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Inefficient Vaginal Transmission of Tenofovir-Resistant HIV-1

Morgan Chateau, Michael D. Swanson, J. Victor Garcia

Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, USA

Transmission of drug-resistant HIV has been postulated to be a threat to current first-line antiretroviral therapy (ART) regimens
and the efficacy of several antiretroviral-based preexposure prophylaxis (PrEP) strategies being tested. Here we evaluated the
effect of the common tenofovir (TFV) resistance mutation K65R on vaginal HIV transmission. Our results demonstrate that de-
spite no overt loss of overall replication competence in vivo, this mutation results in significantly reduced mucosal transmission.
When transmitted, the mutant virus eventually reverted to the wild type in 2 of 3 animals examined.

In the absence of a cure or vaccine, and despite valuable efforts
toward better human immunodeficiency virus (HIV) educa-
tion, including safe sex practices, the HIV epidemic continues to
grow at a faster pace than the current availability of antiretroviral
therapy (ART). For every two people who begin ART, five are
newly infected (1). Of the people infected, only 47% have access to
ART in low- and middle-income countries (2). There is a great
need to prevent transmission of HIV. To address this need, exten-
sive efforts are being made to develop and implement effective
preexposure prophylaxis (PrEP) approaches. So far, the greatest
progress has been made using antiretroviral drug-based treatment
as prevention and PrEP (3, 4). When the patient has a positive
diagnosis and access to a full ART regime under a doctor’s guid-
ance, early treatment is exceedingly effective for preventing trans-
mission of HIV to uninfected partners (4). Unfortunately, a sig-
nificant number of HIV-positive individuals do not know their
infection status, especially during acute infection when transmis-
sion potential is highest, increasing the need for alternatives such
as PrEP. Most current PrEP clinical trials are investigating the use
of antiretroviral drugs either singularly or as a two-drug combi-
nation for systemic or topical use (3, 5-8). This raises an impor-
tant concern with the dual use of antiretroviral drugs for both
treatment and prevention: the consequences of the development
and transmission of drug-resistant HIV.

HIV-1 develops resistance to virtually all drugs currently avail-
able for treatment (9, 10). For this reason, current ART therapies
consist of a cocktail of multiple drugs with different classes of
action to prevent or at least postpone the development of drug-
resistant HIV within the patient’s life span. Drug-resistant viruses
can be transmitted (11-14). During new infections, certain muta-
tions like M184V are rarely detected by routine genotyping, but
significantly higher proportions can be detected using more-spe-
cific methodology (11, 13, 14). The inherent ability of replicating
HIV to revert to a drug-sensitive genotype in the absence of drug
pressure makes it difficult to study in patients, especially if (i) the
time, duration, and route of infection are unknown, (ii) there is no
way to prove ART-naive status, and (iii) the HIV sequence in the
infecting partner is unknown. Despite these difficulties, genotypic
analysis of ART-naive patients has provided evidence that drug-
resistant HIV-1 is being transmitted and can result in treatment
failure (15-21). Given that animal studies are the best option to
overcome the inherent limitations of human studies (22), we uti-
lized humanized mice to investigate in vivo transmission of drug-
resistant HIV-1.

Tenofovir (TFV) is the drug most commonly used in clinical
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trials evaluating systemic and topical PrEP. Tenofovir disoproxil
fumarate, the oral formulation of TFV, is also part of every
DHHS-recommended first-line therapy (23). For this reason, we
chose to study transmission of tenofovir-resistant HIV. The mu-
tation of the lysine at amino acid position 65 in HIV reverse trans-
criptase to an arginine (K65R) confers resistance to tenofovir as
well as other nucleoside reverse transcriptase inhibitors (NRTIs).
For this reason, K65R is on both the WHO and International
AIDS Society (IAS) surveillance lists for HIV genotyping (9, 10).
There is clinical evidence that HIV containing the K65R mutation
can be transmitted after mucosal exposure, albeit at a lower fre-
quency than other mutations, like M184V (11, 13, 15, 20). To
evaluate the role of this single amino acid mutation on mucosal
HIV transmission, we introduced the K65R mutation (AAA to
AGA) into a proviral clone of HIV-1jz ¢ (24). In addition, to
differentiate the mutant virus from the parental clone after rever-
sion, a second, silent mutation (TAT to TAGC; tyrosine) was in-
cluded to act as a molecular marker.

To confirm a decrease in the susceptibility of the mutant virus to
TFV, we determined the in vitro 50% inhibitory concentration (ICs,)
for wild-type HIV _csr and the isogenic mutant HIV)p_cgp kesr- The
K65R mutation conferred a 4.7-fold increase in the in vitro IC5, for
TFV, a change which is comparable to the 2- to 4-fold reduction in
susceptibility reported previously (25, 26) (Fig. 1). Previous in vitro
studies have shown that the K65R mutation reduces the function of
viral reverse transcriptase (26, 27). It is unknown to what extent this
defect affects viral replication in vivo. To test the in vivo replication
capacity of HIVj_cgr kesr» humanized mice (28, 29) were inoculated
via intraperitoneal (i.p.) injection of 3 X 10* tissue culture infectious
units (TCIU), and viral load in plasma was monitored over time (30).
Longitudinal analysis of plasma viral load showed no difference in the
in vivo replication of the K65R mutant and wild-type strains (Fig. 2)
in this group of five animals, suggesting that there are not large dif-
ferences in the in vivo fitness of the mutant virus. Sequence analysis of
plasma virus RNA from HIV-1;p_cp kesr-infected mice confirmed
the presence of the K65R mutation 2 weeks postinfection. However,
subsequent time points showed a population of wild-type virus. Se-
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FIG 1 Introduction of the K65R mutation into HIV y g results in a 4.7-fold
increase in in vitro I1Cs, using a luciferase-based assay in TZM-bl indicator
cells. Serial dilutions of tenofovir were applied to indicator cells in triplicate
and allowed to incubate for 30 min before an equal number of tissue culture
infectious units (TCIU) of either wild-type or mutant virus was applied to all
wells. Two days later, the medium was removed, ONE-Glo reagent (Promega)
was added, and the amount of luciferase activity was measured. Each curve was
normalized to wells infected with that specific virus (wild-type or K65R virus)
in the absence of the drug. RLU, relative light units.

quence analysis indicated that reversion of the K65R mutation was
always to the original sequence. It should be noted that the molecular
marker, present only in the mutant virus, served to exclude the pos-
sibility of contamination with wild-type virus.

Having demonstrated the replication capacity of the K65R mu-
tant virus in vivo, we next evaluated its capacity to transmit mu-
cosally. For this purpose, we utilized BLT humanized mice (30).
The female reproductive tract of BLT mice is reconstituted with all
the cells relevant for HIV transmission, including human T cells,
monocyte/macrophages, and dendritic cells (30, 31). BLT mice
were vaginally exposed once to equal infectious doses of wild-type
HIV-1;5_cgp or the isogenic K65R mutant virus (3.5 X 10° TCIU).
Three independent exposures (1 = 4) were performed on three
different dates. The results of these vaginal exposures showed a
dramatic decrease in the transmission efficiency of the K65R mu-
tant virus (Fig. 3). Specifically, whereas all the mice exposed to the
wild-type virus were infected (4/4), only 25% of the mice exposed
to the mutant virus were infected (3/12). This difference in vaginal
HIV transmission was highly statistically significant by log rank
analysis (P = 0.011; Mantel-Cox). These results demonstrate that
the K65R mutant is vaginally transmitted at a greatly reduced rate
compared to that of the wild-type virus. Interestingly, these results
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FIG 2 In vivo replication of HIV y_csp and HIV g cor kesr after i.p. injection
into humanized mice shows no overt difference in replication capacity. Hu-
manized NOD/SCID/y ™/~ mice (28, 29) were infected with equal amounts of
either HIV-1;5_cgp or HIV-1jp_csp kesr (3 X 10* TCIU) by i.p. injection. The
course of infection was monitored by determining plasma viral loads. Dotted
line indicates the limit of detection of the assay.
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FIG 3 The K65R mutation reduces vaginal transmission efficiency of HIV-1
by 75%. Humanized BLT mice were prepared and validated as previously
described (30, 31, 38). Mice were exposed vaginally to a single dose of HIV-
Lip.cse of HIV-1jp csp gesr (3.5 X 10° TCIU). Infection was monitored as a
function of viral load in plasma. The Kaplan-Meyer plot shows the percentage
of HIV-negative mice as a function of the number of weeks postexposure until
the first peripheral blood HIV-1 detection. In 3/12 (25%) mice, viral load was
readily detectable 2 weeks postexposure. In 9/12 (75%) mice exposed to the
K65R mutant, no viral load was detected at any time point analyzed and no
viral DNA was found in tissues at harvest, confirming the lack of transmission.

seem at odds with those recently published by Cong et al. (22)
using simian immunodeficiency virus (SIV). However, these re-
sults may be due to the facts that a different mutation was used and
that additional fitness compensatory mutations were introduced
into the provirus used by Cong et al. (22).

To determine if the transmitted virus contained the K65R mu-
tation, plasma viral RNA was sequenced at different times after
exposure. Four weeks postexposure, we noted the presence of only
mutant virus in one mouse (M1), the presence of only wild-type
(reverted) virus in a second mouse (M2), and the presence of both
mutant virus and wild-type (reverted) virus populations in a third
mouse (M3). Longitudinal analysis of the virus found in the
plasma of one of the infected mice (M3) showed the presence of
both mutant and wild-type viruses at weeks 4 and 6 postinfection
and the presence of wild-type virus at all subsequent time points
(Table 1). Cervicovaginal lavage (CVL) fluid from this mouse also
showed the presence of both wild-type and mutant virus 4 weeks
postinfection. Subsequently, only the wild-type virus was found in
the CVL fluid (Table 1). Analysis of the virus present in the differ-
ent tissues from two of the infected mice generally reflected what
was observed in the periphery. However, in one mouse, the mu-
tant virus was found in the plasma but all tissues analyzed con-
tained both the wild-type and mutant viruses. Interestingly, anal-
ysis of the virus present in tissues 14 weeks postinfection showed
the wild-type virus in all tissues except the thymic organoid, in
which both drug-resistant and wild-type viruses were found
(Table 1). These results are consistent with the hypothesis of Wein-
berg et al. suggesting that transmitted viruses that contain reversible
mutations become archived in lymphocyte reservoirs (14).

In summary, the topical or systemic use of antiretroviral drugs
for the purpose of preventing HIV acquisition has the potential to
curtail the spread of AIDS, and some PrEP strategies have shown
great promise (4, 5,7, 32, 33). The fact that tenofovir is a successful
first-line drug for the treatment of HIV infection has made this
compound the drug of choice for most prevention trials (34).
However, this dual-use approach is not without risk, as there is
significant potential to expand the pool of drug resistance in com-
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TABLE 1 Sequence analysis demonstrates reversion of the K65R mutation over time in peripheral blood, cervicovaginal lavage fluid, and tissues of

infected BLT mice”
Amino acid(s) at position 65 in sample from:

Wk Peripheral Vaginal lavage Lymph Organoid
Mouse postexposure blood fluid FRT node implant Lung
M1 4 R only NA NA Kand R Kand R Kand R
M2 4 K only NA NA K only K only K only
M3 4 Kand R Kand R

6 Kand R K only

9 K only K only

13 Konly K only

14 K only K only K only K only Kand R K only

“ Bone marrow/liver/thymus mice were exposed once intravaginally to the mutant virus. Infection was monitored in plasma by determining the viral load. Two mice were harvested
4 weeks postinfection (M1 and M2), and one was harvested 14 weeks postexposure (M3). Peripheral blood and vaginal lavage fluid samples from this mouse were collected
longitudinally. FRT, female reproductive tract; K, lysine; R, arginine; NA, not available. PCR primer sets used to amplify the reverse transcriptase (RT) are as follows: outer/first
reaction, 5'-GCTCTATTAGATACAGGAGC-3' and 5'-CCTAATGCATATTGTGAGTCTG-3'; inner/second reaction, 5'-GTAGGACCTACACCTGTCAAC-3" and 5'-CCTGCAAA

GCTAGGTGAATTGC-3". Amplification products were sequenced in bulk.

munities utilizing PrEP (32, 35). Here we tested K65R-mutated
HIV-1 in humanized mice and found that, as in humans, the HIV
carrying the K65R mutation (i) is replication competent (Fig. 2),
(ii) is present in cervicovaginal secretions (Table 1), and (iii) re-
verts to the wild type in the absence of drug selection although the
mutant virus remains detectable (Table 1). Finally, we tested the
ability of K65R mutant HIV to transmit vaginally and found that it
can transmit, albeit at a significantly lower efficiency than that for
the wild type (Fig. 3). At this point, the molecular basis for this
lower transmission is not known. However, analysis of the K65R
mutant has shown that it has a decreased replication capacity
compared to the wild type in several in vitro model systems (36,
37). Overall, our results demonstrate that if this tenofovir-resis-
tant virus is present in the transmitting partner, there is the po-
tential for the mutant virus to be transmitted to the uninfected
partner with lower efficiency than wild-type HIV-1.
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