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Abstract

The rigorous study of spectral stability for strong detonations was begun by J.J. Erpenbeck in
[Er1]. Working with the Zeldovitch-von Neumann-Döring (ZND) model, which assumes a finite
reaction rate but ignores effects like viscosity corresponding to second order derivatives, he used
a normal mode analysis to define a stability function V (τ, ǫ) whose zeros in ℜτ > 0 correspond to
multidimensional perturbations of a steady detonation profile that grow exponentially in time.
Later in a remarkable paper [Er3] he provided strong evidence, by a combination of formal and
rigorous arguments, that for certain classes of steady ZND profiles, unstable zeros of V exist for
perturbations of sufficiently large transverse wavenumber ǫ, even when the von Neumann shock,
regarded as a gas dynamical shock, is uniformly stable in the sense defined (nearly twenty years
later) by Majda. In spite of a great deal of later numerical work devoted to computing the
zeros of V (τ, ǫ), the paper [Er3] remains the only work we know of that presents a detailed and
convincing theoretical argument for detecting them.

The analysis in [Er3] points the way toward, but does not constitute, a mathematical proof
that such unstable zeros exist. In this paper we identify the mathematical issues left unresolved
in [Er3] and provide proofs, together with certain simplifications and extensions, of the main
conclusions about stability and instability of detonations contained in that paper. The main
mathematical problem, and our principal focus here, is to determine the precise asymptotic
behavior as ǫ→ ∞ of solutions to a linear system of ODEs in x, depending on ǫ and a complex
frequency τ as parameters, with turning points x∗ on the half-line [0,∞).
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1 Introduction

The most commonly studied model of combustion is the Zeldovitch-von Neumann-Döring (ZND)
system (A.14), which couples the compressible Euler equations for a reacting gas (in which pressure
and internal energy are allowed to depend on the mass fraction λ of reactant) to a reaction equation
that governs the finite rate at which λ changes.1 In three space dimensions with coordinates (x, y, z)
a steady planar strong detonation profile is a weak solution of this system depending only on x
with a jump (the stationary von Neumann shock) at x = 0. Without loss of generality we study
profiles of the form w = (v, u, 0, 0, S, λ), where v is specific volume, u > 0 is the x-component of
particle velocity, and S is entropy. The solution is constant and supersonic (u > c0, where c0 is the
sound speed at x) in x < 0, the quiescent zone, and satisfies a nonlinear system of ODEs in the
subsonic reaction zone x > 0. In order to be a weak solution in a neighborhood of x = 0 it must
satisfy an appropriate Rankine-Hugoniot condition at x = 0. There is a well-defined limiting state
w∞ = limx→∞w(x), which represents a state of chemical equilibrium, and the range of u on [0,∞)
is a compact subinterval of x > 0.

If one perturbs this solution, say at time t = 0, with a multidimensional perturbation ẇ(x, y, z),
the profile w(x) and the front defining the von Neumann shock will change with time, their de-
scription at time t now being given by functions W (t, x, y, z) and x = ψ(t, y, z) satisfying the ZND
system, a Rankine-Hugoniot condition, and the initial conditions

W |t=0 = w(x) + ẇ(x, y, z), ψ|t=0 = 0.(1.1)

To a linear approximation the evolution of the perturbation is governed by the linearization of the
ZND system with respect to both W and ψ about the steady profile w(x) and steady front x = 0.2

General perturbations can be represented by Laplace-Fourier transform in (t, y, z) as superpositions
of oscillatory ones, so it is natural to look for normal mode solutions of the linearized problem of

1Without changing the analysis below one can allow n reactants, in which case λ is an n-vector; for convenience
we take n = 1.

2In [Er3] and in his work on non-reactive shocks [Er4], Erpenbeck appears to have been the first to recognize the
importance of linearizing with respect to both the state W and the front ψ.
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the form

Ẇ (t, x, y, z) = etτ+iαy+iβzφ(x, τ, α, β), ψ̇(t, y, z) = etτ+iαy+iβzξ(τ, α, β),(1.2)

where (α, β) ∈ R
2 and τ ∈ C with ℜτ ≥ 0. Solutions (1.2) with ℜτ > 0 and φ decaying as x→ ±∞

correspond to perturbations that grow exponentially in time. The spectral stability problem is to
determine whether such frequencies (τ, α, β) exist, and if so, to locate them as well as possible.

The rigorous study of the spectral stability problem for ZND detonations was begun by Er-
penbeck in [Er1]. Instead of working with the 6× 6 system of equations satisfied by the functions
φ = (v̇, u̇, u̇y, u̇z , Ṡ, λ̇) and ξ in (1.2), he studied the reduced 5 × 5 system satisfied by ξ and the
new unknown

φ̃ := (v̇, u̇, U̇ , Ṡ, λ̇)(1.3)

where3

U̇(x, τ, α, β) := (αu̇y + βu̇z)/ǫ, and ǫ =
√

α2 + β2.(1.4)

and the other components of φ̃ are exactly as before.
The coefficients of the reduced system depend only on (x, τ, ǫ) so, dropping the tilde on φ,

Erpenbeck writes the unknowns as φ(x, τ, ǫ) and ξ(τ, ǫ). The 5 × 5 system of ODEs on x ≥ 0
satisfied by the functions φ and ξ, together with the linearized jump condition, are given in formula
(4.1) of [Er1]. The equation on x ≥ 0 is

dφ

dx
= P (x, τ, ǫ)φ+ f(x, τ, ǫ)(1.5)

where the exact form of f need not be specified now and

P (x, τ, ǫ) = −A−1
x (x)[τI + iǫAy(x) +B(x)],(1.6)

for matrices Ax, Ay and B given in (A.21). The x-dependence of these matrices enters entirely
through the profile w(x).

In [Er1] Erpenbeck defined a stability function V (τ, ǫ) (A.15) whose zeros in the right half
plane ℜτ > 0 (“unstable zeros”) correspond to perturbations of the steady profile w(x) that grow
exponentially in time. Later in a remarkable paper [Er3] he provided strong evidence, by a combi-
nation of formal and rigorous arguments, that for certain classes of steady ZND profiles, unstable
zeros of V exist for perturbations of sufficiently large transverse wavenumber ǫ, even when the von
Neumann shock, regarded as a gas dynamical shock, is uniformly stable. Much numerical work has
been devoted to locating zeros of V ; see, for example, [Er2, BZ2, LS, Sh, SS, HuZ] and references
therein. The argument of [Er3], though mathematically incomplete and at times incorrect in ways
that we describe below, is the only convincing theoretical argument we know of that actually de-
tects and locates unstable zeros. Our goal here is to provide a mathematically rigorous proof of
the instability (and stability) results of [Er3]. The main mathematical problem is to determine the
precise asymptotic behavior as ǫ → ∞ of solutions to a linear system of ODEs in x depending on
ǫ and the complex frequency τ as parameters, with turning points x∗ on the half-line [0,∞).

The computation of V requires the evaluation within the reaction zone of the solution θ(x, τ, ǫ)
of the homogeneous transposed equation

dθ

dx
= −P t(x, τ, ǫ)θ on x ≥ 0(1.7)

3Thus, ǫ/2π is the transverse wavenumber.
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which satisfies the condition that θ remains bounded for fixed (τ, ǫ) with ℜτ ≥ 0 as x→ ∞. As we
will see, this condition determines θ uniquely up to a constant multiple; morever, for ℜτ > 0 the
solution θ decays exponentially to zero as x→ ∞.

As in [Er3] we decompose τ as

τ = ζǫ+ ν,(1.8)

where ζ ∈ {z ∈ C : ℜz ≥ 0}, ν ∈ {z ∈ C : ℜz ≥ 0, |z| ≤ R}, and ǫ > 0 is large. In much of what
follows ν will play no essential role and one can take R = 0. However, in cases where unstable zeros
of V (τ, ǫ) do exist, the freedom to vary the parameter ν is useful in proving the existence of those
zeros, and for that one must take R sufficiently large.4 Thus we can rewrite equation (1.7) as

dθ

dx
= (ǫΦ0 +Φ1)θ where

Φ0(x, ζ) = {A−1
x (x) · (ζI + iAy(x))}t

Φ1(x, ν) = {A−1
x (x) · νI}t + {A−1

x (x)B(x)}t.

(1.9)

The eigenvalues of the 5× 5 matrix Φ0 (A.23) play a crucial role in all that follows. They are

µ1 = −κ(κζ + s)/ηu, µ2 = −κ(κζ − s)/ηu, µ3 = µ4 = µ5 = ζ/u,(1.10)

where with c20 = −v2pv(v, S, λ)

s(x, ζ) =
√

ζ2 + c20η, κ(x) =
√

1− η = u/c0.(1.11)

Here the square root defining s, regarded as a function of ζ, is taken to be the positive branch with
branch cut the segment [−ic0

√
η, ic0

√
η] on the imaginary axis. Thus, in particular, we have

s = |s| when ζ2 + c20η > 0

s = i|s| when ζ2 + c20η < 0 and ζ = i|ζ|
s = −i|s| when ζ2 + c20η < 0 and ζ = −i|ζ|.

(1.12)

One checks that only µ1 has, for ℜζ > 0, negative real part. The corresponding eigenvectors are
the respective columns of the matrix

T (x, ζ) =















ms
κu −ms

κu − im
1−η 0 0

ζ
u

ζ
u i 0 0

−i −i ζ
u 0 0

−κpSs
um

κpSs
um 0 1 0

−κpλs
um

κpλs
um 0 0 1















(1.13)

where m = u
v is the mass flux.

On any subinterval I of [0,∞) where (for fixed ζ) the transformation T (x, ζ) is invertible, we
set θ = T (x, ζ)π and obtain the system with diagonal leading term

dπ

dx
= (ǫD + E)π, where

D := diag(µ1, . . . , µ5) and E(x, ζ, ν) := T−1Φ1T − T−1dT

dx
.

(1.14)

4Since ǫ = |(α, β)|, one must allow ζ to vary over all of ℜζ ≥ 0 to cover all possible triples (τ, α, β) under
consideration. The minimum size of R necessary for detecting zeros of V is given in part (d) of Theorem 5.3.
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On such subintervals one constructs5 approximate solutions to order ǫ−m of (1.14) associated to
each of the eigenvalues µi of the form

πi(x, τ, ǫ) = eǫhi(x,ζ)+ki(x,ζ,ν)[fi0(x, ζ, ν) + ǫ−1fi1(x, ζ, ν) + · · ·+ ǫ−(m+1)fi(m+1)(x, ζ, ν)],(1.15)

where

hi(x, ζ) =

∫ x

0
µi(x

′, ζ)dx′(1.16)

and fi,0 is the unit vector ei with i-th component 1. This is done by substituting the expansion
into (1.17) and solving the equations obtained by equating coefficients of equal powers of ǫ. For
i = 1, 2 we will use the formulas

ki(x, ζ, ν) =

∫ x

0,Cw

Eii(x
′, ζ, ν)dx′(1.17)

where Cw is a contour that lies on the real axis, except for short excursions into the upper or
lower half plane to avoid singularities of Eii (A.24). The choice of Cw depends on the profile w
and is explained in sections 4.1 and 4.2. We do not need explicit formulas for the other quantities
appearing in (1.15) for i = 1, . . . , 5. Sufficient conditions for approximate solutions of this type
to be O(ǫ−(m+1)) close in relative error to true exact solutions of (1.14) for ǫ large are given in
Theorem 3.1.

From the formulas (1.10) we see that for any fixed value of ζ, the eigenvalues µ1 and µ2 are
distinct except at x values where s2 = ζ2 + c20η = 0; at such values the first and second columns
of T are parallel. The eigenvalues µ2 and µ3 are distinct except at x values where ζ = u, and then
the second and third rows of T are clearly parallel. For all other values of x the matrix T (x, ζ) is
invertible. The special values x∗ = x∗(ζ) where T is singular are referred to as “turning points”.
These points determine a family of subintervals I ⊂ [0,∞), and on each of these subintervals the
approximate solutions described above can be constructed.6

A complex number ζ with ℜζ ≥ 0 is defined in [Er3] to be of Class III or Class II respectively,
when there exists x∗ ∈ [0,∞] such that s(x∗, ζ) = 0 or ζ = u(x∗).

7 All other ζ are said to be of
Class I. Thus we have

Class III = {ζ : ℜζ = 0 and min
x

(c0η
1

2 ) ≤ |ζ| ≤ max
x

(c0η
1

2 )}

Class II = {ζ : ℑζ = 0 and min
x
u ≤ ζ ≤ max

x
u}

Class I = {all remaining ζ ∈ C with ℜζ ≥ 0}.

(1.18)

Class III (resp. II) consists of two (resp. one) bounded closed interval(s), and the minima appearing
in (1.18) are positive.

Notations 1.1. When working with Class III values of ζ we will usually suppose ζ = i|ζ|. Similar
results hold with similar proofs when ζ = −i|ζ|, but certain formulas change slightly. Thus, for
some statements it is helpful to define

Class III+ = Class III ∩ {ζ = i|ζ|}.(1.19)

5See for example Chapters 5 and 6 of Coddington and Levinson [CL].
6The family of subintervals depends on ζ, but we normally suppress ζ in denoting both the intervals and the x∗.
7When x∗ = ∞, the obvious limits are intended here. For a given ζ ∈ Class III or Class II, there may be more

than one x∗ such that s(x∗, ζ) = 0 or ζ = u(x∗).

5



A simpler form (5.3) of the stability function V (τ, ǫ), based on the choice of a “good unknown”
that removes the front from the linearized ZND system in the reaction zone, was derived in [CJLW].
That form involves no integrals bj as in (A.16) and was shown in [CJLW] to be equal to Erpenbeck’s
stability function.8 The formula (5.3) for V (τ, ǫ) depends on the value at x = 0 of the exact decaying
solution θ(x, τ, ǫ) of (1.7). Our assumptions guarantee that θ and P t(x, τ, ǫ) are real analytic in
x on [0,∞), so for fixed (τ, ǫ) the function θ can be extended analytically as a solution of (1.7)
for z in some complex neighborhood of [0,∞). For a given ζ let us suppose that there are a finite
number N of turning points (N = 0 for ζ ∈ Class I):

0 < xN∗ < xN−1∗ < · · · < x1∗,(1.20)

The strategy of [Er3] for determining θ(0, τ, ǫ) is first to determine θ on the interval [x1∗+ δ,∞) for
some δ > 0, then to analytically continue that solution in C \x1∗ around the turning point x1∗ and
up the real axis to x2∗ + δ, then to analytically continue around x2∗ in C \ x2∗, and to repeat this
process until x = 0 is reached. It is impossible to determine explicit formulas for the exact solution
θ, so instead one tries to determine explicit formulas that closely approximate the exact solution for
ǫ large on a certain collection of subsets of complex plane, subsets whose union covers [0,∞) \ T ,
where T is a union of small intervals each centered at a turning point. The approximating formula
will generally change from subset to subset, so there arises a matching problem in passing from a
given subset to an adjacent one.

On bounded subsets of the complex plane we use approximating integral formulas of type (1.15)
and linear combinations thereof. Sufficient conditions for such formulas to closely approximate
exact solutions of (1.7) (for ǫ large) together with precise error estimates are given in Theorem 3.1.
We will use the notation θ̄j to denote an exact solution defined on some bounded region Oj ⊂ C

which lies close to an approximate solution θj = Tπj defined by a formula of type (1.15) on a
possibly larger region O′

j . Theorem 3.1 does not apply to unbounded regions; in order to obtain
an accurate approximating formula on the unbounded interval [x1∗ + δ,∞) we use a completely
different approach based on the variable-coefficient gap lemma, Lemma A.1, introduced recently in
[Z2].

Following [Er3], when considering Class III values of ζ we focus on profiles w(x) for which the
quantity c20η(x) = c20(x) − u2(x) either increases monotonically for x ∈ [0,∞) (case I), decreases
monotonically (case D), or increases to a maximum at xM and then decreases (case M). In case M
our analysis omits treatment of the special Class III+ value of ζ given by

ζM = ic0η
1

2 (xM ).(1.21)

The turning point argument for such ζM in [Er3] is much more involved than that for the other
Class III values of ζ; we do not discuss that case here. The turning point arguments for other
Class III values of ζ in case M, given in the proof of Proposition 4.8, are a combination of the
arguments for cases I and D. Erpenbeck shows on p.1303 of [Er3] that for “A→ B reactions” (one
reaction detonations with no back reaction) with an Arrhenius rate law (1.30), the cases I, D, and
M actually occur, the distinction depending on values of the heat capacity ratio, heat of reaction,
and Mach number of the detonation. His results indicate that for A → B reactions the case of a
single interior minimum does not actually occur.

The arguments of [Er3] are incomplete in two ways, namely, in the treatment of the unbounded
interval [x1∗ + δ,∞) and in the problem of matching solutions on adjacent regions. To treat the

8 It was also shown to be a nonzero multiple of the ZND Evans function defined in [JLW].

6



unbounded interval [Er3] considers the limiting problem

dθ

dx
= −P t(∞, τ, ǫ)θ(1.22)

obtained by evaluating the coefficients of (1.7) at the values given by limx→∞w(x), and refers to
an argument of [Er1] showing that for large x, solutions of (1.7) lie close to solutions of (1.22).
However, [Er1] is not concerned with behavior as ǫ → ∞, and this argument does not address the
possibility that as ǫ increases solutions of (1.7) remain close to solutions of the limiting problem
(1.22) only on intervals [x(ǫ),∞) such that limǫ→∞ x(ǫ) = ∞. Too rapid growth of x(ǫ), for example
O(eCǫ), would make it impossible to carry out the matching arguments for the remaining interval.

To obtain an approximating formula for the decaying solution on the unbounded interval, [Er3]
observes that the integrals defining h1(x, ζ) and k1(x, ζ, ν) “become linear in x near the region
of chemical equilibrium”, i.e., as x → ∞. Since for most choices of ζ, the eigenvalue µ1(x, ζ),
the corresponding eigenvector of Φ0(x, ζ), and E11(z, ζ, ν) approach their counterparts, which are
constant in x, in the perturbation expansion for ǫ large of the eigenvalues and eigenvectors of
ǫΦ0(∞, ζ)+Φ1(∞, ν), [Er3] concludes that “the ǫ→ ∞ limit and the x→ ∞ limit are interchange-
able”, and that on the unbounded interval the exact decaying solution is well-approximated by the
approximate solution9

θ1(x, τ, ǫ) = T (x, ζ)π1(x, τ, ǫ).(1.24)

He then uses θ1 in the matching arguments on the remaining finite interval.
This argument is suggestive but nonrigorous, and it actually leads to an incorrect conclusion.

In Theorem 2.1 we use an argument based on multiple conjugations and the variable coefficient gap
lemma, Lemma A.1, to construct the exact decaying solution θ on the unbounded interval. The
construction provides at the same time an accurate approximating formula and an error estimate
(see (2.9)). Comparison of this formula with θ1 shows that the solution θ(x, τ, ǫ) differs from
θ1(x, τ, ǫ) by a complex factor (namely eHǫ(x,ζ,ν) in (2.35)) that depends on x and grows exponentially
with x for certain choices of (ζ, ν). Thus, it is not true that θ ∼ θ1 (see the preceding footnote);
in fact θ ∼ M(τ, ǫ)θ1 is not true on any open x-interval for any multiple M(τ, ǫ) of θ1. Even for
choices of (ζ, ν) for which the factor eHǫ(x,ζ,ν) remains bounded as x → ∞, the presence of this
factor means that the matching argument for the unbounded interval and its adjacent bounded
region has to be done with a carefully chosen multiple of θ1 (or alternatively, of θ) and not θ1 itself.

In the matching arguments one uses bases of exact solutions {θ̄1, . . . , θ̄5} of (1.7) whose asymp-
totic behavior as ǫ → ∞ is known in regions of the complex plane that include portions of the
adjacent intervals under consideration. In these arguments one must take into account the growth
rate with respect to ǫ not only of the solutions θ̄j (to know, for example, which solutions are “dom-
inant” or “recessive” in certain regions), but also the growth rate of coefficients. For example, if
θ denotes the exact decaying solution on the interval [x1∗ + δ,∞) constructed by Lemma A.1, the
first step in determining the analytic continuation of this solution around x1∗ is to expand θ in such
a basis:

θ(z, τ, ǫ) = c1(τ, ǫ)θ̄1(z, τ, ǫ) + · · · + c5(τ, ǫ)θ̄5(z, τ, ǫ).(1.25)

9Erpenbeck writes “θ ∼ θ1” for x > x1∗. According to the standard definition in asymptotic ODE theory, given
in [CL] for example,

θ ∼ θ1 for x ∈ S ⇔ there exist positive constants C,R such that |θ − θ1| ≤
C

ǫ
|θ1| for x ∈ S, ǫ > R.(1.23)
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The coefficients in (1.25) are independent of z but depend on (τ, ǫ), and a necessary part of a
rigorous matching argument, a part that is missing in [Er3], is to keep close track of the growth
rates of these coefficients with ǫ as one passes from one basis to another. This type of analysis is
carried out in the proofs of Propositions 4.3 and 4.6.

In case D we provide some arguments that seem to be missing in the analysis of [Er3]. As in
case I, where there is also just a single turning point x∗ for class III values of ζ, after the decaying
solution θ has been analytically continued just a little to the left of x∗, there remains the question
of determining the asymptotic behavior as ǫ → ∞ of the solution on the remaining part of the
interval [0, x∗ − δ]. That determination requires knowledge of the asymptotics of all the exact
solutions in the basis used to express θ (4.41),(4.47). The approach of [Er3] is to use the method of
the parameter problem, Theorem 3.1, for this purpose. That approach works only in case I, where
ℜµj = 0 on [0, x∗ − δ]; in case D it turns out to be impossible to use Theorem 3.1 to determine the
asymptotic behavior of all but one of the basis solutions on [0, x∗ − δ]. The reason, explained in
step 6 of the proof of Proposition 4.6, is that certain differences ℜ(µi−µj) have an unfavorable sign
on [0, x∗ − δ]. In step 6 an energy-type estimate is provided along with an analysis of coefficients
to complete the treatment of this case. Such arguments are needed as well in case M, where there
may be two turning points associated to a given ζ ∈ Class III, for understanding the asymptotic
behavior of the exact solution on the full interval between the turning points.

To treat Class III values of ζ that correspond to three or more turning points, matching argu-
ments beyond those given in this paper may be needed, particularly for the continuation around
xk∗ when x(k−1)∗ is of increasing type.

1.1 Assumptions

Assumption 1.2. The thermodynamic functions appearing in the ZND system (A.14), p (pres-
sure), T (temperature), ∆F (free energy increment), and r (reaction rate) are real analytic functions
of their arguments (v, S, λ).

Assumption 1.3. The steady strong detonation profile w(x) = (v, u, 0, 0, S, λ) is a real-analytic
function of x in the subsonic reaction zone [0,∞). There exist constants C1 and C2 such that

0 < C1 ≤ κ =
u

c0
≤ C2 < 1 and 0 < C1 ≤ u ≤ C2 < 1 for all x ∈ [0,∞).(1.26)

Moreover, there exist positive constants C, β such that

|w(x)− w(∞)| ≤ Ce−βx.(1.27)

We mainly study profiles of type I, D, or M, and will call attention to results that hold without this
restriction.10

Assumption 1.4. The rate function satisfies

r|λ=0 = 0, rλ < 0, rv|λ=0 = 0, rS|λ=0 = 0.(1.28)

This assumption is satisfied, for example, by rate functions of the form

r = −kρφ(T )λ,(1.29)

10For ζ of Class III there is a single turning point x∗ in cases I and D. In case M, depending on the choice of
ζ ∈ Class III, there can be one or two turning points.
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where ρ is density and k > 0 is a reaction rate constant, such as the Arrhenius rate law

r = −kλ exp(−E/RT ) (E is activation energy)(1.30)

considered in the section of [Er3] on A→ B detonations.

Remark 1.5. Assumption 1.4 can be weakened to allow for rate functions (such as those incor-
porating back reactions B → A) for which one may not have rv = 0 and rS = 0 when r = 0
(equilibrium). Inspection of the proof of Theorem 2.1 shows that it suffices there to have for all
x ≥ 0:

ℜ(µ∗j − µ∗1)(x, ζ, ν, h) ≥ −δ∗h+O(he−βx), j = 2, . . . , 5 where δ∗ < β,(1.31)

where β is as in (1.27), h = 1/ǫ, and the µ∗j are the eigenvalues of Φ0(x, ζ) + hΦ1(x, ν). For rate
functions satisfying (1.28) we check below that (1.31) is satisfied with δ∗ = 0. It is hard to check
(1.31) directly, but a readily verifiable condition that implies (1.31) is

ℜ(µ∗j − µ∗1)(∞, ζ, ν, h) ≥ −δ∗h j = 2, . . . , 5 where δ∗ < β,(1.32)

the corresponding condition for the constant coefficient limiting system Φ0(∞, ζ)+hΦ1(∞, ν). For
such rate functions the remaining arguments of this paper are also valid (see also Remark 2.6).

Assumption 1.6. The stability function for the von Neumann shock, defined originally in [Er4],11

has no zeros in ℜζ ≥ 0.

This means that the equation of state of the unreacted explosive is such that the von Neumann
step-shock would be stable if the reactions behind it were somehow suppressed. This assumption
is made in [Er3] to allow us to concentrate on instability which arises solely from the reactions. It
always holds, for example, for step-shocks in ideal polytropic gases.

1.2 Main results

The main results of this paper provide a rigorous determination of θ(0, τ, ǫ) (and, in fact, of
θ(x, τ, ǫ) for x away from turning points) to arbitrarily high accuracy for ǫ large and are contained
in Theorem 2.1, Proposition 4.3, and Proposition 4.6. The behavior at x = 0 for ǫ large may be
described informally as follows. Let t1(ζ) and t2(ζ) be the first two columns of the matrix T (0, ζ)
(1.13). With τ = ζǫ+ ν we have

For ζ /∈ Class III, θ(0, τ, ǫ) = t1(ζ) +O(1/ǫ)

For ζ ∈ Class III+ \E, θ(0, τ, ǫ) = t1(ζ) + α(ǫ, ζ, ν)t2(ζ) +O(1/ǫ),
(1.33)

where α is given by (4.30) and the exceptional set E = {ic0η1/2(0+), ic0η
1/2(∞)} in cases I and D.

In case M, E also contains ic0η
1/2(xM ), where xM is the location of the maximum.

The main instability result of [Er3], restated here as Theorem 5.3, follows then by an argument
using Rouché’s Theorem and the formula (5.3) for V (τ, ǫ) in terms of θ(0, τ, ǫ). In cases I and M
this theorem provides an explicit sufficient condition (5.13), expressed in terms of functions of the
steady flow variables, for detecting the presence of zeros of V (τ, ǫ) in ℜτ > 0 when ǫ is sufficiently
large. The unstable zeros occur for a subinterval of Class III values of ζ at certain values of ν
with ℜν > 0. In case D the result allows one to conclude for all ζ except the two particular

11This stability function turns out to agree with the function L1(ζ) (A.19), described in section 5, and to be a
nonvanishing multiple of the Majda stability determinant for shocks defined in [M]
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Class III+ values in (1.35) that for ǫ ≥ ǫ(ζ) sufficiently large, V (ζǫ+ ν, ǫ) does not have unstable
zeros. Moreover, for the A → B reactions described above, [Er3] shows that for certain values of
the physical parameters, unstable zeros are actually present in cases I and M.

Our use of Lemma A.1 permits certain simplifications and extensions relative to [Er3]. The
application of the lemma to this problem depends only on having good separation between µ1 and
the remaining set of eigenvalues. Thus, the crossing of µ2 and µ3 that occurs for Class II values
of ζ at the associated turning points are irrelevant for us. In our analysis it is only necessary to
distinguish two sets of ζ, namely, Class III and its complement in ℜζ ≥ 0. In [Er3] the unbounded
interval could be taken to be [0,∞) only for Class I values of ζ; here we may take it to be [0,∞)
for both Class I and Class II. The special Class II values given by

ζ = u(0+) and ζ = lim
x→∞

u(x) := u(∞),(1.34)

which correspond to turning points “at 0 and at ∞”, had to be excluded from the analysis of [Er3],
but they can be treated in our approach like any other Class II values. Thus, for all non-Class III
values, θ(0, ζ, ν, ǫ) can now be determined in a single step, with no matching required. However,
like [Er3] we must exclude from consideration the exceptional Class III+ values

{ic0η
1

2 (0+), ic0η
1

2 (∞)}(1.35)

in the matching arguments of section 4.12

Lemma A.1 also permits us to keep track of how the constants that appear in our estimates
depend on ζ. For example, our proof of Theorem 5.3 shows that for ζ in any compact subset K
of ({ℜζ ≥ 0} \Class III) there exists a positive constant ǫ(K) such that V (τ, ǫ) 6= 0 for ǫ ≥ ǫ(K).
Obtaining uniform wavenumber cutoffs ǫ(K) has an obvious importance for numerical investigations
of the presence of unstable zeros. There was no attempt to get uniform cutoffs in [Er3], and in fact
such cutoffs cannot be extracted from the arguments given there for reasons already indicated (for
example, incorrect treatment of the unbounded interval and the need to use matching arguments
for Class II values of ζ due to crossing of µ2 and µ3). Moreover, our proof of the cutoff result just
stated holds even for profiles that are not of type I, D, or M; such profiles are not studied in [Er3].
We also prove statements about uniform choices of ǫ in the parts of Theorem 5.3 that pertain to
Class III values and instability.

We introduce a major simplification in the proof of Theorem 5.3 by working with the simpler
form (5.3) of V (τ, ǫ), instead of with Erpenbeck’s original form (5.1). The analysis in [Er3] of the
asymptotic behavior of the integrals b1 and b2 (A.16), which is complicated since the integrands
involve θ, is thus no longer needed. The use of the simpler form of V also gives more rapid
convergence of the approximate stability function La to L (see (5.4); here V = ǫL), which in turn
yields wavenumber cutoffs ǫ(K) that are better (i.e., smaller) than those derivable using the original
form of V .

1.3 Discussion and open problems

A rigorous approach to some aspects of the high frequency behavior of the ZND stability function
V (τ, ǫ) was given in [CJLW]. That paper addressed the question of the behavior of the exact
decaying solution θ of (1.7) on the unbounded interval. A different type of gap lemma was used
there to show that θ(x, τ, ǫ) (suitably normalized) is well-approximated by the solution θL(x, τ, ǫ)
of the limiting problem (1.22) on unbounded subintervals [x(ǫ),∞), where x(ǫ) converges to ∞,

12Although [Er3] does not explicitly exclude ic0η
1

2 (0+), we believe that his analysis does not cover this case.
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but not too fast to rule out matching arguments. No comparison was made there between θL and
θ1.

The present treatment based on Lemma A.1 provides several improvements over [CJLW]. First,
we obtain an approximating formula for θ that is valid on unbounded intervals whose left endpoint
is independent of ǫ. In Theorem 5.1 of [CJLW] a separate argument using the Tracking Lemma
of [Z3] was used to prove the absence of unstable zeros for ǫ sufficiently large only for a certain
proper subclass of non-Class III values (mostly away from ℜζ = 0). Turning points, the behavior
of V (τ, ǫ) for Class III values of ζ, and instability were not treated in [CJLW].

Our study completes the mathematical analysis of [Er3], yielding rigorous general criteria for
instability of ZND detonations. Despite extensive numerical and asymptotic studies of instability
in the detonation literature, this represents to our knowledge the only analytic proof of instability.

Another interesting and closely related problem is to establish conditions for stability of deto-
nation waves in the small heat-release limit ∆F → 0, in which equations (A.14) formally decouple,
and the associated high overdrive limit,13 as carried out in the one-dimensional case in [Z2]. As
discussed in [Z2], both of these problems reduce to establishing uniform high-frequency stability
estimates similar to those obtained in the present paper; as noted in [Er2], the latter problem is
quite subtle in multi-dimensions. Such a result would, together with the instability results devel-
oped in [Er3] and this paper, complete the picture of behavior that has emerged from numerical
lore of transition from stability to instability as heat release or overdrive is varied.

The study of positive high-frequency stability criteria is further motivated by the needs of nu-
merical stability analyses, where, to obtain definitive results of stability, it is necessary to perform
some such asymptotic analysis truncating the computational domain to a bounded set of frequen-
cies. See [BZ1, BZ2, Z2] for treatments in the one-dimensional case.

What is needed beyond the analysis of the present paper to obtain positive high-frequency
stability criteria is to treat the Class III frequencies neglected here and in [Er3] for which turning
points x∗ occur at x = 0 or x = +∞, and (for uniform estimates) frequencies in their vicinity, as
well as the additional frequencies neglected here in case M. The latter should be treatable as in
[Er3]. We expect that the problem of obtaining uniform estimates as |ζ| → ∞14 can be treated as
a perturbation of the one-dimensional case using the arguments of [Z2]. A remaining question is
to obtain estimates that are uniform as ζ approaches the imaginary axis near Class III values. At
the moment we have such estimates near Class I values on the imaginary axis. We plan to address
these questions in a separate work.

Though they were not needed in order to obtain useful instability results, we regard the treat-
ment of these remaining cases, and subsequent applications to positive stability results, as a very
interesting open problem. Another interesting open problem is to explore the implications of these
and the present analyses for the associated viscous problem, as in [Z1, TZ].

Remark 1.7. One can try to study the behavior near turning points using oscillatory integrals.
Near turning points of increasing or decreasing type these have the form associated with fold
caustics and lead to Airy functions (see also Remark 4.9). In future work we will explore whether
such an approach might yield a simpler, or more efficient, or more unified treatment.

13 As described in [Z1, Z2], this amounts to a simultaneous large shock-strength and zero heat release/activation
energy limit; for further description, see [Z2] and Appendix C, [Z1].

14Recall that we prove uniform estimates for bounded |ζ| only.

11



2 Exact decaying solutions on [a,∞), a ≥ 0

In this section we prove Theorem 2.1 for the unbounded interval. The theorem gives an accurate
approximating formula when ǫ is large for the exact decaying solution θ(x, ζ, ν) of (1.7) on the
interval [x∗ + δ,∞) for Class III values of ζ and on the interval [0,∞) for all other values of ζ in
ℜζ ≥ 0.

2.1 Construction of exact solutions

Recall from (1.9) that

Φ0(x, ζ) = {A−1
x (x) · (ζI + iAy(x))}t

Φ1(x, ν) = {A−1
x (x) · νI}t + {A−1

x (x)B(x)}t,
(2.1)

where the coefficient matrices are defined in section A.4. So with h = 1
ǫ we can write

Φ0(x, ζ) + hΦ1(x, ν) = Φ0(x, ζ + hν) + h{A−1
x (x)B(x)}t.(2.2)

The eigenvalues of Φ0(x, ζ + hν) are µj(x, ζ + hν), j = 1, . . . , 5, for µj as defined in (1.10).
In preparation for the theorem, we need to examine the effect of h{A−1

x (x)B(x)}t on the eigen-
values of Φ0(x, ζ) + hΦ1(x, ν). Direct computation and the use of Assumptions 1.3 and 1.4 shows
that15

{A−1
x (x)B(x)}t = O(e−βx) +

(

0
row 5

)

, where row 5 = (∗, ∗, ∗, ∗,−rλ/u),(2.3)

a matrix whose only nonzero row at equilibrium is the fifth. This gives

Φ0(x, ζ) + hΦ1(x, ν) = Φ0(x, ζ + hν) + h

(

0
row 5

)

+O(he−βx).(2.4)

From (A.23) we see that Φ0(x, ζ) is a matrix of the form

Φ0 =

(

A 0
B ζ/u

)

(2.5)

where the eigenvalues of A are µ1, µ2, µ3 = µ4 = ζ/u. Thus, the eigenvalues of Φ0(x, ζ)+hΦ1(x, ν)
are

µ∗j = µj(x, ζ + hν) +O(he−βx), j = 1, 2, 3, 4

µ∗5 = µ3(x, ζ + hν)− h
rλ
u

+O(he−βx), where rλ < 0.
(2.6)

Here we are using (2.4) and the fact that the eigenvalues of Φ0+h

(

0
row 5

)

, which are semisimple,

undergo a perturbation of size O(he−βx) in response to a matrix perturbation of the same size.

15The computation is done on pages 114-117 of [Er3]. There is a sign error in the expression for ê5 ·W11, which
should be multiplied by −1, in (A.15) on p117 of [Er3]. This correction yields the expression for row 5 in (2.3).
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Theorem 2.1. With h = 1/ǫ consider the system (1.7)

θ′ =
1

h
[Φ0(x, ζ) + hΦ1(x, ν)] θ(2.7)

on an interval [a,∞), a ≥ 0, and for values of ζ,ν such that

|µ1(x, ζ + hν)− µj(x, ζ + hν)| ≥ Cζ > 0, j = 2, . . . , 5 for 0 < h ≤ h(ζ, ν) small enough.(2.8)

Then there exists an exact solution θ(x, ζ, ν, h) such that for any δ∗ < β

∣

∣

∣θ − e
1

h

∫ x
0
µ♯
1
(s,ζ,ν,h)ds [Te1 +O(h)]

∣

∣

∣ ≤ Cζhe
−δ∗x|e 1

h

∫ x
0
µ♯
1
(s,ζ,ν,h)ds| on [a,∞),(2.9)

where T = T (x, ζ) is given by (1.13), e1 = (1, 0, 0, 0, 0), and

µ♯1 = µ1(x, ζ + hν) +O(he−βx).(2.10)

Separation of eigenvalues. Before giving the proof of Theorem 2.1 we check the hypothesis
(2.8) for all ζ. Since |ν| ≤ R and we take h small, it suffices to check (2.8) when ν = 0. We have

µ2(x, ζ)− µ1(x, ζ) =
2κs

ηu

µ3(x, ζ)− µ1(x, ζ) =
ζ + κs

ηu
.

(2.11)

Since s(x, ζ) =
√

ζ2 + c20η and

ℜ
√

ζ2 + c20η ≥ ℜζ,(2.12)

it follows in view of Assumption 1.3 that when ℜζ > 0, hypothesis (2.8) is satisfied on [0,∞).
When ℜζ = 0 and |ζ| > supx c0η

1/2, we have

|ζ| > |s(x, ζ)| =
√

|ζ|2 − c20η ≥ Cζ > 0,(2.13)

so (2.8) holds on [0,∞). When ℜζ = 0 and |ζ| < infx c0η
1/2, then

|ζ| > s =
√

c20η − |ζ|2 ≥ Cζ > 0,(2.14)

so again (2.8) holds on [0,∞).
Finally, consider ζ ∈ Class III \ {±ic0η1/2(∞)}. In cases M and D (2.13) holds on [x∗ + δ,∞)

(where x∗ denotes the rightmost turning point when there are two turning points corresponding to
ζ in case M), while in case I (2.14) holds on [x∗ + δ,∞). Thus, for ζ in Class III (2.8) holds on
[x∗ + δ,∞).

Remark 2.2. 1) Observe that for ζ in a compact subset K ⊂ ({ℜζ ≥ 0} \Class III) the constants
Cζ in (2.13), (2.14) can be replaced by a uniform constant CK > 0. Thus, for ζ ∈ K and |ν| ≤ R,
the separation inequality (2.8) holds with uniform constants CK and h(K,R) on [0,∞).

2) Similarly, one obtains uniform constants CK , h(K,R) in (2.8) on [x∗ + δ,∞) for ζ in a
compact set K of the allowed set of Class III values for each type of profile.
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Proof of Theorem 2.1. 1. We change to x̃ coordinates (x = x̃h, h = 1
ǫ ), using (·) to denote d

dx̃ and

(′) to denote d
dx . The spectral separation (2.8) allows us to define a smooth conjugator S1(x̃h, ζ, ν, h)

such that

S−1
1 (Φ0(x̃h, ζ) + hΦ1(x̃h, ν))S1 =

(

µ∗1 0
0 G1

)

:= G1,(2.15)

where µ∗1 is given in (2.6), and the eigenvalues of G1 are µ∗j , j = 2, . . . , 5 as in (2.6). We can take
the first column of S1 to satisfy

S1e1 = Te1 +O(h).(2.16)

Since the eigenvalues of G1 satisfy

ℜµ∗j ≥ O(he−βhx̃)(2.17)

we can find another smooth conjugator S2(x̃h, ζ, ν, h) =

(

1 0
0 S2

)

such that

S−1
2 G1S2 =

(

µ∗1 0
0 G2

)

= G2,(2.18)

where

ℜG2 ≥ O(he−βhx̃).(2.19)

Set S3 = S1S2. Then the function W defined by θ = S3W satisfies

Ẇ = (G2 − hS−1
3 S′

3)W.(2.20)

Applying (2.8) again, we can find a conjugator of the form S4(x̃h, ζ, ν, h) = I + hS4 such that Y
defined by W = S4Y satisfies

Ẏ =

(

µ♯1 0
0 G3

)

− h2BY,(2.21)

where B = O(e−βx̃h) and

ℜG3 = ℜG2 +O(he−βx̃h) ≥ O(he−βhx̃)

µ♯1 = µ∗1 +O(he−βx̃h).
(2.22)

2. Next we set Y = e
∫ x̃
0
µ♯
1
(s̃h,ζ,ν,h)ds̃Z and observe that Z satisfies

Ż =

(

0 0

0 G3 − µ♯1I

)

Z − h2BZ,(2.23)

where

ℜ(G3 − µ♯1I) ≥ O(he−βx̃h).(2.24)
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We can now apply Lemma A.1 (with δ∗ any number less than β) to obtain a solution Z satisfying

|Z − e1| ≤ Che−δ∗x̃h(2.25)

by (A.5). Tracing back we find

|Y − e
∫ x̃
0
µ♯
1
(s̃h,... )ds̃e1| ≤ Che−δ∗x̃h|e

∫ x̃
0
µ♯
1
(s̃h,... )ds̃|,(2.26)

so

|W − e
∫ x̃
0
µ♯
1
(s̃h,... )ds̃ [e1 + hS4e1] | ≤ Cζhe

−δ∗x̃h|e
∫ x̃
0
µ♯
1
(s̃h,... )ds̃|.(2.27)

Since θ = S3W and S3e1 = Te1,

|θ − e
∫ x̃
0
µ♯
1
(s̃h,... )ds̃ [Te1 +O(h)] | ≤ Cζhe

−δ∗x̃h|e
∫ x̃
0
µ♯
1
(s̃h,... )ds̃| on [

a

h
,∞).(2.28)

Switching back to x coordinates gives (with s = s̃h)

|θ − e
1

h

∫ x
0
µ♯
1
(s,... )ds [Te1 +O(h)] | ≤ Cζhe

−δ∗x|e 1

h

∫ x
0
µ♯
1
(s,... )ds| on [a,∞).(2.29)

As an immediate corollary of Theorem 2.1 we have

Corollary 2.3. When ζ /∈ Class III, the exact decaying solution θ(x, τ, ǫ) of (1.7) satisfies

|θ(0, τ, ǫ)− T (0, ζ)e1| ≤ Cζ/ǫ for ǫ ≥ ǫ(ζ) sufficiently large ,(2.30)

where τ = ǫζ + ν. Thus, the first column of the matrix (1.13), evaluated at x = 0, gives the desired
approximation.

For ζ in a compact subset K ⊂ ({ℜζ ≥ 0} \ Class III) and |ν| ≤ R the constants Cζ, ǫ(ζ) in
(2.30) can be replaced by uniform constants CK , ǫ(K,R).

Proof. For such ζ the formula of Theorem 2.1 applies on [0,∞). The uniformity statement follows
from part (1) of Remark 2.2, the uniform choice of h0 in Lemma A.1, and inspection of the proof
of Theorem 2.1.

Remark 2.4. Theorem 2.1 and its corollary do not require real-analyticity of the profile w, and
are true without the restriction that w be of type I, D, or M.

2.2 Comparison of exact and approximate solutions for ζ ∈ Class III.

When ζ lies in Class III, a matching argument is needed to analytically continue the exact
solution θ on [x∗+ δ,∞), or an appropriate multiple thereof, around the turning point x∗. To carry
this out we must first examine how θ compares to the approximate solution θ1 = Tπ1 (1.15) for
x ≥ x∗ + δ.

The expression for θ1 is given in (1.15)-(1.17)

θ1(x, τ, ǫ) = e
1

h

∫ x
0
µ1(s,ζ)ds+

∫ x
0,Cw

E11(s,ζ,ν)ds [T (x, ζ)e1 +O(h)] .(2.31)

We assume ζ ∈ Class III+. In case D (resp. I) we take Cw = C− (resp. C+), a contour on the
real axis except for a short excursion around x∗ in the lower (resp. upper) half plane. In the E11
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integral for case M, a turning point where d > 0 is excised via the upper half plane and one where
d < 0 via the lower half plane.16

Cases D and M. In case D the formula (2.29) for θ holds on [x∗ + δ,∞) where

µ♯1 = µ1(x, ζ + νh) +O(he−βx), β > 0.(2.32)

With µ1 = µ1(x, ζ) and µ
♯
1 as in (2.32) here and in the rest of this section, we may write

eh
−1

∫ x
0
µ♯
1Te1 = e

h−1
∫ x
0
µ1+

∫ x
0,C−

E11+h−1
∫ x
0
(µ♯

1
−µ1)−

∫ x
0
E11

Te1 = eHǫ(x,ζ,ν)θ1(1 +O(h))(2.33)

where

Hǫ(x, ζ, ν) := ǫ

∫ x

0
(µ♯1 − µ1)−

∫ x

0,C−

E11.(2.34)

Thus, (2.29) and (2.33) imply

|θ − eHǫ(x,ζ,ν)θ1| ≤
C

ǫ
|eHǫ(x,ζ,ν)θ1| for x ≥ x∗ + δ.(2.35)

The inequality (2.35) holds also in case M, where x∗ now denotes the rightmost turning point
in cases where there are two turning points. We do not treat the special value ζ = ic0η

1/2(xM ),
where xM is the location of the maximum.

Next we examine the growth rate of eHǫ .

Proposition 2.5. For profiles of type D and ζ ∈ Class III+ \ {c0η1/2(∞)}, the factor eHǫ(x,ζ,ν)

satisfies the estimate:

C1e
ℜ(α1

iν2

ǫ
)x ≤ |eHǫ(x,ζ,ν)| ≤ C2e

ℜ(α2
iν2

ǫ
)x for x ∈ [0,∞), x 6= x∗,(2.36)

for some positive constants Ci, αi depending on x∗ and the profile w, but which can be taken
independent of ǫ, and ν, and a compact subset of ζ as above. For ℜν > 0 and ℑv > 0 (resp.
ℑv < 0) (2.36) represents exponential decay (resp. growth) in x.

For profiles of type M, we also exclude the special value ζ = ic0η
1/2(xM ). Then the estimate

(2.36) holds away from turning points with uniform constants for a compact set of ζ.

Proof. 1. Since ℜ
√

(ζ + hν)2 + c20η ≥ ℜ(ζ + hν) we have

ℜµ1(x, ζ + hν) = ℜ
−κ
(

κ(ζ + hν) +
√

(ζ + hν)2 + c20η
)

ηu
≤

− κ2

ηu
ℜhν − κ

ηu
ℜ(ζ + hν) = −

(

κ2 + κ

ηu

)

ℜhν.
(2.37)

For x ≤ x∗ + δ, x 6= x∗, it follows from (2.37) and the formula for E11 (A.24) that there exist
positive constants Ci as described such that

C1 ≤ |eHǫ(x,ζ,ν)| ≤ C2.(2.38)

16When there are two turning points x2∗ < x1∗ in case M, starting with s = i|s| in x < x2∗, analytic continuation
along such a contour gives s = |s| on x2∗ < x < x1∗ and s = i|s| on x > x1∗.
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2. Now assume x ≥ x∗ + δ. For such x we write

Hǫ(x, ζ, ν) = Hǫ(x∗ + δ, ζ, ν) +H♭
ǫ(x, ζ, ν) where

H♭
ǫ(x, ζ, ν) :=

1

h

∫ x

x∗+δ
(µ♯1 − µ1)−

∫ x

x∗+δ
E11.

(2.39)

Using (2.37) and ℜµ1(x, ζ) = 0 (since w is of type D), we see that

ℜ
(

1

h
(µ♯1 − µ1)− E11

)

= −κ
2

ηu
ℜν − κ

ηu

1

h
ℜ
√

(ζ + hν)2 + c20η −ℜE11 +O(e−βx).(2.40)

Assumptions 1.3, 1.4 and the formula for E11 (A.24) imply (with s =
√

ζ2 + c20η = i|s|)

E11(x, ζ, ν) = −κ
2

ηu
ν − κ

ηu

ζ

s
ν +O(e−βx).(2.41)

The function s is bounded away from 0 for x ≥ x∗ + δ, so we can expand the square root in (2.40)
about ζ2 + c20η = s2 obtaining:

1

h

√

(ζ + hν)2 + c20η =
1

h
s(1 +

hνζ

s2
+
h2ν2

2s2
− ...).(2.42)

Since s = i|s|, we get after noting cancellations

ℜ
(

1

h
(µ♯1 − µ1)− E11

)

=
κ

2ηu|s|ℜ(ihν
2) +O(h2) +O(e−βx)(2.43)

for x ≥ x∗ + δ. In view of (2.38), (2.39), and Assumption 1.3, this implies the estimate (2.36) with
possibly new Ci.

3. With ζ = ic0η
1/2(xM ) excluded and Hǫ redefined as described before the Theorem, the

proof for case M is the same as above.

Remark 2.6. For rate functions with rv 6= 0 at equilibrium and satisfying the weaker assumption
discussed in Remark 1.5, we see from the formula for E11 that there will be an extra non-decaying
term in (2.41) depending on rv. However, in (2.43) that term will be cancelled by a corresponding

extra term in the expansion of µ♯1.

Case I. In this case we have s(x, ζ) = ℜs ≥ C > 0 for x ≥ x∗ + δ, and computations almost
identical to those above show that

ℜ
(

1

h
(µ♯1 − µ1)−E11

)

=
−κ
2ηus

ℜ(hν2) +O(h2) +O(e−βx)(2.44)

for x ≥ x∗ + δ.

Proposition 2.7. For profiles of type I and ζ ∈ Class III\{c0η1/2(∞)}, the factor eHǫ(x,ζ,v) satisfies
the estimate:

C1e
ℜ(−α1

ν2

ǫ
)x ≤ |eHǫ(x,ζ,ν)| ≤ C2e

ℜ(−α2
ν2

ǫ
)x for x ∈ [0,∞), x 6= x∗,(2.45)

for some positive constants Ci, αi depending on x∗ and the profile w, but which can be taken
independent of (ν, ǫ) and a compact subset of ζ as above. For ℜν > 0 and |ℑν| < ℜν (resp.
|ℑν| > ℜν ≥ 0) (2.45) represents exponential decay (resp. growth) in x.

Remark 2.8. In cases I, D, and M the estimate (2.35) implies that the statement M(ǫ, ζ, v)θ ∼ θ1
(“∼” as defined below (1.24)) is not true for any multiple M(ǫ, ζ, ν) of θ on [x∗ + δ, b) for any
b ∈ (x ∗+δ,∞].
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3 Exact solutions on bounded regions near a turning point

This section is devoted to proving Theorem 3.1, which provides a sufficient condition for approx-
imate solutions θi of θ

′ = −P tθ, defined by formulas like (1.15), to be close to exact solutions when
ǫ is large. Theorem 3.1 was informally stated in [Er3] with a reference to a set of 1954 N.Y.U. Notes
by K. O. Friedrichs. The result is referred to in [Er3] as the “method of the parameter problem”.
The proof we give here is an adaptation to ODEs on bounded regions of the complex plane of a
similar argument in Chapter 6 of [CL] for ODEs on bounded intervals of the real line.

3.1 Method of the parameter problem.

Consider a general N ×N system with parameter ǫ >> 117

θ′ = ǫΦ(z, ǫ)θ(3.1)

on some bounded, simply connected region H ⊂ C. For i = 1, . . . , N and m ≥ 0 fixed, let

θi = eǫhi(z)+ki(z)[bi0 + ǫ−1bi1 + · · ·+ ǫ−(m+1)bi(m+1)] := eqi(z,ǫ)Pi(z, ǫ)(3.2)

and define N ×N matrices

Q = diag(q1, . . . , qN ), P = {P1, . . . , PN}.(3.3)

We assume that P−1(z, ǫ) is uniformly bounded for z ∈ H, ǫ large and that the θi are approximate
solutions of (3.1) in H of order m in the sense that18

(PeQ)′ = (P ′ + PQ′)eQ := ǫΦmPe
Q = ǫΦPeQ + ǫ(Φm − Φ)PeQ,(3.4)

where

|Φ− Φm| ≤ C1

ǫm+2
for z ∈ H,(3.5)

and thus also |ǫ(Φ− Φm)PeQ| ≤ C |eQ|
ǫm+1 for z ∈ H.

The following Theorem gives conditions under which we can find an exact solution θ of (3.1)
close to θ1 in the sense that for ǫ large and z ∈ H:

|θ − θ1| ≤ Cm
|eq1(z,ǫ)|
ǫm+1

in H.(3.6)

Of course the labeling of θj is arbitrary, hence the result applies equally to θj, j 6= 1.

Theorem 3.1. Consider the N × N system (3.1) with parameter ǫ >> 1 on the bounded, simply
connected region H ⊂ C. Let H′ be a bounded, simply connected neighborhood of H, and suppose
that Φ is analytic for z ∈ H′. Suppose that the approximate solutions θi given by (3.2) are analytic
in H′ and satisfy (3.5) for some m ≥ 0, and that P−1(z, ǫ) is uniformly bounded for z ∈ H′ and ǫ
large.

17Here we are for convenience suppressing dependence of Φ on additional parameters in the notation. All the
arguments below work when there is continuous dependence on a compact set of parameters.

18Thus, Φm = 1

ǫ
(P ′ + PQ′)P−1.
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a.) For each j ∈ {2, . . . , N} suppose there exists a point zj ∈ H′ such that any point z ∈ H can
be joined to zj by a path lying in H′ on which ℜ(hj −h1)(τ, ǫ) decreases (not necessarily strictly) as
τ moves from zj towards z. For any z ∈ H let Pj(z) be such a path starting from zj and suppose

N
∑

j=2

sup
z∈H

|Pj(z)| ≤ L <∞,(3.7)

where |Pj(z)| denotes the length of Pj(z). Then there exists an exact solution θ of (3.1) in H such
that (3.6) holds.

b.) There is an obvious analogue of part (a) (not requiring analyticity) for the case where H
is taken to be a bounded closed interval [a, b] on the real axis and the paths Pj are chosen inside
that interval. In this case existence of admissible paths is equivalent to the assumption that for any
fixed j 6= 1, either ℜµj ≤ ℜµ1 or else ℜµj ≥ ℜµ1 on all of [a, b], i.e., there is a neutral spectral gap
between µ1 and all other µj .

Proof. For convenience we take N = 3 in the proof. Pick z2 and z3 satisfying the assumptions in
Theorem 3.1 and define 3× 3 matrices

P (2) = [P1, P2, 0], P (3) = [0, 0, P3](3.8)

satisfying

P = P (2) + P (3).(3.9)

Observe that θ1 is a solution of θ′ = ǫΦmθ and that (3.1) may be written as

θ′ = ǫΦmθ + ǫ(Φ− Φm)θ.(3.10)

We construct a solution of (3.10) in H as a solution θ(z, ǫ) of the integral equation

θ(z, ǫ) = θ1(z, ǫ) + ǫP (2)(z, ǫ)eQ(z,ǫ)

∫ z

z2

e−Q(τ,ǫ)
[

P−1(τ, ǫ) (Φ(τ, ǫ)− Φm(τ, ǫ))
]

θ(τ, ǫ)dτ+

ǫP (3)(z, ǫ)eQ(z,ǫ)

∫ z

z3

e−Q(τ,ǫ)
[

P−1(τ, ǫ) (Φ(τ, ǫ)− Φm(τ, ǫ))
]

θ(τ, ǫ)dτ,

(3.11)

where the first and second integrals are on paths P2(z), P3(z), respectively. Note that the only
exponentials appearing in the elements of P (2)(z, ǫ)eQ(z,ǫ)−Q(τ,ǫ) are eqj(z,ǫ)−qj(τ,ǫ), j = 1, 2, and the
only exponential appearing in the elements of P (3)(z, ǫ)eQ(z,ǫ)−Q(τ,ǫ) is eq3(z,ǫ)−q3(τ,ǫ).

We solve (3.11) by the iteration scheme

θ(l+1)(z, ǫ) = θ1(z, ǫ) + ǫP (2)(z, ǫ)eQ(z,ǫ)

∫ z

z2

e−Q(τ,ǫ)
[

P−1(τ, ǫ) (Φ(τ, ǫ)− Φm(τ, ǫ))
]

θ(l)(τ, ǫ)dτ+

ǫP (3)(z, ǫ)eQ(z,ǫ)

∫ z

z3

e−Q(τ,ǫ)
[

P−1(τ, ǫ) (Φ(τ, ǫ)− Φm(τ, ǫ))
]

θ(l)(τ, ǫ)dτ,

(3.12)

where θ(0) = 0. We claim

|(θ(l+1) − θ(l))e
−q1(z,ǫ)| ≤ C2

L

ǫm+1
sup
τ∈H

|(θ(l) − θ(l−1))e
−q1(τ,ǫ)|,(3.13)
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m ≥ 0, for C2 depending on the norms of P , P−1, and C1 (from (3.5)), as well as the ℜki. In
estimating the contribution to the right side of (3.13) coming from the first integral in (3.12), for
example, we have used (3.5), (3.7), the uniform boundedness of P−1, and the fact that

|eq2(z,ǫ)−q2(τ,ǫ)−q1(z,ǫ)+q1(τ,ǫ)| = eℜ(q2(z,ǫ)−q2(τ,ǫ)−q1(z,ǫ)+q1(τ,ǫ)) ≤M2 for τ ∈ P2(z),(3.14)

where M2 depends only on ℜki, i = 1, 2. Thus, for ǫ large we obtain a contraction and the θ(l)
converge uniformly on H to a solution of the integral equation. Moreover, if |θ1e−q1 | ≤ C0, then
for ǫ large enough (3.13) implies

|θ(l)e−q1(z,ǫ)| ≤ 2C0.(3.15)

From the integral equation we then obtain

|(θ − θ1)e
−q1(z,ǫ)| ≤ C2

2C0L

ǫm+1
.(3.16)

Definition 3.2. a) Let θi be an approximate solution of (3.1) satisfying (3.4) for some m ≥ 0 in
a region H ⊂ C. We say that θi is an approximate solution of order m in H.

b) Suppose that θi as above has been shown to be close to an exact solution on some subregion
Ha ⊂ H in the sense of (3.6). Then we say that θi is admissible in Ha. The curves defining the
boundary of the admissible subregion Ha are often referred to as Stokes curves.

We will see below that the admissible region Ha is sometimes a proper subregion of H. For
example, in applying Theorem 3.1 to justify an approximate solution θ1 in the case where N = 3,
it may happen that one can choose paths P2(z) satisfying the requirements of the Theorem for all
z ∈ H, but that one can choose paths P3(z) only for z in a proper subregion Ha of H. In that case
θ1 is admissible only in Ha.

Definition 3.3. When applying Theorem 3.1 to test the admissibility of θ1, we refer to paths
on which ℜ(hj − h1) decreases as Pj paths for j ∈ {2, . . . , N}. More generally, when testing
the admissibility of θk, we refer to paths on which ℜ(hj − hk) decreases as Pj paths for j ∈
{1, . . . , N} \ {k}. The context (i.e., choice of θk being tested) should prevent confusion.

Remark 3.4. Consider again the 5× 5 system

θ′ = −P t(x, τ, ǫ) = [ǫΦ0(x, ζ) + Φ1(x, ν)]θ(3.17)

with µj , j = 1, . . . , 5 as in (1.10). When applying Theorem 3.1 to test the admissibility of θ1, for
example, observe that since µ3 = µ4 = µ5, the P3 paths, P4 paths, and P5 paths can all be taken
to be the same. In this situation we usually refer to all of these paths as P3 paths.

3.2 Analytic continuation and the choice of integration paths.

We now fix ζ = i|ζ| ∈ Class III. By Assumptions 1.2 and 1.3 the coefficients in the system
(3.17) extend analytically to a neighborhood of [0,∞). Quantities appearing in the definition of θi
(1.15) are of two types: those that depend real-analytically on the profile w, and those like µ1, µ2,
and certain terms in T (x, ζ) (1.13) and E11 (A.24) that depend on s(x, ζ) =

√

ζ2 + c20η(x). Terms
of the first type extend analytically to a neighborhood of [0,∞), while analytic extensions of terms
of the second type have branch points at turning points where s(x∗, ζ) = 0.
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When testing the admissibility of a solution θi in a region H whose points all lie close to a
turning point x∗ where c20η is either increasing or decreasing, there is a simple procedure given
in [Er3] for choosing paths that satisfy the requirements of Theorem 3.1. We need to use this
procedure in section 4, so we illustrate it here for the reader’s convenience in the increasing case
where

d :=
d(c20η)

dx
(x∗) > 0.(3.18)

We take H to be an open disk centered at x∗ from which a small (closed) neighborhood of
the segment [0, x∗] has been removed, and explain first how to choose P2 paths and P3 paths for
showing the admissibility of θ1. Suppose that θ1 is defined before continuation into H by formula
(2.31) for x > x∗.

Expanding s2(z) = ζ2 + c20η(z) about x∗, we compute from the formulas (2.11):

µ2(z) − µ1(z) = (2κd
1

2 /ηu)(x∗)(z − x∗)
1

2 [1 +O(z − x∗)]

µ3(z) − µ1(z) = (i/η
1

2κ)(x∗)[1 +O((z − x∗)
1

2 ],
(3.19)

where (z − x∗)
1

2 denotes the branch that is positive for z > x∗. We set

hji = hj − hi, h∗ji = hji(x∗),(3.20)

and integrate (3.19) to obtain

h21(z)− h∗21 = (4κd
1

2 /3ηu)(x∗)(z − x∗)
3

2 +O((z − x)
5

2 )

h31(z)− h∗31 = (i/η
1

2κ)(x∗)(z − x∗) +O((z − x∗)
3

2 ).
(3.21)

Before choosing paths on which ℜ(hj1−h∗j1) (and therefore also ℜhj1) is nonincreasing, we first
locate the transition rays where ℜ(hj1 − h∗j1) ≈ 0, j = 2, 3. With φ = arg(z − x∗) these rays are

φ21 = ±π
3
, π; φ31 = 0, π,(3.22)

where the subscripts have the obvious meaning. The transition rays defined by φ21 determine 3
sectors centered at x∗:

S0 : −
π

3
< φ <

π

3
, S1 :

π

3
< φ < π, S−1 : −π < φ < −π

3
.(3.23)

Paths in H on which ℜ(h21 − h∗21) is nonincreasing are easy to determine if one knows the level
curves of ℜ(h21 − h∗21). In sector S0, ℜ(h21 − h∗21) is positive with level curves that are roughly
parallel to the union of the two rays φ = π

3 and φ = −π
3 . In sectors S±1 ℜ(h21 − h∗21) is negative

and the level curves have a similar description. P2 paths with initial point z2 > x∗ can now be
constructed by piecing together segments that lie on level curves of ℜ(h21 − h∗21) with (correctly
oriented) segments that are transverse to level curves. If H is small enough, any point z ∈ H can
be reached by such a path starting from z2.

From (3.21) and (3.22) we see that the level curves of ℜ(h31 − h∗31) are well-approximated by
horizontal lines near x∗ and ℜ(h31 − h∗31) > 0 in ℑ(z − x∗) < 0. Thus, if we choose z3 near x∗ in
ℑ(z − x∗) < 0 and if H is small enough, any point z ∈ H can be reached by a P3 path starting at
z3.
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A similar procedure applies when testing the admissibility of approximate solutions θj , j =
2, . . . , 5. For example, when testing θ2 in H one chooses P1 paths and P3 paths using19

h12(z)− h∗12 = −(4κd
1

2/3ηu)(x∗)(z − x∗)
3

2 +O((z − x∗)
5

2 )

h32(z)− h∗32 = (i/η
1

2κ)(x∗)(z − x∗) +O((z − x∗)
3

2 ).
(3.24)

4 Matching arguments for ζ ∈ Class III

In Theorem 2.1 we constructed for ζ ∈ Class III an exact decaying solution θ of equation (2.7)
on [x∗ + δ,∞). In this section we give the matching arguments needed to determine the analytic
continuation of that solution up to x = 0.

4.1 Case I: c20 − u2 is strictly increasing.

In order to carry out the matching argument we must first use Theorem 3.1 to construct a basis
of exact solutions on bounded domains near x∗.

Let θi(x, ζ, ν, ǫ), i = 1, . . . , 5, be approximate solutions constructed in the standard way and
defined before analytic continuation for x > x∗ by formulas

θi(x, ζ, ν, ǫ) = exp [ǫhi(x, ζ) + ki(x, ζ, ν)]ai(x, ζ, ν),(4.1)

where

hi(x, ζ) =

∫ x

0
µi(τ, ζ)dτ, for all i,

ki(x, ζ, ν) =

∫ x

0,C+

Eii(τ, ζ, ν)dτ, for i = 1, 2,
(4.2)

and the subscript C+ indicates a contour on the real axis except for a small excursion in the upper
half plane to avoid x∗ In (4.2) the square root s(x, ζ) = i|s| for x < x∗, s = |s| for x > x∗, and
is given by analytic continuation on C+. The functions E11 and E22 have terms with (z − x∗)

−j

singularities at x∗, where j ∈ {1/2, 1}. On the other hand µi is bounded near x∗.

Definition 4.1. For δ > 0 small and any set S ⊂ C, we define a δ−neighborhood of S to be the
union of open balls of radius δ centered at points of S.

Below we let Nφ denote the closure of a δ−neighborhood of the ray {z : arg(z − x∗) = φ}. Let
B ⊂ C denote a 4δ-neighborhood of the segment [x∗ − 6δ, x∗].

20

Let θ1,M be an approximate solution defined by analytically continuing θ1 to B\Nπ, and denote
by θ̄1,M the corresponding exact solution justified by Theorem 3.1 in this region. Paths of type P2

in the sense of Theorem 3.1 can be chosen starting at some z2 > x∗, while P3 paths can be chosen
starting just below x∗ in ℑz < 0. Here one can use exactly the same paths as those constructed in
section 3.2 using (3.21).

Denote by θ̄2 an exact solution constructed by a similar procedure, but based on the approximate
solution θ2 analytically continued to B \Nπ/3. Paths of type P1 can be chosen starting at a point
z1 in the 3rd quadrant (relative to x∗), while P3 paths can be chosen starting in ℑz < 0.

19The choice of branch of (z − x∗)
1

2 in these formulas depends both on the region H and on the specification of θ2
before its analytic continuation into H. Typically, θj is specified first on either x < x∗ or x > x∗.

20For the matching arguments to be valid we need to work near x∗, so the parameter δ introduced here is to be
fixed sufficiently small. For the continuation of solutions all the way to x = 0 see step 4 of the proof of Proposition
4.3.
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Similarly, we let θ̄3, θ̄4, θ̄5 be exact solutions associated to analytic continuations of θ3, θ4, θ5 and
defined in B \N−π/3. In this case paths of types P1 and P2 can be chosen to start directly above
x∗ on the axis ℜz = x∗.

Let θ+1 denote an approximate solution obtained by analytically continuing θ1 to B \ N−π/3

and let θ−1 denote an an approximate solution obtained by analytically continuing θ1 to B \Nπ/3.
Each of these solutions can be justified by Theorem 3.1 on a 2δ-neighborhood O2δ of the segment
B∩ [0, x∗− 3δ], yielding corresponding exact solutions θ̄+1 and θ̄−1 . For θ̄

+
1 the paths of type P2 and

P3 start in the third quadrant, while for θ̄−1 paths of type P2 start in the second quadrant and P3

paths start in the third quadrant.
It is helpful for computing V (τ, ǫ) to have explicit formulas for θ±1 (z, ζ, ν, ǫ), z ∈ O2δ . These

have the form

θ±1 (z, ζ, ν, ǫ) = exp [ǫh±1 (z, ζ) + k±1 (z, ζ, ν)]a
±
1 (z, ζ, ν)(4.3)

where

ǫh±1 (z, ζ) + k±1 (z, ζ, ν) :=

∫ z

0,P±

[ǫµ1(τ, ζ) +E11(τ, ζ, ν)]dτ(4.4)

and a±1 are obtained from T (x, ζ)e1, x > x∗, by analytic continuation. The path P+ consists of
the segment [0, x∗ − 2δ] followed by any path in O2δ from x∗ − 2δ to z, and the function of z given
by s(z, ζ) =

√

ζ2 + c20η(z) appearing in µ1 is obtained from the branch taking positive values on
x > x∗ by analytic continuation in B+ \ N−π/3. The same square root, call it s+(z, ζ) is used, of

course, wherever it appears in a+1 . It is readily checked that in O2δ the function θ
+
1 defined by (4.3)

equals θ+1 as originally defined.
The path P− = P−,a ∪P−,b, where P−,a is a segment from 0 to x∗− 2δ, followed by a semicircle

in ℑz > 0 terminating at x∗ + 2δ. The path P−,b starts at x∗ + 2δ, continues on the semicircle in
ℑz < 0 terminating at x∗−2δ, and continues from x∗−2δ along any path in O2δ ending at z. In the
part of the integral (4.4) on P−,a the square root s+(z, ζ) is used, while on P−,b, one uses s−(z, ζ),
which is obtained from the branch taking positive values on x > x∗ by analytic continuation in
B+ \ Nπ/3. The square root s−(z, ζ) is used wherever s appears in a−1 . In O2δ the function θ−1
defined by (4.3) equals θ−1 as originally defined.

Finally, observe that since µ3(x, ζ) =
ζ
u , the function h3(x, ζ) extends analytically to a neigh-

borhood of [0,∞) containing B.

Remark 4.2. The approximate solutions θ±1 defined here in B \ N∓π
3

extend analytically (as
approximate solutions) to a neighborhood of the segment [0, x∗ − 2δ], and explicit formulas for
those extensions are given by the formulas (4.3),(4.4) using the obvious prolongations of the paths
P±. The admissibility of the extensions on [0, x∗−2δ] is shown in step 4 of the proof of Proposition
4.3.

Proposition 4.3. For a profile of type I, fix ζ ∈ Class III+\{ic0η1/2(0+), ic0η
1/2(∞)}. Let θ be the

exact decaying solution on x ≥ x∗ + δ constructed for case I in Theorem 2.1, extended analytically
to [0,∞). For an appropriately selected multiple θ̄1,G = G(ǫ, ζ, ν)θ we have on [0, x∗ − 3δ]

θ̄1,G = θ̄+1 + θ̄−1 +O(1/ǫ).(4.5)

Here θ̄+1 and θ̄−1 are analytic extensions of the exact solutions θ̄±1 defined above on O2δ which satisfy

|θ̄±1 − θ±1 | ≤
Cζ

ǫ
|θ±1 | on [0, x∗ − 3δ],(4.6)
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where θ±1 are given by the formulas (4.3),(4.4).
The constant Cζ in (4.6) can be replaced by CK for ζ in a compact subset K of the allowed

values.

Proof. 1. Let x1 = x∗ + 2δ and recall (2.35)

|θ − eHǫ(x,ζ,ν)θ1| ≤
C

ǫ
|eHǫ(x,ζ,ν)θ1|, where θ1 = e

ǫ
∫ x
0
µ1+

∫ x
0,C+

E11
a1.(4.7)

Multiply through by

G(ǫ, ζ, ν) := e−Hǫ(x1,ζ,ν)(4.8)

to get

|G(ǫ, ζ, ν)θ − eHǫ(x,ζ,ν)−Hǫ(x1,ζ,ν)θ1| ≤
C

ǫ
|eHǫ(x,ζ,ν)−Hǫ(x1,ζ,ν)θ1|,(4.9)

Evaluating this at x1 we obtain

|G(ǫ, ζ, ν)θ − θ1|(x1) ≤
C

ǫ
|θ1|(x1),(4.10)

2. Next we carry out the matching argument using

θ̄1,G(x, ζ, ν, ǫ) := G(ǫ, ζ, ν)θ(4.11)

for the exact decaying solution on [x1,∞). Observe that the exact solutions θ̄1,G and θ̄1,M , θ̄2, . . . , θ̄5,
have original domains (i.e., before analytic continuation) that include [x∗ + 2δ, x∗ + 4δ).21 Using
the basis {θ̄1,M , θ̄2, . . . , θ̄5} we have

θ̄1,G = c1θ̄1,M + c2θ̄2 + · · ·+ c5θ̄5,(4.12)

where for all i, ci = ci(ǫ, ζ, ν). By Theorem 3.1 we have

|θ̄1,M − θ1| ≤
C

ǫ
|θ1| on [x∗ + 2δ, x∗ + 4δ)(4.13)

and analogous statements hold for the other θ̄i. An estimate like (4.13) is not true for θ̄1,G, but at
x1 we have from (4.10)

|θ̄1,G − θ1|(x1) ≤
C

ǫ
|θ1|(x1).(4.14)

The coefficients in (4.12) are independent of x so we can evaluate equation (4.12) at x1 to
determine them. Recall ℜh3(x1) = 0 and let

a := −ℜh1(x1) > 0, b = ℜh2(x1) > 0.(4.15)

A direct analysis22 of the coefficients in (4.12) using (4.13) and (4.14) shows that

c1 = 1 +O(ǫ−1), c2 = O(e−(a+b)ǫ/ǫ), c3 = O(e−aǫ/ǫ), . . . , c5 = O(e−aǫ/ǫ).(4.16)

21All of these exact solutions can be analytically continued as solutions to a neighborhood of [0,∞), but it is only
on the original domains that we have information about asymptotic behavior as ǫ → ∞. The original domain of
θ̄1,M , for example, is B \Nπ.

22This statement about the coefficients is proved by writing θ̄1,G = eǫh1+k1a1+O(eǫh1+k1/ǫ) and similar expressions
for the other solutions, plugging into equation (4.12), using the linear independence of a1, . . . , a5, and taking account
of the growth rates of the exponentials. The straightforward details are omitted.
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The functions of x in (4.12) extend analytically to a neighborhood of [0,∞), and so (4.12) holds
on that neighborhood.

3. From the earlier construction we already know the asymptotic behavior as ǫ → ∞ of
θ̄2, . . . , θ̄5 for B ∩ {x < x∗}, but that is not the case for θ̄1,M , whose behavior we know only on
B \Nπ. To remedy this we expand θ̄1,M in terms of the basis {θ̄+1 , θ̄−1 , θ̄3, . . . , θ̄5} on the intersection
of the original domains:

I := (B \Nπ) ∩ O2δ ∩ (B \N−π/3).(4.17)

This gives

θ̄1,M = c+θ̄
+
1 + c−θ̄

−
1 + d3θ̄3 + · · ·+ d5θ̄5,(4.18)

where again all the coefficients depend on (ǫ, ζ, ν). Next we evaluate equation (4.18) at a point
z ∈ I ∩ {ℑz < 0}, and use (4.4), (3.21), and h∗31 = 0 to see that

a+1 := ℜh+1 (z) < 0 < a−1 := ℜh−1 (z) < a3 := ℜh3(z).(4.19)

We have

C1e
a+
1
ǫ ≤ |θ̄+1 (z, ζ, ν, ǫ)| ≤ C2e

a+
1
ǫ,(4.20)

and estimates analogous to (4.20) at z hold for {θ̄1,M , θ̄−1 } and {θ̄3, θ̄4, θ̄5} with a+1 replaced by a−1
and a3 respectively.

Using

|θ̄1,M − θ−1 |(z) ≤
C

ǫ
|θ−1 |(z)(4.21)

and an analysis of coefficients similar to the one that gave (4.16), we find

c− = 1 +O(1/ǫ), |c+| ≤ Ce(a
−
1
−a+

1
)ǫ, dj = O(e(a

−
1
−a3)ǫ), j = 3, 4, 5.(4.22)

To get more information on c+ we select z♯ ∈ I ∩{ℑz > 0}, evaluate equation (4.18) at z♯, and
define

b−1 := ℜh−1 (z♯) < 0 < b+1 := ℜh+1 (z♯), and b3 := ℜh3(z♯) < 0.(4.23)

Now {θ̄1,M , θ̄+1 } grow like eb
+

1
ǫ at z♯ (in the sense of (4.20)), θ̄−1 grows like eb

−
1
ǫ, and {θ̄3, θ̄4, θ̄5}

grow like eb3ǫ. Thus, when equation (4.18) is evaluated at z♯, all terms to the right of c+θ̄
+
1 decay

exponentially fast in ǫ. So we conclude from

|θ̄1,M − θ+1 |(z♯) ≤
C

ǫ
|θ+1 |(z♯)(4.24)

that c+ = 1 +O(1ǫ ). Substituting (4.18) into (4.12) we obtain

θ̄1,G = (1 +O(1/ǫ)) θ̄+1 + (1 +O(1/ǫ)) θ̄−1 + k2θ̄2 + · · ·+ k5θ̄5,(4.25)

where the kj decay exponentially fast in ǫ.
4. At this point we know the asymptotic behavior of the functions on the right in (4.25) only

near x∗. For example we know

|θ̄±1 − θ±1 | ≤
C

ǫ
|θ±1 |(4.26)
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only in O2δ , a 2δ−neighborhood of the segment B ∩ [0, x∗ − 3δ] = (x∗ − 10δ, x∗ − 3δ]. To conclude
that (4.26) holds on all of [0, x∗ − 3δ] we observe that θ̄±1 can be constructed by Theorem 3.1 on
[0, x∗ − 5δ] (say) using P2 and P3 paths approaching zero along the x−axis, but which start at the
same initial points already chosen for the justification on O2δ . This works because ℜµj = 0 on
[0, x∗ − 5δ] for j = 1, 2, 3. The other functions on the right in (4.25) are treated similarly.

5. The ability to choose Cζ uniformly for ζ in a compact subset of the allowed Class III values
follows from the corresponding uniformity statements in part (2) of Remark 2.2 and the comparison
proposition Prop. 2.7, and inspection of the proof of Theorem 3.1 together with steps 1-4 above.

A simpler formula for θ+1 and θ−1 on [0, x∗ − 3δ]. It follows directly from the definition of
θ+1 given earlier that

θ+1 (x, ζ, ν, ǫ) = exp

[∫ x

0
(ǫµ1(τ, ζ) + E11(τ, ζ, ν)) dτ

]

a1(x, ζ, ν) on [0, x∗ − 3δ],(4.27)

where s(x, ζ) = i|s| whenever it occurs in (4.27). Let us define

θ+2 (x, ζ, ν, ǫ) = exp

[∫ x

0
(ǫµ2(τ, ζ) + E22(τ, ζ, ν)) dτ

]

a2(x, ζ, ν) on [0, x∗ − 3δ](4.28)

using the same s(x, ζ); here aj = T (x, ζ)ej , j = 1, 2. Observe that by changing the sign of s in the
formula for µ1 we obtain µ2; similarly, we obtain a2 from a1 and E22 from E11 by changing the
sign of s (see section A.4). It follows immediately from this and the formulas for θ−1 given in (4.3),
(4.4) that

θ−1 = α(ǫ, ζ, ν)θ+2 on [0, x∗ − 3δ].(4.29)

Here the factor α is given by

α(ǫ, ζ, ν) := exp

[∫

C
(ǫµ1 +E11)dτ

]

,(4.30)

where C proceeds from 0 along the x−axis to x∗−2δ, then around x∗ on a clockwise circle of radius
2δ, then back to 0 along the x−axis. The square root changes by analytic continuation along the
contour, starting on [0, x∗ − 2δ] with s = i|s| as above23.

Defining the exact solution θ̄+2 := α−1θ̄−1 , we have:

Corollary 4.4. For a profile of type I, fix ζ ∈ Class III+\{ic0η1/2(0+), ic0η
1/2(∞)}. On [0, x∗−3δ]

θ̄1,G(x, ζ, ν, ǫ) = θ̄+1 + α(ǫ, ζ, ν)θ̄+2 +O(1/ǫ),(4.31)

where α is given by (4.30) and

|θ̄+j − θ+j | ≤
C

ǫ
|θ+j |, j = 1, 2(4.32)

on [0, x∗ − 3δ]. In particular, we have

|θ̄1,G(0, ζ, ν, ǫ) − [T (0, ζ)e1 + α(ǫ, ζ, ν)T (0, ζ)e2] | ≤ Cζ/ǫ(4.33)

for T as in (1.13). The constant Cζ can be replaced by CK for ζ in a compact subset K of the
allowed values.

Remark 4.5. Since µi, i = 1, 2 are purely imaginary on [0, x∗ − 3δ], the functions θ+j , j = 1, 2 are
O(1) there as ǫ→ ∞. Thus, the error term in (4.31) is small compared to the other terms.

23On the return trip from x∗ − 2δ to 0 we have s = −i|s|
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4.2 Case D: c20 − u2 is strictly decreasing.

To construct the exact solutions needed for the matching argument in this case we start with
approximate solutions θi given by

θi(x, ζ, ν, ǫ) = exp [ǫhi(x, ζ) + ki(x, ζ, ν)]ai(x, ζ, ν),(4.34)

but now they are defined before analytic continuation for x < x∗ where

hi(x, ζ) =

∫ x

0
µi(τ, ζ)dτ, for all i

ki(x, ζ, ν) =

∫ x

0
Eii(τ, ζ, ν)dτ, for i = 1, 2,

(4.35)

and s(x, ζ) = |s| for x < x∗.
24

Again let B ⊂ C denote a 4δ-neighborhood of the segment [x∗ − 6δ, x∗], but now let Ñφ denote
a closed δ−neighborhood of the ray {z : arg(x∗ − z) = φ}. Let θ1,M be an approximate solution
defined by analytically continuing θ1 to B \ Ñ−π/3, and denote by θ̄1,M the corresponding exact
solution justified by Theorem 3.1 in that region.25 When choosing P2 paths, for example, we now
use26

h21(z)− h∗21 = −(4κ(−d) 1

2/3ηu)(x∗)(x∗ − z)
3

2 +O((x∗ − z)
5

2 )(4.36)

in place of (3.24). Paths of type P2 and P3 can be chosen starting in the fourth quadrant (relative
to x∗).

Let θ2 be an be an approximate solution defined by analytically continuing θ2 to B \ Ñ−π/3.
Paths of type P3 terminating at any point in this region can be chosen with a common initial point
in the fourth quadrant. Paths of type P1 terminating at any point in the region B1 := {z : π

3 <
arg(x∗ − z) < 5π

3 } can be chosen with a common initial point in the first quadrant. Paths of type
P1 terminating at any point in the region B2 := {z : −π

3 < arg(x∗ − z) < π} can be chosen with
a common initial point on x < x∗. By Theorem 3.1 we obtain one exact solution θ̄21 in B1 and
another θ̄22 in B2 satisfying

|θ̄2j − θ2| ≤
C

ǫ
|θ2| in Bj, j = 1, 2.(4.37)

Similarly, we let θ̄3, θ̄4, θ̄5 be exact solutions associated to analytic continuations of θ3, θ4, θ5 and
justified in B \ Ñπ/3. In each case paths of types P1 and P2 can be chosen to start directly above
x∗ on the axis ℜz = x∗.

Now the goal is to prove

Proposition 4.6. For a profile of type D, fix ζ ∈ Class III+\{ic0η1/2(0+), ic0η
1/2(∞)}. Let θ be the

exact decaying solution on x ≥ x∗ + δ constructed for case D in Theorem 2.1, extended analytically
to [0,∞). For an appropriately selected multiple θ̄1,G = G(ǫ, ζ, ν)θ we have on [0, x∗ − 3δ]

|θ̄1,G − θ1| ≤
Cζ

ǫ
|θ1| on [0, x∗ − 3δ].(4.38)

The constant Cζ in (4.6) can be replaced by CK for ζ in a compact subset K of the allowed
values.

24The value of s in x > x∗, s = i|s|, is obtained from that in x < x∗ by continuation in ℑz < 0.
25Caution: The ray arg(x∗ − z) = −π/3, for example, lies in the second quadrant relative to x∗.
26Formula (4.36) corrects a sign error in [Er3], p.49.
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Proof. 1. As in case I we take x1 = x∗ + 2δ, define

G(ǫ, ζ, v) = e−Hǫ(x1,ζ,ν),(4.39)

and note that θ̄1,G := G(ǫ, ζ, ν)θ satisfies

|θ̄1,G − θ1,M |(x1) ≤
C

ǫ
|θ1,M |(x1).(4.40)

2. Using the basis {θ̄1,M , θ̄21, θ̄3, θ̄4, θ̄5} we have

θ̄1,G = c1θ̄1,M + c2θ̄21 + · · ·+ c5θ̄5 on B ∩ {x ≥ x1},(4.41)

where for all i, ci = ci(ǫ, ζ, v). By the construction of θ̄1,M we have

|θ̄1,M − θ1,M | ≤ C

ǫ
|θ1,M | on [x∗ + 2δ, x∗ + 4δ)(4.42)

and analogous statements hold for the other functions on the right.
3. We have an integral formula

θ1,M(z, ζ, ν, ǫ) = exp [ǫh1,M (z, ζ) + k1,M (z, ζ, ν)]a1,M (z, ζ, ν)(4.43)

where

ǫh1,M (z, ζ) :=

∫ z

0,Γ
ǫµ1(τ, ζ)dτ,(4.44)

Γ consists of the segment [0, x∗ − 2δ] followed by any path in B \ Ñ−π/3 from x∗ − 2δ to z, and the
definitions of µ1(τ, ζ), k1,M (z, ζ, v), and a1,M (z, ζ, v) are readily gleaned from the definition of θ1,M
given above. We shall also need the corresponding formulas for θ2 in B1 and B2 and the functions
θ3, . . . , θn+4 in B \ Ñπ/3.

4. We determine the behavior of the coefficients in (4.41) after evaluating (4.41) at x1. From
the properties of the µi on the real axis and the integral formulas for the approximate solutions,
we easily determine that

a := −ℜh1,M (x1, ζ) > 0, b := ℜh2(x1, ζ) > 0, and ℜh3(x1, ζ) = 0.(4.45)

Thus we have a situation like (4.15) and the same coefficient analysis shows

c1 = 1 +O(ǫ−1), c2 = O(e−(a+b)ǫ/ǫ), cj = O(e−aǫ/ǫ), j = 3, 4, 5.(4.46)

5. We know the asymptotic behavior in B∩{x ≤ x∗−3δ} of all functions on the right in (4.41)
except for θ̄21. Thus we write

θ̄21 = d1θ̄1,M + d2θ̄22 + d3θ̄3 + d4θ̄4 + d5θ̄5,(4.47)

where again all coefficients depend on (ǫ, ζ, v). Evaluate equation (4.47) at a point z given by

arg(x∗ − z) =
π

3
+ δ, |z| = 2δ,(4.48)

a point where all functions in (4.47) are known asymptotically. The integral formulas for the
approximate solutions yield (with paths of integration mostly restricted to the x−axis)

ã := −ℜh1,M(z, ζ) > 0, b̃ := ℜh2(z, ζ) > 0, and c̃ = ℜh3(z, ζ) with |c̃| < c(δ),(4.49)
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where c(δ) → 0 as δ → 0. Direct analysis of the coefficients in (4.47) using (4.37) gives

|d1| ≤ Ce(b̃+ã)ǫ/ǫ, d2 = 1 +O(1/ǫ), |dj | ≤ Ce(b̃−c̃)ǫ/ǫ, j ≥ 3.(4.50)

For δ small we have ã < a, b̃ < b, so from (4.41), (4.46), (4.47), and (4.50) we conclude

|θ̄1,G − θ̄1,M | ≤ C

ǫ
|θ̄1,M | on B ∩ [0, x∗ − 3δ].(4.51)

6. It remains to show that (4.51) holds on [0, x∗−3δ]. The problem is that, while the functions
on the right in (4.41) and (4.47) have analytic extensions to x = 0, we do not know the asymptotic
behavior in ǫ of those extensions. As in case I we can use Theorem 3.1 to determine this behavior
in the case of θ̄1,M , because ℜ(h2 − h1) and ℜ(h3 − h1) decrease as x → 0 on [0, x∗ − 3δ]. This
allows us to choose P2 paths and P3 paths terminating at points on [0, x∗ − 3δ] and starting at the
same initial points already chosen for the earlier justification of θ̄1,M on B ∩ (̃Ñ \ −π

3 ). Thus we
obtain

|θ̄1,M − θ1| ≤
C

ǫ
|θ1| on [0, x∗ − 3δ].(4.52)

This method does not work for the other functions appearing in (4.41) and (4.47). For example, as
x decreases to 0, ℜ(h1 − h2) and ℜ(h3 − h2) both increase, and therefore Theorem 3.1 cannot be
used to show the admissibility of θ̄22 on [0, x∗ − 3δ].

Instead we use the differential equation to estimate directly how much these functions can grow
as x approaches 0 in [0, x∗ − 3δ]. We then use the estimates on the coefficients in (4.46) and (4.50)
to show that in spite of this growth, (4.51) still holds on [0, x∗ − 3δ].

We illustrate this argument in the case of θ̄3. On [0, x∗ − 3δ] we have for some constants c,C:

ℜµ1 ≤ c < 0 = ℜµ3 < C ≤ ℜµ2.(4.53)

After diagonalizing the system with the transformation T (x, ζ) (1.13) and setting θ̄3 = TW , we
obtain with D = diag(µ1, . . . , µ5):

dx|W |2 = dx(W,W ) = 2ℜ(ǫDW,W ) +O(|W |2) ⇒ |W |x ≥ ǫℜµ1|W | − C♯|W |.(4.54)

So for ǫ large, W and therefore θ̄3 grows at most by a factor

e
ǫ
∫ x∗−3δ
y

(

|ℜµ1|(s,ζ)+
C♯

ǫ

)

ds
(4.55)

as x varies from x∗ − 3δ to y, where y ∈ [0, x∗ − 3δ]. In the expansion of θ̄1,G on B ∩ [0, x∗ − 3δ]
the function θ̄3 occurs with a coefficient of c2d3 + c3. Since c3 = O(e−aǫ/ǫ) and

a >

∫ x∗−3δ

0
|ℜµ1|(s, ζ)ds(4.56)

we obtain

|c3θ̄3|(y) ≤
C

ǫ
e−aǫeǫ

∫ y
x∗−3δ ℜµ1(s,ζ)ds ≤ C

ǫ
eǫ

∫ y
0
ℜµ1(s,ζ)ds ≤ C

ǫ
|θ̄1,M |(y).(4.57)

A similar estimate for c2d3θ̄3 shows that the contribution of θ̄3 on [0, x∗ − 3δ] is negligible. The
remaining functions in the expansion of θ̄1,G are treated similarly. Thus we obtain

|θ̄1,G − θ̄1,M | ≤ C

ǫ
|θ̄1,M | on [0, x∗ − 3δ],(4.58)

which with (4.52) implies the result.
7. The final uniformity statement is proved as in step 5 of the proof of Proposition 4.3.
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Corollary 4.7. Fix ζ ∈ Class III+ \ {ic0η1/2(0+), ic0η
1/2(∞)}. In case D we have

|θ̄1,G(0, ζ, ν, ǫ) − T (0, ζ)e1| ≤ Cζ/ǫ(4.59)

for T as in (1.13). The constant Cζ can be replaced by CK for ζ in a compact subset K of the
specified Class III values.

4.3 Case M: c20 − u2 has a single interior maximum.

The nonvanishing of d =
d(c2

0
η)

dx (x∗) played an important role in the matching arguments for
cases I and D. In case M denote by xM the interior point where

d(c20η)

dx
(xM ) = 0.(4.60)

A different type of matching argument is needed for the Class III value

ζM = ic0η
1/2(xM ).(4.61)

The turning point problem for ζM is studied in [Er3], section 6, pages 71-98, but we shall not treat
it here. For all other non-exceptional Class III values of ζ in case M, the turning point problems
that arise can be handled using the earlier results for cases I and D, together with their proofs.

For each such ζ there are either one (x∗ = x1∗) or two (x2∗ < x1∗) turning points . As in cases
I and D we define θ̄1,G = G(ǫ, ζ, ν)θ, where θ is the decaying solution constructed in Theorem 2.1
on [x1∗ + δ,∞) and

G(ǫ, ζ, ν) = e−Hǫ(x1,ζ,ν), x1 = x1∗ + δ.(4.62)

In the E11 integral in the definition of Hǫ(x, ζ, ν) a turning point where d > 0 is excised via the
upper half plane and one where d < 0 via the lower half plane.

In part (3) of Theorem 4.8 one must correctly redefine the function θ1 that appears in the
statement of Proposition 4.6, and the functions θ̄±1 , θ

±
1 , θ̄

+
2 , θ

+
2 , and constant α(ǫ, ζ, ν) that appear

in the statement of Proposition 4.3 and Corollary 4.4.
The function θ1 is defined for x2∗ < x < x1∗ before analytic continuation around x1∗ by formulas

(4.34),(4.35), where s is given by (1.12) on the real axis, and in the k1 integration path the point
x2∗ is excised via the upper half plane.

The functions θ±1 are given on x2∗ < x < x1∗ by the same function θ1 before analytic continuation
around x2∗. Their continuations and the corresponding exact solutions θ̄±1 are then constructed as
in case I. The functions θ+2 and θ̄+2 are then defined as in case I. The constant α(ǫ, ζ, ν) is given by
(4.30), where the contour starts at 0 and encircles just x2∗.

Proposition 4.8. In case M let ζ ∈ Class III \ {ic0η1/2(0+), ic0η
1/2(M), ic0η

1/2(∞)}.
i)Suppose there is only one turning point x∗ corresponding to ζ and that

d(c2
0
η)

dx (x∗) < 0. Then
the asymptotic behavior of θ̄1,G on [0, x∗ − 3δ] is given by Proposition 4.6.

ii.) Suppose there is only one turning point x∗ corresponding to ζ and that
d(c2

0
η)

dx (x∗) > 0. Then
the asymptotic behavior of θ̄1,G on [0, x∗ − 3δ] is given by Proposition 4.3 and Corollary 4.4.

iii.) Suppose there are two turning points x2∗ < x1∗ with

d(c20η)

dx
(x1∗) < 0 <

d(c20η)

dx
(x2∗).(4.63)

On [x2∗+3δ, x1∗ − 3δ] the asymptotic behavior of θ̄1,G is given by Proposition 4.6, while on [0, x∗ −
3δ] the asymptotic behavior of θ̄1,G is given by Proposition 4.3 and Corollary 4.4. In particular,
θ̄1,G(0, ζ, ν, ǫ) is given again by formula (4.33), with α defined as explained above.
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Proof. 1. Part (i) (resp., part (ii)) follows immediately from the fact that for x < x∗, s
2 =

ζ2 + c20η > 0 (resp. < 0) just as in case D (resp. case I).
2. In the proof of part (iii) the functions θ1,M and θ̄1,M are defined near x1∗ as in case D, using

the redefinition of θ1 described above. The analytic extension of θ̄1,M to [x2∗+3δ, x1∗−3δ] satisfies

|θ̄1,M − θ1| ≤
C

ǫ
|θ1| on [x2∗ + 3δ, x1∗ − 3δ].(4.64)

by the argument using Theorem 3.1 that gave (4.52). The redefinition of the other exact solutions
θ̄21, θ̄22, . . . ,θ̄5 needed for the matching argument near x1∗ is similar to the redefinition of θ̄1,M .
An estimate like (4.54) is now used to show that

|θ̄1,G − θ̄1,M | ≤ C

ǫ
|θ̄1,M | on [x2∗ + 3δ, x1∗ − 3δ].(4.65)

3. The redefinition of the other exact solutions θ̄1,M , θ̄2, . . . , θ̄5 needed for the matching argu-
ment near x2∗ is similar to the redefinition of θ̄±1 . In place of (4.14) we can set x2 = x2∗ + 3δ and
use (4.64), (4.65) to conclude

|θ̄1,G − θ1|(x2) ≤
C

ǫ
|θ1|(x2).(4.66)

The rest of the proof follows as in case I.

Remark 4.9. The results of this section show that in case D (resp. case I) the exact decaying
solution of (1.7) decays (resp. oscillates) to the left of the turning point, and oscillates (resp.
decays) to the right of the turning point. In case M we have oscillation to the left of x2∗, followed
by decay, followed by oscillation to the right of x1∗. In cases D and M, when ℜν > 0 the oscillation
on the unbounded interval occurs with an amplitude that decays exponentially to zero.

5 The Instability Theorem

In this section we present, with some simplifications and extensions, the main stability and
instability results of [Er3]. In particular, we give the argument of [Er3] for locating unstable zeros
of

V (τ, ǫ) = τb1(τ, ǫ) + iǫb2(τ, ǫ)− θ(0, τ, ǫ) · (τht + iǫhy),(5.1)

where θ is the exact decaying solution of (1.7) on [0,∞), and the other quantities appearing in
(5.1) are defined in section A.3. With τ = ζǫ+ ν we rewrite this as

V (τ, ǫ) = ǫL(ǫ, ζ, ν),

L(ǫ, ζ, ν) = ζb1 + ib2 − θ(0, ζ, ν, ǫ) · (ζht + ihy) + ǫ−1ν[b1 − θ(0, ζ, ν, ǫ) · ht].
(5.2)

For ℜζ ≥ 0 and all three types of profiles, the integrals b1, b2 are shown in [Er3], p.57-64 to approach
zero as ǫ → ∞. This part of the argument, which is complicated since the integrands involve θ,
can be eliminated if one uses instead the following simpler form of the stability function derived in
[CJLW], Definition 4.7, and shown there to equal V :

V (τ, ǫ) = θ(0, ζ, ν, ǫ) · w(0+) − θ(0, ζ, ν, ǫ) · (τht + iǫhy).(5.3)
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Using (5.3), one finds by inspection

|L(ǫ, ζ, ν)− La(ǫ, ζ, ν)| ≤ CK/ǫ as ǫ→ ∞, where La := −θ(0, ζ, ν, ǫ) · [ζht + ihy],(5.4)

and the constant CK is uniform for ζ in any compact subset K.27

The next proposition, which is the main step in the proof of the theorem that follows, provides
explicit formulas for the approximate stability function La:

Proposition 5.1. Let t1(ζ) and t2(ζ) denote the first two columns of the matrix T (0, ζ) (1.13).
Under Assumptions 1.2, 1.3, and 1.4 we have:

1)For ζ /∈ Class III

|La(ǫ, ζ, ν)− L1(ζ)| ≤ CK/ǫ, where L1(ζ) := −t1(ζ) · (ζht + ihy),(5.5)

and the jump terms ht and hy are given in section A.3. The constant CK is uniform for ζ in any
compact subset K ⊂ (Class III)c. This result holds even for profiles that are not of type I, D, or
M .

2) For profiles of type D and ζ ∈ Class III+ \ {ic0η1/2(0+), ic0η
1/2(∞)}, we have

|La(ǫ, ζ, ν)− L1(ζ)| ≤ Cζ/ǫ.(5.6)

3)For profiles of type I and ζ ∈ Class III+ \ {ic0η1/2(0+), ic0η
1/2(∞)}, we have

|La(ǫ, ζ, ν)− [L1(ζ) + α(ǫ, ζ, ν)L2(ζ)]| ≤ Cζ/ǫ, where L2(ζ) := −t2(ζ) · (ζht + ihy),(5.7)

and α is given in (4.30).
4)For profiles of type M and ζ ∈ Class III+ \ {ic0η1/2(xM ), ic0η

1/2(0+), ic0η
1/2(∞)}, in the

cases described by parts (i), (ii), and (iii) of Proposition 4.8, La satisfies, respectively, (5.6), (5.7),
(5.7).

In parts (2) and (3) and in the three subcases of part (4), the constant Cζ can be chosen
uniformly for ζ in a compact subset of the specified set of Class III+ values.

Proof. The result follows immediately from (5.4) and the formulas for θ(0, ζ, ν, ǫ) given in Corollary
2.3, Corollary 4.7, Corollary 4.4, and Proposition 4.8, part (iii).

The idea now is to study V for large ǫ by studying the functions L1(ζ) and L1(ζ)+α(ǫ, ζ, ν)L2(ζ),
which are given explicitly in [Er3]. The functions L1 (A.19) and L2 (A.20) are computed from the
expressions for T (0, ζ), ht, and hy already given, and α is readily computed using the expression
for E11 (A.24) by letting the radius of the circular part of the contour C in (4.30) shrink to zero.
Writing ζ = iζi, one obtains

α(ǫ, ζ, ν) = eβ(ǫ,ζ,ν), where

β(ǫ, ζ, ν) =
πi

2
− iǫβ1(ζi) + β2(ζi)− νβ3(ζi),

(5.8)

27The rate of convergence to 0 for L − La, is computed in [Er3] for profiles I, D, or M to be O(ǫ−1/2) with no
discussion of uniformity with respect to ζ. By (5.3) the rate CK/ǫ holds, even for profiles not of type I, D, or M.
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and

β1 =

∫ x∗(ζi)

0

2κ|s|
ηu

dx

β2 = ζi

∫ x∗(ζi)

0

κ

η|s|

(

1

1− η

dη

dx
− vpSσr

Tu
+

2uσr

(1− η)(u2 + ζ2i )
− vσrv

u

)

dx

β3 = ζi

∫ x∗(ζi)

0

2κ

η|s|udx, ζ = iζi.

(5.9)

Observe that α is periodic in ǫ and that the βi are all real, with β1 and β3 positive while the sign
of β2 depends on the profile w.

Remark 5.2. By Assumption 1.6 the stability function for the von Neumann step-shock, LvN (ζ),
is nonvanishing in ℜζ ≥ 0. Stability functions for step-shocks were defined and analyzed in [Er4].
Remarkably, it turns out that

LvN (ζ) = L1(ζ),(5.10)

and the analysis of [Er4] shows that since L1 is nonvanishing in ℜζ ≥ 0, in fact

L1(ζ) > 0 for ζi > c0η
1/2(0+)(5.11)

and increases monotonically with ζi. The function in (5.10) is a nonvanishing multiple of the
stability determinant for step-shocks defined in [M].

Theorem 5.3. Let τ = ζǫ+ ν, where |ν| ≤ R. Under Assumptions 1.2, 1.3, and 1.4 we have:
a)For ζ ∈ {ℜζ ≥ 0} \ Class III there exists a positive constant ǫ(ζ,R) such that V (τ, ǫ) 6= 0 for

ǫ ≥ ǫ(ζ,R). This result holds even for profiles that are not of type I, D, or M .
b) For a profile of type D and ζ ∈ Class III+ \ {ic0η1/2(0+), ic0η

1/2(∞)}, there exists a positive
constant ǫ(ζ,R) such that V (τ, ǫ) 6= 0 for ǫ ≥ ǫ(ζ,R).

c)For a profile of type I, suppose that for iζi ∈ Class III+ \ {ic0η1/2(0+), ic0η
1/2(∞)} one has

the inequality

|L2(iζi)| exp[β2(ζi)] < L1(iζi).(5.12)

Then there exists a positive constant ǫ(ζi, R) such that V (iζiǫ+ ν, ǫ) 6= 0 for ǫ ≥ ǫ(ζi, R).
d)For a profile of type I, suppose that for some iζi ∈ Class III+ \ {ic0η1/2(0+), ic0η

1/2(∞)} one
has

|L2(iζi)| exp[β2(ζi)] > L1(iζi).(5.13)

Let ν satisfying |ν| ≤ R be an arbitrary point on the vertical line defined by

L1 = |L2| exp[β2 −ℜ(ν)β3],(5.14)

and suppose now that R ≥ ℜν for ℜν as in (5.14). For any δ > 0 there exists a positive constant
ǫ(ζi, R, δ) such that for periodically distributed ǫ ≥ ǫ(ζi, R, δ) satisfying

ǫ = [(2n− 1

2
)π −ℑ(ν)β3]/β1, L2 > 0

ǫ = [(2n+
1

2
)π −ℑ(ν)β3]/β1, L2 < 0,

(5.15)
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V (iζiǫ+ ν, ǫ) has a zero within a distance δ of ν.
(e) For a profile of type M, suppose that iζi ∈ Class III+\{ic0η1/2(0+), ic0η

1/2(xM ), ic0η
1/2(∞)}.

If there is a single turning point x∗ and d =
d(c2

0
η)

dx (x∗) < 0, the conclusion of part (b) holds for
ζ = iζi.

Suppose there is a single turning point x∗ and d > 0. If inequality (5.12) holds, then the
conclusion of part (c) holds, while if inequality (5.13) holds, then the conclusion of part (d) holds.

Suppose there are two turning points x2∗ < x1∗. If inequality (5.12) holds, then the conclusion
of part (c) holds, while if inequality (5.13) holds, then the conclusion of part (d) holds. Recall that
when there are two turning points, the contour in the integral defining α encloses only x2∗.

The constants ǫ(ζ,R, δ) (resp. ǫ(ζi, R, δ)) above can be chosen uniformly for ζ (resp. ζi) in
compact subsets of the sets of values described in the respective cases (or subcases) listed above.

Proof. 1. First observe that as a consequence of (5.4), the estimates (5.5), (5.6) hold with La

replaced by L. Parts (a) and (b) then follow immediately from the nonvanishing of L1(ζ) and parts
(1) and (2) of Proposition 5.1.

2. From (5.8) we have

|α| = exp(β2 −ℜ(ν)β3), β3 > 0.(5.16)

The inequality (5.12) thus implies that L1(iζi)+α(ǫ, iζi, ν)L2(iζi) does not vanish for ℜν ≥ 0. Part
(c) now follows from (5.4) and part (3) of Proposition 5.1.

3. When the inequality (5.13) holds, (5.8) implies that the analytic function of ν given by

Va(ν; ζi, ǫ) := L1(iζi) + α(ǫ, iζi, ν)L2(iζi)(5.17)

has zeros on the vertical line (5.14) at the ǫ values given by (5.15). The nonvanishing of β3 and
L2(iζi) implies these zeros are simple. Observe also that

|∂νVa(ν; ζi, ǫ)| = eβ2−ℜ(ν)β3β3|L2| is independent of ǫ.(5.18)

Fix an arbitrarily small δ > 0 and let Cδ be a circular contour centered at ν of radius δ. For ǫ large
enough satisfying (5.15), part (3) of Proposition 5.1 and (5.18) imply

|V (iζiǫ+ ν, ǫ)− Va(ν; ζi, ǫ)| <
Cζi

ǫ
< |Va(ν; ζi, ǫ)| on Cδ.(5.19)

Part (d) now follows from Rouché’s Theorem. The subcases of part (e) follow in the same way from
part (4) of Proposition 5.1.

4. The statements about uniform choices of ǫ are direct consequences of the corresponding
statements in Proposition 5.1.

Applications.

1) We refer to [Er3] for a detailed discussion of the consequences of Theorem 5.3. For one
reaction A→ B detonations with the Arrhenius rate law (1.30), Erpenbeck first identifies ranges of
various physical parameters for which profiles of type I, D, or M do occur. Then he uses Theorem
5.3 to identify ranges of the parameters for which unstable zeros of V are actually present in cases
I and D. Many of these results are also reported Chapter 6 of the book [FD].

2) Starting with an open interval of ζi values satisfying (5.13), one obtains from (5.15), say
when ℑ(ν) = 0, corresponding ǫ intervals of unstable wavenumbers. For n sufficiently large these
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intervals overlap and one finds that all wavenumbers above a certain cutoff (depending on the
interval of ζ values) are unstable.

3) Most of the conclusions of [Er3] for type M profiles do not rely on his analysis of the turning
point problem for ζi,M := c0η

1/2(xM ), where xM is the location of the maximum. In particular, by
applying part (e) of Theorem 5.3 to values of ζi near ζi,M , but not equal to it, Erpenbeck derives
the algebraic condition

K(ζi,M) :=

(

1

1− η

dη

dx
− vpSσr

Tu
+

2uσr

(1− η)(u2 + ζ2i,M)
− vσrv

u

)

(xM ) > 0(5.20)

as a sufficient condition for instability for profiles of type M. The inequality (5.20) implies the
existence of unstable zeros of V (iζiǫ+ ν, ǫ) for ζi near ζi,M . A separate criterion is derived in [Er3],
p.96, for V to have unstable zeros exactly at the special value ζi,M .28This condition cannot be
derived from Theorem 5.3.

A Appendix

A.1 A variable-coefficient gap lemma

In this section we state and prove Lemma A.1, which is our main tool for determining the
asymptotic behavior as ǫ = 1

h → ∞ of the decaying solution θ(x, τ, ǫ) of (1.7) on [a,∞). This
lemma was introduced in [Z2] and used there for the study of stability of ZND detonations with
respect to high frequency one-dimensional perturbations.

Consider a first-order system

(A.1) V ′ = Ap(x;h)V :=Mp(x;h)V +Θp(x;h)V on x ≥ 0,

with V (x) ∈ C
N , depending on a parameter p ∈ P ⊂ R

m and a distinguished small parameter
h > 0.

Lemma A.1 ([Z2]). Suppose there exist positive constants β, C such that for all x ≥ 0 and p ∈ P :

(A.2) |Θp(x, h)| ≤ Ch2e−βhx and

(A.3) ℜMp(x, h) ≥ −(hδp(h) +Che−βhx), where 0 ≤ δp(h) ≤ δ∗ < β

for all h.29 Assume further that there exists a nonzero constant vector V p
∗ such that

Mp(x, h)V p
∗ = 0 for all x ≥ 0.(A.4)

Then there exists an h0 independent of p ∈ P such that for 0 ≤ h < h0, there exists a solution
V p(x, h) of (A.1) defined on x ≥ 0 satisfying

(A.5) |(V p(x)− V p
∗ )| ≤ C1he

−δ∗hx|V p
∗ | for x ≥ 0.

28For ζi,M a formula like (4.33) is derived in [Er3], but with a completely different α.
29Here ℜM := 1

2
(M +M∗).
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Proof. 1. We seek, equivalently, a solution V p of the integral fixed-point equation

(A.6) T V (x) = V p
∗ +

∫ x

+∞
Fy→xΘp(y, h)V (y)dy,

where Fy→x is the solution operator of V ′ =MpV from y to x; that is, W (x) := Fy→xw(y) satisfies

Wx =MpW, W |x=y = w(y).(A.7)

2. We claim

(A.8) ‖Fy→x‖ ≤ Cehδ
p(h)(y−x) ≤ Cehδ∗(y−x) for y > x.

Indeed, for W (x) as in (A.7) we have using (A.3)

dx(|W |2) = 2ℜ(W,Wx) = 2(W,ℜMpW ) ≥ −2(hδp(h) + Che−βhx)|W |2 ⇒
|W |x/|W | ≥ −(hδp(h) + Che−βhx),

(A.9)

and integrating this inequality from x to y gives

|W (x)|/|w(y)| ≤ C1e
hδp(h)(y−x), where C1 =

∫ ∞

0
Che−βhxdx.(A.10)

3. For h > 0 sufficiently small, this implies that T is a contraction on L∞[0,∞). For, applying
(A.2) and (A.8) we have (with |V |∞ = |V |L∞[0,∞))

(A.11) |T V1 − T V2| (x) ≤ Ch2|V1 − V2|∞
∫ ∞

x
eδ∗h(y−x)e−βhydy ≤ C ′h|V1 − V2|∞e−δ∗hx,

which for h sufficiently small is less than 1
2 |V1 − V2|∞. By iteration, we thus obtain a solution

V p ∈ L∞[0,∞) of V = T V . Further, taking V1 = V p, V2 = 0 in (A.11) we obtain both

|V p − V p
∗ |∞ = |T V p − T 0|∞ ≤ 1

2
|V p|∞ ⇒ |V p|∞ ≤ 2|V p

∗ | and

|V p − V p
∗ |(x) ≤ C ′h|V p|∞e−δ∗hx,

(A.12)

which together imply (A.5).

Remark A.2. Strictly speaking, Lemma A.1 is a “weak” gap lemma realizing only the fastest
decaying mode of (A.1), whereas the full gap lemma construction of [GZ] (see, for example, Cor.
2.4, [GZ], or Prop. 3.1 of [ZH]) yields intermediate modes as well. However, a straightforward
modification of (A.6) following that of Prop. 3.1, [ZH] yields intermediate modes as well, provided
that Mp splits into diagonal blocks Mp

± such that ℜMp
±(x, h) ≷ −(hδp(h) +Che−βhx).

Remark A.3. On an interval [a/h, b/h], corresponding in coordinates x̃ = hx to a finite interval
[a, b], essentially the same argument as in the proof of Lemma A.1 applies with modified mapping

(A.13) T V (x) = V p
∗ +

∫ x

b/h
Fy→xΘp(y, h)V (y)dy

to yield an analogous result |(V p(x) − V p
∗ )| ≤ C1h|V p

∗ | for x ∈ [a/h, b/h], assuming only uniform
boundedness of the coefficient matrix Ap, |Θp(x, h)| ≤ Ch2, and ℜMp(x, h) ≥ −Ch, or, for inter-
mediate modes, ℜMp

±(x, h) ≷ −Ch, similarly as discussed in Remark A.2. Rescaling x → hx, and
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comparing with Theorem 3.1(b), we see that, restricted to a finite closed real interval, the Method
of Parameters and the variable-coefficient gap lemma constructions thus give essentially the same
results (here restricted to level m = 0). On an infinite interval, on the other hand, it is readily
checked that the truncation error |Φm − Φ| resulting from the Method of Parameters construction
described in (1.15) generically does not decay in x, even for ǫΦ(ǫ, z) = ǫΦ0 +Φ1 with Φj constant
(rather than just asymptotically constant), and so the method of parameters in general fails.30

A.2 ZND equations

The ZND equations for the unknowns (v,u, S, λ) (specific volume, particle velocity u = (ux, uy, uz),
entropy, and mass fraction of reactant) are

∂tv + u · ∇v − v∇ · u = 0

∂tu+ u · ∇u+ v∇p = 0

∂tS + u · ∇S = −r∆F/T := Φ

∂tλ+ u · ∇λ = r,

(A.14)

where p = p(v, S, λ) is pressure, T is temperature, ∆F is the free energy increment, and r(v, S, λ)
is the reaction rate function.

A.3 The stability function V (τ, ǫ).

The stability function defined in [Er1] and used in [Er3] is given by

V (τ, ǫ) = τb1(τ, ǫ) + iǫb2(τ, ǫ)− θ(0, τ, ǫ) · (τht + iǫhy),(A.15)

where (with v′ = dv
dx and m = u/v, a constant independent of x)

gt = −(v′, u′, 0, S′, λ′)t, gy = (0, 0,−vp′, 0, 0)t, bj = −
∫ ∞

0
θ(x, τ, ǫ) ·A−1

x (x)gj(x)dx for j = 1, 2,

(A.16)

ht =
v− − v+
v−T+η+













2(1 − η+)g+/m
T+η+ + 2(1− η+)g+

0
−m(v− − v+)η+

0













,(A.17)

and hy the single has nonzero component (hy)3 = m(v−−v+). Here v±, for example, are components
of the states w± := w(0±) just to the right and left of the von Neumann shock, and

g+ = T+ − 1

2
(v− − v+)pS+.(A.18)

In section 5.3 we work with the simpler form of V (5.3) in which the integals bj do not appear.
The functions L1(ζ) and L2(ζ), appearing in Proposition 5.1 and used to compute zeros of V ,

are given explicitly in [Er3] as:

30 Specifically, the righthand side of (3.12) blows up as z → ∞.
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L1(ζ) = −u−(1− χv)

η+

[

ℓ+ζ(ζ + κ+s+)

u+u−
+ η+

(

1− ζ2

u+u−

)]

ℓ = 2− (1− η)(1 − χv)v−pS/T, χv = v+/v−,

(A.19)

where ± denotes evaluation at 0±.

L2(ζ) = −u−(1− χv)

η+

[

ℓ+ζ(ζ − κ+s+)

u+u−
+ η+

(

1− ζ2

u+u−

)]

.(A.20)

A.4 Coefficients appearing in the linearized systems

The matrix coefficients appearing in the reduced system (1.5) are

Ax =













u −v 0 0 0
vpv u 0 vpS vpλ
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u













, Ay =













0 0 −v 0 0
0 0 0 0 0
vpv 0 0 vpS vpλ
0 0 0 0 0
0 0 0 0 0













B =













−u′ v′ 0 0 0
p′ − v(c20/v

2)′ u′ 0 vp′S vp′λ
0 0 0 0 0

−Φv S′ 0 −ΦS −Φλ

−rv λ′ 0 −rS −rλ













,

(A.21)

where (′) denotes differentiation with respect to x and c20 = −v2pv(v, S, λ). These matrices are
obtained from the corresponding matrices in the unreduced 6×6 system by deleting the fourth row
and fourth column of each of the latter matrices. In each of the unreduced matrices Ay (coefficient
of α) and B, the fourth row and fourth column consist only of zeros, while the fourth row and fourth
column of Ax have the fourth component u and all other components 0. The matrix coefficient of
β in the unreduced system is

Az =

















0 0 0 −v 0 0
0 0 0 0 0 0
0 0 0 0 0 0
vpv 0 0 0 vpS vpv
0 0 0 0 0 0
0 0 0 0 0 0

















.(A.22)

The matrix Φ0(x, ζ) in the transposed system (1.9) is computed in [Er3], p.112 to be

Φ0(x, ζ) =



















− (1−η)ζ
ηu −mζ

ηu − im
1−η 0 0

− (1−η)ζ
ηmu − (1−η)ζ

ηu 0 0 0
i(1−η)
ηm

i
η

ζ
u 0 0

(1−η)pSζ
ηm2u

(1−η)pSζ
ηmu

ipS
m

ζ
u 0

(1−η)pλζ
ηm2u

(1−η)pλζ
ηmu

ipλ
m 0 ζ

u



















.(A.23)
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The matrix E = T−1Φ1T − T−1 dT
dx (1.14) has E11 component given by

E11(x, ζ, ν) = −(1− η)vpS
2Tηu

σr − 1− η

2ηu
(2ν + vσrv) +

2− η

4η(1 − η)

dη

dx
+

κζ

2ηs

(

1

1− η

dη

dx
− vpS
Tu

σr − 1

u
(2ν + vσrv)

)

+
κζ + s

ζ + κs

ζ

ηus
σr − 1

2

d ln s

dx
,

(A.24)

where σ is defined ([FD],p.95) by

σ = v(∂p/∂λ)e,v/c
2
0 (e is specific internal energy).(A.25)

The formula for E22 is the same as (A.24), except that s is replaced by −s.
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