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Abstract

Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder of cilia structure, function, 

and biogenesis leading to chronic infections of the respiratory tract, fertility problems and 

disorders of organ laterality. The diagnosis can be challenging, using traditional tools such as 

characteristic clinical features, ciliary functional and ultra-structural defects; newer screening tools 

such as nasal nitric oxide levels and genetic testing add to the diagnostic algorithm. There are 

thirty-two known PCD causing genes, and in the future, comprehensive genetic testing may screen 

young infants prior to developing symptoms thus improving survival. Therapies include 

surveillance of pulmonary function and microbiology, in addition to airway clearance, antibiotics 

and ideally, early referral to bronchiectasis centers. As with CF, standardized care at specialized 

centers using a multidisciplinary approach likely improves outcomes. In conjunction with the CF 

foundation, the PCD foundation, and with lead investigators and clinicians, is developing a 

network of PCD clinical centers to coordinate the effort in North America and Europe. As the 

network grows, care and knowledge will improve.
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Background

Primary ciliary dyskinesia (PCD) is a rare, autosomal recessive disorder of motile cilia that 

leads to oto-sino-pulmonary disease.1 PCD was first described by Kartagener et al in 1936 

as a syndrome based on the triad of chronic sinusitis, bronchiectasis and situs inversus. Forty 

years later, Afzelius expanded on this by observing that these patients had “immotile” cilia 

and defective ciliary ultrastructure, specifically noting a deficiency of dynein arms, 

decreased mucociliary clearance and a lack of ciliary motion.2,3 Later on, the syndrome was 

renamed “primary ciliary dyskinesia” when it was observed that functional ciliary 

impairment without ultrastructural deformities, as well as motile cilia with obvious 

abnormal movement patterns could result in clinical disease.4–6 The prevalence of PCD is 

difficult to determine due to (hitherto) inadequate diagnostic methods and often an under-
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recognition of the syndrome; it is estimated to be ~1 in 15,000–20,000 individuals.7 Focused 

clinical and research efforts in recent years have led to an increased understanding of the 

phenotype, as well as the discovery of PCD-causing genetic mutations. Indeed, the use of 

genetic testing has greatly aided the diagnosis of PCD and further helped the understanding 

of PCD. Nonetheless, even with improvements in diagnostic and screening tests at 

specialized centers, up to 30% of patients may be missed. Secondary ciliary dyskinesia may 

be seen in diseases associated with acute and chronic airway inflammation and infection.

This review will focus primarily on PCD, the genetically transmitted form of the disease, 

with a brief review of the structure and function of normal and dysfunctional cilia, the 

clinical manifestations of PCD, including diagnosis, genetic mutations, therapies and a 

glimpse into future.

Normal cilia structure and function

Respiratory cilia are an important part of airway host defense, protecting the airways from 

inhaled pathogens, allergens and other inhaled noxious particles via the mucociliary 

escalator. In the airways, they are surrounded by a thin, watery, peri-ciliary fluid layer 

overlaid by a more viscous mucus layer. The efficiency of the mucociliary escalator in 

defense of the airway depends on the viscosity and composition of the peri-ciliary fluid and 

mucus layer, the integrity of the airway epithelium and the synchrony and beat frequency of 

the cilia. The density of cilia decreases from the upper to the lower respiratory tract with an 

absence of cilia in the alveoli and air sacs.8 Cilia are hair-like attachments found on the 

epithelial cell surfaces (~200 per cell) of various organs. The cilia basal body attaches to the 

apical cytoplasm on the cell surface and extends into the extracellular space. They are 

composed of α- and β-tubulin monomers organized into longitudinal microtubules. The 

axonemal structure consists of a circular arrangement of nine microtubule doublets 

surrounding a central pair of microtubules (9+2) or with an arrangement where the central 

pair is absent (9+0).9 Cilia are categorized into 9+2 motile cilia with dynein arms, 9+0 

motile cilia (nodal cilia) with dynein arms and 9+0 non-motile cilia lacking dynein arms.10

“9+2” motile cilia are found on the apical surfaces of the upper and lower respiratory tract, 

on the ependymal cells lining the ventricles of the central nervous system, in the oviducts 

and in the flagellum of sperm.10 Outer dynein arms (ODAs) and inner dynein arms (IDAs) 

traverse along the length of the peripheral microtubules forming a doublet (Figure 1) and are 

organized into nine microtubule pair doublets, surrounding a central pair. This organizational 

structure creates this distinctive 9+2 arrangement. The central pair is linked to the 

surrounding pair doublet through radial spoke proteins and the surrounding pair doublets are 

linked to one another via nexin linked proteins (Figure 1). The microtubules slide by one 

another to produce ciliary motion via an ATP-containing dynein arm on the peripheral 

microtubule. The protein links between the microtubules limit the degree of sliding, causing 

them to bend. Through coordinated and synchronized bending, wave like movements occur 

at ~6–12 Hz, which function to propel mucus and adherent particles/bacteria on the surface 

of the airway – hence the term “mucociliary escalator”. The ability of numerous adjacent 

cilia on airway epithelial cells to beat at such a high frequency in part reflects the very low 

friction among the cilia, which results from negatively charged glycoproteins that coat the 
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ciliary shaft. Thus, given such an efficient, if complex, system of defense, it can readily be 

visualized that clinical disease may result from disruptions in the various components of the 

system. For example, Cystic Fibrosis results from abnormalities in the Cystic Fibrosis 

Transmembrane Regulator (CFTR), a critical airway surface epithelial protein. Similarly, 

mutations in genes encoding for axonemal structures of the functional components of motile 

cilia, or proteins involved in the biogenesis of cilia, including cytoplasmic proteins, can 

result in clinical disease; PCD.11–14

Although dysfunctional motile cilia lead to the main clinical manifestations of PCD, 

abnormal nodal motile cilia can also lead to interesting phenotypic features. Nodal cilia 

occur during embryonic development and have a 9+0 configuration rather than the classic 

9+2 configuration and are found on the epithelial cell surface of the kidneys, the bile ducts, 

and the endocrine pancreas and on non-epithelial cells such as chondrocytes, fibroblasts, 

smooth muscle cells and neurons. In contrast to the waveform sliding motion of 9+2 cilia, 

nodal motile 9+0 cilia beat with a vertical /rotational motion resulting in a leftward flow of 

extracellular fluid which is important for cell signaling during the development of normal 

human left-right asymmetry. Mutations in the genes that encode the outer doublets result in 

laterality defects (situs inversus for example) while mutations in the genes that encode the 

non-directional central apparatus (central complex, radial spoke), do not.15 This represents a 

predictable genotype – phenotype relationship (see below).

Phenotypic features

Overview

Cells lining the nasopharanx, middle ear, paranasal sinuses, the lower respiratory tract and 

the reproductive tract contain cilia; these cilia are abnormal in structure and function in 

PCD, leading to clinical expression of disease. The clinical manifestations of PCD are thus 

predictable, with an age-dependent, and organ system spectrum of presentation (Table 1). 

Symptoms of PCD can occur at birth, or within the first several months of life. Normal 

ciliary function is critical in the clearance of amniotic fluid from the fetal lung; over 80% of 

full term neonates with PCD have a syndrome of respiratory distress. Unexplained 

respiratory distress, radiographic abnormalities, atelectasis in particular, and hypoxia in a 

full term infant should raise the suspicion for PCD.16,17 Almost all children with PCD have 

a daily productive cough, a logical symptom, since cough can partially compensate for the 

dysfunctional mucociliary clearance. However, recurrent bacterial infections of the lower 

airways ultimately leads to bronchiectasis, which is seen in virtually all adults older with 

PCD.16–18 Despite aggressive medical care, PCD is generally a progressive disease and 

some patients develop severe disease, respiratory failure, and/or require lung 

transplantation.1

Airway microbiology

Regular surveillance of the respiratory flora is important, as a variety of organisms may 

colonize or infect the lung, which may require targeted therapy because of resistance, or lead 

to specific infectious problems (e.g. non-tuberculous mycobacteria; NTM). Monitoring 

protocols developed for cystic fibrosis and PCD patients vary but most centers obtain airway 
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cultures every 3 to 6 months. The respiratory microbiology in PCD generally mirrors that of 

CF, however, in PCD colonization with Pseudomonas aeruginosa generally occurs later, and 

the incidence of S pneumonia is much higher.1 Children with PCD have airway colonization 

with Haemophilus influenza, Staphylococcus aureus and Streptococcus pneumoniae and, 

recently, there has been an upsurge of P. aeruginosa in infants/preschoolers. P. aeruginosa 
(smooth and mucoid varieties) normally occurs in teenagers and young adults and is often 

the dominant organism in adults with PCD. NTM are seen in ~15% of adults with PCD.1

Lung Function

Patients with PCD, as with other patients with non-CF bronchiectasis, usually develop 

progressive airway obstruction as the disease advances. The disease progression is usually 

slower than seen in CF, however, it is just as important to follow lung function serially to 

establish a baseline, to help guide therapy, and to determine prognosis.18–20

Radiology

High resolution chest computed tomography scan (HRCT scan) is the most sensitive 

imaging modality to diagnosis bronchiectasis. While HRCT cannot confidently distinguish 

between the different etiologies for bronchiectasis (PCD, vs idiopathic, vs post infectious 

etc), there are disease distributions that may support specific diseases. For example, PCD 

may be associated with more bronchiectasis in the middle and lower lobes, as compared 

with CF which usually shows more disease in upper lobes.21 Subtle lung disease may start 

early in life, as HRCT scans of infants and children with PCD show sub-segmental 

atelectasis, peri-bronchial thickening, mucus plugging, evidence of air trapping and ground 

glass opacities. HRCT may show bronchiectasis even in infancy, and its frequency increases 

with age. The absence of bronchiectasis on a HRCT scan of an adult virtually excludes PCD 

from the differential.21,22

Non-pulmonary manifestations

Situs abnormalities results in early diagnosis thus it is found in ~60% of newly diagnosed 

pediatric patients and ~50% of newly diagnosed adults. The defect is in the 9+0 nodal motile 

cilium during embryogenesis whose unidirectional rotational beat determines normal 

thoraco-abdominal orientation. Without this, thoraco-abdominal orientation develops at 

random, resulting in a 50% incidence in adults.15 More recently this phenotypic expression 

of situs abnormalities has expanded to include other clinical manifestations, including that of 

cardiac abnormalities; ~6% of patients with PCD have congenital heart disease.23 

Spermatozoa depend on cilia for motility thus infertility is seen in almost all males with 

PCD. However, a small number of men with PCD have appeared to conceive naturally. 

Females have abnormal cilia in their fallopian tubes with longer ovum transit time, and there 

appears to be an increased incidence of infertility and ectopic pregnancies.24 Less clear 

phenotypic associations include pectus excavatum (10%), scoliosis (5–10%), retinitis 

pigmentosa and hydrocephalus.25
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Diagnostic Approaches

A precise diagnosis of PCD may be difficult, especially in non-classic clinical situations (for 

example, without situs abnormalities). Often, only specialized centers have the resources to 

make a definitive diagnosis (see below). Obviously the presence of any laterality 

abnormalities, or congenital heart disease, in the presence of chronic respiratory disease 

should prompt the notion of PCD as a potential unifying cause. A history of unexplained 

neonatal respiratory distress, early onset and persistent nasal-pulmonary symptoms, 

unexplained bronchiectasis, a family history of PCD and immotile sperm/infertility should 

trigger an evaluation. There is overlap with other chronic respiratory diseases particularly 

CF, although immunologic deficiencies, allergic broncho-pulmonary aspergillosis (ABPA), 

and recurrent aspiration may also be in the differential. Early referral to a specialized center 

is recommended for both diagnosis and management, given the complex nature of the 

disease, and the rapid nature with which new information is emerging in relation to 

diagnosis and management.

Indirect assessment of ciliary function

Saccharin Test—The saccharin test was a traditional simple, indirect way to test ciliary 

function, and was used as a screening tool for PCD at many centers. A 1–2mm particle of 

saccharin is placed on the inferior nasal turbinate and the time it takes the patient to taste the 

saccharin is a rough estimate of nasal mucociliary clearance. However, at best it is crude, 

limited by technical errors (inadequate placement of saccharin), patient compliance (unable 

to sit still for test, especially children) and false positives (poor sense of taste, rhino-

sinusitis). Thus, it is rarely used currently, and has been superseded by the more accurate 

tests below.

Nasal Nitric Oxide (NO) levels—The fortuitous observation several years ago that levels 

of NO produced in the upper airway are reduced in PCD led to the concept that nasal NO 

levels could be used as screening test in PCD.26 NO is produced by the para-nasal sinus 

epithelium via NO-synthase and low levels are seen in PCD, CF, acute/chronic sinusitis and 

nasal polyposis. In patients with PCD however, levels of exhaled NO are extremely low 

(~10% of normal value) when compared to these other diseases. Interestingly, carriers of 

PCD have been shown to have intermediate levels of exhaled NO.1,27,28 Using a 

standardized protocol, nasal NO measurements can accurately identify patients with PCD 

98.6% of the time.29

Direct assessment of ciliary function

Microscopic analysis—Function can be classed as qualitatively normal, dyskinetic or 

immotile with direct visualization of ciliary beat pattern and frequency with microscopic 

analysis of trans-nasal brushings or nasal scrapes of the inferior turbinate. However, this test 

is technically difficult outside of research centers, and is neither sensitive nor specific.30

High-speed digital video imaging—Trans-nasal brushing or nasal scrape ciliated 

epithelial samples can be analyzed with high-speed digital video imaging to get quantitative 

measurements of the ciliary beat frequency (CBF) to help differentiate between abnormally 

beating cilia and normal beat patterns.9,31 The cilium can be viewed in slow motion, with 
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40–50 frames per ciliary beat cycle. Normal cilia beat back and forth within the same frame 

with no sideways recovery sweep. CBF and beat pattern abnormalities are associated with 

specific ultra-structural defects including transposition and defects in isolated outer arms, 

isolated inner arms and radial arms.32 Active sinusitis can cause secondary ciliary 

dysfunction resulting in false positives, and thus samples should be obtained when the 

patient is relatively stable clinically. A normal CBF and beat pattern is sensitive enough to 

exclude classic PCD, but any abnormality should provoke further testing.27 Thus, this test 

(like other studies of cilia, often available at only research centers) should be used along 

with structural, and genetic analysis to confirm the diagnosis.

Assessment of ciliary ultrastructure

Transmission electron microscopy33—Once the suspicion for PCD is high, the 

axonemal structure of the respiratory cilia may be studied using transmission electron 

microscopy, the traditional way of diagnosing PCD since Afzelius’ first report in the 

mid-1970s.2 Various ciliary ultrastructural defects have been described, including the 

absence of, or alteration in, inner dynein arms (IDAs) or outer dynein arms (ODAs), absence 

of the central pair, or defect of radial spokes.34 The most common ultra-structural defect in 

PCD is either the absence or shortening of an ODA (55% prevalence) or a combined 

absence/shortening of both the IDA and the ODA (15% prevalence). Other abnormalities 

include defects in the IDA alone or in combination with defects in radial spokes, central 

microtubule pairs (transposition) or central microtubular agenesis. Thus, until recently, the 

identification of ultrastructural defects on TEM was the “gold standard” for the diagnosis, 

however, with advances in our molecular understanding in PCD, it is known that ~30% of 

patients with genetically proven PCD have normal ciliary ultrastructure and in some cases, a 

ciliary a- or oligoplasia, hence inadequate for the TEM analysis. In addition, the technique is 

limited by false positive conditions (those associated with active mucosal epithelium 

inflammation, viral or bacterial), inadequate samples, poorly processed samples and reader 

error.35–38 Studies have shown a 3–10% prevalence of defective cilia in the airways of 

healthy individuals, and normal ultrastructure in up to 15% of PCD patients.39 Dependence 

on TEM alone therefore is an unreliable way of solely diagnosing PCD.

Flourescence-labeled antibodies—Immunoflourescent analysis using antibodies 

directed against the main axonemal components has been used to identify structural 

abnormalities of cilia. For example, PCD patients with ODA defects have absence of 

DNAH5 staining from the entire axoneme and accumulation of DNAH5 at the microtubule 

organizing center. Antibody based techniques can diagnose defects in both the ODAs and 

the IDAs caused by the KTU mutation in PCD. Currently, a panel of antibodies directed 

towards multiple ciliary proteins is being developed that may add to the diagnostic 

armamentarium in screening for PCD, however, like many sophisticated techniques, it is 

restricted to a few centers that have this technology.40

Genetic testing

PCD is a recessive disorder, and exhibits locus and allelic heterogeneity. That is, multiple 

genes are involved in the disease, and different mutations in the same gene may also cause 

PCD. Mutations in eleven different PCD- causing genes have been described between 1999 

Lobo et al. Page 6

Semin Respir Crit Care Med. Author manuscript; available in PMC 2016 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 2010 with linkage mapping and/or candidate gene testing. An additional 23 genes have 

been discovered since 2011 owing to the availability of whole exome sequencing (Table 2). 

Some of these genes (for example DNAH8 and NME8) have only been seen in few patients, 

thus replication studies are necessary. About 80% of the mutations are loss-of-function 

variants (nonsense, frame shift, or defective splice mutations) while the others are 

conservative missense mutations or in-frame deletions. Most mutations occur in only one 

patient/family (“private” mutations) a few of the mutations have been seen to recur in two or 

more unrelated patients. Collaborative efforts in recent years have allowed the collection of 

large amounts of data from across many clinical centers in the US and Canada and thus 

facilitated large scale genetic studies and identification of many causative genes, which had 

previously been very difficult to do in this rare disease.41 Approximately 65% of the 200 

PCD patients in the rare disease consortium (Genetic Disorders of Mucociliary clearance; 

GDMCC) have biallelic mutations (mutations in both copies of the same gene). At this 

point, with the use of next generation sequencing, ~66% of patients with PCD can be 

identified therefore facilitating early diagnosis and treatment.40,42–45 This is especially 

helpful in the cases where ciliary ultrastructural analysis is equivocal or inadequate.

As the basic structure of the cilia is highly conserved across species, non-human models 

have helped in the discovery of PCD genes and the effects of the mutations on the cilia. 

Multiple publications have documented the effects of specific mutations on the cilia 

structure and function. Some of the genes code for proteins in the ODA, IDA or radial spoke 

causing specific dysfunction or dysmotility while others are expressed by proteins in the 

cytoplasm used for the pre-assembly of the cilia causing loss of both the ODA and the IDA 

leading to cilia immotility.43,46–48 Recently, two proteins (CCNO and MCIDAS) have been 

shown to affect cilia biogenesis.49,50 Specific classes of mutations are associated with 

specific phenotypes. Mutations in genes that lead to loss of function of the cilia also lead to 

low nasal nitric oxide (NO) levels (<77nl/min). Mutations that affect the dynein arm’s 

ultrastructure lead to situs abnormalities while mutations that affect the central apparatus do 

not. Mutations in patients with normal TEM can have cilia with normal beat frequencies and 

waveforms.

Overall, the more that is learnt about the molecular basis of PCD, the more is learnt about 

the spectrum of phenotypes, ranging from “classic” to mild, that associated with late 

presentation, or that with normal cilia structure, analogous to the experience with CF – 

classic, early presentation disease versus non-classic disease often presenting later in life, or 

even well into adulthood.

Therapies

As there are currently no therapies available that can reverse the underlying ciliary 

abnormalities, the goals of therapy are to prevent exacerbations and slow the progression of 

the disease. As with other forms of CF and non-CF bronchiectasis, patient education is a 

critical part of the care plan, including imparting an understanding of the underlying cause 

of the disease, its prognosis and the various therapies available to try to control the 

symptoms, especially airway clearance. Currently, there are no data from randomized 

clinical trials to support any particular forms of therapy, thus, most management strategies 
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(including those discussed below) are extrapolated from CF and non-CF bronchiectasis. As 

with any chronic disease, usual good health practices such as refraining from smoking, and 

administration of recommended immunizations including influenza, and pneumococcal 

vaccines.

Surveillance

To guide the management plan, regular (twice yearly to quarterly) lung function testing is 

recommended, together with microbiologic assessments of airway flora (using either 

expectorated sputum, or induced samples using 3–7% hypertonic saline) is recommended to 

establish clinical trends and detect exacerbations, thus allowing targeted anti-microbial 

therapy. A baseline computed tomogram (CT) scan is useful to assess the nature and extent 

of disease (as noted above bronchiectasis may be evident even in young patients), followed 

by periodic chest imaging to track disease progress, or, to assess the significance of new 

pathogens such as multi drug-resistant gram negative organisms, or non-tuberculous 

mycobacteria.

Airway Clearance

Physiotherapy

There are no data to support any particular form of airway clearance in PCD, but clinical 

experience supports its use in a form acceptable to the patient. Daily airway clearance with 

cardiovascular exercise, use of percussion vests, manual chest physical therapy and valve/

positive pressure expiratory devices help mobilize and aid expectoration of broncho-

pulmonary secretions, improve efficiency of ventilation, maintain/improve exercise tolerance 

and reduce breathlessness.

Osmotic agents

“Hydration” therapy of the airway is an attractive concept to augment clearance of secretions 

in a disease such as PCD, in this case “cough clearance” given the dysfunctional cilia.51 

Nebulized hypertonic saline (3%–7% hypertonic saline) modulates the liquid content of the 

peri-ciliary fluid layer via increased hydration, thinning thick secretions and triggering 

cough in the CF population. It has been shown to improve lung function, quality of life, and 

reduce antibiotic needs in the non-CF bronchiectasis population.51,52 More recently, another 

agent which works via the osmotic approach is inhaled mannitol, again studied in non CF 

bronchiectasis rather than specifically PCD.53 Although the inhaled drug (400 mg BID) did 

not achieve its primary outcome of reducing exacerbations, it did perform better than 

placebo (low dose mannitol) in slowing down the time to first exacerbation and improving 

the quality of life measures.

Deoxyribonuclease (Dornase α)

Dornase α is an enzyme that hydrolyses eukaryotic DNA released from decaying neutrophils 

to reduce mucus viscosity and aid airway clearance in the CF population.54 It is however, 

not beneficial in the non-CF bronchiectasis population, as studies show that the drug is 

associated with pulmonary exacerbations and a decline in lung function.55
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Antibiotics

Given the propensity for chronic infection, as with other forms of bronchiectasis, antibiotics 

are the cornerstone of treatment for PCD exacerbations (usually associated with an increase 

in cough, dyspnea, wheeze, with a change in sputum volume or character, or purulence, or 

hemoptysis) as they generally improve symptoms and hasten recovery.56,57 Antibiotic 

therapy should be based on prior respiratory culture data, and previous therapeutic 

responses. Susceptibility patterns and clinical responses may guide physicians between oral, 

inhaled and intravenous routes of administration. There are no randomized data to support 

any particular drug, or route of administration, and clinical judgment is required; however, 

milder exacerbations often respond to oral or oral/inhaled combinations, while more 

significant exacerbations usually require systemic antibiotics (in combination, if gram 

negative organisms are cultured). There is a good deal of interest in the development of 

inhaled antibiotics in recent years in non-CF bronchiectasis, and over the next five to ten 

years it is likely there will be more approved drugs with better evidence of efficacy available 

(a reduction in exacerbation frequency, bacterial burden) for example inhaled 

aminoglycosides, and quinolones.58–60 Early attempts to eradicate newly acquired bacteria, 

especially P. aeruginosa, are recommended however, this has not been shown to preserve 

lung function. Chronic or cycling oral or inhaled antibiotics may be used in patients with 

frequent exacerbation to try to improve quality of life, reduce exacerbations and (hopefully) 

stabilize lung function.56,58,61,62

Anti-inflammatories

A variety of anti-inflammatory agents including oral prednisone, inhaled corticosteroids and 

macrolides have been used in airways disease associated with bronchiectasis. Prednisone is 

generally not efficacious in the CF population outside of co-existent asthma, and ABPA and 

there are no studies in the PCD population. Inhaled corticosteroids have not been shown to 

be beneficial in non-CF bronchiectasis.

The bets data for “preventive” therapy comes from recent studies using oral macrolides 

which have shown promising outcomes in non-CF bronchiectasis, with reductions in 

exacerbation frequency, delayed time to first exacerbation and reduced hospitalizations. It is 

unclear if this benefit is from an anti-inflammatory or antimicrobial effect. Prior to initiating 

therapy with a macrolide, patients should be tested for NTM, in case macrolides should form 

part of a multi-drug regimen, and to avoid the emergence of resistance from chronic single 

agent macrolide use.63–65

Miscellaneous approaches

Lung resection—Surgery may be considered in areas of localized lung disease if it is 

causing severe systemic symptoms, frequent exacerbations or recurrent/life threatening 

hemoptysis despite aggressive medical therapy. Patients in such situations have undergone 

successful resection but long-term data are lacking.66 Often the diffuse nature of disease 

elsewhere in the lung mitigates against the likelihood of success in resecting more diseased 

parts of the lung.
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Lung transplant—PCD patients undergoing double lung transplantation generally have 

good survival outcomes (personal communication?). The usual concerns pertain to 

candidacy for the procedure, but also specifically include multiply drug resistant organisms, 

and poor nutritional status. Interestingly, patients with situs inversus, do not pose any 

additional risk to post-transplant outcomes; the anatomic disorientation is challenging but 

not a contraindication.67

Extra pulmonary disease management

Otitis media—Management may be controversial, especially in the pediatric community. 

The long-term sequelae of chronic disease in the upper airway include conductive hearing 

loss, delayed speech and language development, and cholesteatoma formation. Standard 

medical therapy is recommended for acute episodes. There are not enough data on surgical 

tympanostomy to make a definitive statement regarding its utility; experts argue against the 

utility of this approach.27 Regular audiology assessments are encouraged.68,69

Chronic Sinusitis—As with CF, the sinuses are usually involved. Management includes 

nasal steroids, nasal lavage and intermittent antibiotic lavages and systemic antibiotics. 

Otolaryngology evaluation for surgery and polypectomy to promote sinus drainage is helpful 

for patients refractory to medical therapy.70

Infertility—Male infertility is secondary to sperm immotility and assisted fertilization 

techniques such as intra-cytoplasmic sperm injections are promising. Female infertility is 

secondary to sluggish fallopian tube transit time and direct ovum harvesting with in vitro 

fertilization leads to successful pregnancy.

Prognosis

As compared with CF, the disease severity and deterioration in lung function is less marked, 

especially with appropriate medical therapy. A study by Ellerman and Bisgaard reported that 

adults had worse lung function at time of diagnosis as compared to adolescents, however, 

once diagnosed and therapy started, no further lung deterioration was noted.71 However, 

other studies have shown progression to severe lung disease prior to adult hood. These 

discrepancies in severity and survival may relate at least in part to the genetic and 

phenotypic heterogeneity of PCD, as well as the usual aspects of access to care, socio-

economic backgrounds, of patients, and accompanying co-morbidities. Overall, the majority 

of patients with PCD appear to have a near normal life expectancy when compliant with 

recommended therapies. A minority of patients develop progressive severe bronchiectasis, 

end stage lung disease and early death, unless they undergo lung transplantation.71

Summary and into the future

In the past two decades, much has been learned about PCD. Accurate and earlier diagnosis is 

possible, and access to specialized centers has become easier. Standardized care at 

specialized centers using a multidisciplinary approach is expected to improve outcomes. The 

recent creation of the PCD foundation has facilitated the creation of a network of PCD 

clinical centers to help achieve this goal. As the network grows, and clinicians and research 
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scientists accumulate more data from growing numbers of PCD patients, care and 

knowledge will undoubtedly improve. In parallel, genetics correlates with larger clinical 

datasets have shown that PCD is a genetically heterogenous disease with different mutations 

in several genes resulting in a phenotype spectrum, across many races and ethnic groups. 

The severity of disease ranges from mild to severe. Delays in recognition may result in the 

development and progression of irreversible lung disease. In CF, early identification and 

diagnosis leads to early treatment and frequent monitoring to decrease morbidity and 

mortality, and one assumes the same principles apply to PCD, despite differences in 

pathogenesis. Still, it must be remembered that PCD is not the same as CF, and management 

is not identical. Without large numbers of patients with PCD, there has hitherto been little 

incentive for industry to pursue drug development, thus currently we rely on studies in non-

CF bronchiectasis (muco-active agents, macrolides, inhaled antibiotics). However, as noted 

above, with the creation of clinical and research networks, with improved identification and 

more accurate diagnosis of PCD, we can expect larger cohorts of PCD patients available to 

participate in longitudinal studies of the natural history of the disease, as well as studies of 

novel therapies, with the goal of improving clinical care and outcomes in this rare disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagrammatic representation of a normal ciliary cross section illustrating major ultra-

structural components.
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Figure 2. A diagnostic algorithm for Primary ciliary dyskinesia (PCD)
*But if clinical suspicion is still high for PCD, may go to other, more specific tests

**A nasal NO level less than 77 nl/minute has a sensitivity and specificity of 0.98 and >0.99 

respectively

***Normal ciliary beat frequency and pattern does not exclude PCD

Nml: normal; PCD: Abnml: abnormal, NO: nitric oxide
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Table 1

Clinical Signs and Symptoms of Primary ciliary dyskinesia

By system affected By age of presentation

• Middle Ear

➢ Chronic otitis media with tube placement

➢ Conductive hearing loss

• Nose and para-nasal sinuses

➢ Neonatal rhinitis

➢ Chronic rhino-sinusitis

➢ Chronic pan-sinusitis

➢ Nasal polyposis

• Lung

➢ Neonatal respiratory distress

➢ Chronic cough

➢ Recurrent pneumonia

➢ Bronchiectasis

• Genitourinary Tract

➢ Male/female fertility problem or history of in 
vitro fertilization

• Laterality defects

➢ Situs inversus totalis

➢ Heterotaxy (+/− congenital cardiovascular 
abnormalities)

• Central nervous system

➢ Hydrocephalus

• Eye

➢ Retinitis pigmentosa

• Family history

➢ Communities or ethnicities with consanguinity

➢ Close (usually first degree) relatives with clinical 
symptoms

• Antenatal

➢ Heterotaxy on prenatal ultrasound

• Newborn period

➢ Continuous rhinorrhoea

➢ Respiratory distress or neonatal pneumonia

• Childhood

➢ Chronic productive cough

➢ Atypical asthma unresponsive to therapy

➢ Idiopathic bronchiectasis

➢ Chronic rhinosinusitis

➢ Recurrent otitis media with effusion

• Adolescence and adult life

➢ Same as for childhood

➢ Subfertility and ectopic pregnancies in females

➢ Infertility in males with immotile sperm

➢ Sputum colonization with non-tuberculosis 
mycobacterium or smooth/mucoid pseudomonas
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