type YSO is in an earlier evolutionary stage than the PE-Type YSOs. The strongest

spectral feature that correlates with our empirical classification is the silicate absorption.

The presence of silicate absorption is an indication of early evolutionary stage (Seale et al.

2009). The five YSOs in N159 that show silicate absorption are all of Types I and I/II. They

are also all of Stage I and have high Ṁenv, 7.0× 10−4 − 4.6× 10−3M⊙/yr (Table 6), inferred

from SED modeling, bolstering their evolutionary stage being early. Thus, our classification

using multiwavelength SEDs and images suggests an evolutionary sequence consistent with

that implied by classification based on spectra features.

4.4.2. Evolutionary Stages of YSOs Associated with Masers and Ultracompact H II

Regions

Massive stars inject energy into the surroundings even during their formation. They

undergo energetic mass ejection in the form of molecular outflows and produce maser phe-

nomenon. They can also ionize the circumstellar gas to form small, dense H II regions such

as ultra-compact H II regions (UCHIIs) with diameters ≤ 1017 cm and densities ≥ 104 cm−3

(Franco et al. 2000). In N159, a H2O maser source and three UCHIIs have been identified

(Lazendic et al. 2002; Indebetouw et al. 2004), and each of these four objects is spatially co-

incident with a massive YSO (Figure 8a). The link between these objects and YSOs allows

us to compare the YSOs’ evolutionary stages inferred from SED models to the circumstel-

lar conditions required to form masers or UCHIIs, providing an independent check for the

feasibility of SED models.

The H2O maser in N159 was first reported by Hunt & Whiteoak (1994) and confirmed

with subarcsecond resolution and accurate position by Lazendic et al. (2002). It coincides

with our Type I YSO 053929.21−694719.0 within 1′′. As listed in Table 9, this YSO has a

high mass of 26.1±1.5 M⊙ and a high Ṁenv of (5.1±1.5)×10−4M⊙ yr−1 derived from model
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fits to its SED. The high Ṁenv indicates it as a Stage I YSO. Its IRS spectrum is classified as

Type P (Table 8), as it does not show any fine structure lines from ionized gas (Seale et al.

2009). The high mass of the stellar core implies that it does emit ionizing radiation; however,

the high envelope accretion rate suggests that the circumstellar H II region is most likely too

small to become detectable with our large beam. The analysis of the YSO’s SED leads to

the conclusion that YSO 053929.21−694719.0 is in an early evolutionary stage. Indeed, it is

commonly accepted that the water maser phase precedes the UCHII phase (Ellingsen et al.

2007). Therefore, the production of the water maser and the YSO’s SED models all point

to a consistent picture that 053929.21−694719.0 is at a very young evolutionary stage.

Three UCHIIs have been identified in N159: B0540−6946(1), B0540−6946(4), and

B0540−6946(5) (Indebetouw et al. 2004). All three UCHIIs are coincident with Spitzer

sources within 1′′, and these sources have been identified as Type I, II/III, and III YSOs

(Table 9). As these sources are among the five most luminous YSOs in N159 at 8.0 µm,

they are also bright in the 24 and even 70 µm images from which reliable measurements are

needed to constrain model fits to their SEDs. The stellar luminosities determined from the

best-fit SED models can be translated into spectral types, assuming the relationship for main

sequence stars. These spectral types can be compared with those implied by the ionizing

fluxes determined from radio continuum observations (Indebetouw et al. 2004). As seen in

Table 9, agreement exists between the spectral types independently determined with these

two methods.

The development of a UCHII depends on not only the ionizing flux provided by the

central star, but also the opacity of the circumstellar medium. For infalling rates higher

than some critical value, Ṁcrit, the circumstellar medium will have such high opacities that

the ionized region will be too small and too optically thick to be detectable (Churchwell

2002). For the respective spectral types of the central stars, the Ṁcrit of the three UCHIIs

in N159 are computed to be ∼ 3 − 7 × 10−5M⊙ yr−1 (Table 9). Compared to the Ṁenv

determined from the best-fit models (Table 6) or weighted average Ṁenv determined from

all accepted models (Table 9) for these three YSOs, it is seen that all three YSOs have

Ṁenv ≫ Ṁcrit. We have further examined whether any acceptable models of the three

YSOs yield smaller envelope accretion rates. We find that all the other acceptable models

have Ṁenv ≫ Ṁcrit. This is similar to that found for 3 of the 4 UCHIIs associated with YSOs

in N44 (Paper I).

There could be two causes for Ṁenv ≫ Ṁcrit. One is that most of the infalling envelope

material is used in forming an accretion disk as modeled by Yorke & Sonnhalter (2002),

and the ionizing radiation escapes in the polar directions. The other is that at the LMC

distance, it is difficult to distinguish bound, circumstellar dust from more distant but still
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heated interstellar dust. The warm envelope of an UCHII contributes to the mid-IR emission

modeled in the SED, and raises the derived accretion rate. Thus, the high envelope accretion

rates of YSOs associated with these UCHIIs and the H2O maser mostly suggest that they

still have abundant dust/gas in the surroundings and have not significantly cleared their

environments. In terms of evolutionary sequence, we find that the maser is associated with

Type I while UCHIIs are associated with Types I, I/II, and III; this is consistent with the

general picture that the maser phase happens earlier than UCHII (Ellingsen et al. 2007).

Although the SED of the maser source is probably also contaminated by hot dust in the

environment that may not actually accrete onto the protostar.

4.4.3. Evolutionary Stages of YSOs as Herbig Ae/Be stars

HAeBe stars are intermediate-mass young stars that have evolved from the most em-

bedded phase and are now revealing their stellar components (e.g., Hillenbrand et al. 1992).

Since our YSO sample overlaps this mass range, we examine whether some of them might

be previously classified as HAeBe stars. Candidate HAeBe stars in N159 have been selected

by Nakajima et al. (2005) using near-IR JHKs photometry. Figure 8a shows their locations

marked on an 8 µm image of N 159, along with our YSOs marked in different colors to

indicate their evolutionary stages. Figure 8b and c show color-color and color-magnitude

diagrams using JHKs photometry of sources in N159 that are detected in all three bands

(kindly provided by Yasushi Nakajima; Nakajima et al. 2005). As listed in Table 8, nine

of these candidate HAeBe stars are identified as YSOs and they have the following types

of SEDs: one Type I, one Type I/II, five Type II, and two Type III. The majority (78%)

of these HAeBe candidates are Type II and III YSOs, consistent with the expectation that

such objects are less embedded. There are also two candidate HAeBe stars that we clas-

sify as non-YSO sources: 053921.21−694409.4 is a star superposed on dust clumps, and

053938.80−694436.0 is the O7 III stellar counterpart of the high-mass X-ray binary LMC

X-1 (Cowley et al. 1995). The latter clearly is not a young star, and this explains why its

colors are bluer than the other HAeBe stars (see Figure 8b and c).

4.5. Masses of YSOs

The mass estimates from the best and acceptable fits of 27 YSOs in N159 are listed

in Table 6. Among them, 22 YSOs have single or dominant sources within the IRAC PSF

and their SEDs can be properly approximated by single-YSO models to obtain reliable mass

estimates. The other five have SEDs from multiple YSOs or even non-YSO sources such as
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stars or nebulosities; their mass estimates have larger uncertainties and should be viewed

as rough estimates. Nevertheless, the results of SED fits show that twenty of the YSOs

in N159 have χ2-weighted average mass greater than 8 M⊙ and thus are most likely bona

fide massive YSOs. The remaining seven have χ2-weighted average < 8 M⊙ and are likely

intermediate-mass YSOs.

It has been suggested that the criterion [8.0] ≤ 8.0 may be used to select massive YSOs

in the LMC (Gruendl & Chu 2009). We find that indeed the χ2-weighted average mass of the

brightest YSOs, with [8.0] ≤ 8.0, are all ≥ 8 M⊙. This criterion may be too conservative, as

all (15 out of 15) YSOs with [8.0] ≤ 9.0 still have masses ≥ 8 M⊙ The results are consistent

with what we found for YSOs in N44 (Paper I).

At the high-mass end, nine YSOs have χ2-weighted average mass > 17 M⊙; these are

most likely O-type YSOs. Two YSOs have χ2-weighted average mass close to 17 M⊙ and

larger standard deviation that extending beyond 17 M⊙; these may or may not be O-type

stars. Therefore, there exist at least 9 O-type YSOs in N159. These most massive YSOs

will be discussed further in §5.1.

5. Massive Star Formation in N159

It is difficult to study the relationship between interstellar conditions and the formation

of massive stars because massive stars’ UV radiation fluxes and fast stellar winds quickly

ionize and disperse the ambient ISM. Young massive YSOs that have not significantly al-

tered the physical conditions of their large-scale environments can be used to probe massive

star formation. The large number of massive YSOs found in N159 provides an excellent

opportunity to investigate issues such as the relationship between star formation proper-

ties and interstellar conditions, progression of star formation, and evidence of triggered star

formation.

5.1. Interstellar Environments and Star Formation Properties

We examine the star formation properties of the molecular clouds in N159 as these

clouds contain the bulk material to form stars. The SEST and MAGMA CO surveys of the

LMC (Johansson et al. 1998; Ott et al. 2008) show three large concentrations of molecular

material in N159, i.e., the eastern, western, and southern peaks (Figure 9). These three

concentrations exhibit different numbers of massive stars formed in the last 10 Myr, as

evidenced by their different amounts of ionized gas. The eastern molecular peak is associated
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with bright Hα emission from the prominent central H II regions. Star formation has been

occurring in this ∼ 35 pc × 50 pc region for an extended period of time, as it contains both

evolved and young massive stars. For example, star #54 of Fariña et al. (2009) is a B1-2

IV-II star that is ∼ 10 Myr old, while their star #62 is an O4-6 Vn star that is . 3 Myr

old (Schaerer et al. 1993; Schaerer & de Koter 1997). The western molecular peak has only

several small, disjoint H II regions, but one of them, N159A, has the highest Hα surface

brightness in the entire N 159. The massive stars in N159A and its surroundings have been

imaged in UBV and their colors and magnitudes indicate that their spectral types range

from B2V to O5–6V (Deharveng & Caplan 1992). Given the absence of SNRs, these stars

are most likely . 5 Myr or that star formation started only in the last few Myr. The southern

molecular peak only has a couple of small H II regions, indicating that only modest massive

star formation has taken place.

Figure 9 shows that 96% (= 26/27) of YSOs in N159 are found within CO contours ≥

1 K km s−1. This corresponds to an H2 column density of ≥ 4× 1020 cm−2, for a CO-to-H2

conversion factor XCO = 3.9 ± 2.5 × 1020 cm−2 (K km s−1)−1 in the molecular ridge which

includes N159 (Pineda et al. 2009). About 70% of the YSOs are congregated toward the

three molecular peaks, similar to the 75% found in N44 (Paper I). The YSOs of the three

molecular peaks show different characteristics in their spatial distributions and interstellar

environments. The western molecular peak has the highest concentrations of YSOs, as 12

YSOs are found within ∼ 1.′5 (= 22 pc)-radius of the CO contour peak and 6 of them cluster

in a small region of 40′′ × 80′′ (=10 pc × 20 pc) over the bright H II region N159A and

its north tip N159AN. The eastern molecular peak has more widely distributed YSOs, and

most of them are associated with H II regions. The southern molecular peak has 4 YSOs

that are loosely distributed, and they are not associated with any ionized gas.

The YSOs of the three molecular peaks in N159 also show differences in their mass

distributions. In Figure 9, we have marked the YSOs with circles in three sizes that represent

O-type stars with inferred M̄⋆ ≥ 17M⊙, (early) B-type stars with 17 > M̄⋆ ≥ 8M⊙, and

intermediate-mass stars with M̄⋆ < 8M⊙. We found ∼ 80% of the O- and B-type YSOs in

N159 are in or adjacent to H II regions, similar to those seen in N44 (Paper I). The YSOs

with intermediate masses or without mass estimates do not show such preferred association

with H II regions, but this may be caused by an observational bias against the detection

of these fainter intermediate-mass YSOs over the bright background dust emission in H II

regions. The western and eastern molecular peaks, associated with bright H II regions, have

a respectable number of O- and B-type YSOs, while the southern molecular peak has one

YSO with mass ∼ 8M⊙ and no O-type YSOs at all.

Similar to the trend seen in N44 (Paper I), the characteristics of the current star for-
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mation in the three molecular peaks of N 159 appear to be dependent on the massive star

formation that occurred in the recent past. We have further examined whether the pattern

of star formation is related to the physical properties of molecular clouds. The eastern, west-

ern, and southern molecular concentrations contain GMCs N159-E, N 159-W+N159-2, and

N159-S+N159-3, respectively (Johansson et al. 1998). Their physical properties adopted

from Johansson et al. (1998) are listed in Table 10, including each GMC’s local standard

of rest velocity (Vlsr), CO line-widths (∆V ), virial mass (Mvir), luminosity mass (Mlum),

and ratio of virial to luminosity mass. Note that Mlum is converted from the CO luminos-

ity LCO using Mlum = 8.8 ± 5.6LCOM⊙, revised from Equation (6) in Bolatto et al. (2008)

for an XCO value suitable for N 159 (Pineda et al. 2009). In addition, when there are two

GMCs in a molecular concentration, we use averages of Vlsr and ∆V and sums of Mvir and

Mlum, respectively, to represent the properties of a concentration. For comparisons, in Ta-

ble 10 we have also listed these quantities for GMCs in N44 (Mizuno et al. 2001), where

the Mlum is converted from the CO luminosity LCO using Mlum = 15.8 ± 4.5LCOM⊙ for

XCO = 7± 2× 1020 cm−2 (K km s−1)−1 (Fukui et al. 2008).

The GMC N159-W has the smallest ∆V and Mvir/Mlum ratio, which can be an indica-

tor of lower gravitational support, and contains the largest number and most concentrated

distribution of massive YSOs. Similarly, the GMC N44-C has YSO properties like N159-W

and also has a smaller Mvir/Mlum ratio among the GMCs in N44. The larger sample of

36 LMC GMCs in Indebetouw et al. (2008) showed a similar trend of more star formation

activity at lower Mvir/Mlum. This may reflect preferred physical conditions for GMCs to

collapse and form a concentrated cluster, qualitatively consistent with the picture that a

smaller turbulent kinetic energy results in larger volumes exceeding the Jeans criterion for

gravitational instability (e.g., Klessen et al. 1998). The similar values in ∆V and Mvir/Mlum

ratios found in the other two GMCs in N159 do not seem to scale with their different star

formation activity, although the uncertainties in the virial analysis are large compared to the

differences between the GMCs. Detailed mapping of these three GMCs could reveal some

of the physics underlying their different star formation characteristics. In particular, obser-

vations of denser gas tracers such as HCO+ and HCN reveal the virial ratios and physical

conditions of the clumps that are actively participating in star formation, whereas bright

CO emission can also come from more diffuse or photo-dissociation regions of the GMC.

High-resolution (∼ 5′′) HCO+ observations of N 159-E and W have shown that dense clumps

are spatially correlated with YSOs at early evolutionary stage (Chen et al, 2010, in prepa-

ration), and new observations of N 159-S taken in October 2009 will reveal whether dense

clumps are present in this GMC as well.
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5.2. Massive Star Formation – Triggered or Spontaneous?

A number of observational studies have demonstrated that the current star formation

may be triggered by stellar energy feedback, such as through the expansion of an H II region

(e.g., Zavagno et al. 2007; Pomarès et al. 2009). N 159 experiences intense energy feedback

evidenced with the filamentary structure in the H II regions (Figure 1) and the existence of

SNR 0540−697 (Chu et al. 1997; Williams et al. 2000). N 159 also has abundant molecular

material for continued star formation. It is conceivable that its (main-sequence) massive

stars photonionize the ambient gas to form H II regions and the raised thermal pressure can

compress the neighboring molecular cloud to trigger star formation. In fact, as shown in

Figure 9, about 2/3 of the YSOs are associated with Hα emission and almost all of them are

in the eastern and western GMCs. In contrast, none of the four YSOs in the southern GMC

are associated with H II regions. To investigate whether some of the current star formation

in the eastern and western molecular concentrations may have been triggered, we compare

the distributions of YSOs relative to the massive stars, and use high-resolution MOSAIC Hα

images to examine the immediate environment of YSOs.

The eastern GMC is associated with the prominent central H II regions in N159. This

region has 17 spectroscopically identified massive stars (Fariña et al. 2009). As shown in

the MOSAIC Hα image in Figure 10a, these massive stars are distributed in the bright

northern and southern lobes of the central H II region, while the YSOs are mostly found

along the edges of an east-west oriented low-surface-brightness band between the two lobes.

As this band coincides with the peak of the GMC, the spatial distributions of YSOs appear

to suggest that their formation is likely triggered by the expansion of two H II regions (lobes)

into a central molecular cloud. To test this hypothesis, we used two methods to search for

massive stars in the central molecular cloud that were formed earlier before the external

pressure was raised but are too obscured to be detected at optical wavelengths.

We first use the 3 cm map to search for obscured O stars, since it is nearly extinction-

free signpost of gas ionized by massive stars. Figure 10a reveals that the 3 cm emission

of N 159 (Dickel et al. 2005; Seward et al. 2010) appears diffuse for a 22′′ resolution over

(mature) massive stars in the bright H II regions, but shows four peaks in the east-west

central band and the western molecular concentration. Three of the four 3 cm peaks are

centered at O-type YSOs associated with UCHIIs (Indebetouw et al. 2004). The remaining

3 cm peak, i.e., the faintest peak in the east-west band, is centered between two non-O-type

YSOs and has no UCHIIs detected. The absence of UCHIIs indicates that these YSOs have

lower masses than the detection limit of a B0 V star, or that the H II regions of optically

obscured OB stars are too extended and thus resolved out by the small synthesized beam

(Indebetouw et al. 2004).



– 26 –

We next consider the candidate OB stars identified with JHKs photometry (Nakajima et al.

2005). Figure 10b shows that some of them are distributed around, though not inside the

east-west band. To assess whether there might be OB stars hidden by extinction even in

the near-IR, we use the Hα and 3 cm maps to estimate the extinction. Assuming that the

3 cm emission of N 159 is completely thermal3, the extinction in the Hα emission, AHα, of a

10,000 K H II region can be estimated using

AHα = −2.5log (
FHα

S3cm
/
jHα

j3cm
), (1)

where jHα/j3cm = 8.86×10−10 ergs cm−2 s−1 Jy−1 and then converted to the visual extinction

using AV = 1.24AHα (Caplan & Deharveng 1986). Figure 10b shows the visual extinction

map and its peak value is . 5.0 in the east-west band. For a standard extinction curve

of AJ/AV = 0.28 and AK/AV = 0.11, an O8 V star would have J = 16.1 and K = 15.1

(Schmidt-Kaler 1982; Koornneef 1983), brighter than the catalog’s 10-σ limiting magnitudes

of J = 18.8 and K = 16.6 (Nakajima et al. 2005), and would have been detected if the

local variation in the extinction is within a factor of 3, i.e., AV ∼ 15. As for massive

YSOs which usually have [8.0] ≤ 9.0, a foreground extinction of AV = 5.0 corresponds to

A8.0 = 0.24 (Indebetouw et al. 2005) and imposes little effect on their detection. The above

considerations suggest that the peak of the eastern GMC was not active in producing O-type

stars a few Myr in the past and only began to form them currently in locations on the edges

contacting H II regions. Thus, the formation of the YSOs in the GMC N159-E is likely

triggered.

It is interesting to note that YSOs 054003.49−694355.0 and 054004.40−694437.6 in

NGC159-E are projected within and at the edge of SNR 0540−697 (Figure 10a). For this

SNR to be responsible for the formation of these two YSOs, its age has to be longer than

the ages of YSOs. The age of this SNR, estimated from its size and expansion velocity, is

∼ 1 − 2 × 104 years (Williams et al. 2000). The absolute ages of the YSOs are difficult to

estimate. However, the brighter and more massive of the two YSOs, 054004.40−694437.6,

has formed a small H II region visible in the optical wavelength, i.e., the Papillon Nebula

(Heydari-Malayeri et al. 1999), and hence its age is likely to be more than several 105 years

(Churchwell 2002). The fainter and less massive of the two YSOs has evolved beyond the

earliest evolutionary stage and thus unlikely to be younger than a few 105 years. The age

consideration suggests that the SNR is unlikely to be responsible for the formation of these

two YSOs.

3This assumption is likely to result in an overestimate of the extinction as there is contamination of

non-thermal emission from the nearby SNR 0540−697 (Seward et al. 2010).
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The western GMC in N159 abuts the central H II regions. For the expanding H II

regions to trigger star formation in this molecular concentration, the crossing time scale

should be shorter than the ages of massive stars and YSOs. Figure 10a shows that the

boundary of the H II regions is & 40′′, or a projected distance of 10 pc from the massive

stars and YSOs. For this distance and a velocity dispersion σ of 2.6 km s−1 of the GMC

N159-W (from σ = 0.43∆V and ∆V = 6 km s−1, Johansson et al. 1998), the traverse time

is ∼ 4 Myr. This time scale is not shorter than the age of OB stars in the bright nebular

component N159A, ∼ 3− 4 Myr, indicated by the presence of a spectroscopically identified

O8 star and a few photometrically identified mid- to late-O stars (Deharveng & Caplan 1992;

Schaerer & de Koter 1997; Fariña et al. 2009). Thus it is not likely that the expansion of

the central H II regions is responsible for the formation of these massive stars. Furthermore,

YSOs in the western GMC are concentrated in the molecular core, in contrast to the YSOs

in the eastern GMC that are spread out and distributed along the interface between the

molecular cloud and H II region.

It has been suggested that the star formation in N159 started near the center of the

diffuse radio emission where OB stars identified with JHK photometry are located, and

proceeded outwards to trigger next-generation star formation in the eastern and western

GMCs (e.g., Jones et al. 2005; Nakajima et al. 2005). Our detailed analysis finds a more

complicated pattern of star formation. The expansion of the central H II region has triggered

the star formation in the eastern GMC, but not the western GMC. It is possible that the star

formation in the western GMC was triggered by some force that is no longer identifiable, such

as an old SNR whose shock velocity had slowed down to 20–45 km s−1 (Vanhala & Cameron

1998). It is also known that in an active star forming region, the environment is usually

too complex to pinpoint the triggering mechanism for star formation (Desai et al. 2010).

Nevertheless, based on the distribution of YSOs concentrated near the core of the western

GMC as well as its lowest velocity dispersion (kinetically cold) among GMCs in N159, we

suggest that its star formation may have started spontaneously. This suggestion is further

supported by the most massive stars formed in the western GMC, as shown below.

A trend is observed in YSOs in H II regions in the Milky Way and the LMC that in trig-

gered star formation, the second generation is less massive than the first (e.g., Pomarès et al.

2009; Fleener et al. 2010). In N159, the most massive YSO formed in the eastern GMC,

054004.40−694437.6, is O6 V (Indebetouw et al. 2004), not as massive as the earliest type

O4-6 Vn found in the central H II region (#54 in Fariña et al. 2009). The most massive YSO

formed in the western GMC, 053937.53−694609.8, is O5.5V (Indebetouw et al. 2004), more

massive than the only spectroscopically classified O8 star4 in the bright H II region N159A

4Deharveng & Caplan (1992) suggested another star as mid- to late-O type based on its UBV colors and
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(Fariña et al. 2009). The spectral types derived from radio continuum by Indebetouw et al.

(2004) may be underestimates if significant ionizing flux is leaking from the UCHII, and

there is a systematic uncertainty in converting from ionizing flux to spectral type due to

differences in massive stellar atmosphere models. However, the comparison of most massive

YSOs and main-sequence stars in these two GMCs suggests that the eastern GMC is more

consistent with the aforementioned trend than the western GMC. In cases of spontaneous

star formation, the masses of YSOs do not depend on the masses of stars that were formed

earlier in the molecular cloud. It is thus the cloud properties that determine the types of

stars formed, though once massive stars are formed, their energy feedback can trigger fur-

ther massive star formation as demonstrated in the eastern GMC. These two factors can

naturally result in massive YSOs preferentially found in GMCs associated with H II regions

as the GMCs likely already have conditions to form massive stars and can form even more

with the aide of stellar energy feedback.

5.3. Star Formation Efficiency and Rate

The correlation or lack thereof between GMC properties in galaxies and their star for-

mation activity is of critical importance to understand galaxy evolution and star formation

in general. In particular, we need to understand the physics underlying the empirically

observed correlation between star formation rate and gas surface density, the “Schmidt-

Kennicutt” (S-K) relation (e.g., Kennicutt 1989; Calzetti et al. 2007; Kennicutt et al. 2009).

This correlation is tight when properties are averaged over a kpc or more, but it is diffi-

cult to justify why it should hold on sub-kpc scales. Only recently have datasets been rich

enough to explore the smaller scales. The THINGS project (Walter et al. 2008) found that

whether molecular or total (= molecular + atomic) gas surface density is a better predic-

tor of star formation depends on which is the dominant phase in that part of the galaxy

(Leroy et al. 2008), and in molecular regions, star formation scales linearly with H2 surface

density (Bigiel et al. 2008).

Large-scale star formation in a galaxy depends on the formation rate of GMCs and how

GMCs collapse to form stars. Theoretical models assuming that GMCs have a constant star

formation efficiency within a free-fall timescale find that GMC formation is the dominant

driver in the star formation rate (SFR) in galaxies, and that the S-K relation can be repro-

duced (Krumholz et al. 2009). It is of fundamental importance to determine how and when

GMCs collapse to form stars. Only a small number of detailed extragalactic studies have

magnitudes, however such conversion is known to have large uncertainties (e.g., Massey 1985).
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been made. In N44 (Paper I), N 159 (this study), and the LMC’s quiescent molecular ridge

(Indebetouw et al. 2008), we find that although most massive young stars are found near

peaks in 12CO emission, there is not always a clear correlation between 12CO properties and

YSO properties. In N44 and N159, massive YSOs are mostly found in GMCs associated

with ionized gas. In N44, the most massive GMC N44-S has ∼ 5-times the cloud mass but

only half the YSO content of N 44-C; in N159, the most massive GMC N159-S formed only

a few YSOs and none of them are massive (Table 10). The current star formation activity

appears to correlate more with the energy feedback from antecedent massive stars than the

mass of a GMC. Indebetouw et al. (2008) found that in the molecular ridge, the SFR mea-

sured from either integrated mid-IR light or detailed analysis of the YSOs is correlated with

the Mvir/Mlum ratio, an indicator of gravitational support. However, the total SFR mea-

sured from the integrated light is far below that expected from the S-K relation for the given

GMC surface density. The molecular ridge is known for its anomalously low star formation

activity, but the GMCs in N44 and N159 host a range of star formation activities and may

be used to investigate whether the S-K relation applies on scales of individual GMCs.

The known massive YSO content allows us to assess the instantaneous star formation

efficiency, SFEYSO, of a GMC. We use the number counts of YSOs within different mass bins

and the assumption of Salpeter’s initial mass function (IMF) to estimate the total mass of

the current star formation, M total
YSO . The lowest mass bin used for counting depends on the

photometric completeness in a region. For regions with bright diffuse background, such as

N159-W and N44-C, only higher-mass bins are used to avoid problems from photometric

incompleteness at < 9.0 mag, though at the expense of small number statistics. The bright-

ness limit [8.0]= 9.0 corresponds to ∼ 8M⊙ (recall masses of YSOs inferred from SED fits in

§4.5). The total mass, M total
YSO , is calculated by integrating the initial mass function from Ml

= 1 M⊙ to Mu, the highest mass of YSO observed. We adopt the commonly used lower mass

limit of 1 M⊙ to facilitate comparisons with other work, although the formation time scale

of a 1 M⊙ star is much longer than that of the observed massive YSOs. The M total
YSO is then

divided by the virial mass of the GMC (Mvir) to obtain SFEYSO, and all these three quan-

tities are listed in Table 10. Uncertainties in M total
YSO are also listed; they are directly related

to the uncertainty in mass inferred for individual massive YSOs used in number counts and

are thus estimated from the largest and small mass ranges covered by these massive YSOs.

To determine the SFR from the total mass of current star formation requires a timescale.

Although we can constrain the age of each massive YSO from its evolutionary stage, statistics

of solar-mass YSOs in Class I, II, III, and models of high-mass protostellar accretion, such

ages are quite uncertain aside from being . 1 Myr. On the other hand, since we consider

all YSOs with high and intermediate masses within each GMC that are currently forming

in a burst, this seems more relevant to the formation timescale of a cluster or association.
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Proceeding with this assumption and assigning a cluster formation time (tcluster) of ∼ 1 Myr

(e.g., Bonnell et al. 2003), we derive the current star formation rate, SFRYSO. We have also

estimated SFE per free-fall time (tff),

ǫff =
tff

tcluster

M total
YSO

Mvir
(2)

(e.g., Huff & Stahler 2007) which has gained popularity recently as a normalized measure of

star formation activity. Note that the angular resolution for CO data of N 44 and N159 are

different: N 44 was observed at 145′′ angular resolution while N 159 at 45′′ resolution. Thus,

in N44, multiple GMCs may not be resolved, resulting in much larger GMC size and longer

tff . Table 10 shows that the SFEYSO for GMCs in N44 and N159 are low, ∼ 0.0002− 0.009.

As a comparison, the molecular cloud associated with the Pipe Nebula, a very low-level

Galactic star formation region, has SFEYSO ∼ 0.0006 for YSOs ≥ 0.3M⊙ (Forbrich et al.

2009); the SFEYSO found in N44 and N159, after multiplied by a factor of 1.7-2 to account

for a lower mass limit extending to 0.3M⊙ under the Salpeter’s IMF assumption, are ∼ 1−25

times that in the Pipe Nebula. The ǫff is also low, mostly ∼ 10−4 to 10−3.

For comparison, we have also estimated the SFR associated with each GMC using

integrated Hα and 24 µm fluxes with the prescription of Calzetti et al. (2007),

SFRHα+24(M⊙ yr−1) = 5.3× 10−42[L(Hα)obs + (0.031± 0.006)L(24 µm)], (3)

where L(Hα) and L(24 µm) are Hα and 24 µm luminosities in ergs s−1, respectively. To

measure the Hα and 24 µm luminosities, we use an aperture size to include the bulk of a

GMC; the largest uncertainties come from flux calibration, i.e., 5-10% in Hα and 10% in 24

µm (Sean Points, private communication; MIPS Data Handbook). The aperture size, Hα

and 24 µm luminosities, SFRHα+24 in M⊙ yr−1, and normalized SFRHα+24 in M⊙ yr−1 kpc−2

are all given in Table 10. Among the 6 GMCs, three have SFRYSO higher than SFRHα+24.

Two of these three GMCs, N44-N and N159-S, have low star formation activities in the

optical and near-IR wavelengths, similar to that seen in the molecular ridge (N159-S is

at the north tip of the molecular ridge). As suggested in the study of molecular ridge

(Indebetouw et al. 2008), such difference likely results from the lower luminosity to mass

ratios in the regions studied. In N44-N and N159-S, star formation occurred mostly in lower-

mass or less rich clusters. As these clusters do not fully sample the high-mass end of the

stellar initial mass function, they have a lower luminosity to mass ratio than the rich clusters,

which are analyzed in Calzetti et al. (2007). In GMCs like N44-N and N159-S, SFRHα+24

would severely underestimate the star formation rate by almost an order of magnitude. The

third GMC with SFRHα+24 < SFRYSO, N 159-W, has massive main-sequence stars, and it is

still actively forming new massive stars (§5.2), similar to the three GMCs with SFRHα+24 >
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SFRYSO. The ratios of current-to-past massive star formation rates, SFRYSO/SFRHα+24, of

these four GMCs range from 0.4 to 2.1. These ratios suggest that the current star formation

rate may be lower or even higher than the average star formation rate in the last few Myr,

not constant over time. In active star forming GMCs, SFRHα+24 would miss the current star

formation, which amounts to 30–70% of the total star formation rate (calculated from the

above four GMCs).

Finally, we use the star formation properties of the GMCs to evaluate the S-K relation.

The normalized SFR expected from the S-K relation for a region is:

SFR(M⊙ yr−1 kpc−2) = 2.5× 10−4(
Σ

M⊙ pc−2
)1.4 (4)

where Σ is the sum of molecular and atomic gas surface densities (Kennicutt 1998). The

average molecular surface densities are measured from CO maps, adopting XCO = 7 ×

1020 and 3.9 × 1020 cm−2 (K km s−1)−1 for N 44 and N159 from Fukui et al. (2008) and

Pineda et al. (2009), respectively. The atomic surface densities are measured from HI maps

(Kim et al. 2003). Then the expected SFRs from the total gas surface densities, SFRΣ, are

given in Table 10. As shown in Figure 11, among the six GMCs, four of them have SFRΣ and

SFRHα+24 in agreement within a factor of 3. The remaining two GMCs, N44-N and N159-S,

have SFRΣ ∼ 11 and 56 times SFRHα+24, respectively. When compared with SFRYSO, which

is a better estimate of SFRs in these two low-luminosity regions, N 44-N is within a factor of

2 of SFRΣ, while N 159-S is still only 1/5 SFRΣ. The GMC N159-S appears very different

from the other five GMCs as its star formation rate, estimated with a comprehensive YSO

inventory, is still much lower than that expected from the S-K relation. It is known that the

S-K relation does not apply to small regions; thus is is not surprising that these GMCs with

region sizes ranging from 45 to 135 pc do not follow the S-K relation in star formation. It

is interesting that the SFR averaged over all GMCs within the entire N44 complex or the

entire N159 complex is very close to that expected from the S-K relation.

6. Summary

We have studied the H II complex N159 in the LMC with Spitzer IRAC and MIPS data

at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 µm and CTIO Blanco 4 m ISPI in the JKs and MOSAIC

in the Hα bands. Following procedures outlined in Paper I, we first identified YSOs using the

criteria [4.5]−[8.0] ≥ 2.0 to exclude normal and evolved stars and [8.0] < 14.0−([4.5]−[8.0])

to exclude background galaxies. A total of 52 YSO candidates were identified. We then

inspected the SED and close-up images of each YSO candidate in Hα, V RIJKs, IRAC,

and MIPS bands simultaneously to further identify evolved stars, galaxies, and dust clumps,
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resulting a sample of 27 YSO candidates that are most likely bona fide YSOs of high and

intermediate masses. We classified these YSOs into Type I, II, and III according to their

SED shapes.

In our sample of 27 YSOs, ∼ 74% of them are resolved into multiple components or

extended sources in high-resolution JKs images. To assess the physical properties of the

YSOs, we have used the Online SED Model Fitter (Robitaille et al. 2007) to model SEDs of

these YSOs and further analyzed in detail 22 YSOs that appear single or dominant within

a group. We find good fits for Types I and II YSOs, though they show modest deviations

between their observed SEDs and the models at 5.8 and 8.0µm, because the models do not

include PAH emission. We have used a YSO with a Spitzer IRS observation to estimate the

fraction of PAH emission in IRAC 3.6, 5.8, and 8.0 µm bands and modeled the SED with

aromatic emission removed. That SED is well fit by the models, and comparisons between

SEDs before and after PAH correction show that mass and total luminosity of the YSO is

not significantly affected by including PAHs in models.

Some of the Type III YSOs show large deviations from the models at optical wavelengths.

This is due to the modest angular resolution of the MCPS UBV I catalog since the nebular

line emission from small H II regions surrounding massive YSOs is not resolved from the

point source and contributes to the broad-band photometry. We have also examined the

effect of multiplicity (due to inadequate angular resolution) on inferring parameters of YSOs

from SED fits by modeling a group of YSOs resolved in the VLT/NACO adaptive optics

JKs images. We find that for a YSO of multiple sources at similar evolutionary stages,

the integrated fluxes may result in up to 20% over-estimate in mass of the most massive

component, but up to ∼ 40% under-estimate in the total mass of the system. For a YSO

of sources at mixed evolutionary stages, the mid-IR luminosity is a good estimate for the

system’s total luminosity, but high-resolution optical and near-IR images are needed to

separate main-sequence components from the YSO components.

YSO counterparts are found in one maser, three UCHIIs, and nine candidate HAeBe

stars. The maser is associated with a Type I YSO and the majority of the HAeBe stars

correspond to Type II and III YSOs, supporting the evolutionary sequence of our empirical

classification. The maser has IRS spectral features similar to the “P” group classification

used in Seale et al. (2009), while the three UCHIIs are similar to the “PE” group. Masers

are typically associated with YSOs less evolved than UCHIIs, supporting the proposed spec-

tral evolutionary sequence that YSOs with the “PE” spectral type are more evolved than

those with the “P” spectral type. We have further found that for YSOs associated with

ultracompact H II regions, (proto) stellar masses determined from SED model fits agree well

with those estimated from the ionization requirements of the H II regions. Using the SED
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model fits, we find at least 9 O-type YSOs in N159.

N 159 encompasses three molecular concentrations with different star formation histories

and intensities. O-type YSOs are found in the two GMCs that are associated with ionized

gas, i.e., where massive stars have formed a few Myr ago, while no O-type YSOs are found

in the third GMC that shows no signs of massive star formation in the optical and near-IR

wavelengths. This result is similar to that seen in YSOs in the three GMCs in N44 (Paper

I), indicating that energy feedback plays a role in the formation of massive YSOs. However

it remains unclear whether the less active GMCs will form massive stars later. Although the

uncertainties in ∆V are large, the GMC N159-W does have the smallest ∆V and Mvir/Mlum

ratio and also contains the largest number and most concentrated distribution of YSOs,

consistent with the hypothesis that concentrated clusters are formed in a less gravitationally

stable region. A smaller Mvir/Mlum ratio is also found in the GMC N44-C which has the

highest number and the most concentrated distribution of YSOs.

To investigate whether star formation may be triggered or spontaneous in GMCs in

N159, we have performed a detailed comparison between the mid-IR YSO distribution and

the distribution of already formed massive stars and their associated ionized gas. We find

that the current star formation in the GMC N159-E is likely to be triggered by H II regions

expanding into the molecular cloud, while the massive YSOs in GMC N159-W are more

likely forming spontaneously.

Finally, we estimated star formation efficiencies and rates by counting the massive YSOs,

and compared these rates to those inferred from integrated Hα and 24 µm luminosities.

We also compared with expected rates calculated from gas surface densities and using the

Schmidt-Kennicutt extragalactic scaling relation. In GMCs with relatively high levels of

activity, such as N159 -E and -W, the various measures are consistent. However, in more

quiescent regions such as N159-S and the giant molecular ridge which continues south from

there, we find that star formation is distributed in relatively low luminosity regions and

dominated by current (mid-IR detected) star formation, with a lack of massive main-sequence

stars (representing few-Myr old activity). Star formation rates derived from YSO counting

are higher than those predicted by total Hα and 24 µm luminosities, and both are lower than

would be implied by the total gas surface density. This discrepancy can be explained if the

star formation sites are poor clusters which do not fully sample the stellar mass function (so

their mass-to-light ratios are elevated). Alternatively, the youngest and most embedded still

accreting massive protostars have elevated mass-to-light ratios due to late spectral type pre-

main-sequence photospheres and possible having not yet accreted their final mass. Either

possibility indicates unusual conditions in N159-S and a breakdown of the scaling laws

determined by averaging over kiloparsec scales in galaxies. Detailed studies such as this of



– 34 –

archival Spitzer data, soon to be complemented by detailed molecular gas properties obtained

with ALMA, are revealing the full complexity of extragalactic star formation.
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Fig. 1.— MCELS Hα images of N 159. (a) MCELS Hα image of N 159, showing the nebular

components A-L defined by Henize (1956) and the OB association LH105 cataloged by

Lucke & Hodge (1970). (b) CO contours overlaid and three GMCs near CO peaks cataloged

by Johansson et al. (1998) labeled on the MCELS Hα image.

Fig. 2.— IRAC and MIPS images of N 159. (a) 3.6 µm image showing stars and modest

PAH emission, with OB association LH105 labeled; (b) 8.0 µm image showing PAH and

dust emissions, (c) 24 µm image showing dust emission and overlaid with CO contours from

Johansson et al. (1998) , and (d) color composite of 3.6, 8.0, and 24 µm images. Dust

shrouded objects, e.g., YSOs and AGB stars, appear red.



– 40 –

Fig. 3.— (a) [8.0] vs. [4.5]−[8.0] CMD of all sources detected in N159. Known AGB stars are

marked with open blue squares and expected loci from AGB stellar models (Groenewegen

2006) with filled cyan squares. The criterion to exclude normal and AGB stars is shown

in short-dashed lines and that to exclude background galaxies in long-dashed lines. (b) 52

YSO candidates are found in the upper right wedge that has the minimum contamination

from stars and background galaxies. These candidates have been through detail examination

using multi-wavelength images and SEDs. Candidates that are most likely YSOs are marked

with red open circles and non-YSOs with green crosses.

Fig. 4.— (a) 8 µm image of N 159 overlaid with MAGMA CO intensity contours (blue) in

n2 K km s−1 (n=1,2,3,...) and marked with YSOs from three studies. 27 YSOs from this

study are marked in the red circles, 5 YSOs from Jones et al. (2005) are marked in yellow

triangles and labeled with numbers 1-5, and 4 YSOs from Whitney et al. (2008) are marked

in cyan boxes and labeled with numbers 1-4. The FOV of the Jones et al. (2005) study is

smaller and marked with dashed yellow lines. (b) YSOs in N159 from this study, Jones et al.

(2005, abbreviated as J05 in the figure), and Whitney et al. (2008, abbreviated as W08 in

the figure) marked on a [8.0] vs. ([4.5]−[8.0]) CMD. Symbols are the same as in (a) and

numbers are attached with an extra letter of J or W to separate samples from the Jones et al.

(2005) and Whitney et al. (2008) studies.
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Type I/II; [8.0]=5.82 

Type I; [8.0]=6.13 Type I; [8.0]=6.60 

Type I; [8.0]=6.84 Type I; [8.0]=7.20 

Type I/II; [8.0]=5.93 

Type I/II; [8.0]=8.70 Type I/II; [8.0]=10.83 

Fig. 5.— SEDs of 27 YSOs analyzed in this study. Filled circles are the flux values converted

from magnitudes listed in Table 4. The source name, Type from our empirical classification,

and [8.0] mag are labeled at the top of the plot. Triangles are upper limits. Error bars are

shown if larger than the data points. The solid black line shows the best-fit model, and the

dashed black line illustrates the radiation from the central star reddened by the best-fit AV .

The gray lines show all acceptable models.

.
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Type II; [8.0]=9.66 Type II; [8.0]=9.65 

Type II; [8.0]=10.96 

Type II; [8.0]=8.14 

Type II; [8.0]=6.54 

Type II; [8.0]=10.99 

Type II; [8.0]=8.02 

Type II; [8.0]=9.29 

Figure 5 — Continued.



– 43 –

Type II; [8.0]=11.33 

Type III; [8.0]=5.40 

Type III; [8.0]=7.44 Type III; [8.0]=10.34 

Type III; [8.0]=6.89 

Type II; [8.0]=11.57 

Figure 5 — Continued.
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multiple; [8.0]=9.91 

YSC; [8.0]=9.48 multiple; [8.0]=9.08 

multiple; [8.0]=7.31 multiple; [8.0]=8.14 

Figure 5 — Continued.
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(a) (b) (c)

Fig. 6.— (a)Multi-wavelength SED (filled circles, this study) and IRS spectrum (solid line,

Seale et al. 2009) of YSO 053935.99−694604.1. PAH features at 6.2, 7.7, 8.6, and 11.3 µm

are labeled in the IRS spectrum. (b) and (c) Model fits to the SED before and after correcting

contribution of PAH emission. Symbols in (b) and (c) are the same as in Figure 5.

(a)

(d)

(b) (c)

(e) (f)

Fig. 7.— Upper panel: model fits to a multiple system with sources at similar evolutionary

stage. (a) SED of 053941.89−694612.0 from integrated fluxes of the system. (b,c) SEDs

of the two brightest YSOs, labeled as a and b respectively in the figure, from their NACO

Ks luminosities and proportioned IRAC and MIPS fluxes (according to the Ks luminosity).

Lower panel: model fits to a multiple system with sources at different different evolutionary

stages. Optical and near-IR segments of SEDs of YSO 054004.40−694437.6 are constructed

from (d) UBV I from MCPS and JHKs from IRSF, (e) high-resolution UbyI from HST and

Ks from VLT/NACO, and (f) optical and near-IR fluxes used only as upper limits. See text

for detail. Symbols are the same as in Figure 5.
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Fig. 8.— (a) 8 µm image of N 159 overlaid with MAGMA CO intensity contours (blue)

in n2 K km s−1 (n=1,2,3,...). YSOs at different evolutionary stages are marked as follows:

red circle – Type I and I/II, green circle – Type II and II/III, and blue circle – Type

III. Known maser and UCHIIs are marked with additional triangle and boxes, respectively

(Lazendic et al. 2002; Indebetouw et al. 2004). Candidate HAeBe stars from Nakajima et al.

(2005) are marked in orange dots. Candidate HAeBe stars in common with YSOs are labeled

with positive numbers, and those in common with non-YSO red sources (yellow pluses) are

labeled with negative numbers. (b) J−H vs. H−Ks CMD of all sources detected in all three

JHKs bands in N159. YSOs and non-YSO red sources in common with candidate HAeBe

stars are labeled with numbers as in (a) and marked with additional red circles and yellow

crosses, respectively. Dashed magenta lines indicate the criterion used to select candidate

HAeBe stars in the Nakajima et al. (2005) study. (c) same as in (b) for the K vs. J −Ks

CMD.
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Fig. 9.— Distribution of YSOs with respect to interstellar environments of N 159. The

Hα image of N 159 is shown in grey scale, overlaid with MAGMA CO intensity contours

(blue) in n2 K km s−1 (n=1,2,3,...). YSOs with different mass estimates are marked with

different symbols: O-type, i.e., M̄⋆ ≥ 17 M⊙, as large red open circles; early-B type, i.e.,

17 M⊙ > M̄⋆ ≥ 8 M⊙, as medium red open circles; and B-type, i.e., M̄⋆ < 8 M⊙, as small red

open circles. YSOs that appear single or are clearly the dominant source with the IRAC PSF

are shown in solid-line circles, while YSOs that are multiple and have larger uncertainties in

mass estimates are in dotted-line circles.
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Fig. 10.— (a) MOSAIC Hα image of N 159 superbubble overlaid with 3 cm contours (yellow).

The position and size of the SNR 0540−697 are marked in dashed cyan line. YSOs are marked

in the same symbols as Figure 9. Spectroscopically identified massive stars (Fariña et al.

2009) are marked with triangles in three sizes to show different evolutionary stages: large

– young phase including O4-5 V-I and O Vz, medium – middle-aged phase including O6-9

V-I and B0 I, and small – evolved phase including B0-2 V-III and B1-8 I. (b) Extinction

map overlaid with MAGMA CO intensity contours (magenta). YSOs and spectroscopically

identified massive stars are marked in the same symbols as (a). Candidate OB stars from

Nakajima et al. (2005) are marked in green squares.

Fig. 11.— Relation between the SFR per unit area and gas density for six GMCs in N44 and

N159. Each GMC has two estimated SFRs using different tracers, SFRHα+24 (filled triangles

and GMC name labeled) and SFRYSO (filled circles). For comparison, SFRs estimated in

the molecular ridge (Indebetouw et al. 2008) are also plotted, i.e., SFRHα+24 in open triangle

and SFRYSO in open circle. The solid line is the S-K relation, and the dotted, dashed,

dashed-dotted lines correspond to constant SFRs per unit gas mass, in units of 1%, 10%,

and 100% per 100 Myr, commonly used in estimating SFRs of a galaxy (Kennicutt 1998).

GMCs without prominent H II regions, i.e., N 44-N, N159-S, and the molecular ridge, have

SFRHα+24 11–56 times smaller than expected from the S-K relation, but their SFRYSO are

in better agreement with the S-K relation.
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Table 1. Archival Spitzer Observations of N 159

Program Principal Observation Parameters

ID Investigator IRAC MIPS

124 Gehrz 10× 12a s

20203 Meixner 4× 12a s 2× Fast Scan

aObservations used high dynamic range mode and

had complementary exposures.
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Table 2. Archival HST WFPC2/ACS Observations of Fields in N159

R.A. Decl. Exp. Time

(J2000) (J2000) Program ID/PI Detector/Filtera (s)

05 39 10.5 −69 41 52.1 9480/Rhodes ACS/F775W 1200.0

05 40 12.8 −69 44 29.3 06535/Heydari-Malayeri WFPC2/F300W 51.2

WFPC2/F410M 172.0

WFPC2/F467M 139.2

WFPC2/F469N 1292.0

WFPC2/F487N 1272.0

WFPC2/F502N 984.0

WFPC2/F547M 34.4

WFPC2/F656N 1280.0

WFPC2/F814W 21.6

05 40 14.3 −69 50 06.8 09827/Bianchi WFPC2/F170W 240.0

WFPC2/F225W 200.0

WFPC2/F336W 40.0

WFPC2/F439W 40.0

WFPC2/F555W 20.0

05 40 50.3 −69 55 10.2 9827/Bianchi ACS/F435W 130.0

ACS/F555W 100.0

ACS/F658N 600.0

ACS/F814W 80.0

aF330W: Wide U ; F336W: WFPC2 U ; F410M: Strömgren v; F435W: Johnson B;

F439W: WFPC2 B; F467M: Strömgren b; F469N: He II; F487N: Hβ; F502N: [O III];

F547M: Strömgren y; F555W: Johnson V ; F656N: Hα; F658N: Hα; F673N: [S II];

F675W: WFPC2 R; F775W: SDSS i; F814W: Broad I.
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Table 3. Parameters for IRAC and MIPS Photometric Measurements

Aperture Background Aperture Zero-Mag.

Radius Annulus Correction Flux

Band (′′) (′′) Factor (Jy)

IRAC 3.6 µm 3.6 3.6-8.4 1.124 277.5

4.5 µm 3.6 3.6-8.4 1.127 179.5

5.8 µm 3.6 3.6-8.4 1.143 116.6

8.0 µm 3.6 3.6-8.4 1.234 63.1

MIPS 24 µm 6 20-32 1.699 7.14

70 µm 16 39-65 2.087 0.775
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Table 4. Multi-wavelength Photometry of YSO Candidates Selected from CMD Criteria

Name No [3.6] [4.5] [5.8] [8.0] [24] [70] Class. Remarks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

053921.21-694409.4 51 13.76 0.01 13.54 0.01 12.54 0.04 11.35 0.14 · · · · · · · · · · · · S in DR

053929.21-694719.0 9 11.38 0.01 10.69 0.01 9.05 0.02 7.20 0.02 1.12 0.01 · · · · · · I ext

053930.01-694334.9 24 13.48 0.02 13.45 0.02 10.85 0.03 9.08 0.03 5.64 0.05 · · · · · · II mul

053932.52-694357.4 17 12.82 0.03 12.88 0.03 9.84 0.03 8.19 0.03 · · · · · · · · · · · · D

053932.73-694344.3 29 13.82 0.05 13.53 0.07 11.14 0.06 9.42 0.08 · · · · · · · · · · · · D peak

053933.86-694701.6 27 13.42 0.01 13.33 0.01 10.97 0.01 9.29 0.02 · · · · · · · · · · · · II

053935.99-694604.1 7 10.99 0.01 10.53 0.01 8.59 0.01 6.84 0.01 1.60 0.10 · · · · · · I mul

053937.04-694536.7 6 10.87 0.01 9.68 0.01 8.01 0.01 6.60 0.01 0.51 0.01 · · · · · · I mul

053937.37-695120.8 49 13.95 0.02 13.72 0.02 13.14 0.07 11.33 0.04 7.94 0.07 · · · · · · II ext

053937.53-694609.8 2 10.41 0.01 9.65 0.01 7.77 0.01 5.82 0.01 -0.28 0.01 · · · · · · I/II mul

053937.56-694525.4 4 10.93 0.02 9.70 0.01 8.09 0.03 6.13 0.03 · · · · · · -4.70 0.20 I ext

053938.09-694654.2 18 12.95 0.04 13.06 0.06 10.08 0.03 8.34 0.05 · · · · · · · · · · · · S in DR

053938.80-694436.0 38 12.92 0.02 12.71 0.04 12.13 0.06 9.88 0.05 · · · · · · · · · · · · S LMC X-1

053939.10-694443.7 34 13.36 0.05 12.92 0.05 11.20 0.04 9.53 0.04 · · · · · · · · · · · · D

053939.54-694400.2 19 · · · · · · 13.18 0.05 10.34 0.03 8.58 0.04 · · · · · · · · · · · · D

053940.78-694632.0 14 12.21 0.02 11.49 0.02 9.66 0.02 8.02 0.02 2.81 99.9 · · · · · · II

053941.89-694612.0 3 9.32 0.01 8.24 0.01 7.00 0.01 5.93 0.01 0.04 0.01 · · · · · · I/II mul

053943.74-694540.3 39 13.43 0.01 12.55 0.01 11.48 0.04 9.91 0.05 4.06 99.9 · · · · · · III mul

053944.55-694436.2 21 13.31 0.04 13.16 0.03 10.57 0.04 8.70 0.04 3.55 0.05 · · · · · · I/II

053945.18-694450.4 11 11.88 0.01 11.16 0.01 9.36 0.01 7.44 0.01 1.65 0.01 · · · · · · III ext

053945.20-694508.1 22 13.05 0.05 12.78 0.03 10.72 0.06 9.00 0.06 · · · · · · · · · · · · D

053945.21-694533.1 41 14.38 0.04 13.58 0.04 · · · · · · 10.15 0.05 · · · · · · · · · · · · S in DR

053946.39-694435.5 20 13.26 0.04 13.77 0.07 10.35 0.03 8.62 0.03 · · · · · · · · · · · · D

053947.68-694526.1 16 12.97 0.02 13.12 0.05 10.00 0.02 8.14 0.03 3.51 99.9 · · · · · · II

053948.25-694534.3 28 14.06 0.04 13.66 0.06 11.31 0.04 9.37 0.04 · · · · · · · · · · · · D

053948.83-694416.7 23 13.33 0.03 13.54 0.03 10.85 0.03 9.03 0.03 · · · · · · · · · · · · D peak

053949.26-694407.5 31 14.00 0.07 13.80 0.09 11.24 0.04 9.47 0.05 · · · · · · · · · · · · D

053950.29-694545.4 40 14.22 0.04 13.69 0.10 11.74 0.07 9.99 0.08 · · · · · · · · · · · · D

053952.39-694518.3 12 · · · · · · 12.10 0.03 10.74 0.04 7.94 0.03 · · · · · · · · · · · · D

053952.60-694517.0 15 12.73 0.02 12.13 0.04 10.85 0.04 8.14 0.03 · · · · · · · · · · · · III mul

053956.62-694439.1 30 13.55 0.03 13.10 0.03 11.28 0.03 9.43 0.03 · · · · · · · · · · · · D

053956.92-695024.5 52 14.62 0.01 13.83 0.01 13.49 0.04 11.57 0.03 8.08 0.11 · · · · · · II mul

053959.34-694526.3 5 9.29 0.01 8.57 0.01 7.67 0.01 6.54 0.01 2.00 0.01 · · · · · · II ext
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Table 4—Continued

Name No [3.6] [4.5] [5.8] [8.0] [24] [70] Class. Remarks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

054000.69-694713.4 8 10.29 0.01 9.71 0.01 8.48 0.01 6.89 0.01 1.72 0.01 · · · · · · III ext

054001.44-694801.6 44 13.61 0.02 13.55 0.02 12.01 0.05 10.83 0.08 6.43 0.07 · · · · · · I/II

054003.49-694355.0 32 · · · · · · 13.15 0.02 11.58 0.08 9.48 0.05 · · · · · · · · · · · · YSC

054003.55-694710.0 42 13.89 0.03 13.62 0.05 12.05 0.05 10.34 0.06 5.48 0.15 · · · · · · III

054004.13-694532.8 43 14.85 0.09 13.61 0.05 12.38 0.06 10.55 0.06 · · · · · · · · · · · · S in DR

054004.40-694437.6 1 9.85 0.01 8.96 0.01 7.35 0.01 5.40 0.01 · · · · · · -4.79 0.20 III ext

054005.91-694451.6 26 14.30 0.10 13.34 0.07 · · · · · · 9.28 0.05 · · · · · · · · · · · · D

054006.85-694400.6 25 13.63 0.04 13.60 0.05 10.90 0.03 9.19 0.03 · · · · · · · · · · · · D

054008.53-694530.6 35 13.58 0.06 12.76 0.07 11.93 0.11 9.55 0.06 · · · · · · · · · · · · D

054009.49-694453.5 10 12.12 0.01 12.06 0.02 9.09 0.02 7.31 0.02 1.46 0.03 · · · · · · I/II mul

054011.47-694504.5 13 13.17 0.09 13.21 0.07 9.89 0.03 7.96 0.03 · · · · · · · · · · · · D

054013.17-694948.8 45 13.91 0.01 13.07 0.01 12.10 0.02 10.96 0.04 7.77 0.12 · · · · · · II

054014.04-694454.8 33 13.81 0.03 13.43 0.04 11.38 0.03 9.48 0.05 · · · · · · · · · · · · S in DR

054019.00-694445.6 37 14.05 0.04 12.77 0.02 11.13 0.03 9.66 0.04 4.22 99.9 · · · · · · II ext

054021.33-694944.0 36 13.87 0.02 13.63 0.03 11.40 0.02 9.65 0.03 6.80 0.06 · · · · · · II mul

054037.09-694521.5 48 14.05 0.01 13.83 0.01 13.75 0.05 11.22 0.01 · · · · · · · · · · · · G

054044.66-694550.9 47 14.05 0.01 13.83 0.01 13.76 0.05 11.01 0.01 8.34 0.12 · · · · · · G

054046.29-694441.1 50 13.50 0.01 13.62 0.01 12.58 0.05 11.35 0.06 · · · · · · · · · · · · S in DR

054050.85-695001.9 46 13.72 0.01 13.15 0.01 12.21 0.01 10.98 0.02 7.40 0.06 · · · · · · II

Note. — Column 1: source name. Column 2: Ranking of the brightness at 8 µm. Columns 3-8: photometric measurements in

3.6, 4.5, 5.8, 8.0, 24, and 70 µm bands in magnitudes. Measurements with uncertainties of 99.9 are the upper brightness limits as

they include fluxes from neighbors or backgrounds. The uncertainties listed here are only errors in measurements and do not include

errors in in flux calibration, i.e., 5% in 3.6, 4.5, 5.8, and 8.0 µm, 10% in 24 µm, and 20% in 70 µm. Thus, the total uncertainty of

a flux is the quadratic sum of the measurement error and the calibration error. Columns 9 and 10: classification and remarks: D –

diffuse emission, DR – dusty region, ext – extended source, G – background galaxy, I/II/III – Type I/II/III YSO, mul – multiple, S

– star, YSC – young star cluster.
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Table 5. Multi-wavelength Photometry of YSO Candidates Selected from CMD Criteria

Name No U B V I J H Ks Flag Class. Remarks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

053921.21-694409.4 51 · · · · · · 21.88 0.22 21.17 0.20 · · · · · · 16.04 0.11 15.30 0.12 14.95 0.15 0 S in DR

053929.21-694719.0 9 · · · · · · · · · · · · · · · · · · · · · · · · 16.99 0.05 16.45 0.15 14.84 0.08 10 I ext

053930.01-694334.9 24 19.45 0.10 19.77 0.06 19.41 0.06 18.67 0.08 18.29 0.06 17.23 0.07 16.25 0.05 10 II mul

053932.52-694357.4 17 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053932.73-694344.3 29 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D peak

053933.86-694701.6 27 18.16 0.08 18.89 0.05 18.37 0.06 17.61 0.13 16.95 0.03 16.30 0.04 15.51 0.04 10 II

053935.99-694604.1 7 · · · · · · · · · · · · · · · · · · · · · · · · 17.91 0.10 · · · · · · 14.47 0.10 20 I mul

053937.04-694536.7 6 · · · · · · · · · · · · · · · · · · · · · · · · 18.19 0.09 17.04 0.15 14.65 0.05 10 I mul

053937.37-695120.8 49 · · · · · · 19.77 0.05 18.71 0.05 17.64 0.05 16.53 0.05 15.85 0.09 15.93 0.11 10 II ext

053937.53-694609.8 2 · · · · · · · · · · · · · · · · · · · · · · · · 17.04 0.10 · · · · · · 15.31 0.10 20 I/II mul

053937.56-694525.4 4 · · · · · · · · · · · · · · · · · · · · · · · · 18.11 0.12 17.38 0.16 15.68 0.11 10 I ext

053938.09-694654.2 18 19.14 0.21 19.41 0.12 18.63 0.09 17.50 0.08 · · · · · · · · · · · · · · · · · · 0 S in DR

053938.80-694436.0 38 13.82 0.09 14.54 0.05 14.61 0.17 13.89 0.09 13.70 0.06 13.54 0.09 13.29 0.06 0 S LMC X-1

053939.10-694443.7 34 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053939.54-694400.2 19 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053940.78-694632.0 14 · · · · · · · · · · · · · · · · · · · · · · · · 16.80 0.07 16.66 0.06 15.55 0.10 10 II

053941.89-694612.0 3 · · · · · · · · · · · · · · · · · · · · · · · · 18.11 0.10 · · · · · · 13.31 0.10 20 I/II mul

053943.74-694540.3 39 · · · · · · · · · · · · · · · · · · · · · · · · 18.61 0.07 17.34 0.08 16.08 0.05 10 III mul

053944.55-694436.2 21 · · · · · · · · · · · · · · · · · · · · · · · · 16.61 0.03 15.86 0.03 15.33 0.03 10 I/II

053945.18-694450.4 11 15.79 0.18 16.71 0.11 16.13 0.07 14.70 0.12 15.11 0.03 14.83 0.03 14.54 0.03 10 III ext

053945.20-694508.1 22 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053945.21-694533.1 41 15.44 0.05 16.45 0.04 16.02 0.04 15.66 0.06 15.53 0.07 15.25 0.10 15.45 0.23 0 S in DR

053946.39-694435.5 20 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053947.68-694526.1 16 · · · · · · · · · · · · · · · · · · · · · · · · 17.90 0.06 17.71 0.09 17.28 0.13 10 II

053948.25-694534.3 28 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053948.83-694416.7 23 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D peak

053949.26-694407.5 31 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053950.29-694545.4 40 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053952.39-694518.3 12 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053952.60-694517.0 15 · · · · · · 15.15 0.08 14.82 0.09 14.07 0.15 14.11 0.02 13.91 0.02 13.78 0.01 10 III mul

053956.62-694439.1 30 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

053956.92-695024.5 52 · · · · · · · · · · · · · · · · · · · · · · · · 18.51 0.10 17.41 0.13 16.36 0.11 10 II mul

053959.34-694526.3 5 · · · · · · · · · · · · · · · · · · · · · · · · 16.34 0.03 14.00 0.02 11.96 0.02 10 II ext

054000.69-694713.4 8 14.81 0.13 15.69 0.18 15.07 0.14 14.34 0.13 14.96 0.03 13.78 0.04 12.47 0.03 10 III ext
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Table 5—Continued

Name No U B V I J H Ks Flag Class. Remarks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

054001.44-694801.6 44 · · · · · · · · · · · · · · · · · · · · · · · · 18.51 0.08 17.43 0.09 16.60 0.09 10 I/II

054003.49-694355.0 32 · · · · · · · · · · · · · · · · · · · · · · · · 18.41 0.14 17.32 0.15 16.26 0.15 10 YSC

054003.55-694710.0 42 18.36 0.24 18.86 0.09 17.51 0.09 16.21 0.07 15.49 0.02 14.88 0.01 14.70 0.02 10 III

054004.13-694532.8 43 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 S in DR

054004.40-694437.6 1 16.90 0.20 14.67 0.12 15.55 0.14 13.94 0.14 14.18 0.04 13.99 0.05 13.53 0.11 10 III ext

054005.91-694451.6 26 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

054006.85-694400.6 25 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

054008.53-694530.6 35 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

054009.49-694453.5 10 · · · · · · 21.92 0.31 20.76 0.22 · · · · · · 18.10 0.27 17.36 0.09 16.57 0.13 10 I/II mul

054011.47-694504.5 13 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 0 D

054013.17-694948.8 45 · · · · · · · · · · · · · · · · · · · · · · · · 18.72 0.08 17.50 0.08 16.20 0.04 10 II

054014.04-694454.8 33 · · · · · · · · · · · · · · · · · · · · · · · · 15.86 0.08 15.14 0.10 14.75 0.14 0 S in DR

054019.00-694445.6 37 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17.90 0.25 10 II ext

054021.33-694944.0 36 19.55 0.10 19.77 0.05 19.27 0.06 18.26 0.09 17.97 0.09 16.69 0.12 16.66 0.16 10 II mul

054037.09-694521.5 48 · · · · · · 21.16 0.12 19.66 0.09 17.84 0.08 16.43 0.13 15.55 0.14 14.70 0.12 0 G

054044.66-694550.9 47 · · · · · · 21.02 0.12 20.41 0.11 · · · · · · 16.37 0.14 15.34 0.17 14.85 0.14 0 G

054046.29-694441.1 50 20.64 0.22 18.95 0.04 17.54 0.05 15.93 0.05 14.82 0.05 13.93 0.05 13.79 0.06 0 S in DR

054050.85-695001.9 46 · · · · · · · · · · · · · · · · · · · · · · · · 18.21 0.08 17.05 0.06 15.86 0.04 10 II

Note. — Column 1: source name. Column 2: Ranking of the brightness at 8 µm. Columns 3-9: UBV IJHKs photometric measurements in magnitudes.

Measurements with uncertainties of 99.9 are the upper brightness limits as they include fluxes from neighbors or backgrounds. The uncertainties listed

here are only errors in measurements and do not include errors in in flux calibration, i.e., 10% in U , 5% in BV , and 10% in IJHKs. Thus, the total

uncertainty of a flux is the quadratic sum of the measurement error and the calibration error. Column 10: data used for JHKs photometry: 0 – JHKs

from 2MASS catalog, 10 – JHKs from IRSF data, 20 – JKs from VLT/NACO data. Column 11 and 12: classification and remarks: D – diffuse emission,

DR – dusty region, ext – extended source, G – background galaxy, I/II/III – Type I/II/III YSO, mul – multiple, S – star, YSC – young star cluster.
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Table 6. Inferred Physical Parameters from SED Fits to YSOs

Physical Parameters of the Best-Fit Model

[8.0] Stage M̄∗ ±∆M∗ L̄tot ±∆Ltot M∗ R∗ T∗ Ṁenv Mdisk AV Ltot

Source Name (mag) Type Range (M⊙) (L⊙) (M⊙) (R⊙) (K) (M⊙/yr) (M⊙) (mag) (L⊙)

053937.56-694525.4 6.13 I 1.0 ± 0.0 34.8 ± 8.4 2.7E+05 ± 1.5E+05 29.3 270.2 7803 7.0E-04 0.0E+00 7.0 2.4E+05

053937.04-694536.7 6.60 I 1.0 ± 0.0 28.6 ± 5.5 1.2E+05 ± 5.1E+04 25.2 6.5 38000 1.5E-03 0.0E+00 0.0 8.2E+04

053935.99-694604.1 6.84 I 1.0 ± 0.0 18.5 ± 1.4 4.5E+04 ± 3.6E+02 17.3 10.4 26100 3.8E-03 0.0E+00 2.5 4.5E+04

053929.21-694719.0 7.20 I 1.0 ± 0.0 26.1 ± 1.5 8.8E+04 ± 2.5E+04 28.2 129.0 9549 7.1E-04 0.0E+00 2.3 1.2E+05

053937.53-694609.8 5.82 I/II 1.0 ± 0.0 31.2 ± 2.9 2.2E+05 ± 3.8E+04 29.3 270.0 7800 7.0E-04 0.0E+00 1.3 2.4E+05

053941.89-694612.0 5.93 I/II 1.0 ± 0.0 33.7 ± 2.6 1.7E+05 ± 2.9E+04 34.1 7.9 41760 2.5E-03 1.1E-01 12.7 1.7E+05

053944.55-694436.2 8.70 I/II 2.0 · · · 12.2 · · · 1.1E+04 · · · 12.2 4.4 28500 1.5E-06 7.3E-03 0.9 1.1E+04

054001.44-694801.6 10.83 I/II 2.0 ± 0.0 6.4 ± 0.7 1.3E+03 ± 7.7E+02 6.3 3.1 19210 1.6E-07 1.2E-03 1.2 1.1E+03

053959.34-694526.3 6.54 II 1.0 ± 0.0 15.7 ± 2.3 3.0E+04 ± 9.7E+03 15.4 7.7 27940 1.1E-04 2.7E-02 0.6 3.2E+04

053940.78-694632.0 8.02 II 1.0 ± 0.0 9.4 ± 2.7 5.7E+03 ± 2.8E+03 7.9 8.8 15820 1.0E-05 6.0E-02 1.9 4.3E+03

053947.68-694526.1 8.14 II 1.7 ± 0.5 13.0 ± 2.4 1.4E+04 ± 8.4E+03 14.8 4.8 31100 0.0E+00 1.9E-01 0.0 2.0E+04

053933.86-694701.6 9.29 II 2.9 ± 0.5 12.3 ± 1.1 1.2E+04 ± 2.5E+03 12.9 4.5 29000 0.0E+00 7.1E-07 2.2 1.4E+04

054021.33-694944.0 9.65 II 2.0 ± 0.0 7.2 ± 0.1 1.9E+03 ± 6.5E+01 7.3 3.3 21120 0.0E+00 6.4E-04 2.2 2.0E+03

054019.00-694445.6 9.66 II 1.1 ± 0.2 10.8 ± 1.8 5.6E+03 ± 2.7E+03 11.2 32.1 8432 2.6E-04 6.4E-02 15.9 4.7E+03

054013.17-694948.8 10.96 II 1.9 ± 0.3 5.5 ± 0.6 7.1E+02 ± 1.6E+02 5.7 2.9 17860 0.0E+00 2.3E-02 2.8 7.6E+02

054050.85-695001.9 10.98 II 2.0 ± 0.0 5.6 ± 0.1 7.0E+02 ± 5.7E+01 5.7 2.9 17860 0.0E+00 2.3E-02 0.7 7.6E+02

053937.37-695120.8 11.33 II 1.3 ± 0.5 6.0 ± 0.2 5.1E+02 ± 5.9E+01 5.8 12.5 7098 3.1E-05 1.7E-01 0.8 4.7E+02

053956.92-695024.5 11.57 II 2.8 ± 0.4 7.7 ± 1.0 2.6E+03 ± 9.2E+02 8.2 3.5 22860 0.0E+00 4.9E-06 3.8 3.1E+03

054004.40-694437.6 5.40 III 1.0 · · · 19.7 · · · 5.3E+04 · · · 19.7 23.3 18190 5.9E-03 0.0E+00 0.0 5.3E+04

054000.69-694713.4 6.89 III 2.5 ± 0.5 19.9 ± 2.6 4.7E+04 ± 1.5E+04 17.2 5.3 33000 1.3E-06 7.7E-05 0.0 3.1E+04

053945.18-694450.4 7.44 III 1.9 ± 0.3 16.6 ± 1.6 2.8E+04 ± 7.3E+03 16.6 5.2 32760 4.3E-07 2.3E-05 0.1 2.8E+04

054003.55-694710.0 10.34 III 1.0 ± 0.0 8.0 ± 0.5 1.2E+03 ± 3.1E+02 7.8 27.0 6700 3.8E-04 4.5E-03 1.8 1.3E+03

054009.49-694453.5 7.31 mul(I/II) 1.0 ± 0.0 20.8 ± 2.6 6.3E+04 ± 1.6E+04 22.7 18.0 23000 4.6E-03 0.0E+00 2.3 8.5E+04

053952.60-694517.0 8.14 mul(III) 1.0 ± 0.0 8.6 ± 0.7 2.4E+03 ± 3.8E+02 9.2 20.0 9200 9.6E-05 5.5E-01 0.1 2.8E+03

053930.01-694334.9 9.08 mul(II) 1.7 ± 0.5 7.7 ± 0.6 2.6E+03 ± 7.2E+02 7.5 3.4 22000 6.3E-05 1.6E-02 1.1 2.3E+03

054003.49-694355.0 9.48 YSC 1.8 ± 0.9 11.2 ± 1.8 8.4E+03 ± 3.9E+03 9.1 4.4 23000 2.1E-05 6.0E-04 3.4 5.0E+03

053943.74-694540.3 9.91 mul(III) 1.3 ± 0.6 9.4 ± 3.1 5.1E+03 ± 1.3E+04 9.0 16.0 11000 1.0E-03 1.7E-02 8.4 3.3E+03
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Table 7. Inferred Physical Properties of YSOs in Tests of SED Fits

Source M̄∗ ±∆M∗ L̄tot ±∆Ltot
¯̇Menv ±∆Ṁenv Stage M̄∗ ±∆M∗ L̄tot ±∆Ltot

¯̇Menv ±∆ ¯̇Menv Stage

Name (M⊙) (L⊙) (M⊙/yr) Range (M⊙) (L⊙) (M⊙/yr) Range

Test on SED Fits to YSO with PAH Emission

Fits to Original SED Fits to PAH-corrected SED

053935.99−694604.1 18.5± 1.4 4.5E+04±3.6E+02 2.0E-03±2.2E-03 1.0±0.0 18.5 ± 3.6 4.1E+04±2.0E+04 1.6E-04±1.7E-04 1.0±0.0

Test on SED Fits to Multiple System with Sources at Similar Evolutionary Stages

Fits to SED w/ Integrated Fluxes Fits to SED of Component a

053941.89−694612.0 32.3± 2.9 1.6E+05±3.1E+04 1.3E-03±1.0E-03 1.0±0.0 26.9±2.5 1.0E+05±2.0E+04 1.1E-03±9.4E-04 1.0±0.0

Fits to SED of Component b

24.8±2.5 8.2E+04±2.0E+04 8.5E-04±4.9E-04 1.0± 0.0

Test on SED Fits to Multiple System with Sources at Different Evolutionary Stages

Fits to SED w/ Integrated Fluxes Fits to SED w/ HST UBV I

054004.40−694437.6 19.7 · · · 5.3E+04 · · · 5.9E-03 · · · 1.0 · · · 20.5 · · · 5.9E+04 · · · 1.4E-04 · · · 1.0 · · ·
Fits to mid-IR SED

41.2±9.8 3.5E+05±1.8E+05 2.8E-03±2.0E-03 1.0±0.0
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Table 8. Comparisons of Classifications of YSOs

[8.0] Stage IRS Silicate Other

Name (mag) Type Range Spec Absorption Classificationa

053937.56-694525.4 6.13 I 1.0 ± 0.0 PE
√

UCHII

053937.04-694536.7 6.60 I 1.0 ± 0.0 PE
√

053935.99-694604.1 6.84 I 1.0 ± 0.0 PE × HAeBe

053929.21-694719.0 7.20 I 1.0 ± 0.0 P
√

maser

053937.53-694609.8 5.82 I/II 1.0 ± 0.0 PE × UCHII

053941.89-694612.0 5.93 I/II 1.0 ± 0.0 PE
√

HAeBe

054009.49-694453.5 7.31 I/II(mul) 1.0 ± 0.0 PE
√

053944.55-694436.2 8.70 I/II 2.0 · · ·
054001.44-694801.6 10.83 I/II 2.0 ± 0.0

053959.34-694526.3 6.54 II 1.0 ± 0.0 PE ×
053940.78-694632.0 8.02 II 1.0 ± 0.0 HAeBe

053947.68-694526.1 8.14 II 1.7 ± 0.5

053933.86-694701.6 9.29 II 2.9 ± 0.5 HAeBe

054021.33-694944.0 9.65 II 2.0 ± 0.0

054019.00-694445.6 9.66 II 1.1 ± 0.2

054013.17-694948.8 10.96 II 1.9 ± 0.3 HAeBe

054050.85-695001.9 10.98 II 2.0 ± 0.0 HAeBe

053937.37-695120.8 11.33 II 1.3 ± 0.5 HAeBe

053956.92-695024.5 11.57 II 2.8 ± 0.4

054004.40-694437.6 5.40 III 1.0 · · · PE × UCHII

054000.69-694713.4 6.89 III 2.5 ± 0.5 PE × HAeBe

053945.18-694450.4 7.44 III 1.9 ± 0.3 PE ×
053943.74-694540.3 9.91 III(mul) 1.3 ± 0.6 HAeBe

054003.55-694710.0 10.34 III 1.0 ± 0.0

aClassifications of UCHII, HAeBe, and maser are from Indebetouw et al. (2004),

Nakajima et al. (2005), and Lazendic et al. (2002).
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Table 9. Physical Properties of YSOs with Maser and UCHIIs

Stage M⋆ Spec. Spec.a Ṁenv Ṁcrit
b

Maser/UCHII YSO ID Type Range (M⊙) Type Type (M⊙/yr) (M⊙/yr)

maser 053929.21−694719.0 I I 26.1±1.5 O7.5V · · · 5.1E-04±1.5E-04 · · ·
B0540−6946(1) 054004.40−694437.6 III I 19.7c O9 V O6 V 5.9E-03 3.2E-05

I 41.2±9.8d O6 V 2.8E-03±2.0E-03

B0540−6946(4) 053937.56−694525.4 I I 34.8±8.4 O6 V O5.5 V 2.3E-03±1.9E-03 6.8E-05

B0540−6946(5) 053937.53−694609.8 I/II I 31.2 ± 2.9 O7 V O7.5 V 2.2E-03±2.1E-03 4.1E-05

aThe spectral type is determined from radio observations (Indebetouw et al. 2004).

bThe critical infalling rate is adopted from Churchwell (2002).

cParameters are inferred from model fits to the SED composed of all datapoints from U to 70 µm.

dParameters are inferred from model fits to the SED composed of Spitzer mid-IR datapoints.
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Table 10. Physical and Star Formation Properties of GMCs in N159 and N44

N159-E N 159-W N159-S N 44-C N44-S N 44-N

+N159-2 +N159-3

Vlsr (km s−1) 234.1 236.1±2.4 233.0±1.6 282.5 279.4 283.8

∆V (km s−1) 7.6 5.7±0.3 7.7±0.8 7.2 15.8 3.8

Size (pc) 19.2 15.8± 1.0 19.5±2.4 86 136 · · ·
Mvir (104M⊙) 17 16 36 37 210 · · ·
Mlum (104M⊙) 21± 13 26± 17 39± 25 46± 13 145 ± 41 · · ·
Mvir/Mlum 0.8+1.3

−0.3
0.6+1.2

−0.2
0.9+1.7

−0.3
0.8+0.3

−0.2
1.4+0.6

−0.3
· · ·

tff (Myr) 1.0 1.1 1.1 6.6 5.5 · · ·
NYSO(Mu1 −Mu2)a 3(41-15) 6(35-18) 4(8-5) 5(45-17) 4(25-12) 5(17-8)

M total
YSO

(Mu −Ml)
b (M⊙) 440+330

−150
(41-1) 1380+690

−290
(35-1) 200+220

−70
(8-1) 890+490

−30
(45-1) 475+70

−70
(25-1) 310+25

−40
(17-1)

SFEYSO 2.6+2.0
−0.9

E-3 8.6+4.3
−1.8

E-3 5.6+6.1
−1.9

E-4 2.4+1.3
−0.1

E-3 2.3+0.3
−0.3

E-4 · · ·
SFRYSO (M⊙ yr−1) 4.4+3.3

−1.5
E-4 1.4+0.7

−0.3
E-3 2.0+2.2

−0.7
E-4 8.9+4.9

−0.3
E-4 4.8+0.7

−0.7
E-4 3.1+0.3

−0.4
E-4

ǫff 2.6+2.0
−0.9

E-3 8.6+4.3
−1.8

E-3 5.6+6.1
−1.9

E-4 1.6+0.5
−0.2

E-2 1.2+0.2
−0.2

E-4 · · ·
L(Hα)obs (×1037 ergs s−1) 8.9±0.9 4.0±0.4 0.16±0.02 160±20 110±10 0.49±0.05

L(24 µm) (×1038 ergs s−1) 46±5 28±3 0.55±0.06 23±2 14±1 1.8±0.2

Aperture Radius (′′) 110 90 120 140 270 180

SFRHα+24 (M⊙ yr−1) 1.20±0.16E-3 6.57±0.96E-4 1.72±0.21E-5 1.21±0.11E-3 8.06±0.75E-4 5.46±0.65E-5

ΣH2
(M⊙ pc−2) 35 62 62 59 42 25

ΣHI (M⊙ pc−2) 90 99 117 54 72 45

SFRHα+24 (M⊙ yr−1 kpc−2) 0.54±0.07 0.44±0.07 6.4±0.8E-3 0.33±0.04 0.060±0.005 9.1±1.1E-3

SFRYSO (M⊙ yr−1 kpc−2) 0.20+0.15
−0.07

0.92+0.41
−0.19

0.075+0.083
−0.026

0.24+0.13
−0.01

0.035+0.005
−0.005

0.051+0.004
−0.007

SFRΣ (M⊙ yr−1 kpc−2) 0.22 0.32 0.36 0.19 0.19 0.10

aNumber of YSOs with M̄∗ in the mass range (u1-u2).

bTotal mass of YSOs extrapolated for the mass range (u-l).
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