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Abstract. Insulin-like growth factor binding proteins 
(IGFBPs) have been shown to serve as carrier proteins 
for the insulin-like growth factors (IGFs) and to mod- 
ulate their biologic effects. Since extracellular matrix 
(ECM) has been shown to be a reservoir for IGF-I and 
IGF-U, we examined the ECM of cultured human fetal 
fibroblasts and found that IGFBP-5 was incorporated 
intact into ECM, while mostly inert proteolytic frag- 
ments were found in the medium. In contrast, two 
other forms of IGFBP that are secreted by these cells 
were either present in ECM in minimal amounts 
(IGFBP-3) or not detected (IGFBP-4). Likewise, when 
purified IGFBPs were incubated with ECM, IGFBP-5 
bound preferentially. IGFBP-5 was found to bind to 
types III and IV collagen, laminin, and fibronectin. 
Increasing salt concentrations inhibited the binding of 
IGFBP-5 to ECM and accelerated the release of 

IGFBP-5 from ECM, suggesting an ionic basis for this 
interaction. ECM-associated IGFBP-5 had a sevenfold 
decrease in affinity for IGF-I compared to IGFBP-5 in 
solution. Furthermore, when IGFBP-5 was present in 
cell culture substrata, it potentiated the growth stimu- 
latory effects of IGF-I on fibroblasts. When IGFBP-5 
was present only in the medium, it was degraded to a 
22-kD fragment and had no effect on IGF-I-stimulated 
growth. We conclude that IGFBP-5 is present in fibro- 
blast ECM, where it is protected from degradation and 
can potentiate the biologic actions of IGF-I. These 
findings provide a molecular explanation for the asso- 
ciation of the IGF's with the extracellular matrix, and 
suggest that the binding of the IGF's to matrix, via 
IGFBP-5, may be important in mediating the cellular 
growth response to these growth factors. 

p EPTIDE growth factors have typically been studied by 
determining the response of cells to soluble growth 
factors that diffuse rapidly through the culture me- 

dium. However, in vivo, connective tissue cells are imbedded 
in a complex extracellular matrix (ECM) t, and diffusible 
growth factors may be exposed to the extraceUular matrix 
(ECM) before binding to receptors (29, 35). Access to the 
receptor may involve intermediate binding of the growth fac- 
tor to components of the matrix. For example, attachment 
of growth factors such as transforming growth factor-fl 
(TGF-/3) and basic fibroblast growth factor (bFGF) to matrix 
components can serve to stabilize or increase local concen- 
trations of the growth factors (12), to modulate the interac- 
tion of these peptides with their receptors (44, 45), to alter 
their rates of diffusion through the matrix (33), or to protect 
them from proteolytic degradation (36). As a result, the cel- 
lular response to growth factors that are bound to the pericel- 

1. Abbreviations used in this paper: bFGE basic fibroblast growth factor; 
ECM, extracellular matrix; EMEM, Eagle's minimal essential media; 
HSPG, heparan-sulfate proteoglycans; IGE insulin-like growth factor; 
IGFBP, insulin-like growth factor binding protein; TGF-/3, transforming 
growth factor-3. 

lular ECM can be markedly different than the response to 
the same peptides in solution. 

Both insulin-like growth factors (IGF-I and IGF-II) have 
been shown by immunohistochemical staining to localize to 
specific cell types within tissues (18, 24) that do not contain 
their mRNAs, as determined by in situ hybridization (13). In 
contrast, the cells where the IGFs are concentrated do synthe- 
size IGF binding proteins (IGFBPs). Therefore, IGFBPs 
have been postulated to transport and direct the IGFs to 
specific cell types within tissues (8). Previous studies have 
also demonstrated that IGFBPs bind to cell surfaces and 
modulate the binding of IGF-I to its receptors (9). The IGFs 
are known to localize in ECM (14), and IGF-II was purified 
from bone cell matrix (27). However, studies to determine 
if IGFBPs are present in ECM have not been reported. Re- 
cently, we have observed that fibroblasts synthesize three dis- 
tinct forms of IGFBP: IGFBP-3, IGFBP-4, and IGFBP-5 (7). 
The purposes of the current study were to identify which, 
if any, of these IGFBPs were present in fibroblast ECM, to 
compare their relative amounts, to measure the affinity of the 
ECM-associated IGFBPs for the IGFs, and to determine 
whether ECM-localized EGFBPs modulate cellular growth 
responses to IGF-I. 
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Materials and Methods 

Preparation of Extracellular Matrix 
Human fetal dermal fibroblasts (GMI0; NIGMS Human Genetic Mutant 
Cell Repository, Camden, NJ) were maintained in Eagle's Minimal Essen- 
tiai Media (EMEM; Hazelton Systems, Denver, PA) supplemented with 
10% calf serum (Colorado Serum Co., Denver, CO) and 110 #g/ml pyru- 
vate, 30 #g/ml asparagine, 21 #g/ml serine, 100 U/ml penicillin, and 100 
#g/ml streptomycin. For experiments in which it was desired to minimize 
the amount of IGFBP-5 deposited into the ECM, the cells were maintained 
in 10% FBS (Hyclone Laboratories, Logan UT) rather than calf serum. The 
cells were plated on positively charged 24- or 96-well plates (Primaria, Fal- 
con Laboratory Division of Becton Dickinson, Rutherford, NJ) and grown 
for 7-10 d until confluence. The Primaria plates were used to minimize 
nonspecific binding of IGFBP-5 to the dishes. ECM was prepared as de- 
scribed by Knudsen et al. (23), keeping the plates on ice and using ice-cold 
solutions. The cells were rinsed twice in PBS and the cell membranes re- 
moved by incubation for 10 rain in 0.5% Triton X-100 in PBS, pH 7.4. The 
adherent nuclei and cytoskeleton were removed by incubation for 5 min in 
25 nM ammonium acetate, pH 9.0. The ECM, which remained on the 
plates, was rinsed twice in PBS and used as substratum for binding or 
growth experiments, for immunocytochemistry or for Western blot 
analysis. 

Western Ligand Blots and lmmunoblots 
Conditioned media were collected from confluent cultures of fibroblasts that 
bad been rinsed twice and incubated in serum-free EMEM (250 #l/cm 2) 
containing 0.01% BSA for 48 h. Fibroblast ECM was prepared as above and 
scraped from the plates in Laemmli sample buffer (25) containing 2 % SDS. 
Samples of the ECM preparations and conditioned media were heated to 
60°C in sample buffer for 10 rain, and solubilized proteins were resolved 
by SDS-PAGE in 12.5% gels and transferred to polyvinylidene difhioride 
membranes (Immobilon, Millipore Corp., Bedford, MA). The membranes 
were probed with 125I-IGF-I using a ligand blotting technique previously 
described (19), or with a 1:1,000 dilution of a polyclonal antiserum to hu- 
man IGFBP-5 (7). After overnight incubation at room temperature in the 
IGFBP-5 antiserum, the immunoblots were developed by incubating 2 h 
with a anti-guinea pig IgG-HRP conjugate (Sigma Immunochemicals, 
St. Louis, MO). A chemiluminescent peroxidase substrate (ECL; Amer- 
sham, Arlington Heights, IL) was applied according to the manufacturer's 
instructions and the membrane was exposed briefly to autoradiographic film 
(Hyperfilm-MP; Amersham Corp., Arlington Heights, IL). 

Immunocytochemistry 
ECM from human fetal fibroblasts was prepared as described above, except 
on glass microscope slides adapted for cell culture (Lab-Tek Chamber 
slides; Nunc, Naperville, IL). The ECM on the slides was fixed with 10% 
formaldehyde/45 % acetone in 200 mg/l Na2HPO4 and 1 g/1 KH2PO4, pH 
7.2, for 1 rain, rinsed in TBS (10 mM Tris-HC1, pH 7.5, 150 mm NaC1) 
and blocked for 60 rain with 3 % BSA in TBS with 0.05 % NAN3. The 
slides were rinsed with TBS and incubated overnight at 4°C with 1:1,000 
dilutions (in TBS with 1% BSA) of either control nonimmune sera, primary 
antisera, or primary antisera that had been preincubnted with excess anti- 
gen. The primary polyclonal antisera used were directed against human 
fibronectin, laminin, vitronectin, decorin, tenascin (Telios Pharmaceuti- 
cals, San Diego, CA), against human IGFBP-1 (6), bovine IGFBP-2 (10), 
recombinant human IGFBP-3, or human IFGBP-5 (7). After rinsing with 
TBS, the slides were incubated for 2 h with 1:50 dilutions of monoclonal 
anti-rabbit IgG (monoclonal anti-guinea pig IgG was used for the IGFBP-5 
primary antiserum) conjugated to biotin (Sigma Chemical Co.), followed 
by incubation with avidin-biotin-HRP complex (Elite ABC Kit; Vector 
Labs, Burlingame, CA) according to the manufacturer's directions. The 
antibody-bound peroxidase was visualized by incubation with 3,3-diamino- 
benzidine in the presence of nickel and hydrogen peroxide (DAB substrate 
kit; Vector Labs). The stained ECM preparations were sealed on the slides 
with Crystal/Mount (Biomeda, Foster City, CA) and mounted under cover- 
slips with PerMount (Sigma Chemical Co.). The slides were examined and 
photographed under light microscopy. 

Preparations of Human IgF Binding Proteins 
Human IGFBP-5 was purified to homogeneity from the conditioned media 

of human glioblastoma cells ('198G; American Type Culture Collection, 
Rockville, MD) as previously described (7). The protein was proven to be 
pure IGFBP-5 by NH2-terminal amino acid sequence analysis, which 
showed that the first 30 residues were identical to the published sequence 
(39). Human IGFBP-5 was also prepared from media conditioned by CHO 
cells (CHO-KI; American Type Culture Collection) that had been stably 
transfected with an expression vector containing a human IGFBP-5 cDNA, 
the expression of which was driven by a mouse metallothionein promoter. 
Isolation of the IFGBP-5 cDNA from T98G human glioblastoma cells by 
polymerase chain reaction has been described (7). This cDNA was inserted 
into the pNUT plasmid expression vector (obtained from Dr. R. Palmiter, 
University of Washington, Seattle, WA; 30) as previously described for 
IGFBP-1 (20). The recombinant CHO protein was purified as previously de- 
scribed (7) and was indistinguishable from the IGFBP-5 purified from 
glioblastoma conditioned medium by SDS-PAGE with silver stain, ligand 
blot, and immunoblot analysis or by IGF binding affinity determination. 
Recombinant human IGFBP-3 synthesized in transfected CHO cells was a 
generous gift of Genentech, Inc. (South San Francisco, CA). Human 
IGFBP-1 was purified from anmiotic fluid (5), bovine IGFBP-2 from Madin 
Darby bovine kidney cells (3), and human IGFBP-4 from T98G glio- 
blastoma conditioned media (7) as previously described. 

Attachment and Release of lGFBP-S from Matrix 
To measure the binding of soluble IGFBP-5 to ECM, the ECM was pre- 
pared from GMI0 fibroblasts grown on Primaria (positively charged) 24- 
well plates. Primaria plates were used to minimize nonspecific binding of 
IGFBP-5 to the plastic. (These plates coated with IGFBP-5 bound <3 % to- 
tal 125I-IGF-I added as compared to 15% for negatively charged culture 
plates.) The cells had been maintained in 10% FBS to minimize the pres- 
ence of endogenously synthesized IGFBP-5 (see Fig. 1). The ECM-coated 
wells were incubated with 100 ng/ml IGFBP-5 in 0.25 ml of either a buffer 
containing 10 mM NaH2PO4, 10 mM Na2HPO4, pH 7.4, 0.1% BSA (30 
mM Na+), or the same buffer to which additional NaC1 had been added, 
to final Na + concentrations of 75 mM, 150 mM, 300 mM, 600 mM, or 
1.0 M. After an overnight incubation at 4°C the wells were rinsed twice, 
and the ECM-attached IGFBP-5 was extracted with Laemmli sample buffer 
containing 2 % SDS and detected by SDS-PAGE and ligand blot analysis 
using 12sI-IGF-I. To examine the release of IGFBP-5 from ECM, the ECM 
was prepared from GMI0 fibroblasts maintained on 24-well plates in 10% 
calf serum to maximize the amount of endogenous IGFBP-5 incorporated 
into the ECM. The wells were rinsed twice and incubated with 0.25 m.l of 
the same buffers (containing 0.03-1.0 M sodium) used for the binding ex- 
periment. After 2.5- and 5-h incubations at 22°C, the ECM was extracted 
with SDS and the remaining IGFBPs detected by ligand blot analysis, as 
described above for the binding experiment. In addition, IGFBP amounts 
in the releasates were determined by adding Tween-20 to a final concentra- 
tion of 0.05 %, concentrating 10-fold with a Centricon-10 (Amicon Corp.) 
microconcentrator and adding NaCI to equalize the final sodium concentra- 
tions of all samples to 1.0 M. The concentrated samples were analyzed by 
SDS-PAGE and ligand blot and immunoblot analysis, and IGFBP in the 
samples quantitated by an IGF-I binding assay performed as described pre- 
viously (5). 

The rate of loss of endogenous IGFBP-5 from ECM was determined by 
incubating ECM (prepared from GM10 fibroblasts cultured in 10% CS on 
96-well tissue culture plates) in 0.1 ml serum-free EMEM with 0.01% BSA 
at 37°C. The amount of IGFBP-5 remaining in the ECM after various incu- 
bation times was determined by ligand blot analysis. The rate of loss of ex- 
ogenous IGFBP-5 was determined by first allowing purified IGFBP-5 (80 
ng/ml) to attach to ECM (prepared from GM10 fibroblasts cultured in 10% 
FCS to minimize endogenous IGFBP-5) by overnight incubation at 4°C in 
0.1 ml 30 raM NaH2PO4, pH 7.4, with 0.1% BSA. The ECM preparations 
were then rinsed twice and the rate of loss of IGFBP-5 from the ECM (at 
37°C in EMEM with 0.01% BSA) was determined as described above for 
endogenous IGFBP-5. The binding affinity of the exogenous IGFBP-5 
released into 50 #1 of releasate during a 6-h incubation period was measured 
in a solution 125I-IGF-I binding assay (performed at pH 6.0) as described 
previously (20), to determine whether it had been denatured as a result of 
matrix association. 

Binding of Purified IGFBP-S to Individual 
Components of ECM 
Individual matrix components were purchased from commercial sources: 
type I collagen (rat tail; Sigma Chemical Co.); types Ill, IV, and V collagen 
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(human placenta; Sigma Chemical Co.); type VII collagen (human fetal 
membranes; Telios); laminin (Englebreth-Holm-Swarm mouse sarcoma; 
Sigma Chemical Co.); vitronectin (human plasma; Telios); and cellular 
fibronectin (human foreskin fibroblasts; Sigma Chemical Co.). The colla- 
gens were dissolved in 0.1 M acetic acid to 10 #g/100 #1, and 100 gl per 
well was applied to 96-well plates (Coming #25805-96; Coming Inc., 
Coming, NY) in triplicate and allowed to dry. Laminin, vitronectin, and 
fibronectin were diluted to 10 gg/100/zl in PBS, and 100 #1 per well were 
applied to the wells in triplicate, incubated 3 h at 220C, and aspirated. Each 
well was rinsed twice with PBS and incubated overnight at 4°C with 50 ng 
of IGFBP-5 in 100 gl of 30 mM NaH2PO4, pH 7.4, with 0.1% BSA. Each 
well was then rinsed twice with PBS and the attached proteins solubilized 
and removed with Laemmli sample buffer containing 2 % SDS. The at- 
tached IGFBP-5 was detected by SDS-PAGE of the solubilized proteins, fol- 
lowed by transfer to polyvinylidene difluoride membranes and ligand blot- 
ting with 125I-IGF-I. 

Binding of lGF-I to IGFBP-5 and IGFBP-3 
Attached to ECM or to Collagen 

ECM from human fetal fibroblasts was prepared as described above from 
cells maintained in 10% FBS on 24-well Primaria tissue culture plates. 
Collagen-coated wells were prepared by incubating 24-well Primaria tissue 
culture plates with 20 pg of human placental type IV collagen (Sigma 
Chemical Co.) in 100/A 0.1 M acetic acid and allowing the collagen solution 
to dry. The ECM- and collagen-coated wells were rinsed twice with binding 
buffer (EMEM without bicarbonate, supplemented with 20 mM Hepes, pH 
7.4, and 0.1% BSA) and incubated overnight at 40C in 0.25 ml with the same 
binding buffer and 100 ng/ml of either IGFBP-5, IGFBP-3, or with buffer 
alone (controls). The wells were then rinsed twice in binding buffer and in- 
cubated for 4 h at 22°C and 20,000 cpm of 125I-IGF-I (a generous gift of 
Dr. Louis Underwood, University of North Carolina, Chapel Hill, NC) and 
0-32 ng/ml unlabeled IGF-I in 0.25 rnl of the same buffer. Some release 
of IGFBP-5 from the ECM occurred in 4 h at 22°C in physiologic salt (see 
Fig. 3 b). After rinsing with PBS, the bound radioactivity was solubilized 
with 0.3 M NaOH and counted in a 3'-spectrometer. Binding of 125I-IGF-I 
directly to uncoated or collagen-coated Primaria plates was <1% of the total 
radioactivity when the 125I-IGF-I was added before and <3% when it was 
added after the plates were incubated with IGFBP-5. In contrast, incubation 
of IGFBP-5 with uncoated (negatively charged) tissue culture plates resulted 
in binding of 15 % of total t25I-IGF-I. Nonspecific binding of the 125I-IGF-I 
to matrix or matrix components was determined by coincubation with 1,000 
ng/ml recombinant IGF-I (a generous gift of Genentech), was consistently 
<5 % of total cpm added. Specific binding to the endogenous IGFBPs in 
the ECM (which was minimized by culturing the ceils in FBS and was usu- 
ally <20% of binding detected after exposure to IGFBP-5) was subtracted 
from total binding at each competing concentration of IGF-I. 

Binding of lGF-I to IGFBP-5 in Solution 

Competitive binding assays using IzsI-IGF-I (20,000 clam) and unlabeled 
IGF-I (0-8 ng/ml) with IGFBP-5 (16 ng/ml) were performed in solution in 
0.25 rnl of the same binding buffer used for the ECM binding experiments 
at pH 7.4. Bound and free IGF-I were separated by precipitation in 12.5% 
polyethylene glycol (PEG-8000; Sigma Chemical Co.) as described previ- 
ously for IGFBP-1 (26). Nonspecific binding was determined by competi- 
tion with 1,000 ng/ml unlabeled IGF-1, was <25% of Bo, and was sub- 
tracted. 

Fibroblast Growth Assay 

To determine the effects of ECM and IGFBP-5 on fibroblast growth, GMI0 
fetal fibroblasts were grown to confluency in 10% FBS, and ECM was pre- 
pared on 24-weU Primaria plates as described above. The ECM was rinsed 
twice and incubated overnight with purified IGFBP-5 (80 ng/ml) in 0.25 ml 
binding buffer at 4°C. Control cultures were exposed to buffer alone. The 
following day a separate type of human fibroblast cells (GM498; NIGMS 
Human Genetic Mutant Cell Repository), that had been maintained in 10% 
calf serum as described for GMI0 fibroblasts was trypsinized and plated 
onto the ECM at 8,000 cells/era 2 in serum-free EMEM supplemented with 
0.01% BSA/linoleic acid (Sigma Chemical Co.). The GM498 cells were 
chosen because they secrete very low amounts of IGFBP-5 by ligand blot 
and immunoblot analyses of their conditioned media and ECM. The cells 
were allowed to attach and become quiescent overnight at 37"C. The 
medium was then changed and the cells incubated for 48 h at 37"C in the 

absence of serum (in EMEM supplemented with 0.01% BSA/linoleic acid) 
in the presence or absence in the medium of IGF-I 20 ng/ml, IGFBP-5 80 
ng/ml, or IGF-I plus IGFBP-5. At that time cell number was determined 
in a particle data counter (model ZBI; Coulter Electronics, Hialeah, FL). 
The ECM was removed from duplicate plates treated identically, and was 
analyzed by immunoblot analysis to determine the amount of IGFBP-5 pres- 
ent in the ECM during the growth period. 

Analysis of the amount of IGFBP-5 remaining in the ECM at the end of 
the 48-h growth period showed that it had diffused out of the ECM substra- 
tum when the growth medium had not been supplemented with IGFBP-5. 
Since we had determined that IGFBP-5 would bind to type IV collagen (see 
Fig. 5), we therefore also performed growth studies using collagen as a sub- 
stratum in order to obtain a more stable concentration of IGFBP-5 in the 
matrix. Tissue culture wells were coated with 20 gg of type IV collagen 
(Sigma Immunochemicals) and incubated overnight with 1 /zg/ml recom- 
binant human IGFBP-5 or buffer alone. Fibroblasts (GM498) were plated 
the next morning, and the 48-h growth study performed as described above, 
except that platelet-poor human plasma (0.2%) was added to the media to 
support attachment and growth on collagen. Platelet-poor plasma was not 
required for attachment and growth on ECM. Ligand blot analysis of the 
collagen substratum was performed at the end of the growth period, and a 
laser scanning densitometer (Hoefer Scientific, San Francisco, CA) was 
used to quantitate IGFBP-5 band intensities. 

Results 

Ligand Blot and Immunoblot Analysis 
IGF binding proteins were detected by ligand blots (probed 
with t:sI-IGF-I) in both the culture medium (Fig. 1, lanes 1 
and 2) and in the extracellular matrix (lanes 5 and 6) of cul- 
tured fetal fibroblasts. The conditioned medium (lanes 1 and 
2) contained bands of intense IGF-I binding activity of 
39,000-43,000 Mr as well as a less intense band of 24,000 
M~. Immunoblot analysis has previously shown that the 
39,000--43,000-Mr forms are IGFBP-3 and that the 24,000 
form is IGFBP-4 (7). Cells cultured in calf serum (lane 2) 
secreted slightly more IGFBP of all species into the medium 
than did cells cultured in FBS (lane/).  In the ECM ligand 
blots (lanes 5 and 6) a 31,000-Mr band was present in addi- 
tion to IGFBP-3. Immunoblot analysis of the ECM (lanes 7 
and 8) demonstrated that the 31,000-Mr IGFBP in ECM 
was immunoreactive IGFBP-5. Immunoblot analysis of the 
conditioned medium for IGFBP-5 (lanes 3 and 4) did not de- 
tect a 31,000-Mr IGFBP, but only detected a lower molecu- 
lar weight band of 22,000 Mr. This smaller form did not 
bind IGF-I (lanes 1 and 2), was not detected in the ECM 
(lanes 7 and 8), and was shown to be a proteolytic fragment 
of IGFBP-5 by amino acid sequencing (7). The ECM from 
ceils cultured in FBS (lanes 6 and 8) contained substantially 
less IGFBP-5 than the ECM from cells cultured in calf serum 
(lanes 5 and 7). Because of this observation we used ECM 
from cells cultured in FBS in subsequent experiments char- 
acterizing the effects of IGFBP-5 added exogenously to 
ECM, in which it was important to minimize the amount of 
endogenous IGFBP-5. The most striking difference between 
the ECM and the medium of these fibroblasts was that 
IGFBP-5 was present intact in the ECM in amounts com- 
parable to IGFBP-3, while IGFBP-3 was the dominant IGF 
binding protein in the conditioned medium, in which 
IGFBP-5 was present chiefly as non-IGF-binding fragments. 
In contrast, IGFBP-5 fragments were never detected in 
fibroblast ECM. IGFBP-4 was present only in the medium 
and not in the matrix. We have not been able to detect 
IGFBP-2 or IGFBP-4 in ECM preparations from cell types 
that are able to secrete these binding proteins, while 
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Figure I. Ligand blot and immunoblot analysis of fibroblast condi- 
tioned media and ECM obtained from cells cultured in FBS or calf 
serum. Media (25 #1, lanes 1-4) conditioned for 48 h and ECM 
(extracted from 0.5 cm 2 surface area, lanes 5-8) deposited by con- 
fluent cultures of GM10 fibroblasts were subjected to SDS-PAGE 
in 12.5% gels. Proteins in the gels were transferred to polyvinyli- 
dene difluoride filters, and the filters were ligand blotted with 
150000 cpm/ml ~25I-IGF-I (lanes 1, 2, 5, and 6). The same flters 
were then immunoblotted with antiserum to IGFBP-5 (lanes 3, 4, 
7, and 8). The autoradiographs demonstrate 125I-IGF-I binding 
(lanes 1, 2, 5, and 6, exposure time 72 h) or chemiluminescence 
due to antibody binding (lanes 3, 4, 7, 8, exposure time 4 min). The 
arrows show the locations in the blots of the IGFBP-3 doublet (in 
1, 2, 5, and 6), intact IGFBP-5 (in 5, 6, 7, and 8), IGFBP-4 (in 1 
and 2), and IGFBP-5 fragments (in 3 and 4). The IGFBP-5 flag- 
ments bind IGF-I with low affinity and therefore are not visible in 
lanes 1 and 2. The samples in lanes 2, 4, 5, and 7 were obtained 
from GM10 fibroblasts cultured in calf serum, while lanes 1, 3, 6, 
and 8 were from the same cells cultured in FBS. 

IGFBP-1 is detectable only in ECM from cells that secrete 
large amounts (J. I. Jones, unpublished data). 

Immunocytochemistry 

Immunocytochemical  staining of the fibroblast ECM prepa- 
rations (Fig. 2) demonstrated positive staining for IGFBP-5 
and IGFBP-3. Strongly positive staining for fibronectin and 
tenascin confirmed that the procedure used to prepare ECM 
resulted in a valid matrix preparation. Staining for IGFBP-5 
(Fig. 2 a) was more intense than for IGFBP-3 (Fig. 2 c), es- 
pecially when compared to their respective control slides 
(Fig. 2 b and d) ,  in which the antisera had been preabsorbed 
with antigen excess. Staining for vitronectin, IGFBP-1, and 
IGFBP-2 were indistinguishable from control staining with 
nonimmune rabbit serum (not shown). The most intense 
staining was for fibronectin, tenascin, and IGFBP-5, al- 
though positive staining for decorin and laminin also oc- 
curred (not shown). 

Inhibition of ECM Association by Increasing 
Ionic Strength 

Not only was IGFBP-5 deposited by fibroblasts into their 
ECM, but pur i fed  human IGFBP-5, when incubated over- 
night with fibroblast ECM preparations, attached to the 
ECM. Increasing salt concentrations markedly decreased 
the association and increased the release of  IGFBP-5 from 
fibroblast ECM preparations. Fig. 3 a,  demonstrates that 

Figure 2. Immunocytochemistry of fibro- 
blast ECM. ECM was prepared from 
confluent cultures of GM10 fibroblasts 
grown on glass slides. After blocking 
with BSA, the ECM preparations were 
incubated with antisera against IGFBP-5 
(a and b), IGFBP-3 (c and d), fihro- 
nectin (e), and tenascin (f) .  To demon- 
strate specificity, in panels b and d the 
antisera were preincubated with 10 #g/ 
ml excess pure antigen. The slides were 
then incubated with biotinylated mono- 
clonal anti-IgG followed by avidin-biotin- 
peroxidase complex. 3,3-Diaminoben- 
zidine was used as substrate for color 
development. The slides were mounted 
and photographed under identical expo- 
sure conditions. Bar, 50 #m. 
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Figure 3. Effects of salt concentration on the attachment and release 
of IGFBP-5 from ECM. For the attachment experiments (a), 
fibroblasts ECM preparations were incubated with 100 ng/ml 
IGFBP-5 overnight in buffers containing 7, 5, 150, 300, 600, and 
1,000 mM sodium and analyzed by ligand blot analysis using t25I- 
IGF-I. For the release experiments, ECM preparations were incu- 
bated for 5 h (b) at 22°C with the same buffers and analyzed by 
ligand blot. The arrows indicate the locations of IGFBP-5 as well 
as IGFBP-3 in the ligand blots. 

when soluble IGFBP-5 was incubated with ECM, the 
greatest amount of IGFBP-5 attached to ECM and formed 
the most intense band in the ligand blot when the incubation 
was performed under conditions of minimal salt (30 mM 
Na+). There was progressive inhibition of binding with in- 
creasing Na + concentrations in the buffer (from 75 mM to 
1.0 M). Conversely, the endogenous IGFBP-5 deposited by 
the fibroblasts directly into their ECM remained associated 
with the ECM when incubated with a buffer containing 30 
mM salt. However, increasing the Na + concentration in the 
buffer from 75 mM to 1.0 M resulted in a progressive de- 
crease of IGFBP-5 in the ECM which was apparent by 2.5 h 
and marked by 5 h (Fig. 3 b). While IGFBP-5 in the ECM 
decreased dramatically in both experiments under condi- 
tions of high Na + concentration, the IGFBP-3 band inten- 
sity in Fig. 3 decreased only slightly. Immunohlot analysis 
of the Immohilon filters in both panels of Fig. 3 revealed that 
no IGFBP-5 fragment was present in the ECM at any salt 
concentration, and incubation of purified IGFBP-5 fragment 
in 30 mM sodium phosphate with ECM did not result in de- 
tectable attachment of the fragment (not shown). The con- 
centration of IGFBP-5 in the releasate of the experiment 
shown in Fig. 3 b, was below the limit of detectability by 
ligand or immunoblot analyses, even after tenfold concentra- 
tion. However, indirect evidence that the IGFBP-5 released 
from the matrix was intact rather than degraded was ob- 
tained from a quantitative IGF-I binding assay (5) performed 
on the releasate, which showed a progressive increase an 
IGF-I binding activity in releasate with increasing salt con- 
centration, from undetectable (at 30 mM Na) to 5.3 ng/mi 
(at 1 M Na). IGFBP-5 fragments have an extremely low 
affinity for IGF-I and are not detected by this assay. 

Figure 4. Release of exogenously added vs. endogenously synthe- 
sized IGFBP-5 from fibroblast ECM. Ligand blot analysis of ECM 
prepared on 96 well tissue culture wells from fibroblasts cultured 
in FBS (lanes 1-4) or CS (lanes 5-7). Lanes 1-4: ECM immedi- 
ately after preparation (lane 1), then incubated overnight with 100 
ng/ml IGFBP-5 (lane 2), then incubated in a physiologic buffer 
6 h (lane 3) or 22 h (lane 4). Lanes 5-7: ECM immediately after 
preparation (lane 5), then incubated in a physiologic buffer 6 h (lane 
6) or 22 h (lane 7). The arrow indicates the location of IGFBP-5 
in the antoradiographs. 

Release of exogenous IGFBP-5 bound to ECM under 
physiologic salt concentration at 37°C was rapid and was 
complete by 6 h (Fig. 4, lane 3). The binding and subsequent 
release of the purified IGFBP-5 from the ECM did not result 
in a loss of affinity, since a solution competition binding as- 
say of the EGFBP-5 in the releasate determined an IGF-I 
binding association constant (at pH 6.0) of 6.5 x 10 t0 M -~ 
compared to 4.8 × 101° M -t determined for purified 
IGFBP-5 before binding to the ECM. Release of endogenous 
IGFPB-5 from fibroblast ECM was significantly less rapid 
under physiologic conditions, with significant amounts of 
IGFBP-5 remaining after 22 h (Fig. 4, lane 7). 

Binding of IGFBP-5 to Components of ECM 
Purified IGFBP-5 was incubated overnight with individual 
matrix components immobilized on plastic microtiter wells, 
and the amount of IGFBP-5 which bound to each component 
was determined by ligand blot analysis (Fig. 5). Under these 
conditions, the largest amount of IGFBP-5 bound to type IV 
collagen, with significant binding to laminin, type HI colla- 
gen, and fibronectin. The amounts of IGFBP-5 binding to 
types I, V, and VII collagen and to vitronectin were not 
greater than to control (noncoated) microtiter wells. 

Binding Affinity of ECM-associated vs. -soluble 
IGFBP-5 for IGF-I 

After attachment to ECM or collagen substrata, IGFBP-5 
retained its capacity to bind IGF-I, but its affinity was de- 
creased (Fig. 6). Scatchard analysis of binding to IGFBP-5 
using ~2sI-IGF-I in competition with unlabeled IGF-I dem- 
onstrated a sevenfold decreased affinity when the IGFBP-5 
was immobilized on the ECM and greater than tenfold when 
it was immobilized on type IV collagen, compared to its 
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Figure 5. Binding of IGFBP-5 to individual ECM components. 
IGFBP-5 was incubated with ECM components immobilized on 
microtiter wells, and the attached proteins solubilized and analyzed 
by SDS-PAGE and Ilgand blot analysis. The arrow denotes the posi- 
tion of the IGFBP-5 band. The figure represents data from two rep- 
resentative experiments. Ligand blots from separate experiments 
were normalized by using the binding to type IV collagen as inter- 
hal standards. 

binding affinity when it was in solution. The x axis intercepts 
of  the Scatchard plots indicate that the preincubation of  
IGFBP-5 (100 ng/ml) with the ECM- or collagen-coated 
plates resulted in the attachment of  approximately sixfold 
more IGF-binding sites than were present in the IGFBP-5 (16 
ng/ml) that was added directly to the solution binding assay. 
In contrast to IGFBP-5, relatively little IGFBP-3 attached to 
the matrix during an overnight incubation, resulting in too 
little IGF-I binding to permit Scatchard analysis (Fig. 6). 
This was consistent with the observation in Figs. 1 and 2 that 
IGFBP-5 is preferentially deposited into matrix, despite very 
high concentrations of IGFBP-3 in the medium. 

0.4 

T 

0.3 

0.2 

0.1 

0.0 
0 50 100 150 200 

IGF-I BOUND (pM) 

Figure 6. Equilibrium binding of IGF-I to IGFBP-5 in solution 
(t3), IGFBP-5 bound either to fibroblast ECM (m) or to collagen 
(O), or to ECM-bound IGFBP-3 (o). t25I-IGF-I and competing 
concentrations of unlabeled IGF-I (0-32 ng/ml) were used as li- 
gands. The data are plotted according to the method of Scatchard 
(37). Linear regression lines are shown for the IGFBP-5 data and 
were used to calculate association constants (K,) of 1.4 x 10 t0 
M -1 for soluble IGFBP-5, 2.1 × 109 M -~ for ECM-bound IGFBP-5, 
and 1.1 × 109 M -~ for collagen-bound IGFBP-5. Minimal IGFBP-3 
attached to the ECM, resulting in IGF-I binding that was margin- 
ally greater than IGF-I binding to ECM alone. Error bars represent 
the SE of triplicate determinations. 

Figure 7. Effects of IGFBP-5 on IGF-I stimulation of fibroblast 
growth. Human fibroblasts were plated onto substrata consisting of 
fibroblast ECM (a) or Type IV collagen (b) and incubated for 48 h 
in serum-free EMEM (a) or EMEM + 0.2% platelet-poor plasma 
(b). Purified human IGFBP-5 was either omitw, d from the assay 
(D), preincubated with the substrata prior to plating the cells ([]), 
added to the medium during the 48 h growth period ([]), or pre- 
incubated with the substrata and added to the medium (g). The 
height of each bar indicates the percent stimulation of proliferation 
achieved by addition of IGF-I (20 ng/ml) compared to the same con- 
ditions in the absence of IGF-I, for each of the four IGFBP-5 incu- 
bation conditions. The error bars indicate the SEM for triplicate de- 
terminations in three to five separate experiments. To determine 
maximal 48 h response, cells were also exposed to 10% calf serum, 
which resulted in an increase in cell number of 175 % over serum- 
free controls. (c) ECM (lanes 1-4) and Type IV collagen (lanes 
5-6) substrata were incubated with (lanes 3, 4, and 6) or without 
(lanes 1, 2, and 5) IGFBP-5 precisely as described for the growth 
assay. Fibroblasts were plated, allowed to attach, and incubated 8 h 
(lanes 1-4) or 48 h (lanes 5-6) in serum-free media containing 20 
ng/ml IGF-I with (lanes 2 and 4) or without (lanes 1, 3, 5, and 6) 
80 ng/ml IGFBP-5. The ceils were then removed with 0.5 % Triton 
X-10G in PBS followed by 20 mM ammonium acetate, pH 9.0. The 
substrata were then solubllized in SDS sample buffer and analyzed 
by SDS-PAGE and immunoblotting for IGFBP-5. The arrow locates 
the IGFBP-5 bound to the substrata. Each lane corresponds to the 
bar directly above it in (a) and (b). The results shown in lanes 4 
and 6 suggest a correlation between the amount of IGFBP-5 present 
in the substratum and the growth response to IGF-I. 
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Potentiation of lGF-l-stimulated Cell Growth 
by ECM-associated IGFBP-5 

To determine whether ECM-bound IGFBP-5 could alter cel- 
lular responsiveness to IGF-I, ECM was prepared and ex- 
posed to IGFBP-5, and the growth response to IGF-I deter- 
mined in fibroblasts plated onto the ECM preparations in 
serum-free medium (Fig. 7 a). The ECM was prepared from 
fibroblasts cultured in FBS to minimize endogenous IGFBP-5 
deposition into the matrix. In the absence of exogenous 
IGFBP-5, the addition of IGF-I to the medium resulted in a 
27 % increase in cell number after 48 h compared to cultures 
exposed to medium alone. If IGFBP-5 was added to the ECM 
before plating the cells, the IGF-I response was potentiated 
and cell number increased 38 % compared to control cultures 
not treated with IGF-I. This response occurred consistently 
despite the observation that most of the exogenous IGFBP-5 
added to the ECM was no longer detectable after 8 h of incu- 
bation (Fig. 7 c, lane 3). If IGFBP-5 was added to the 
medium alone, the response to IGF-I was not different than 
when IGFBP-5 was absent (29.6% increase in cell number 
over non-IGF-treated controls). However, when IGFBP-5 
was added to both the medium and preincubated with the 
matrix, there was a substantial increase (56.2 %) in final cell 
number compared to non-IGF-treated control cultures. The 
addition of IGFBP-5 to both the matrix and the medium 
resulted in the greatest amount of IGFBP-5 remaining in the 
ECM (Fig. 7 c, lane 4). IGFBP-5 added to the medium was 
found by immunoblot analysis to be partially degraded by 
8 h and completely degraded to fragments by the end of the 
48-h growth period (data not shown). No IGFBP-5 fragment 
could be detected in the ECM under any experimental condi- 
tion (Fig. 7 c). IGFBP-5 did not increase cell growth in the 
absence of IGF-I (data not shown). 

A problem with the system used for the growth studies was 
the nearly complete loss of IGFBP-5 from the ECM in cul- 
tures that did not have IGFBP-5 added to the medium. When 
the ECM from such cultures was analyzed as early as 8 h 
into the growth period, it contained minimal detectable 
IGFBP-5 (Fig. 7 c, lane 3). To obtain IGFBP-5 concentra- 
tions in the substrata throughout the growth period that more 
closely approximated the amount of IGFBP-5 in the matrix 
shown in Figs. 1 and 2, culture dishes were coated first with 
20 #g type IV collagen and then with either 1 ~g/ml IGFBP-5 
or buffer before plating the fibroblasts. These conditions 
resulted in a more stable reservoir of IGFBP-5 in the substra- 
tum throughout the growth period, and substantial IGFBP-5 
still remained attached to the collagen after 48 h (Fig. 7 c, 
lane 6). As shown in Fig. 7 b, the addition of this quantity 
of IGFBP-5 to the substratum resulted in marked potentia- 
tion of the cellular response to IGF-I (49 % increase) com- 
pared to cultures that were growing on collagen that had not 
been incubated with IGFBP-5 (26 % increase). Extraction 
of the collagen matrix at the termination of the experiment 
and analysis by ligand blotting and scanning densitom- 
etry showed that '~25 % of the IGFBP-5 that had originally 
attached to the collagen still remained after 48 h. 

Discussion 

These studies demonstrate that human IGFBP-5 associates 
with the subcellular ECM of fetal, dermal fibroblasts prefer- 

entiaUy compared to other forms of IGF binding protein, 
suggesting that the ECM-bound IGFBP-5 may have a spe- 
cialized role in localizing IGF to ECM and in mediating its 
actions in connective tissue. ECM-associated IGFBP-5 has 
a decreased affinity for IGF-I. Previous studies have shown 
that IGFBP-1 and IGFBP-3 have decreased IGF-I binding 
affinity when associated with cell surfaces (26). However, 
this is the first demonstration of an affinity change of an 
IGFBP due to binding to ECM. This affinity change is not 
due to denaturation of the protein, since the affinity of 
IGFBP-5 released from the ECM is indistinguishable from 
purified soluble IGFBP-5. 

The source of the IGFBP-5 detected in these studies ap- 
pears to be predominantly the cells. Our laboratory has pre- 
viously shown that these cells contain IGFBP-5 mRNA and 
secrete IGFBP-5 protein (7). Our IGFBP-5 antibody, which 
cross reacts well with bovine IGFBP-5, detects extremely 
small concentrations of bovine IGFBP-5 in CS and FBS by 
immunoblot analysis (J. I. Jones, unpublished observations). 
In contrast, bovine serum contains high concentrations of 
vitronectin which also has a high affinity for ECM (31). 
Since bovine vitronectin was undetectable in our ECM prep- 
arations by immunocytocbemistry, it is extremely unlikely 
that the much lower concentration of IGFBP-5 in serum 
could result in a much higher IGFBP-5 concentration in the 
ECM compared to vitronectin. 

The effect of high salt concentration on the association of 
IGFBP-5 with ECM suggests that an ionic interaction be- 
tween IGFBP-5 and ECM components is involved. Ionic in- 
teractions are common among ECM macromolecules, par- 
ticularly glycosaminoglycans, and the binding of bFGF to 
beparan-sulfate proteoglycans (HSPG) is inhibited by in- 
creasing salt concentrations (28). Alternatively, there may be 
intramolecular ionic interactions within ECM molecules 
which are affected by increasing ionic strength (40), result- 
ing in unfolding or other conformational changes that affect 
their affinity for IGFBP-5. Analysis of IGFBP-5 affinity for 
individual ECM components at varying salt concentrations 
will further elucidate the mechanism of the IGFBP-5 interac- 
tion with the ECM. This study demonstrates that IGFBP-5 
binds to types lII and IV collagen as well as to laminin and 
fibronectin. While the kinetics and the equilibrium param- 
eters governing the association of IGFBP-5 with individual 
ECM components have not been determined, the amount of 
IGFBP-5 that bound to type IV collagen and laminin under 
our experimental conditions suggests preferential binding of 
IGFBP-5 to components of basement membranes. In support 
of this hypothesis is the observation that IGFBP-5 binds in 
large amounts to an artificial basement membrane gel (A. 
Gockerman, unpublished observations). In the fibroblast 
ECM, the immunocytochemistry and the binding data sug- 
gest that IGFBP-5 is mostly bound to fibronectin and type 
11I collagen (and possibly to tenascin). 

The change in affinity of IGFBP-5 may have physio- 
logic importance. In vivo, the lower affinity of ECM-bound 
IGFBP-5 could facilitate delivery of IGF to cell surface IGF 
type I receptors from reservoirs of i m m o b ~  IGF bound 
to low affinity IGFBP-5 in the ECM microenvironment. Fur- 
thermore, the higher affinity of IGFBP-5 in solution would 
allow IGF to remain bound during intercellular transport. If  
by being bound to IGFBP-5, IGF is protected from degrada- 
tion (as is the case for, e.g., bFGF bound to HSPG; 36) 
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and/or inactivated (as is the case for, e.g., TGF-fl bound to 
decorin (44), then the high affinity of IGFBP-5 for IGF dur- 
ing transport followed by a lowering of its affinity after ma- 
trix localization near IGF cell receptors would be particu- 
larly advantageous. The potential importance of the affinity 
shift is supported by the observation that low affinity dephos- 
phorylated IGFBP-I (20) potentiates the effects of IGF-I on 
fibroblast growth (11), while high affinity phosphorylated 
IGFBP-I does not (5). Likewise, an IGFBP-3 fragment with 
lower affinity than intact IGFBP-3 for IGF-I potentiates 
IGF-I effects on ostcoblasts while intact IGFBP-3 is inhibi- 
tory (38). These observations arc consistent with our finding 
in this study that when IGFBP-5 is bound to either ECM or 
type IV collagen, it has both a lower affinity for IGF-I and 
a greater capacity to potentiate IGF-I than it does wben it is 
in solution. It may be a general property of IGF binding pro- 
teins that they inhibit IGF actions when in high affinity states 
(K, = 10 I° M -t) and potentiate IGF actions when their 
affinity is lower and approximates the affinity of the IGF-I 
receptor (Ka = 109 M-t). 
Wc observed an increase in IGF-I-mediated cell prolifera- 

tion when fibroblasts wcrc incubated with ECM or collagen 
containing added IGFBP-5. The ability of IGFBP-5 to poten- 
tiate IGF-I-stimulated growth correlated well with the 
amount of IGFBP-5 in the ECM during the growth period. 
The apparent synergistic effect of IGFBP-5 added to the 
medium as well as to the ECM appeared to result from an 
enhancement of the amount of IGFBP-5 remaining in the ma- 
trix rather than a direct effect of soluble IGFBP-5, since 
IGFBP-5 added to the medium alone had no effect on the 
IGF-I potentiation of cell growth. Since under our ex- 
perimental conditions, exogenous IGFBP-5, when added 
only to the matrix, was in large part lost from ECM, the 
effects wc observed likely underestimate the effects that 
would result from a stable pool of matrix-bound IGFBP-5 
such as might be present in connective tissue. The prediction 
that in the tissues the IGFBP-5 pool is more stably associated 
with the matrix than in cell culture is supported by our obser- 
vation that endogenous IGFBP-5 incorporated into the ECM 
by the fibroblasts disappears from ECM more slowly than 
does IGFBP-5 added exogenously (Fig. 4). Increasing the 
amount of IGFBP-5 present in the substratum by using 
collagen-coated plates resulted in enhanced potentiation of 
the IGF-I response. IGFBP-5 added directly to the medium 
is degraded to fragments. In contrast, the IGFBP-5 is present 
in the ECM only in an intact form. Whether the matrix- 
bound IGFBP-5 is protected from protcolysis or is released 
from the matrix as a result of protcolysis was not determined 
by these studies, but either process would result in predom- 
inantly intact IGFBP-5 being present in the matrix. 

Our results suggest that the matrix-associated IGFBP-5 
has physiologic significance in mediating the mitogcnic ef- 
fects of IGF-I. Wc have observed no direct effect of IGFBP-5 
on cell proliferation in the absence of IGF-I. The mechanism 
by which IGFBP-5 potentiates IGF-I is unknown, but the 
binding protein likely serves to stabilize the concentration of 
IGF-I in the microcnvironrnent in the vicinity of the IGF-I 
cell receptors. Soluble IGFBP-5 would be expected to dem- 
onstrate less potentiation of IGF-I effects for two reasons (in 
addition to the susceptibility of soluble IGFBP-5 to degrada- 
tion). One, the soluble IGF-IGFBP complex while not being 
anchored in the ECM could freely diffuse away from the 

receptors, and two, the high affinity of the soluble IGFBP-5 
for IGF would drive the IGF equilibrium away from the 
receptor toward the binding protein in solution. Both effects 
would result in fewer interactions between IGF and its cell 
receptors and therefore less biologic effect. 

Investigation of the interactions between growth factors 
and the ECM has been expanding rapidly in recent year (29). 
Basic FGF is present in ECM (42) and associates with 
HSPGs both in the matrix as well as on cell surfaces (21). 
HSPGs serve as a low affinity/high abundance reservoir of 
bFGF and concentrate the growth factor in the pericellular 
space in the vicinity of the receptors (2, 33). The HSPGs 
also serve to protect bFGF from proteolytic cleavage, ex- 
tending the half-life of bFGF while bound in the ECM (36). 
Perhaps most significantly, binding to heparan sulfate or 
HSPG not only potentiates the biologic activity ofbFGF, but 
is required for bFGF to be able to bind to the cell surface 
receptors (22, 32, 45). An analogous interaction may occur 
among IGFBP-5, IGF-I, and the IGF-I receptor, resulting in 
potentiation by IGFBP-5 of the biologic effects of IGF-I. Al- 
ternatively, IGFBP-5 might interact directly with cell surface 
receptors. 

There are other examples of molecules which do not have 
intrinsic signal-transducing activity but bind growth factors 
and modulate the interaction between growth factors and 
high affinity cell surface receptors. These include the pro- 
teoglycans decorin and betaglycan which serve as binding 
proteins for TGF-/~ (1, 44), a 75-kD low affinity membrane 
protein which binds nerve growth factor (16), the ot chain of 
the interleukin-2 receptor (15), and the interleukin-6 ligand- 
binding protein gp 130 (17, 41). Finally, there are also exam- 
pies of the binding of growth factors other than bFGF and 
TGF-fl to components of ECM. These include granulo- 
cyte/macrophage colony stimulating factor and interleukin-3 
(34), bone morphogenlc proteins (43), and the product of the 
wnt-1 proto-oncogene (4). These examples suggest that in 
time it may be considered the rule rather than the exception 
that growth factors have accessory binding proteins that 
regulate access to cell surface receptors. Considered in this 
context, IGFBP-5 may serve an important role in IGF physi- 
ology. With ECM-associated IGFBP-5 serving not only to 
localize but also to stabilize matrix IGF concentrations and 
to facilitate receptor interactions, this ECM-associated 
IGFBP may be an important mediator of the paracrine ac- 
tions of the IGFs. 
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