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Abstract

Genomic aberrations, such as somatic copy number alterations, are frequently observed in

tumor tissue. Recurrent aberrations, occurring in the same region across multiple subjects, are

of interest because they may highlight genes associated with tumor development or progression.

A number of tools have been proposed to assess the statistical significance of recurrent DNA

copy number aberrations, but their statistical properties have not been carefully studied. Cyclic

shift testing, a permutation procedure using independent random shifts of genomic marker ob-

servations on the genome, has been proposed to identify recurrent aberrations, and is potentially

useful for a wider variety of purposes, including identifying regions with methylation aberrations

or overrepresented in disease association studies. For data following a countable-state Markov

model, we prove the asymptotic validity of cyclic shift p-values under a fixed sample size regime

as the number of observed markers tends to infinity. We illustrate cyclic shift testing for a variety

of data types, producing biologically relevant findings for three publicly available datasets.

1 Introduction

Many genomic datasets consist of measurements from multiple samples at a common set of genetic

markers, with no “phenotype” representing clinical state or experimental condition of the sample.

Datasets of this type include genome-wide measurements of DNA copy number or DNA methylation,

for which the main goal is to identify aberrant regions on the genome that tend to have extreme

measurements in comparison to other regions. Testing for aberrations requires some thought about

appropriate test statistics, and constructing a null distribution that appropriately reflects serial

correlation structures inherent to genomic data. A meta-analysis across several genome-wide asso-

ciation studies might also be viewed in this framework, in the sense that the testing for association

within each study produces a vector of p-values that might be viewed as a vector of “observations.”

The problem of interest to us is the identification of aberrant markers, where multiple sam-

ples exhibit a coordinated (unidirectional), departure from the expected state. Aberrant markers
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are of particular interest in cancer studies, where tumor suppressors or oncogenes exhibit DNA

copy variation or modified methylation levels. Similarly, it may be possible to identify pleiotropic

single nucleotide polymorphisms (SNPs) in disease association by identifying genetic markers that

repeatedly give rise to small p-values in multiple association studies.

In this paper we provide a rigorous asymptotic analysis of a permutation based testing proce-

dure for identifying aberrant markers in genomic data sets. The procedure, called DiNAMIC, was

introduced in Walter et al. (2011), and is described in detail below. In contrast to other procedures

which permute all observations, DiNAMIC is based on cyclic shifting of samples. Cyclic shifting

eliminates concurrent findings across samples, but retains the adjacency of observations in a sample

(with the exception of the first and last entries), thereby largely preserving the correlation struc-

ture among markers. Our principal result is that, for a broad family of null data distributions, the

sampling distribution of the DiNAMIC procedure is close to the true conditional distribution of

the data restricted to its cyclic shifts. As a corollary, we find that the cyclic shift testing provides

asymptotically correct Type I error rates.

The outline of the paper is as follows. The next section is devoted to a description of the cyclic

shift procedure, a discussion of the underlying testing framework within which our analysis is carried

out, and a statement of our principal result. In Section 3 we apply cyclic shift testing to DNA copy

number analysis, DNA methylation analysis, and meta-analysis of GWAS data, and show that the

results are consistent with the existing biological literature. Because of its broad applicability and

solid statistical foundation, we believe that cyclic shift testing is a valuable tool for the identification

of aberrant markers in many large scale genomic studies.
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2 Asymptotic Consistency of Cyclic Shift Permutation

2.1 Data Matrix

We consider a data set derived from n subjects at m common genomic locations or markers. The

data is arranged in an n×m matrix X with values in a set A ⊆ R. Depending on the application, A

may be finite or infinite. The entry xij of X contains data from subject i at marker j. Thus the ith

row Xi· of X contains the data from subject i at all markers, and the jth column X·j of X contains

the data at marker j across subjects. For 1 ≤ j ≤ m let sj = sj(X·j) be a local summary statistic

for the jth marker. In most applications the simple sum statistic sj =
∑n

i=1 xij is employed. In

order to identify locations with coordinated departures from baseline behavior, we apply a global

summary statistic to the local statistics s1, . . . , sm. When looking for extreme, positive departures

from baseline it is natural to employ the global statistic

T (X) = max(s1, . . . , sm). (2.1)

To detect negative departures from baseline, the maximum may be replaced by a minimum. The

cyclic shift procedure and the supporting theory in Theorem 1 apply to arbitrary local statistics, as

well as a range of global statistics.

2.2 Cyclic Shift Testing

Given a data matrix X, we are interested in assessing the significance of the observed value t0 = T (X)

of the global statistic. When t0 is found to be significant, the identity and location of the marker

j having the maximum (or minimum) local statistic is of primary biological importance. While in

special cases it is possible to compute p-values for t0 under parametric assumptions, permutation

based approaches are often an attractive and more flexible alternative. A permutation based p-value
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can be obtained by applying permutations π to the entries of X, producing the matrices π(X), and

then comparing t0 to the resulting values T (π(X)) of the global statistic. The maximum global

statistic accounts for multiple comparisons across markers, so it is not necessary to apply further

multiplicity correction to the permuted values T (π(X)).

The performance and suitability of permutation based p-values in the marker identification

problem depends critically on the family of allowable permutations π. If π permutes the entries of

X without preserving row or column membership, then the induced null distribution is equivalent to

sampling the entries of X at random without replacement. In this case the induced null distribution

does not capture the correlation of measurements within a sample, or systematic differences (e.g.

in scale, location, correlation) between samples. In real data, correlations within and systematic

differences between samples can be present even in the absence of aberrant markers. As such, p-

values obtained under full permutation of X will be sensitive to secondary features of the data and

may yields significant p-values even when no aberrant markers are present. An obvious improvement

of full permutation is to separately permute the values in each row (sample) of the data matrix.

This approach is used in the GISTIC procedure of Beroukhim et al. (2007). While row-by-row

permutation preserves some differences between rows, it eliminates correlations within rows (and

correlation differences between rows), so that the induced null distribution is again sensitive to

secondary, correlation based features of the data that are not related to the presence of aberrant

markers.

The DiNAMIC cyclic shift testing procedure of Walter et al. (2011) addresses the shortcomings

of full and row-by-row permutation by further restricting the set of allowable permutations. In

the procedure, each row of the data matrix is shifted to the left in a cyclic fashion, as detailed

below, so that the first k entries of the vector are placed after the last element; the values of the

offsets k are chosen independently from row to row. Cyclic shifting preserves the serial correlation

structure with each sample, except at the single break point where the last and first elements of
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the unshifted sample are placed next to one another. At the same time, the use of different offsets

breaks concurrency among the samples, so that the resulting cyclic null distribution is appropriate

for testing the significance of t0 = T (X).

2.3 Cyclic Shift Testing

Formally, a cyclic shift of index k ∈ {0, . . . ,m− 1} is a map σk : Am → Am whose action is defined

as follows:

σk(x1, x2, . . . , xm) = (xk+1, xk+2, . . . , xm, x1, . . . , xk).

Given k = (k1, . . . , kn) with ki ∈ {0, . . . ,m − 1}, let σk = σk1
⊗ · · · ⊗ σkn

be the map from the set

An×m of data matrices to itself defined by applying σki
to the ith row of X, namely,

σk(X) = (σk1
(X1·), . . . , σkn

(Xn·))
t

The cyclic shift testing procedure of Walter et al. (2011) is as follows.

Cyclic shift procedure to assess the statistical significance of T (X)

1. Let σ1(·), . . . , σN (·) be random cyclic shifts of the form σk1
⊗ · · · ⊗ σkn

, where k1, . . . , kn are

independent and each is chosen uniformly from {0, . . . ,m− 1}.

2. Compute the values T (σ1(X)), . . . , T (σN (X)) of the global statistic T at the random cyclic

shifts of X.

3. Define the percentile-based p-value

p(T (X)) = max

(
N−1

N∑
l=1

I(T (σl(X)) ≥ T (X)), 1/N

)
.

Here I(A) is the indicator function of the event A.

6



2.4 Testing Framework

We wish to assess the performance of the cyclic shift procedure within a formal testing framework.

To this end, we regard the observed data matrix X as an observation from a probability distribution

Pm on An×m, so that for any (measurable) set A ⊆ An×m the probability Pm(A) = P(X ∈ A). As

measurements derived from distinct samples are typically independent, we restrict our attention to

the family of measures P on An×m under which the rows of X are independent.

Let P0 ⊆ P be the sub-family of P corresponding to the null hypothesis that X has no atypical

markers, i.e., no markers exhibiting coordinated activity across samples. One may define P0 in a

variety of ways, but the simplest is to let P0 be the set of distributions Pm ∈ P such that the rows of

X are stationary and ergodic under Pm; independence of the rows follows from the definition of P.

Under P0 the columns of X are stationary and ergodic, and the same is true of the local statistics sj ,

which are identically distributed and have constant mean and variance. Thus under P0 no marker

is atypical in a strong distributional sense.

Our principal result shows that the p-value produced by the cyclic shift procedure is approxi-

mately consistent for distributions Pm in a subfamily P∗ ⊆ P0. The family P∗ includes or approx-

imates many distributions of practical interest, including finite order Markov chains with discrete

or continuous state spaces. In order to assess the consistency of the cyclic shift p-value we carefully

define both the target and the induced distributions of the procedure. As much of what follows con-

cerns probabilities conditional on the observed data matrix, we use X to denote both the random

matrix and its observed realization. Given X let

Sm(X) = {σk(X) : k ∈ {0, . . . ,m− 1}n} ⊆ An×m

be the set of all cyclic shifts of X. Define the true conditional distribution to be the conditional
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distribution of Pm given Sm(X), namely

PX(A) = Pm(A | Sm(X)) A ⊆ An×m.

If Pm is discrete with probability mass function p(·) then

PX(A) =
1∑

Y′∈Sm(X) p(Y
′)

∑
Y∈A

p(Y) · I(Y ∈ Sm(X)).

If Pm has probability density function f(·) then PX may be defined in a similar fashion.

In the cyclic shift procedure, matrices are selected uniformly at random from the set Sm(X) of

cyclic shifts of the observed data matrix X. The associated cyclic conditional distribution has the

form

QX(A) =
∑
Y∈A

1

|Sm(X)|
· I(Y ∈ A) A ⊆ An×m.

Under mild conditions the mn cyclic shifts of X are distinct with high probability when m is large

(see Lemma 3 in Section 4). In this case, the cyclic conditional distribution may be written as

QX(A) =
∑
Y∈A

1

mn
· I(Y ∈ Sm(X)) =

1

mn
· |A ∩ Sm(X)| A ⊆ An×m.

The distribution of the cyclic shift p-value is given by

p(T (X)) ∼ max(N−1 Bin(N,α), 1/N).

Here α = QX(T ≥ t0) where t0 is the observed value of T (X), and T ≥ t0 represents the event

{Y : T (Y) ≥ t0}. Note that as the number N of cyclic shifts increases, the p-value p(T (X)) will

converge in probability to QX(T ≥ t0)
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2.5 Principal Result

Our principal result requires an invariance condition on the global statistic T . Informally, the

condition ensures that T does not give special treatment to any column of the data matrix.

Definition: A statistic T : An×m → R is invariant under constant shifts if T (X) = T (X′) whenever

X′ is obtained from X by applying the same cyclic shift σk(·) to each row of X.

The maximum column sum statistic used in the cyclic shift testing procedure is clearly invariant

under constant shifts. More generally, any statistic of the form T (X) = g(h(X·1), . . . , h(X·m)) where

h : An → B is an arbitrary local statistic (not necessarily a sum), and g : Bm → R is invariant under

cyclic shifts will be invariant under constant shifts. The following result establishes the asymptotic

validity of the cyclic shift procedure in this general setting.

Theorem 1. Let X be a random n×m matrix whose rows Xi· are independent copies of a first-order

stationary ergodic Markov chain with countable state space A and transition probabilities p(u|v).

Suppose that

max
u,v∈A

p(u|v) < 1 and
p1(u) p1(v)

p2(u, v)
<∞ for each u, v ∈ A (2.2)

where in the second condition we define 0/0 to be 0. Here p1(·) and p2(·, ·) denote the one- and two-

dimensional marginal distributions of the Markov chain, respectively. For m ≥ 1 let Tm : An×m → R

be a statistic that is invariant under constant shifts. Then

max
B⊆R
|PX(Tm ∈ B)−QX(Tm ∈ B)|

tends to zero in probability as m tends to infinity.

The first condition in (2.2) ensures that there are not deterministic transitions between the

states of the Markov chain. The second condition can be expressed equivalently as p2(u, v) = 0

implies p1(u) p1(v) = 0. The proof of Theorem 1 is given in Section 4. As an immediate corollary of
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the theorem, we find that

sup
t
|PX(Tm ≥ t)−QX(Tm ≥ t)|

tends to zero in Pm-probability as m tends to infinity. Thus, under the conditions of the theorem,

when m and N are large, the percentile based p-value p(T (X) will be close to the true conditional

probability PX(Tm ≥ t0) that Tm(X) exceeds the observed value of Tm. If we define Qm(A) to be

EQX(A), where the expectation is taken under Pm, then conditional convergence also yields the

unconditional result

sup
t
|Pm(Tm ≥ t)−Qm(Tm ≥ t)| → 0

as m tends to infinity. Thus, under the assumptions of Theorem 1, the percentile based p-value

provides asymptotically correct type I error rates.

Theorem 1 can be extended in a number of directions. Under conditions similar to those in (2.2)

the theorem extends to matrices X whose rows are independent copies of a kth order ergodic Markov

chain, where k ≥ 2 is fixed and finite. The theorem can also be extended to settings in which the

rows of X are independent stationary ergodic Markov chains with different transition probabilities.

In this case we require that the conditions (2.2) hold for each row-chain.

Theorem 1 can also be extended to the setting in which the rows of X are independent copies

of a first-order stationary ergodic Markov chain with a continuous state space and a transition

probability density f(u|v). The existence of the transition probability density obviates the need for

the first condition in (2.2) and the analysis of Lemmas 2 and 3 in Section 4. The second condition

of (2.2) is replaced by the assumption

f1(X1) f1(Xm)

f2(X1, Xm)
= OP (1), (2.3)

where f1(·) and f2(·, ·) denote the one- and two-dimensional marginal densities of the Markov

chain, respectively. Markovity and ergodicity ensure that (X1, Xm) converges weakly to a pair
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(X,X ′) consisting of independent copies of X1, and therefore condition (2.3) holds if the ratio

f1(u) f1(v)/f2(u, v) is continuous on R2. Thus Theorem 1 applies, for example, to standard Gaus-

sian AR(1) models. As in the discrete case, one may extend the theorem to settings in which the

rows of X are independent stationary ergodic Markov chains with different transition probabilities,

provided that (2.3) holds for each row-chain.

2.6 Illustration of Resampling Distributions

Here we present simulation results illustrating the resampling distributions PX(A) and QX(A) de-

fined above. Each simulation was conducted using an n×m matrix X with independent, identically

distributed rows generated by a stationary first-order r-state Markov chain with a fixed transi-

tion matrix M . Figure 1 shows empirical cumulative distribution functions (cdfs) PX(T < t) and

QX(T < t) based on simulations conducted with r = 5, n = 4, and m = 10 or 50. Each panel is

based on an observed matrix X produced by the Markov chain, and the results presented here are

representative of those obtained from other simulations. Based on Theorem 1, we expect the cdfs

to converge as the number of columns m increases. Accordingly, the two curves in each panel of

part B of Figure 1 (m = 50) exhibit a greater level of concordance than those in part A (m = 10).

Additional simulation results based on an AR(1) model are presented in Section 7, the Appendix.

3 Application to Genomic Data

In tumor studies DNA copy number values for each subject are measured with respect to a normal

reference, typically either a paired normal sample or a pooled reference. In the autosomes the nor-

mal DNA copy number is two. Underlying genomic instability in tumor tissue can result in DNA

copy number gains and losses, and often these changes lead to increased or decreased expression,

respectively, of affected genes (Pinkel and Albertson 2005). Some of these genetic aberrations occur
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Figure 1: Illustration of Resampling Distributions. Empirical cumulative distribution functions
for simulated matrices X in which independent rows Xi· are generated by a first-order finite-state
Markov chain. Each panel corresponds to a simulated 4×m matrix X with m = 10 (A) or m = 50
(B).

at random locations throughout the genome, and these are termed sporadic. In contrast, recurrent

aberrations are found in the same genomic region in multiple subjects. It is believed that recurrent

aberrations arise because they lead to changes in gene expression that provide a selective growth

advantage. Therefore regions containing recurrent aberrations are of interest because they may har-

bor genes associated with the tumor phenotype. Distinguishing sporadic and recurrent aberrations

is largely a statistical issue, and the cyclic shift procedure was designed to perform this task.

DNA methylation values for a given subject are also measured with respect to a paired or pooled
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normal reference. Although DNA methylation values are not constant across the genome, even in

normal tissue, at a fixed location they are quite stable in normal samples from a given tissue type.

Epigenetic instability can disrupt normal methylation patterns, leading to methylation gains and

losses, and these changes can affect gene expression levels (Laird 2003). Regions of the genome that

exhibit recurrent hyper- or hypo-methylation in tumor tissue are of interest.

3.1 Peeling

In many applications more than one atypical marker may be present, and as a result multiple columns

may produce summary statistics with extreme values. In tumor tissue, for example, underlying

genomic instability can result in gains and losses of multiple chromosomal regions; likewise, epigenetic

instability can lead to aberrant patterns of DNA methylation throughout the genome. In order to

identify multiple atypical markers and assess their statistical significance it is necessary to remove

the effect of each discovered marker before initiating a search for the next marker. This task is

carried out by a process known as peeling . Several peeling procedures have been proposed in the

literature, including those employed by GISTIC (Beroukhim et al. 2007) and DiNAMIC (Walter et

al. 2011). In the applications here we make use of the procedure described in detail in Walter et al.

(2011) .

3.2 DNA Copy Number Data

Walter et al. (2011) used the cyclic shift procedure to analyze the Wilms’ tumor data of Natrajan

et al. (2006). Here we apply the procedure to the lung adenocarcinoma dataset of Chitale et al.

(2009), with n = 192 and m = 40478. We detected a number of highly significant findings under the

null hypothesis that no recurrent copy number gains or losses are present. Table 1 lists the genomic

positions of the the three most significant copy number gains and losses, as well as neighboring

genes, most of which are known oncogenes and tumor suppressors. Strikingly, Weir et al. (2007)
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Table 1: Genomic locations of the three most significant DNA copy number gains (top table) and
losses (bottom table) found by applying the cyclic shift procedure to the lung adenocarcinoma
dataset of Chitale et al. (2009).

Chromosome Gain Locus (bp) Gene

5p15 967984 TERT
1q21 149346163 ARNT
8q24 128816933 MYC

Chromosome Loss Locus (bp) Gene

8p23 2795183 CSMD1
13q11 19254995 PSPC1
9p21 21958070 CDKN2A

detected highly significant gains of the oncogenes TERT, ARNT, and MYC in their comprehensive

investigation of the disease, each of which appears in Table 1. The loss results for chromsomes 8 and

9 in Table 1 are also highly concordant with previous findings of Weir et al. (2007), and Wistuba et

al. (1999). Weir et al. (2007) detected chromosomal loss in a broad region of 13q that contains the

locus in Table 1, but it is not clear if the target of this region is the known tumor-suppressor RB1

or some other gene.

3.3 DNA Methylation Data

Using unsupervised clustering techniques, Fackler et al. (2011) found an association between methy-

lation patterns and estrogen-receptor status in a cohort of breast cancer tumors. This cohort con-

sisted of 20 tumor/normal pairs, and we used differences in methylation signal between tumor and

normal tissue as the observations. We applied the cyclic shift procedure to the resulting differences

to detect loci that exhibited recurrent hyper- or hypomethylation in tumors. As shown in Table 2,

the most significant hypermethylation sites occur in ABCA3, GALR1, and NID2, and these genes

have previously been found to be highly methylated in lung adenocarcinoma, head and neck squa-

mous cell carcioma, and bladder cancer, respectively, by Selamat et al. (2012), Misawa et al. (2008),
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Table 2: Genomic locations of the three most significant hypermethylation (top table) and hy-
pomethylation (bottom table) sites found by applying the cyclic shift procedure to the breast cancer
dataset of Fackler et al. (2011).

Chromosome Gain Locus (bp) Gene

16p13 2331829 ABCA3
18q23 73091357 GALR1
14q22 51605897 NID2

Chromosome Gain Locus (bp) Gene

20q13 62266251 MYT1
3q24 144378065 SLC9A9
1q21 150565702 MCL1

and Renard et al. (2009). Hypomethylation of the transcription factor MYT1 on chromosome 20

was detected; this is notable because Viré et al. (2006) found that MYT1 could be activated via

decreased methylation.

3.4 Meta-Analysis of Genomewide Association Studies

Genome-wide association studies (GWAS) are used to identify genetic markers, typically single

nucleotide polymorphisms (SNPs), that are associated with a disease of interest. When conducting a

GWAS involving a common disease and alleles with small to moderate effect sizes, large numbers of

cases and controls are required to have adequate power to detect disease SNPs (Pfeiffer et al. 2009).

The Welcome Trust Case Control Consortium (WTCCC 2007) performed a genome-wide as-

sociation study of seven common familial diseases - bipolar disorder (BD), coronary artery disease

(CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis (RA), type I diabetes (T1D),

and type II diabetes (T2D) - based on an analysis of 2000 separate cases for each disease and a set

of 3000 controls. We applied the inverse of the standard normal cumulative distribution function to

the Cochran-Armitrage trend test p-values from the WTCCC study, a transformation that produces

z-scores whose values are similar those exhibited by a stationary process. We then analyzed the
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matrix X whose entries are negative thresholded z-scores arranged in rows corresponding to the

seven disease phenotypes. As seen in Figure 2, a number of regional markers on chromosome 6

produce extremely large column sums. These markers lie in the major histocompatability complex

(MHC), which is noteworthy because MHC class II genes have been shown to be associated with

autoimmune disorders, including RA and T1D (Fernando et al. 2008). When applied to X, cyclic

shift testing identified several highly significant apparently pleiotropic SNPs in the MHC region that

produced large entries in the rows corresponding to both RA and T1D, including rs9270986, which

is upstream of the RA and T1D susceptibility gene HLA-DRB1 .

The WTCCC dataset serves as a proof of principle for cyclic shift applied to GWAS studies,

although the use of a common set of controls may create modest additional correlation not fully

captured in the cyclic shifts. We note that the cyclic shift procedure appplied to GWAS is sensitive

only to small p-values that occur in multiple studies. Thus the procedure is qualitatively different

from typical meta-analyses, such as Zeggini et al. (2008), which can be sensitive to large observed

effects form a single study.

4 Proof of Theorem 1

Let X be a random n ×m matrix whose rows X1·, . . . ,Xn· are independent realizations of a first-

order stationary ergodic Markov chain with countable state space A. Denote the distribution of

X in An×m by Pm. Let p1(·) and p(·|·) denote, respectively, the stationary distribution and the

one-step transition probability of the Markov chain defining the rows of X. Let pl(·) denote the

joint probability mass function of l contiguous variables in the chain. Thus the vectors Xi· have

common probability mass function

pm(x0, . . . , xm−1) = p1(x0)

m−1∏
j=1

p(xj |xj−1). (4.1)
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Figure 2: Cyclic Shift Testing Identifies Pleiotropic Single Nucleotide Polymorphisms. Marker-
specific summary statistics were obtained from the Welcome Trust Case Control Consortium study
and plotted genome-wide. Numerous regional markers in the multihistocompatability complex re-
gion of chromosome 6 exhibit large summary statistics, including several markers that were highly
significant under cyclic shift testing and were associated with multiple disease phenotypes.

In what follows we assume that (2.2) holds. The ergodicity assumption on the Markov chain ensures

that the joint probability mass function of (X0, Xm−1) converges to the joint probability mass

function of the pair (X,X ′) where X,X ′ ∈ A are independent with the same distribution as X0. It

follows that

p1(Xi,0) p1(Xi,m−1)

p2(Xi,0, Xi,m−1)
= OP (1) 1 ≤ i ≤ n. (4.2)

In other words, for each row i the ratio in (4.2) is stochastically bounded under Pm as m tends to

infinity.
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Suppose for the moment that m is fixed. For any integer r, define the cyclic shift σr : Am → Am

on sequences of length m by

σr(x0, x1, . . . , xm−1) = (x[r], x[r+1], . . . , x[r+(m−1)])

where [k] = k mod m. We index vectors as (x0, x1, . . . , xm−1) rather than (x1, x2, . . . , xm), as was

done in the body of the present manuscript, because this allows us to write the subscripts of the

shifted vector in terms of [k], substantially reducing notation. For each r = (r1, . . . , rn) ∈ Zn define

σr(X) to be the n×m matrix with rows σr1(X1·), . . . , σrn(Xn·). If r, s ∈ Zn, then it is easy to verify

that

(σr ◦ σs)(X) = (σs ◦ σr)(X) = (σr+s)(X).

Let Sm(X) = {σr(X) : r ∈ Zn} be the set of cyclic shifts of X.

Let PX and QX be the true conditional and cyclic conditional distributions given Sm(X), defined

by PX(A) = Pm(A | Sm(X)) and QX(A) = m−n |A ∩ Sm(X)|, respectively. In order to compare the

distributions PX and QX we introduce two closely related distributions, P o
X and Qo

X, that are more

amenable to analysis. Let P o
X be a (random) measure on An×m defined by

P o
X(A) =

∑
r∈[m]n

η(σr(X)) I(σr(X) ∈ A),

where [m] = {0, 1, . . . ,m− 1} and

η(σr(X)) =

n∏
i=1

[
pm(σri(Xi·))∑

s∈[m] pm(σs(Xi·))

]
.
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Let Qo
X be a (random) measure on An×m defined by

Qo
X(A) =

∑
r∈[m]n

1

mn
I(σr(X) ∈ A).

One may readily verify that P o
X(Am×n) = Qo

X(Am×n) = 1, so both P o
X and Qo

X are valid probability

measures on Am×n.

We will say that the set of cyclic shifts Sm(X) is full if its cardinality is equal to mn, or

equivalently, if all cyclic shifts of X are distinct.

Lemma 1. If Sm(X) is full, then (a) P o
X = PX and (b) Qo

X = QX.

Proof. (a) For any A ⊆ An×m we may write PX(A) as

Pm(A ∩ Sm(X))

Pm(Sm(X))
=

∑
r∈[m]n

Pm(σr(X))

Pm(Sm(X))
I(σr(X) ∈ A). (4.3)

Since Sm(X) is full,

Pm(Sm(X)) = Pm

 ⋃
r∈[m]n

σr(X)

 =
∑

r∈[m]n

Pm(σr(X)).

The independence of the rows of X allows us to write the last expression as
∑

r∈[m]n

n∏
i=1

pm(σri(Xi·)),

but this may be rewritten as

n∏
i=1

∑
s∈[m]

pm(σs(Xi·)). Therefore (4.3) is equivalent to

∑
r∈[m]n

[
n∏

i=1

pm(σri(Xi·))∑
s∈[m] pm(σs(Xi·))

]
I(σr(X) ∈ A) = P o

X(A).
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(b) There are mn elements in Sm(X) when X is full, so for any A ∈ A

QX(A) = m−n |A ∩ Sm(X)| =
∑

r∈[m]n

1

mn
I(σr(X) ∈ A) = Qo

X(A).

Lemma 2. Let x = (x0, x1, . . . , xm−1) ∈ Am be a sequence of length m. Let k be the least positive

integer such that σk(x) = x. If k < m, then k divides m, and x is equal to the repeated concatenation

of a fixed block of length k.

Proof. Suppose to the contrary that 1 ≤ k < m does not divide m. Then we may write m = kq+ r,

where 1 ≤ r < k. Now σk(x) = x implies that σ−k(x) = x, and it follows that

σr(x) = σm−kq(x) = σm ◦ σ−kq(x) = x.

As this contradicts the minimality of k, we conclude that k divides m. The second conclusion follows

in a straightforward way from the first.

Corollary 1. If x ∈ Am is such that σk(x) = x for some 1 ≤ k < m, then x contains two disjoint,

equal blocks of length at least m/3.

Lemma 3. If (2.2) holds, then Pm(Sm(X) is full) converges to 1 as m tends to infinity.

Proof. We begin by noting that Sm(X) is full if Sm(Xi·) is full for i = 1, . . . , n. Because the

rows of X are independent, it therefore suffices to prove the result in the case n = 1. Thus we

write X = (X0, . . . , Xm−1). If Sm(X) is not full, then Corollary 1 implies that there exist integers

l, r ≥ m/3 such that Xj = Xr+j for j = 0, . . . , l− 1. An easy calculation using the Markov property

shows that, for fixed r, the Pm-probability of this event is at most ρl−1, where ρ < 1 is the maximum

appearing in (2.2). Thus the probability that Sm(X) is not full is at most mρm/3−1, which tends

to zero as m tends to infinity.
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Definition: A set A ⊂ An×m is invariant under constant shifts if σr(A) = A whenever r = (r, . . . , r)

is a constant index sequence. Let Am be the family of all sets A ⊂ An×m that are invariant under

constant shifts.

Theorem 2. Suppose that (2.2) holds and that the stationary Markov chain described by (4.1) is

ergodic. Then

max
A∈Am

|P o
X(A)−Qo

X(A)| → 0

in probability as m tends to infinity.

Proof. Fix m ≥ 1 and A ∈ Am. For k ∈ Z let k∗ = (k, k, . . . , k) ∈ Zn be the constant sequence each

of whose coordinates is equal to k. It follows from the invariance of A and the basic properties of

cyclic shifts that for each k ∈ Z,

P o
X(A) =

∑
r∈[m]n

η(σr(X)) I(σr(X) ∈ A)

=
∑

r∈[m]n

η(σr+k∗(X)) I(σr+k∗(X) ∈ A)

=
∑

r∈[m]n

η(σr+k∗(X)) I(σr(X) ∈ A).

Thus we may express P o
X(A) in the form of an average over k:

P o
X(A) =

∑
r∈[m]n

 1

m

∑
k∈[m]

η(σr+k∗(X))

 I(σr(X) ∈ A).
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Combining this last expression with the definition of Qo
X yields the bound

|P o
X(A)−Qo

X(A)| ≤
∑

r∈[m]n

∣∣∣∣∣∣ 1

m

∑
k∈[m]

η(σr+k∗(X))− 1

mn

∣∣∣∣∣∣ I(σr(X) ∈ A)

≤
∑

r∈[m]n

∣∣∣∣∣∣ 1

m

∑
k∈[m]

η(σr+k∗(X))− 1

mn

∣∣∣∣∣∣
=

1

mn

∑
r∈[m]n

∣∣∣∣∣∣ 1

m

∑
k∈[m]

mnη(σr+k∗(X))− 1

∣∣∣∣∣∣ . (4.4)

We now turn our attention to the quantity mn η(σr+k∗(X)) appearing in (4.4). Let x =

(x0, . . . , xm−1) be a fixed m-vector with entries in A, and let t ∈ Z. By expanding the joint

probability pm(·) as a product of one-step conditional probabilities and canceling common terms, a

straightforward calculation shows that for all integers t

m · pm(σt(x))∑
s∈[m] pm(σs(x))

= ρt(x) γ−1m (x) (4.5)

where

ρt(x) =
p1(x[t]) p1(x[t−1])

p2(x[t], x[t−1])
and γm(x) =

1

m

m−1∑
j=0

ρj(x).

(Recall that [t] = t mod m.) It follows from the definition of η(X) and equation (4.5) that

mn η(σr+k∗(X)) =

n∏
i=1

[
mpm(σri+k(Xi·))∑
s∈[m] pm(σs(Xi·))

]

=

n∏
i=1

ρri+k(Xi·) γ
−1
m (Xi·) = Γ−1m (X)

n∏
i=1

ρri+k(Xi·)

where Γm(X) =
∏n

i=1 γm(Xi·).

The assumptions of the theorem ensure that the random variables Xi,0, . . . , Xi,m−1 in the ith
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row of X are the initial terms of a stationary ergodic process, and therefore the same is true of

the non-negative random variables ρ1(Xi·),. . . ,ρm−1(Xi·). Note that the random variable ρ0(Xi·)

cannot be included in this sequence because it involves the non-adjacent variables Xi,0 and Xi,m−1.

It is easy to see that

Eρ1(Xi·) = E
(
p1(Xi,1) p1(Xi,0)

p2(Xi,0, Xi,1)

)
=

∑
u,v∈A

p(u) p(v)

p(u, v)
p(u, v) = 1.

From the ergodic theorem and the fact that ρ0(Xi·) is stochastically bounded (see (4.2)), it follows

that

γm(Xi·) = Eρ1(Xi·) + oP (1) = 1 + oP (1), (4.6)

and therefore Γm(X) and Γ−1m (X) are equal to 1 + oP (1) as well. (Here and in what follows the

stochastic order symbols oP (1) and OP (1) refer to the underlying measure Pm with m tending to

infinity). For r ∈ [m]n let V0(r) = {k ∈ [m] : ri + k ≡ 0 mod m for some 1 ≤ i ≤ n} and let

V1(r) = [m] \ V0(r). Note that |V0(r)| ≤ n for each r ∈ [m]n. Combining the relation (4.6) with

inequality (4.4) and equation (4.5), we conclude that

|P o
X(A)−Qo

X(A)|

≤ Γ−1m (X) · 1

mn

∑
r∈[m]n

∣∣∣∣∣∣ 1

m

∑
k∈[m]

n∏
i=1

ρri+k(Xi·)− 1

∣∣∣∣∣∣ + |Γ−1m (X)− 1|

= OP (1) · 1

mn

∑
r∈[m]n

∣∣∣∣∣∣ 1

m

∑
k∈[m]

n∏
i=1

ρri+k(Xi·)− 1

∣∣∣∣∣∣ + oP (1)

= OP (1) · 1

mn

∑
r∈[m]n

∣∣∣∣∣∣ 1

m

∑
k∈V1(r)

n∏
i=1

ρri+k(Xi·)− 1

∣∣∣∣∣∣ + OP (1) ∆m + oP (1) (4.7)
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where in the last line

∆m :=
1

mn

∑
r∈[m]n

1

m

∑
k∈V0(r)

n∏
i=1

ρri+k(Xi·).

As the upper bound in (4.7) is independent of our choice of A ∈ Am, it is enough to show that the

first two terms in (4.7) are oP (1). Concerning the first term, by Markov’s inequality it suffices to

show that

max
r∈[m]n

E

∣∣∣∣∣∣ 1

m

∑
k∈V1(r)

n∏
i=1

ρri+k′(Xi·)− 1

∣∣∣∣∣∣ → 0 as m→∞.

This follows from Corollary 2 below. As for the second term, note that

∆m ≤
n∏

i=1

(ρ0(Xi·) ∨ 1) ·

 1

mn

∑
r∈[m]n

1

m

∑
k∈V0(r)

∏
i:ri+k 6=0

ρri+k(Xi·)



= OP (1) ·

 1

mn

∑
r∈[m]n

1

m

∑
k∈V0(r)

∏
i:ri+k 6=0

ρri+k(Xi·)


The term in brackets is non-negative and has expectation at most n/m. Thus ∆m = oP (1) and the

result follows.

Let {U1(k) : k ≥ 0}, . . . , {Un(k) : k ≥ 0} be independent, real-valued stationary ergodic

processes defined on the same underlying probability space. Suppose that E|Ui(0)| is bounded for

i = 1, . . . , n, and define µ = Πn
i=1E(Ui(0)). Let r = (r1, . . . , rn) denote a vector with non-negative

integer-valued components. For k,m ≥ 1 define random variables

Vm(k : r) =

n∏
i=1

Ui((ri + k) modm)− µ.

The independence of the processes {Ui(·)} ensures that E(Vm(k : r)) = 0.

Lemma 4. Under the assumptions above, maxr∈Zn E
∣∣∣m−1∑m−1

k=0 Vm(k : r)
∣∣∣ converges to zero as m
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tends to infinity.

Proof. Standard arguments show that the joint process {(U1(k), . . . , Un(k)) : k ≥ 0} is stationary

and ergodic, and therefore the same is true for the process {
∏n

i=1 Ui(k) : k ≥ 0} of products. The

L1 ergodic theorem implies that

∆(l) = E

∣∣∣∣∣ 1

l

l−1∑
k=0

(
n∏

i=1

Ui(k) − µ

)∣∣∣∣∣ → 0 as l→∞. (4.8)

Note also that

∆(l) ≤ E

∣∣∣∣∣
n∏

i=1

Ui(0) − µ

∣∣∣∣∣ ≤ 2

n∏
i=1

E|Ui(0)| 4= ∆0 (4.9)

which is bounded by assumption.

Fix m ≥ 1 and r = (r1, . . . , rn) with ri ≥ 0. Because the indices of Ui(·) in Vm(k : r) are

assessed modulo m, we may assume without loss of generality that 0 ≤ r1, . . . , rn ≤ m − 1. Let

0 ≤ r(1) < r(2) < · · · < r(n′) ≤ m − 1 be the distinct order statistics of r1, . . . , rn, and note that

n′ ≤ n. Define r(0) = 0, r(n′ + 1) = m, and the differences mj = r(j + 1) − r(j) for j = 0, . . . , n′.

Consider the decomposition

m−1∑
k=0

Vm(k : r) =

n′∑
j=0

Wj where Wj =

r(j+1)−1∑
k=r(j)

Vm(k : r). (4.10)

The key feature of the sum Wj is this: for r(j) ≤ k ≤ r(j + 1) − 1 there are no “breaks” in the

indexing of the terms Ui((ri + k) modm) in Vm(k : r) arising from the modular sum. In particular,

there exist integers r̃1, . . . , r̃n such that (ri + k) modm = r̃i + k for each i = 1, . . . , n, and each k

in the sum defining Wj . As a result, the stationarity and independence of the individual processes
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{Ui(·)} ensures that Wj is equal in distribution to the random variable

W̃j =

mj−1∑
k=0

(
n∏

i=1

Ui(k) − µ

)
.

We now turn our attention to the expectation in the statement of the lemma. It follows imme-

diately from the decomposition (4.10) that

1

m

m−1∑
k=0

Vm(k : r) =

n′∑
j=0

mj

m

1

mj
Wj ,

which yields the elementary bound

∣∣∣∣∣ 1

m

m−1∑
k=0

Vm(k : r)

∣∣∣∣∣ ≤
n′∑
j=0

mj

m

∣∣∣∣ 1

mj
Wj

∣∣∣∣ .
Taking expectations of both sides in the last display yields the inequality

E

∣∣∣∣∣ 1

m

m−1∑
k=0

Vm(k : r)

∣∣∣∣∣ ≤
n′∑
j=0

mj

m
E
∣∣∣∣ 1

mj
Wj

∣∣∣∣ =

n′∑
j=0

mj

m
E
∣∣∣∣ 1

mj
W̃j

∣∣∣∣ =

n′∑
j=0

mj

m
∆(mj),

where the first equality follows from the distributional equivalence of Wj and W̃j . In particular, for

each integer l ≥ 1 we have

E

∣∣∣∣∣ 1

m

m−1∑
k=0

Vm(k : r)

∣∣∣∣∣ ≤ ∑
j:mj≤l

mj

m
∆(mj) +

∑
j:mj>l

mj

m
∆(mj) ≤

nl∆0

m
+ sup

l′>l
∆(l′).

It follows from (4.8) and (4.9) that the final term in the last display tends to zero with m if l = l(m)

is any sequence such that l tends to infinity and 1/m converges to 0. Moreover, the final term does

not depend on the vector r. This completes the proof of the lemma.
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An elementary argument using Lemma 4 establishes the following corollary.

Corollary 2. Under the assumptions of Lemma 4, maxr∈Nn E
∣∣m−1∑k′ Vm(k : r)

∣∣ converges to

zero as m tends to infinity, where for each r the sum is restricted to those k′ ∈ [m] such that

ri + k′ 6≡ 0 mod m.

Proof of Theorem 1: Theorem 1 follows from Theorem 2 and the fact that for each B ⊆ R the

event {Y : Tm(Y) ∈ B} ∈ Am as Tm is invariant under constant shifts.

5 Discussion

High resolution genomic data is routinely used by biomedical investigators to search for recurrent

genomic aberrations that are associated with disease. Cyclic shift testing provides a simple, permu-

tation based approach to identify aberrant markers in a variety of settings. Here we establish finite

sample, large marker asymptotics for the consistency of p-values produced by cyclic shift testing.

The results apply to a broad family of Markov based null distributions. To our knowledge, this is

the first theoretical justification of a testing procedure of this kind. Although cyclic shift testing

was developed for DNA copy number analysis, we demonstrate its utility for DNA methylation and

meta-analysis of genome wide association studies.
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7 Appendix

Figure A.1: Illustration of Resampling Distributions. Empirical cumulative distribution functions
for simulated matrices X in which independent rows Xi· are generated by a Gaussian AR(1) process
with mean 0, standard deviation 1, and correlation .9. Each panel corresponds to a simulated 2×100
matrix X.
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Figure A.2: Illustration of Resampling Distributions. Empirical cumulative distribution functions
for simulated matrices X in which independent rows Xi· are generated by a Gaussian AR(1) process
with mean 0, standard deviation 1, and correlation .9. Each panel corresponds to a simulated
2× 1000 matrix X.
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Figure A.3: Illustration of Resampling Distributions. Empirical cumulative distribution functions
for simulated matrices X in which independent rows Xi· are generated by a Gaussian AR(1) process
with mean 0, standard deviation 1, and correlation .9. Each panel corresponds to a simulated
2× 10000 matrix X.
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Figure A.4: Illustration of Resampling Distributions. Empirical cumulative distribution functions
for simulated matrices X in which independent rows Xi· are generated by a Gaussian AR(1) process
with mean 0, standard deviation 1, and correlation .9. Each panel corresponds to a simulated
2× 100000 matrix X.
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Figure A.5: Illustration of Resampling Distributions. Empirical cumulative distribution functions
for simulated matrices X in which independent rows Xi· are generated by a Gaussian AR(1) process
with mean 0, standard deviation 1, and correlation .9. Each panel corresponds to a simulated
2× 500000 matrix X.
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