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Pointwise Characteristic Factors 1

1. Introduction

A major result in ergodic theory in the late 1980’s was the proof of the return

times theorem by J. Bourgain [8] (which was later simplified by J. Bourgain,

H. Furstenberg, Y. Katznelson, D. Ornstein in [9]). This theorem created a key

strengthening of the Birkhoff’s Pointwise Ergodic Theorem [7].

Theorem 1. Let (X,F , µ, T ) be an ergodic dynamical system of finite measure and

f ∈ L∞(µ). Then there exists a set Xf ⊂ X of full measure such that for any other

ergodic dynamical system (Y,G, ν, S) with ν(Y ) < ∞ and any g ∈ L∞(ν):

1

N

N∑

n=1

f(T nx)g(Sny)

converges ν-a.e. for all x ∈ Xf .

Note that the set Xf depends not only on the function f chosen, but on the

transformation T in our dynamical system. In the BFKO proof [9] of the return

times theorem, one of the keys to the argument was to decompose the given function

using the Kronecker factor in order to prove the result independently for both the

eigenfunctions and those functions in the orthocomplement of the Kronecker factor.

Using factors in convergence proofs in ergodic theory has long been a very useful

tool. The notion of a characteristic factor is originally due to H. Furstenberg and

is explicitly defined by H. Furstenberg and B. Weiss in [12].

Definition: When the limiting behavior of a non-conventional ergodic average for

(X,F , µ, T ) can be reduced to that of a factor system (Y,G, ν, T ), we shall say that

the latter is a characteristic factor of the former.
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2 I. Assani and K. Presser

For each type of average under consideration, one will have to specify what is

meant by reduced in the given case. In the case of H. Furstenberg and B. Weiss

[12], they define the notion of characteristic factor for averages of the type

1

N

N∑

n=1

(f ◦ T n)
(
g ◦ T n2

)
.

Therefore their specific definition of characteristic factor is as follows.

Definition: If {p1(n), p2(n), . . . , pk(n)} are k integer-valued sequences, and

(Y,G, ν, T ) is a factor of a system (X,F , µ, T ), we say that G is a characteristic

factor for the scheme {p1(n), p2(n), . . . , pk(n)}, if for any f1, f2, . . . , fk ∈ L∞(µ)

we have

1

N

N∑

n=1

[
f1 ◦ T

p1(n) · · · fk ◦ T
pk(n) − E(f1|G) ◦ T

p1(n) · · ·E(fk|G) ◦ T
pk(n)

]

converges to 0 in L2(µ).

In 1998, D. Rudolph [17] extended the return times theorem to averages with

more than two terms with his proof of the multiterm return times theorem. His

proof answered one of the questions on the return times raised by I. Assani† who

proved the same result for weakly mixing systems in [1].

Theorem 2 (Multiterm Return Times Theorem) Let k be any positive

integer. For any ergodic dynamical system (X,F , T, µ) and any f ∈ L∞(µ),

there exists a set of full measure Xf in X such that if x ∈ Xf for any other

dynamical system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1) there exists a set of full

† These questions were brought up during D. Rudolph’s visit to UNC-CH in 1991 while he was

working on his joinings proof of Bourgain’s return times theorem [15].
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Pointwise Characteristic Factors 3

measure Yg1 in Y1 such that if y1 ∈ Yg1 then . . . for any other dynamical system

(Yk−1,Gk−1, Sk−1, νk−1) and any gk−1 ∈ L∞(νk−1) there exists a set of full

measure Ygk−1
in Yk−1 such that if yk−1 ∈ Ygk−1

for any other dynamical system

(Yk,Gk, Sk, νk) the average:

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges νk-a.e..

As we are interested in finding characteristic factors for ergodic dynamical

systems this theorem is quoted here with the extra assumption of ergodicity for

the dynamical system (X,F , T, µ). D. Rudolph’s proof of the multiterm return

times theorem utilized the method of joinings and fully generic sequences. This

led to an elegant proof of the theorem which avoided the study of the factor of the

σ-algebra which was characteristic for the averages. So the higher order version of

the Kronecker factor K which had been key to the BFKO [9] proof was not needed

in D. Rudolph’s argument. This paper seeks to determine what factors serve a role

similar to the Kronecker factor K in this multiterm setting.

For our purposes we define the notion of pointwise characteristic factors for the

multiterm return times averages as follows.

Definition: Consider (X,F , µ, T ) a measure preserving system. The factor A is

pointwise characteristic for the k-th return times averages if for each

f ∈ L∞(µ) we can find a set of full measure Xf such that for each x ∈ Xf ,

for any other dynamical system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1), there exists a

set of full measure Yg1 such that for each y1 in Yg1 then . . . for any other dynamical
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4 I. Assani and K. Presser

system (Yk−1,Gk−1, Sk−1, νk−1) and any gk−1 ∈ L∞(νk−1), there exist a set of full

measure Ygk−1
in Yk−1 such that if yk−1 ∈ Ygk−1

for any other dynamical system

(Yk,Gk, Sk, νk) for νk-a.e. yk the average

1

N

N∑

n=1

[f(T nx)− E(f |A)(T nx)] g1(S
n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges to 0.

In looking for potential characteristic factors for the general multiterm return

times averages we consider the factors first used by H. Furstenberg to prove

Szemerédi’s Theorem [11]. These factors are called k step distal factors in [11].

We denote these factors (which will be further defined in Section 2) as Ak using

the notation from [3] where these factors were shown to be L2-characteristic for the

averages

1

N

N∑

n=1

I∏

i=1

fi ◦ T
in.

While the norm convergence of averages for L2-characteristic factors can

sometimes lead to pointwise characteristic properties, this is not always guaranteed

to be the case. Thus it is of consequence to look at pointwise convergence in addition

to investigating factors with respect to the norm convergence.

We will show that these Ak factors can be characterized in an inductive way by

seminorms using Lemma 1.3 of [16]. Using these seminorms we will prove our first

result.†

† This approach was used in two 2003 unpublished papers of the first author ([3] and what was

ultimately combined into the published paper [4]). The first author thanks C. Demeter and N.

Frantzikinakis for pointing out to him that the factors he defined with these seminorms were
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Pointwise Characteristic Factors 5

Theorem 3. The factors Ak are pointwise characteristic for the multiterm return

times averages. More precisely, using the seminorms defining the Ak we can find

pointwise uniform upper bounds of the multiterm return times averages.

The study of the nonconventional Furstenberg averages has seen important

progress being made in the last seven years. In [13] and [18] the Host-Kra-Ziegler

factors Zk were created independently by B. Host, B. Kra and T. Ziegler and were

shown to be characteristic in L2 norm for the Furstenberg averages. Using these

factors we prove our second result.

Theorem 4. Let (X,F , µ, T ) be an ergodic measure preserving system. The Host-

Kra-Ziegler factors Zk are pointwise characteristic for the multiterm return times

averages.

As the Zk factors are smaller than the factors Ak, and thus A⊥
k ⊆ Z⊥

k , the

fact that the Ak factors are pointwise characteristic for the multiterm return times

averages is a consequence of Theorem 4. But in our proof of Theorem 3 using the

seminorm defining the factors Ak we obtain pointwise uniform upper bounds of the

multiterm return times averages. With the Zk factors we do not have such pointwise

estimates. The uniform upper bounds are derived after integration combined with

a lim sup argument.

An unusual feature of our proof is that we use the previously established

convergence result of D. Rudolph and use that to prove that the factors we are

in fact the ones introduced by H. Furstenberg in [11]. A careful look at Theorem 10.2 in [11]

indicates that the k step distal factors are L2 characteristic for the Furstenberg averages.
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6 I. Assani and K. Presser

studying are characteristic.

2. The k-step distal factors Ak factors are pointwise characteristic for the

multiterm return times averages

Let (X,F , µ, T ) be an ergodic dynamical system on a probability measure space.

The factors Ak are defined in the following inductive way.

Definition:

• The factor A0 is equal to the trivial σ-algebra {X, ∅}

• For k ≥ 0 the factor Ak+1 is characterized by the following. A function

f ∈ A⊥
k+1 if and only if

Nk+1(f)
4 := lim

H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|Ak)
∥∥2
2
= 0

Note that the factor A1 is the Kronecker factor of our ergodic transformation T

because

N1(f)
4 = lim

H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|A0)
∥∥2
2
= lim

H

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣
2

.

In Lemma 1 we will verify that the Ak as defined above do actually form well-defined

factors.

We will want to verify that these Ak are maximal isometric extensions. There are

several equivalent ways of expressing this feature. We will be using the terminology

found on pages 373-374 of [16] to specify how these factors form maximal isometric

extensions. Furstenberg has shown in [10] that for any ergodic dynamical system

(X,F , µ, T ) and any T -invariant factor B there is a unique maximal factor action
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Pointwise Characteristic Factors 7

KB ⊆ F which contains B so that in the Rohlin representation of (T,KB), the space

Z2 can be taken to be a compact metric space with isometric factor maps. This

factor KB arises from the invariant algebras of the relatively independent joinings

of (X,F , µ, T ) over the factor B. This is precisely the notion of maximal isometric

extension referred to in the next lemma.

Lemma 1. Let (X,F , µ, T ) be an ergodic dynamical system on a probability measure

space. For k ≥ 2 for each function f ∈ L∞(µ) the quantities Nk(f) are well defined.

Furthermore, they characterize factors of T which are successive maximal isometric

extensions.

Proof: Let us consider a general factor A of T and E(·|A) the projection onto this

factor. The relatively independent joining of T ×T over the factor A is the measure

µA defined for f, g bounded functions as

∫
f × gdµA :=

∫
E(f |A)E(g|A)dµ.

By Birkhoff’s ergodic theorem applied to T × T and the invariant measure µA we

have

lim
H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|A)
∥∥2
2

= lim
H

1

H

H∑

h=1

∫
(f · f ◦ T h)(x)(f · f ◦ T h)(y)dµA

= ‖E(f × f |IA)‖
2
L2(µA) .

where IA is the T × T -µA invariant σ-algebra.

If we denote by N(f) the quantity

N(f)4 = lim
H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|A)
∥∥2
2
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8 I. Assani and K. Presser

then Lemma 1.3 in [16] tells us that N(f) = 0 if and only if E(f |KA) = 0 where

KA is the maximal isometric extension of A.

Using these observations one can characterize the successive maximal isometric

extensions. The trivial σ-algebra is A0. Then we define A1 = KA0, A2 = KA1 and

more generally Ak+1 = KAk. The seminorms characterizing these factors are well

defined as Nk(f) where

Nk(f)
4 = lim

H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|Ak)
∥∥2
2
.

✷

In order to simplify the inductive parts of our argument, we first clarify the

techniques that we will use in a series of small lemmas. This next lemma relies

on an application of the spectral theorem which allows us to alternate between

Wiener-Wintner and return times averages in our inductive argument.

Lemma 2. Let {an} be a sequence of complex numbers. If

sup
N

1

N

N∑

n=1

|an|
2 < ∞ and sup

ǫ

∣∣∣∣∣
1

N

N∑

1

ane
2πinǫ

∣∣∣∣∣→ 0,

then

1

N

N∑

1

ang(S
ny) → 0

in L2(ν) for all measure-preserving systems (Y,G, S, ν).

Proof: This follows immediately from the proof of Theorem 3.1 in [2]. ✷

Next, we will use the following lemma which is an easy consequence of the Van

der Corput lemma [14]. It will help us simplify the Wiener-Wintner averages which

will appear in the inductive argument.
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Pointwise Characteristic Factors 9

Lemma 3. There exists an absolute constant C such that for any {an} bounded

sequence of complex numbers and any positive integer N we have

sup
ǫ

∣∣∣∣∣
1

N

N∑

n=1

ane
2πinǫ

∣∣∣∣∣

2

≤ C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

anan+h

∣∣∣∣∣

)

for 1 ≤ H ≤ N .

The following lemma will be useful in establishing the basis step of our next

theorem. It gives a pointwise upper bound for the return times averages for two

terms, case studied in the BFKO [9] paper.

Lemma 4. Let (X,F , µ, T ) be an ergodic dynamical system and f ∈ L∞(µ). Let

us denote by KT its Kronecker factor. Then there exists a universal set Xf

depending only on f and the system (X,F , µ, T ) such that for any dynamical system

(Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1) we have

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)

∣∣∣∣∣ ≤ ‖E(f |KT )‖2‖g1‖∞. (1)

Proof: By the BFKO return times theorem, we know that the Kronecker factor is

pointwise characteristic. So we have on a universal set Xf of full measure

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)

∣∣∣∣∣ = lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

E(f |KT )(T
nx)g1(S

n
1 y1)

∣∣∣∣∣ ,

ν1 a.e., for any dynamical system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1).

Therefore for any dynamical system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1),

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)

∣∣∣∣∣ ≤ lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

E(f |KT )(T
nx)

∣∣∣∣∣ ‖g1‖∞.

Using the Cauchy Schwartz inequality we have then

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)

∣∣∣∣∣ ≤ lim sup
N

(
1

N

N∑

n=1

|(E(f |KT )(T
nx)|2

)1/2

‖g1‖∞.

Prepared using etds.cls



10 I. Assani and K. Presser

Then by applying Birkhoff’s pointwise ergodic theorem we have

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)

∣∣∣∣∣ ≤
(∫

|(E(f |KT )|
2dµ

)1/2

‖g1‖∞,

which is the upper bound announced in this lemma. ✷

We will prove our first main result, Theorem 3, in the course of proving the

following more detailed statement.

Theorem 5. Let k be any positive integer. For any ergodic dynamical system

(X,F , µ, T ) and for each f ∈ L∞(µ) we can find a set of full measure Xf such

that for each x ∈ Xf , for any other dynamical system (Y1,G1, S1, ν1) and any

g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1, there exists a set of full measure Yg1 such that for

each y1 in Yg1 then . . . for any other dynamical system (Yk−1,Gk−1, Sk−1, νk−1) and

any gk−1 ∈ L∞(νk−1) with ‖gk‖∞ ≤ 1 there exist a set of full measure Ygk−1
in

Yk−1 such that if yk−1 ∈ Ygk−1
for any other dynamical system (Yk,Gk, Sk, νk) for

νk-a.e. yk

• the average

1

N

N∑

n=1

[f(T nx) − E(f |Ak)(T
nx)] g1(S

n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk) (2)

converges to 0.

• Thus for f ∈ A⊥
k the average

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges to 0 νk-a.e..
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Pointwise Characteristic Factors 11

• Also we have the following pointwise upper bound for our limit

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)g2(S

n
2 y2) · · · gk(S

n
k yk)

∣∣∣∣∣

2

≤ CNk+1(f)
2 (3)

Proof: The basis step for the induction of the statement in (2) was done in the

BFKO [9] proof of Bourgain’s Return Times Theorem . Here it was shown that

A1 = KT was pointwise characteristic for averages of the type

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1). (4)

In Lemma 4, we showed that the quantity ‖E(f |A1)‖2‖g1‖∞ is a pointwise

upper bound for the lim sup of the absolute value of the averages where KS1
is

the Kronecker factor for S1. This last term is itself less than ‖E(f |A1)‖2 because

‖g1‖∞ ≤ 1. Thus we have reached the inequality

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)

∣∣∣∣∣

2

≤ ‖E(f |A1)‖
2
2. (5)

We want to get a better upper bound namely CN2(f) where C is an absolute

constant. To this end we apply the Van der Corput lemma to obtain

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)

∣∣∣∣∣

2

≤

lim sup
N

C

[
1

H
+

(
1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

f(T nx)f(T n+hx)g1(S
n
1 y)g1(S

n+h
1 y1)

∣∣∣∣∣

)]
≤

C

[
1

H
+

(
1

H

H∑

h=1

lim sup
N

∣∣∣∣∣
1

N

N−h∑

n=1

f(T nx)f(T n+hx)g1(S
n
1 y)g1(S

n+h
1 y1)

∣∣∣∣∣

)]
.

Applying the inequality (5) to each of the functions f · f ◦ T h yields

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣

2

≤ C


 1

H
+

(
1

H

H∑

h=1

‖E(f · f ◦ T h|A1)‖
2
2

)1/2

 .
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12 I. Assani and K. Presser

By taking the limit with H we get the better estimate

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣

2

≤ CN2(f)
2.

which shows clearly that A1 satisfies (3) in the basis step.

Assume that for any f ∈ L∞(µ) and 1 ≤ j < k we can find setsXf of full measure

such that if x ∈ Xf , then for any other dynamical system (Y1,G1, S1, ν1) and any

g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1, there exists a set of full measure Yg1 such that for

each y1 in Yg1 then . . . for any other dynamical system (Yj−1,Gj−1, Sj−1, νj−1) and

any gj−1 ∈ L∞(νj−1) with ‖gj−1‖∞ ≤ 1 there exist a set of full measure Ygj−1
in

Yj−1 such that if yj−1 ∈ Ygj−1
for any other dynamical system (Yj ,Gj , Sj , νj) and

any gj ∈ L∞(νj) with ‖gj‖∞ ≤ 1 for νj-a.e. yj we have

• the average

1

N

N∑

n=1

[f(T nx) − E(f |Aj)(T
nx)] g1(S

n
1 y1) · · · gj(S

n
j yj)

converges to 0.

• Also we have the upper bound

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)g2(S

n
2 y2) · · · gj(S

n
j yj)

∣∣∣∣∣

2

≤ CNj+1(f)
2

Lemma 5. Let f be an element of f ∈ L∞ and let gi, Si and yi be as defined in

the preceding paragraph. If

BN = sup
ǫ

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πinǫ

∣∣∣∣∣

2

then

lim sup
N

BN ≤ CNk(f)
2
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Pointwise Characteristic Factors 13

for some absolute constant C. Here the constant C is independent of the f , gi, Si

and yi.

Proof: By Lemma 3, there exists a constant C such that for 1 ≤ H ≤ N

BN ≤ C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

(f · f ◦ T h)(T nx)

·(g1 · g1 ◦ Sh
1 )(S

n
1 y1) · · · (gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣∣∣

)
.

From our inductive hypothesis, we know that for each h there is a set of full

measure X
f ·f◦Th on which

∣∣∣∣∣
1

N

N−h∑

n=1

[
(f · f ◦ T h)(T nx)− (E(f · f ◦ T h|Ak−1)(T

nx)
]

·(g1 · g1 ◦ Sh
1 )(S

n
1 y1) · · · (gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣∣∣ → 0.

Therefore, the intersection of these sets X
f ·f◦Th over h gives a set of full measure

X̂f on which

lim sup
N

BN ≤ lim sup
N

C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

(E(f · f ◦ T h|Ak−1)(T
nx)

·(g1 · g1 ◦ Sh
1 )(S

n
1 y1) · · · (gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣∣∣

)

for all H .

The Cauchy-Schwartz inequality gives us

lim sup
N

BN ≤ lim sup
N

C

(
1

H
+

1

H

H∑

h=1

(
1

N

N−h∑

n=1

∣∣∣(E(f · f ◦ T h|Ak−1)(T
nx)
∣∣∣
2

·
∣∣∣(g1 · g1 ◦ Sh

1 )(S
n
1 y1)

∣∣∣
2

· · ·
∣∣∣(gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣
2
) 1

2
)

≤ lim sup
N

C

(
1

H
+

‖g1‖2∞ . . . ‖gk−1‖2∞
H

·

H∑

h=1

(
1

N

N−h∑

n=1

∣∣∣(E(f · f ◦ T h|Ak−1)(T
nx)
∣∣∣
2
) 1

2
)
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14 I. Assani and K. Presser

By Birkhoff’s Pointwise Ergodic Theorem we know that there is a set of full

measure Xk−1 on which for each h the average over n in the above inequality

converges to

∫ ∣∣∣(E(f · f ◦ T h|Ak−1)
∣∣∣
2

dµ =
∥∥∥E(f · f ◦ T h|Ak−1)

∥∥∥
2

2
.

Therefore on the set of full measure Xf = X̂f

⋂
Xk−1

lim sup
N

BN ≤
C

H
+

C

H

H∑

h=1

∥∥∥E(f · f ◦ T h|Ak−1)
∥∥∥
2

≤ C lim
H


 1

H
+

(
1

H

H∑

h=1

∥∥∥E(f · f ◦ T h|Ak−1)
∥∥∥
2

2

) 1
2




= C ·Nk(f)
2.

✷

As functions f in A⊥
k are characterized by the property that Nk(f) = 0, Lemma

5 implies that when f is an element of L∞(µ)
⋂
A⊥

k we have

lim sup
N

BN = 0

on the set of full measure Xf = X̂f

⋂
Xk−1. Therefore

sup
ǫ

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πinǫ

∣∣∣∣∣

converges to 0 µ-a.e.. Hence by an application of Lemma 2, we know that for any

other dynamical system (Yk,Gk, Sk, νk) and any g ∈ L∞(νk)

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk) (6)

converges to 0 in L2(νk). As pointwise convergence of the average in Equation (6)

follows from Theorem 2, we have

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk)
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Pointwise Characteristic Factors 15

converges to 0 νk-a.e., when f is in L∞(µ)
⋂
A⊥

k . Therefore for all f ∈ L∞(µ) we

have

1

N

N∑

n=1

[f(T nx)− E(f |Ak)(T
nx)] g1(S

n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges to 0 νk-a.e.. Thus, we have shown that the factors Ak are pointwise

characteristic for the multiple term return times averages.

To finish the proof of the theorem it remains to show that

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)g2(S

n
2 y2) · · · gk(S

n
k yk)

∣∣∣∣∣

2

≤ CNk+1(f)
2.

We use the property just established that the factors Ak are pointwise characteristic

for the multiple term return times averages of k+1 functions including the arbitrary

function f and the Van der Corput lemma. We apply this characteristic property

to each of the functions f · f ◦ T h and apply the Cauchy Schwartz inequality to

obtain our result.

We have

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y)g2(S

n
2 y2) · · · gk(S

n
k yk)

∣∣∣∣∣

2

≤

C

[
1

H
+

1

H

H∑

h=1

lim sup
N

∣∣∣ 1
N

N−h∑

n=1

f(T nx)f(T n+hx)·

g1(S
n
1 y1)g1(S

n+h
1 y1) · · · gk(S

n
k yk)gk(S

n+h
k yk)

∣∣∣
]

=

C

[
1

H
+

1

H

H∑

h=1

lim sup
N

∣∣∣ 1
N

N−h∑

n=1

E(f · f(T h)|Ak)(T
nx)·

g1(S
n
1 y1)g1(S

n+h
1 y1) · · · gk(S

n
k yk)gk(S

n+h
k yk)

∣∣∣
]

Applying the characteristic property to each of the functions f ·f ◦T h the above

inequality is
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16 I. Assani and K. Presser

≤ C


 1

H
+

1

H

H∑

h=1

(
lim sup

N

∣∣∣∣∣
1

N

N−h∑

n=1

|E(f · f(T h)|Ak)(T
nx)|2

∣∣∣∣∣

)1/2

 (7)

because ‖gi‖∞ ≤ 1.

By Birkhoff’s pointwise ergodic theorem and the ergodicity of T , the inequality

in (7) is

≤ C

[
1

H
+

1

H

H∑

h=1

‖E(f · f(T h)|Ak)‖

]
. (8)

Using the Cauchy Schwartz Inequality we obtain that the inequality in (8) is less

than or equal to

C


 1

H
+

(
1

H

H∑

h=1

‖E(f · f(T h)|Ak)‖
2

)1/2

 .

Taking the limit with H gives us the upper bound CNk+1(f)
2. ✷

3. The Zk factors are pointwise characteristic for the multiterm return times

averages

As noted above, the factors Zk are smaller than the Ak factors and thus their

orthogonal complements Z⊥
k are bigger. Therefore Theorem 4, which we are proving

in this section, is an extension of Theorem 3. We will prove Theorem 4 directly from

the properties of the factors Zk. The Host-Kra-Ziegler factors, Zk, were defined in

[13] by seminorms as follows.

Definition:

• The factor Z0 is equal to the trivial σ-algebra.
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Pointwise Characteristic Factors 17

• The factor Z1 can be characterized by the seminorms ‖|f |‖2 where

‖|f |‖42 = lim
H

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣
2

• The factor Z2 is the Conze-Lesigne factor, CL. Functions in this factor are

characterized by the seminorm |‖ · |‖3 such that

‖|f |‖83 = lim
H

1

H

H∑

h=1

‖|f · f ◦ T h|‖42.

A function f ∈ CL⊥ if and only ‖|f |‖3 = 0.

• More generally B. Host and B. Kra showed in [13] that for each positive

integer k we have

‖|f |‖2
k+1

k+1 = lim
H

1

H

H∑

h=1

‖|f · f ◦ T h|‖2
k

k , (9)

with the condition that f ∈ Z⊥
k−1 if and only if ‖|f |‖k = 0.

One can compare the factors Zk and Ak. First, the factors Ak are bigger than

the factors Zk. More precisely we have the following.

• The factors A0 and Z0 are equal to the trivial σ-algebra.

• The factors A1 and Z1 are also identical. The seminorm ‖|f |‖2 and N2(f)

are equal. Indeed

‖|f |‖42 = lim
H

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣
2

= N2(f)
4.

• The difference starts with the factors A2 and Z2. It is not difficult to

find examples where A2 6= Z2 . On the two torus the transformation

(x, y) → (x+ α, y +
√
{x}) where {x} denotes the fractional part of x, is an
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18 I. Assani and K. Presser

example for which the two factors differ. More generally it can be shown that

if the transformation on the two torus is given by (x, y) → (x+ α, y + ρ(x)),

where ρ : T → T is measurable, then A2 always coincides with the full algebra

(i.e., the system is 2-step distal), and Z2 = A2 only when ρ is cohomologous

to the affine co-cycle.

Note that the factors Zk have a very rigid algebraic structure. They have the

structure of a pro-nil system. See [13] for more details on the structure of these

factors.

Our induction argument comes from reducing the return times averages by

looking at an associated Wiener-Wintner type average using the following lemma.

Lemma 6. Let (X,F , µ, T ) be an ergodic dynamical system and f ∈ L∞(µ). Then

for all positive integers H we have

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

≤ C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣

)

where C is an absolute constant derived from the application of the Van der Corput

lemma. In particular we have for µ-a.e. x

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

≤ C‖|f |‖22.

Proof: This is Lemma 2 from the paper [4]. ✷

Using this result, we can deduce the following lemma concerning the integral of

the lim sup of our averages.

Lemma 7. Given (X,F , µ, T ) an ergodic measure preserving system on a

probability measure space and f ∈ L∞. Then we can find a set of full measure
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Pointwise Characteristic Factors 19

Xf such that for every x ∈ Xf for each measure preserving dynamical system

Γ1 = (Y1,G1, ν1, S1) and each g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1 we have

∫
lim sup

N
F 1
N (y1)dν1 ≤ C‖|f |‖22

where C is an absolute constant derived from the application of the Van der Corput

lemma and

F 1
N (y1) :=

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)

∣∣∣∣∣

2

.

Proof: By the BFKO [9] proof of the Return Times Theorem we have pointwise

convergence of the above averages, therefore the lim sup on the left hand side of the

above expression becomes a limit. Therefore, we have

∫
lim sup

N
F 1
N (y1)dν1 = lim

N

∫
F 1
N (y1)dν1

= lim
N

∫ ∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

dσg1 (t)

where σg1 is the spectral measure associated to g1 with respect to the dynamical

system Γ1. Thus

∫
lim sup

N
F 1
N (y1)dν1 ≤ lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

‖g1‖
2
2.

As ‖g1‖∞ ≤ 1, using Lemma 6 we derive the inequality

∫
lim sup

N
F 1
N (y1)dν1 ≤ C‖|f |‖22.

✷

From Lemma 7 the iteration process follows. For instance, we can use this

lemma to prove the following Wiener-Wintner return times result which refines the

one obtained in [5].
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20 I. Assani and K. Presser

Lemma 8. Let (X,F , µ, T ) be an ergodic measure preserving system on a probability

measure space and f ∈ L∞(µ). Then for µ-a.e. x ∈ X for every measure preserving

system Γ1 = (Y1,G∞, ν1, S1) and each g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1 we have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

dν1 ≤ C‖|f |‖23 (10)

where C is the absolute constant from the application of the Van der Corput lemma.

In particular, for f ∈ CL⊥ (or equivalently ‖|f |‖3 = 0) we have for ν1-a.e. y1

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣ = 0. (11)

Proof: By the Van der Corput lemma [14] we have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

dν1 ≤

C

(
1

H
+

1

H

H∑

h=1

∫
lim sup

N

∣∣∣∣
1

N

N∑

n=1

f(T nx)f(T n+hx)·

g1(S
n
1 y1)g1(S

n+h
1 y1)

∣∣∣∣dν1
)

(12)

Using the Cauchy-Schwarz inequality we have that the expression in (12) is less

than or equal to

C

(
1

H
+

1

H

H∑

h=1

(∫
lim sup

N

∣∣∣ 1
N

N∑

n=1

f(T nx)f(T n+hx) · (13)

g1(S
n
1 y1)g1(S

n+h
1 y1)

∣∣∣
2

dν1

)1/2
)

Similarly to the proof of Lemma 7 as pointwise convergence of the averages holds

by Theorem 2 we can rewrite the above lim supN as a limN and use the spectral

theorem to rewrite the integral in (13) as

lim
N

∫ ∣∣∣∣∣
1

N

N∑

n=1

f(T nx)f(T n+hx)e2πint

∣∣∣∣∣

2

dσg1·g1◦Sh
1
(t).
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Thus by Lemma 6 the expression in 13 is

≤ C

(
1

H
+

1

H

H∑

h=1

‖|f · f ◦ T h|‖2‖g1 · g1 ◦ S
h
1 |‖2

)

≤ C

(
1

H
+

1

H

H∑

h=1

‖|f · f ◦ T h|‖2‖g1‖
2
∞

)

≤ C

(
1

H
+

1

H

H∑

h=1

‖|f · f ◦ T h|‖2

)

on a set of full measure depending only on f as ‖g‖∞ ≤ 1. This set of full measure

is, in fact, the intersection of the sets of full measure obtained by the BFKO [9]

proof of the Return Times Theorem for each function f · f ◦ T h.

Continuing from above and using Hölder’s Inequality we have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

dν1 ≤

C

(
1

H
+

(
1

H

H∑

h=1

‖|f · f ◦ T h|‖42

)1/4)
.

As the seminorm is defined by

‖|f |‖83 = lim
H

1

H

H∑

h=1

‖|f · f ◦ T h|‖42

taking the limit on H in the above expression gives

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

dν1 ≤ C
(
‖|f |‖83

)1/4

= C‖|f |‖23.

This proves (10) of Lemma 8. Equation (11) follows directly from the

characterization of the CL factor. ✷

The induction assumption giving the result on the pointwise characteristic factors

for the Zk factors can now be made. To end it at the CL = Z2 level we prove the

next lemma.
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22 I. Assani and K. Presser

Lemma 9. Let (X,F , µ, T ) be an ergodic measure preserving system on a probability

measure space. The factor Z2, the Conze Lesigne factor, is pointwise characteristic

for the three term return times theorem.

Proof: We denote by FN (y1, y2) the three term averages with our original function

f , the fixed system Γ1 = (Y1,G1, ν1, S1) and the variable one Γ2 = (Y2,G2, ν2, S2).

More precisely we have

F 2
N (y1, y2) =

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)g2(S

n
2 y2)

∣∣∣∣∣

2

By Theorem 2 we have a set of full measure Yg1 ⊂ Y1 on which the pointwise

convergence of the return times averages with three terms holds for any choice of

measure preserving dynamical system Γ2 = (Y2,G2, ν2, S2) and g2 ∈ L∞(ν2) with

‖g2‖∞ ≤ 1. Therefore for y1 ∈ Yg1 we have

∫
lim sup

N
F 2
N (y1, y2)dν2 = lim

N

∫
F 2
N (y1, y2)dν2 (14)

Using the spectral measure as before, we can continue from (14)

∫
lim sup

N
F 2
N (y1, y2)dν2 = lim

N

∫ ∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

dσg2 (t)

≤ lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

‖g2‖
2
∞

≤ lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

as ‖g2‖∞| ≤ 1. Note that this upper bound is now independent of the choice of Γ2

and g2 so in fact we have

sup
Γ2,g2

∫
lim sup

N
F 2
N (y1, y2)dν2 ≤ lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

.
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Note that the left hand side of this last inequality is not necessarily measurable.

However one can conclude by making the following observation. By Lemma 8 we

have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣

2

dν1 ≤ C‖|f |‖23.

Therefore, for f ∈ Z⊥
2 = CL⊥ (i.e. ‖|f |‖3 = 0)) there exists a set of full measure

in Y1 on which we have

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)e

2πint

∣∣∣∣∣ = 0.

For y1 ∈ Y1 we have

∫
lim sup

N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)g2(S

n
2 y2)

∣∣∣∣∣

2

dν2 = 0

for any choice of dynamical system Γ2 and g2 ∈ L∞(ν2) with ‖g2‖∞ ≤ 1. Therefore

Z2 is pointwise characteristic for the three term return times averages. ✷

We now have the tools necessary to prove our second main result, Theorem 4,

that the Zk averages are pointwise characteristic for the multiterm return times

averages.

Proof: It remains to finish the induction argument which we have started in the

above lemmas. Suppose that we know that the Zj are pointwise characteristic for

the j-th return times averages and that the bound in (10) from Lemma 8 holds for

j-th averages for 1 ≤ j < k.

Specifically for µ-a.e. x ∈ X , for every measure preserving system Γj =

(Yj ,Gj , νj , Sj) and each gj ∈ L∞(νj) with ‖gj‖∞ ≤ 1 with 1 ≤ j < k − 1 we
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have for f ∈ Z⊥
k

lim sup
N

∆k−1
N (y1, . . . , yk−1) = 0 (15)

where

∆k−1
N (y1, . . . , yk−1) = sup

t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πint

∣∣∣∣∣

2

and Γk−1 = (Yk−1,Gk−1, νk−1, Sk−1) is any measure preserving dynamical system

and gk−1 ∈ L∞(νk−1) with ‖gk−1‖∞ ≤ 1.

By Theorem 2, we know that for any f ∈ L∞(µ) and 1 ≤ j < k we can find

sets Xf of full measure such that if x ∈ Xf , then for any other dynamical system

Γ1 = (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1, there exists a set of full

measure Yg1 such that for each y1 in Yg1 then . . . for any other dynamical system

Γk−1 = (Yk−1,Gk−1, Sk−1, νk−1) and any gk−1 ∈ L∞(νk−1) with ‖gk−1‖∞ ≤ 1

there exist a set of full measure Ygk−1
in Yk−1 such that if yk−1 ∈ Ygk−1

we have

the pointwise convergence of the return times averages with k terms for any other

dynamical system Γk = (Yk,Gk, Sk, νk) and any gj ∈ L∞(νj) with ‖gj‖∞ ≤ 1.

Thus for x, y1, . . . yk−1 as above we have

∫
lim sup

N
F k
N (y1, . . . , yk)dνk = lim

N

∫
F k
N (y1, . . . , yk)dνk (16)

where

F k
N (y1, . . . , yk) =

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)...gk(S

n
k yk)

∣∣∣∣∣

2

.

We would like to show that Zk is pointwise characteristic for the k-return times

averages and that we have for f ∈ Z⊥
k+1

lim sup
N

∆k
N (y1, . . . , yk) = 0
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where the

∆k
N (y1, . . . , yk) = sup

t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk)e

2πint

∣∣∣∣∣

2

,

Γk and gk are as defined above. This will complete our proof by induction.

Using the spectral theorem and continuing from (16) we have

∫
lim sup

N
F k
N (y1, . . . , yk)dνk =

lim
N

∫ ∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πint

∣∣∣∣
2

dσgk (t) ≤

lim sup
N

sup
t

∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πint

∣∣∣∣
2

‖gk‖∞ ≤

lim sup
N

sup
t

∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πint

∣∣∣∣
2

as ‖gk‖ ≤ 1.

Note that this upper bound is now independent of the choice of Γk and gk so

sup
Γk,gk

∫
lim sup

N
F k
N (y1, . . . , yk)dνk ≤

lim sup
N

sup
t

∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πint

∣∣∣∣
2

. (17)

In the same manner as shown in Lemma 9, from the equation (15) and (17) one

can conclude that Zk is pointwise characteristic for the k-th return times averages.

To complete the induction step it remains to show that (15) holds for k.

To make the reading of the induction proof easier we show how one can prove

that Z4 is pointwise characteristic for the 5-th return times averages. The reader

will check that the arguments extend without difficulty to arbitrary k. So we want

to show that if ‖|f |‖5 = 0 then

lim sup
N

sup
t

∣∣ 1
N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · g4(S

n
4 y4)e

2πint
∣∣2 = 0. (18)
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By the Van der Corput lemma, Theorem 2 and Cauchy-Schwartz inequality we

have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · g4(S

n
4 y4)e

2πint

∣∣∣∣∣

2

dν4

≤ C

(
1

H1
+
( 1

H1

H1∑

h1=1

lim sup
N

∫ ∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x) ·

· · · g4(S
n
4 y4)g4(S

n+h1

4 y4)
∣∣2dν4

)1/2
)
.

By the spectral theorem this last term is equal to

( 1

H1

H1∑

h1=1

lim sup
N

∫ ∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x) ·

· · · g3(S
n
3 y3)g3(S

n+h1

3 y3)e
2πint

∣∣2dσ
g4.g4◦S

h1
4

)1/2
.

As ‖g4‖∞ ≤ 1, the generic term in this sum is less than

lim sup
N

sup
t

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x) · · · g3(S
n
3 y3)g3(S

n+h1

3 y3)e
2πint

∣∣2.

One can conclude that for the appropriate universal sets for x, y1, y2, and y3 if

lim
H1

1

H1

H1∑

h1=1

lim sup
N

sup
t

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x)·

· · · g3(S
n
3 y3)g3(S

n+h1

3 y3)e
2πint

∣∣2 = 0

then

∫
lim sup

N
sup
t

∣∣ 1
N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · g4(S

n
4 y4)e

2πint
∣∣2dν4 = 0

for all measure preserving system Γ4 = (Y4,G4, ν4, S4) and each g4 with ‖g4|‖∞ ≤ 1.

We then derive that

lim sup
N

sup
t

∣∣ 1
N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · g4(S

n
4 y4)e

2πint
∣∣2 = 0
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which is the content of (18).

Therefore we look at the quantity

∫
lim sup

N
sup
t

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x) · · · g3(S
n
3 y3)g3(S

n+h1

3 y3)e
2πint

∣∣2dν3.

Again by Van der Corput lemma, Theorem 2 and Cauchy Schwartz inequality this

quantity is less than

C

(
1

H2
+
( 1

H2

H2∑

h2=1

lim sup
N

∫ ∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x)f(T n+h2x)f(T n+h1+h2x)

· · · g3(S
n
3 y3)g3(S

n+h1

3 y3)g3(S
n+h2

3 y3)g3(S
n+h1+h2

3 y3)
∣∣2dν3

)1/2
)
.

As shown previously, by the spectral theorem this last term is equal to

( 1

H2

H2∑

h2=1

lim sup
N

∫ ∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x)f(T n+h2x)f(T n+h1+h2x) ·

g2(S
n
2 y2)g2(S

n+h1

2 y2)g2(S
n+h2

2 y2)g2(S
n+h1+h2

2 y2) ·

e2πint
∣∣2dσ

g3·g3◦S
h1
3

g3◦S
h2
3

g3◦S
h1+h2
3

)1/2
.

This in turn is less than

1

H2

H2∑

h2=1

lim sup
N

sup
t

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x)f(T n+h2x)f(T n+h1+h2x) ·

g2(S
n
2 y2)g2(S

n+h1

2 y2)g2(S
n+h2

2 y2)g2(S
n+h1+h2

2 y2)e
2πint

∣∣2.

We integrate this term with respect to ν2. Another application of the Van der

Corput lemma, Theorem 2, Cauchy Schwartz Inequality and the spectral theorem

leads to the estimate

( 1

H3

H3∑

h3=1

lim sup
N

sup
t

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+h1x)f(T n+h2x)f(T n+h1+h2x)
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f(T n+h3x)f(T n+h1+h3x)f(T n+h2+h3x)f(T n+h1+h2+h3x)g1(S
n
1 y1)g1(S

n+h1

1 y1)

g1(S
n+h2

1 y1)g1(S
n+h1+h2

1 y1)g1(S
n+h3

1 y1)g1(S
n+h1+h3

1 y1)g1(S
n+h2+h3

1 y1)

g1(S
n+h1+h2+h3

1 y1)e
2πint

∣∣2
)1/2

.

Finally integrating this last term with respect to ν1 we can use (10) and combine

the previous inequalities to get the upper bound

C

(
3∑

i=1

1

Hi
+

1∏3
i=1 Hi

H3∑

h3=1

H2∑

h2=1

H1∑

h1=1

‖|f · f ◦ T h1 ·

f ◦ T h2f ◦ T h1+h2 · f ◦ T h3f ◦ T h1+h3f ◦ T h2+h3f ◦ T h1+h2+h3 |‖3

)

Applying (9) three times gives the upper bound

C‖|f |‖85.

Thus if ‖|f |‖5 = 0 we can go back and step by step obtain universal sets for

x, y1, y2, y3 for which (18) holds. ✷

Remarks:

1. In Theorem 5 (see Equation (3)), we proved that we have a pointwise upper

bound on the average of multiple terms as follows

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk)

∣∣∣∣∣

2

≤ CNk+1(f)
2.

We asked in a previous version of this paper whether for k ≥ 2, one can replace

in these inequalities the Nk seminorms for the Ak with those defining the Zk

factors.

• It was shown in [13] that ‖|f |‖2 ≤ ‖E(f |KT )‖2 but we can not find an

absolute constant C for which ‖E(f |KT )‖2 ≤ C‖|f |‖2.
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• As pointed out by the referee one can not replace the Nk seminorms

in Equation (3) with those defining the Zk factors. For T an irrational

rotation on the circle the Kronecker factor is F and E(f,KT ) = f . Then

‖E(f |KT )‖2 = ‖f̂(k)‖l2(Z). Direct computations show that ‖|f |‖2 =

‖f̂(k)‖l4(Z). Therefore one can not find an absolute constant C for which

‖f̂‖l4(Z) ≤ C‖f̂‖l2(Z). Consider the average 1
N

∑N
n=1 f(T

nx)f(T ny).

Then we have

lim
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)f(T ny)

∣∣∣∣∣ =
∣∣∣∣∣
∑

k∈Z

|f̂(k)|2e2πik(x−y)

∣∣∣∣∣ .

The right hand side of the above inequality is less than
∑

k∈Z
|f̂(k)|2 =

‖E(f |KT )‖
2
2. However one can not find an absolute constant C for which

∣∣∑
k∈Z

|f̂(k)|2e2πik(x−y)
∣∣ ≤ C‖f̂(k)‖2l4(Z).

2. The authors of this paper are writing a survey of the Return Times Theorem

[6] which will include more details of the historical developments of Theorem

1 and 2 and related questions such as the ones noted above.

Acknowledgements The authors thank the referees for their comments.
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