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Abstract
Background—The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently
mutated class of oncogenes in human cancers (33%), stimulating intensive effort in developing
anti-Ras inhibitors for cancer treatment.

Discussion—Despite intensive effort, to date no effective anti-Ras strategies have successfully
made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic
Ras in cancer.

Conclusions—Since approaches to directly target mutant Ras have not been successful, most
efforts have focused on indirect approaches to block Ras membrane association or downstream
effector signaling. While inhibitors of effector signaling are currently under clinical evaluation,
genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug
discovery.
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Introduction
Initially identified as retroviral oncogenes transduced from the rodent genome, mutationally
activated human RAS genes were subsequently linked to human cancer in 1982 [1]. This
prompted intensive research to elucidate the structure, biochemistry and biology of wild type
and mutant Ras proteins to provide clues for the development of small molecules to block
mutant Ras function in cancer. For the purpose of this review, the focus will be exclusively
on the “classical” Ras protein family members H-, N-, and K-Ras (isoforms 4A and 4B). We
summarize the unsuccessful approaches that have been considered to directly target mutant
Ras, the directions taken to block Ras membrane association or downstream effector
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signaling, and more recently unbiased functional screens for synthetic lethal partners of
mutant KRAS.

RAS gene mutation in human cancer: the focus is now on KRAS KRAS: the most
frequently mutated RAS gene in human cancers

The three human RAS genes (HRAS, KRAS and NRAS) encode four highly related (>90%
identity) proteins (Fig. 1A). Mutational activation of RAS genes is associated with 33% of
human cancers, making it one of the most frequent oncogenic mutations [2]. Although
HRAS was historically the most studied RAS gene, ironically, it is the isoform least mutated
in human cancers. From data available at the COSMIC database
(www.sanger.ac.uk/genetics/CGP/cosmic/), mutations in KRAS are associated with the
highest percentage of all human cancers (21.6%), followed by NRAS (8.0%), and with
HRAS mutations the least frequently mutated (3.3%). KRAS mutations comprise 86% of all
RAS mutations (Fig. 1B). In particular, KRAS is the predominant or exclusive RAS gene
mutated in three of the top four neoplasms that account for cancer deaths in the US: lung,
colon and pancreatic cancer [3]. As described below, there is evidence for distinct functions
of RAS genes in normal and neoplastic cell biology.

Genome-wide sequencing of human cancers: KRAS mutation is the predominant
oncogene alteration in lung, colon and pancreatic cancer

Pancreatic ductal adenocarcinoma (PDAC) is the most common cancer of the pancreas,
comprising over 85% of all cases [4]. With an estimated 43,140 new cases and 36,800
deaths in 2010, PDAC ranks 4th in cancer-related deaths in the United States and has a
relative 1-year survival rate of 20% and a 5-year survival rate of only 4% [3].

A model for pancreatic ductal adenocarcinoma (PDAC) development, where mutational
activation of KRAS and the mutational loss of TP53, SMAD4 and CDKN2A (encodes p16
INK4A and p19 ARF) tumor suppressor function defined key genetic steps in tumor
progression [5, 6] (Fig. 1C). In particular, the frequent mutation of KRAS has been well-
established [7]. With the recent complete exon sequencing of pancreatic cancer, it
established that the most frequently mutated genes in this cancer were already known, with
no novel and significant genetic lesions found [8]. While many other genes were found to be
mutated, their low representation in a majority of pancreatic cancers verified that aberrant
K-Ras function remains the most important target for pancreatic cancer treatment.

Prior to exon sequencing of PDAC, the most frequently mutated genes known to be
associated with the progression of this cancer were KRAS and the TP53, CDKN2A and
SMAD4 tumor suppressors [4]. The outcome of sequence analyses of 20,661 genes in 24
pancreatic cancers was that these same four genes remained the top four most frequently
mutated genes, with KRAS mutations found in 114 of 114 PDAC tumors [8].

With an estimated 142,570 new cases and 51,370 deaths in 2010, colorectal cancer (CRC)
ranks 3rd in cancer-related deaths in the United States [3]. Frequent KRAS mutations had
been established previously for colorectal cancer [9] and comprises an early genetic event in
CRC progression [10] (Fig. 1D). A similar picture emerged from exon sequencing of
colorectal cancers. In a study which 18,191 genes were sequenced in 11 colorectal tumors,
KRAS was the most frequently mutated oncogene and second only to TP53 mutations for all
mutated genes [11].

With an estimated 232,520 new cases and 157,300 deaths in 2010, lung cancer ranks 1st in
cancer-related deaths in the United States [3]. In a study of 188 primary lung
adenocarcinomas where 623 genes with known or potential relationships to cancer were
sequenced, KRAS was the most frequently mutated oncogene [12]. When taken together,
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these sequencing studies verify that KRAS remains the most significant target for new
therapies for these three deadly cancers.

Mutant RAS function is required for tumor maintenance
Since KRAS mutation is typically an early event in cancer progression, and since cancer is a
multi-step genetic process, there remains debate as to whether targeting aberrant Ras
function alone will be a therapeutically-useful approach for the advanced cancer [13, 14] .
One of the first studies supporting the importance of mutant KRAS for advance tumor cell
growth involved homologous recombination ablation of the endogenous KRAS allele in
HCT-166 and DLC-1 colorectal carcinoma cell lines that harbored additional genetic
mutations [15]. Loss of the mutant but not wild type KRAS allele greatly impaired
anchorage-independent growth and tumor growth in nude mice.

A second key study assessed the importance of activated RAS for mouse melanoma tumor
formation and maintenance [16]. Using a doxycycline-inducible mutant HRAS transgene in
a mouse melanoma model null for the INK4A tumor suppressor, doxycycline treatment
caused primary melanoma tumor formation. Upon withdrawal of doxycycline and
downregulation of mutant HRAS expression, dramatic tumor regression was seen.

A third key study utilized RNA interference to stably silence mutant KRAS expression in
CAPAN-1 pancreatic carcinoma cell line, resulting in impaired tumorigenic growth [17].
Similarly, using inducible shRNA to silence mutant KRAS in SW480 colorectal or
CAPAN-1 pancreatic human tumor cells reduced tumor xenograft growth in mice [18].
These and many similar studies provide compelling evidence that if pharmacologic ablation
of mutant Ras function can be achieved in advanced cancers, there will likely be a very
significant therapeutic benefit.

Mutant Ras proteins are persistently GTP-bound and active
Ras proteins function as GDP/GTP-regulated binary on-off switches that regulate
cytoplasmic signal transduction (Fig. 2A). Wild type Ras proteins cycle between a GTP-
bound (active) and GDP-bound (inactive) state, which is regulated by guanine-nucleotide
exchange factors (RasGEFs) that promote formation of Ras-GTP and GTPase activating
proteins (RasGAPs) that promote formation of inactive Ras-GDP [19].

Mutant Ras proteins contain single amino acid missense mutations (most commonly at
residues 12, 13 or 61) that render them GAP-insensitive, and thus persistently GTP-bound
and active, leading to chronic stimulus-independent activation of effector signaling (Fig.
2B). Therefore, one of the first considerations for developing anti-Ras inhbitors was based
on the successful template of developing small molecule antagonists of ATP binding to
protein kinases. The binding of ATP to protein kinases occurs at low micromolar ranges and
effective ATP competitive protein kinase inhibitors bind with nanomolar affinities. In
contrast, the main reason for the lack of success with GTP antagonists is the high binding
affinity at picomolar levels of GTP to Ras. A second strategy for inhibiting Ras included
efforts to develop small molecules that can “mimic” RasGAP and restore the GTPase
activity of mutant Ras proteins. Unfortunately, despite the discovery of RasGAP to guide
these efforts, no success was seen for these endeavors. After these disappointments in
developing therapies that directly targeted oncogenic Ras, the focus was shifted to more
indirect approaches.
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Ras proteins are membrane-associated signal transducers: indirect approaches for
targeting Ras

Initially, it was believed that Ras proteins were solely positioned at the inner face of the
plasma membrane where they act as signal transducers for cell surface receptors. However,
subsequent studies have demonstrated that in addition to the plasma membrane, Ras
signaling has now been observed on intracellular membranes such as endosomes, the
endoplasmic reticulum, the Golgi apparatus, and mitochondria [20]. This subcellular
compartmentalization of signaling helps to explain the role Ras plays in the diversity of
cellular processes, including growth, survival and differentiation. Receptors found on these
membranes (e.g., receptor tyrosine kinases, G protein-coupled receptors, integrins, etc.) are
receptors activated by a diverse spectrum of intracellular and extracellular stimuli. The
activated receptors then initiate signaling activities that lead to RasGEF-mediated transient
activation of Ras. Activated Ras can then bind to and stimulate a diverse spectrum of
functionally diverse downstream effectors, resulting in regulated activation of a complex
array of cytoplasmic signaling networks. Ras activation is transient, returning back to the
inactive state when the stimulus is terminated. The essential roles of membrane association
and downstream effector signaling in Ras-mediated oncogenesis provide the foundation for
the two primary indirect approaches that have been pursued for blocking Ras. In the
following sections, we highlight the various strategies that have been used.

Inhibitors of Ras membrane association
Post-translational lipid modification and membrane association are key determinants
necessary for proper functioning of Ras. The four Ras proteins terminate with a C-terminal
CAAX tetrapeptide motif (where C = cysteine, A = aliphatic amino acid, X = terminal
amino acid) which is the target for covalent addition of a C15 farnesyl isoprenoid lipid,
catalyzed by the enzyme farnesyltransferase (FTase) [21] (Fig. 3). Two subsequent
modifications signaled by the farnesylated CAAX motif are endoproteolytic cleavage of the
AAX sequence catalyzed by the Ras-converting enzyme-1 (Rce1) and the
carboxymethylation of the now terminal isoprenylated cysteine residue by the
isoprenylcysteine carboxymethyltransferase-1 (Icmt1). While these CAAX modifications
are necessary, they are not sufficient to promote Ras association with the inner face of the
plasma membrane. Instead, Ras proteins possess a second C-terminal signal upsteam of the
CAAX motif that promotes full plasma membrane recruitment and hence full Ras function.
H-Ras, N-Ras and K-Ras4A undergo an additional covalent modification, the addition of
palmitate fatty acid to cysteine residues. K-Ras4B contains a polybasic amino acid sequence
that serves as a second signal for its association with the plasma membrane. Inhibitors of
Ras membrane association involve either inhibitors of FTase or farnesyl moiety-containing
molecules that are proposed to function as antagonists of Ras membrane association.

Farnesyltransferase inhibitors (FTIs)
Since the 1989 discovery that Ras proteins are farnesylated, and shown to be essential for
Ras membrane association and transformation, much emphasis has been placed on
successfully targeting this lipid modification [22, 23]. Structure-function mutagenesis
studies of the CAAX motif provided the first evidence that farnesylation were critical for
Ras transforming activity. Mutation of the cysteine residue of the CAAX motif prevented
farnesylation and all subsequent C-terminal modifications, rendering Ras cytosolic and non-
transforming [24-26].

The finding that Ras function was critically dependent on farnesylation stimulated ample
excitement towards the possibility of identifying a pharmacologic approach of inhibiting Ras
function, especially considering that the farnesyl pyrophosphate contributing this lipid group
to proteins was a necessary intermediate component of the mevalonate-cholesterol
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biosynthetic pathway, whose synthesis could be blocked by cholesterol-lowering drugs
already in clinical use (e.g. lovastatin). Lovostatin, an HMG-CoA reductase inhibitor, was
the first FDA-approved statin for lowering cholesterol to prevent cardiovascular disease in
patients with hypercholesterolemia. However, since the clinically effective concentration of
statins sufficient for lowering cholesterol biosynthesis was much lower than the
concentration needed to block Ras farnesylation [27], the search began for the enzyme
required for the addition of the farnesyl group to Ras. In 1990 Goldstein, Brown and
colleagues isolated and characterized the farnesyltransferase (FTase) enzyme [28]. They also
showed that the Ras CAAX tetrapeptide sequence alone was effective in blocking FTase
activity.

These findings stimulated a frenzied effort by both pharmaceutical companies and academic
researchers to design cell-permeable CAAX peptidomimetics as possible FTase inhibitors
(FTIs) [22, 23]. Additionally, with the enzyme in hand, high throughput chemical library
screens were initiated to identify small molecule inhibitors of FTase and used to develop
potent and selective FTase inhibitors (FTIs). One potential complication in these efforts was
the existence of a closely related enzyme, geranylgeranyltransferase type I (GGTase-I) [29].
Like FTase, GGTase-I recognizes C-terminal CAAX motifs. However, GGTase-I
preferentially recognizes CAAX motifs where the terminal X residue is leucine, and
catalyzes the addition of the more hydrophobic C20 geranylgeranyl isoprenoid. In contrast,
FTase preferentially recognizes CAAX motifs where X is methionine, alanine, serine or
glutamine.

Numerous chemically-diverse FTIs were developed, including CAAX eptidomimetics,
nopeptide peptidomimetics, farnesyl diphosphate analogs, and bisubstrate inhibitors with
several advancing into clinical testing for oncology, either alone or in combination with
conventional cytotoxic drugs [22]. Generally, these showed potent selectivity for FTase and
not the closely related GGTase-I. Of these, two nonpeptide peptidomimetics, tipifarnib
(R115777) and lonafarnib (SCH66336), underwent the most significant clinical evaluation
(Fig. 3).

FTIs showed impressive anti-H-Ras and anti-tumor activity in preclinical cell culture [30,
31] and mouse models, in particular an H-Ras-driven mammary tumor model [32]. These
impressive observations resulted in FTIs entering Phase I studies in 1999, with some
progressing to Phase III clinical trials in 2002.

However, two key issues led to the eventual demise of FTIs in the clinic and as anti-Ras
inhibitors [23]. First, many of the early preclinical studies focused on models of H-Ras-
driven oncogenesis. An early suggestion that such models were not accurate models for FTI
evaluation came from a study showed that tumor cell line sensitivity to FTI growth
inhibition in vitro did not correlate with RAS mutation status [33]. While FTIs indeed
effectively blocked H-Ras farnesylation and membrane association, and transformation, it
was subsequently determined that FTIs did not effectively block N-Ras and K-Ras protein
prenylation, membrane association and transforming activity [34-37]. This was due to an
unexpected biochemical difference among the three Ras proteins. When FTase activity is
blocked, K-Ras4B and N-Ras (the two most common mutated Ras proteins in cancer) can
serve as substrates for GGTase-I and undergo alternative prenylation with the addition of a
geranylgeranyl isoprenoid which can effectively substitute for the farnesyl group and
support Ras membrane association and transforming activity [38, 39]. Therefore, it was not
surprising that phase II and III clinical trial analyses with pancreatic cancer, where KRAS is
mutated in 90% of all pancreatic cancers, resulted in negative findings [40-42].
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A second key misconception regarding FTIs was the simple assumption that they acted as
“anti-Ras inhibitors”, yet Ras proteins are not the only substrates for FTase [29]. There are a
number of farnesylated proteins (>50) with various roles in the cell, including growth
regulation [43]. For example, the Rheb small GTPase [43] is a farnesylated protein and an
activator of mammalian target of rapamycin (mTOR), a pathway commonly deregulated in
cancer. Thus, the anti-tumor activities of FTIs very likely involve inhibition of function of
other farnesylated proteins. The therapeutic value of FTIs may also be complicated by
inhibiting the function of some farnesylated Ras family GTPases that function as tumor
suppressors (e.g., Di-Ras1/Rig, ARHI/NOEY2, RRP22/RasL10A) [44-46].

Despite some patients responding to FTI treatment with an unclear understanding of what
the therapeutically-important targets are, FTIs are no longer being pursued for oncology.
Recently however, FTIs have been considered for the treatment of other diseases. In
particular, Hutchinson-Gilford Progeria Syndrome (HGPS; also called progeria) is caused by
a mutation in the gene encoding lamin A (LMNA), resulting in expression of a defective
lamin A protein that retains the farnesyl modification. Promising results with FTI treatment
in cell culture [47-50] and mouse models [51] support their clinical value for this disease
[52]. Since progeria patients number fewer than 50 worldwide, that FTIs may fortuitously
serve as a therapeutic approach for this disorder prompted the first ever clinical trial for this
disease in 2007. Completed in 2009, the results from this trial have yet to be reported. A
second clinical trial is planned, where lonafarnib will be used in combination with
pravastatin (an inhibitor of the mevalonate biosynthetic pathway and hence all protein
prenylation) and zoledronic acid, a biphosphonate which is an approved drug used to
prevent skeletal fractures in patients with cancers, as well as for treating osteoporosis
(http://www.progeriaresearch.org/).

In light of the alternative prenylation seen with K-Ras and N-Ras when FTase activity is
blocked, concurrent inhibition of both FTase and GGTase-I have also been considered.
However, because there are over 50 known or putative substrates for GGTase-I [29], normal
cell toxicity has been a concern with such approaches. Despite this concern, cell culture and
tumor xenograft studies [37, 53-55] and additional genetic studies in mouse models of RAS-
driven oncogenesis [56, 57] support the anti-tumor activity of GGTase-I inhibitors (GGTIs),
with one highly selective GGTI (GGTI-2418) currently in Phase I clinical evaluation. Early
Phase I results found GGTI-2418 well-tolerated with minimal toxicity, supporting expansion
of the trial (http://www.tigrispharma.com). One FTI evaluated in clinical trials, L-778,123,
also possessed dual inhibitory activity for GGTase-I (FTase IC50 = 2 nM, GGTase-I IC50 =
98 nM) and inhibited GGTase-I activity in the patient, but nevertheless still failed to block
K-Ras prenylation [58].

Inhibitors of Rce1 and Icmt
In addition to FTases, the two less explored CAAX-signaled modifications have also been
considered as targets for anti-Ras inhibitors [59]. Compared to FTIs, there was only a 50%
reduction in K-Ras4B membrane association and transforming activity when the Rce1 and
Icmt modifications were blocked [60]. These observations suggested limited clinical value
in targeting these two enzymes. However, recent studies provide evidence for the potential
usefulness of inhibitors of Rce1 and Icmt inhibitors for blocking Ras oncogenicity. Their
effectiveness may be due to the concurrent impairment of function of other CAAX-
terminating small GTPases (e.g., Rac and Ral) that have been shown to be required for Ras-
mediated growth transformation.

In one group of studies, mouse embryo fibroblasts deficient in Rce1 revealed that Ras
proteins were incompletely processed and membrane-associated [61, 62]. Cre-mediated loss
of RCE1 in fibroblasts generated from mice with a conditional RCE1 allele resulted in a loss
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of endoproteolytic processing and methylation of the Ras protein. Additionally, excision of
RCE1 reduced anchorage-independent growth in Ras-mediated transformation. In another
study, excision of RCE1 in a skin carcinoma cell line greatly reduced their growth [62]. Loss
of ICMT resulted in inhibition of K-Ras-mediated anchorage-independent growth in soft
agar assays and tumor growth in nude mice. Finally, in a recent study, an ICMT deficiency
reduced lung tumor development in a mouse model of KRAS-induced cancer [63].
However, this issue may be highly context dependent, since an Rce1 deficiency was found
to accelerate mutant KRAS-induced myeloproliferative disease [64].

In reference to Rce1 as a target for anti-Ras inhibition, only limited development of Rce1
inhibitors has been described. In one study, several compounds were found to be effective at
a low micromolar range for both yeast and human Rce1 in a compound library screen and
were identified as possible tools for design of future Rce1 inhibitors [65]. An additional
study showed that peptidyl (acyloxy)methyl ketones could inhibit Rce1 enzyme activity in
vitro [66].

From a chemical library screen, a small molecular inhibitor of Icmt named cysmethynil (2-
[5-(3-methylphenyl)-1-octyl-1H-indol-3-yl]acetamide) was identified by Casey and
colleagues [59]. Cysmethynil treatment inhibited cell growth in an Icmt-dependent fashion
and resulted in mislocalization of Ras in cancer cells. In addition, the anchorage-
independent growth of a colon cancer cell line was blocked by cysmethynil, and this effect
was reversed by ectopic overexpression of Icmt, indicating that the inhibition was target-
based. Additionally, treatment of PC3 human prostate cell-derived xenograft tumors with
cysmethynil resulted in markedly reduced tumor size [67].

Other small molecules with Icmt inhibitory activity have also been described. The anti-folate
compound methotrexate has been shown to inhibit Icmt function. In a colon cancer cell line,
methotrexate treatment resulted in a decrease in methylation of the Ras protein by nearly
90%, and mislocalization of Ras to the cytoplasm [68]. Several natural product inhibitors of
Icmt have been discovered in a high-throughput screen campaign [69-71].

Finally, palmitoylation have also been considered as a potential anti-Ras target [72, 73].
However, the enzymology of Ras palmitoylation is complex and a better understanding of
the specificity of the DHHC domain proteins that function as S-palmitoyltransferases
remains to be achieved.

Farnesyl-containing small molecule inhibitors of Ras membrane association
As discussed earlier in the review, C-terminal farnesylation of Ras is critical for localization
to the plasma membrane, and this localization is necessary for Ras binding to effector
molecules in the various downstream signaling pathways. Studies have shown that insertion
of the lipophilic prenyl moiety into the plasma (or other lipid bilayer) membrane is not a
simple random event, but that specific “prenyl receptors” facilitate prenylated protein
binding [74]. These and other studies [38, 75-78] lend support to the hypothesis that
prenylation also provides specificity for interaction partners. Therefore, ongoing work is
focused on inhibiting the binding of farnesylated Ras to sites on the inner surface of the
plasma membrane.

Two farnesyl isoprenoid-containing small molecules have been described, salirasib (also
called FTS; S-trans,trans-farnesylthiosalicylic acid) and TLN-4601 [79-82], that are
proposed to antagonize Ras function by competition for membrane-bound farnesyl-binding
docking proteins. Whereas clinical trial analyses of TLN-4601 have recently been
terminated, there are continued preclinical and clinical analyses of salirasib.
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Salirasib, a farnesylcysteine mimetic, selectively disrupts the association of chronically
active Ras proteins with the plasma membrane [83]. The proposed mechanism of Salirasib is
compete with Ras for binding to membrane-associated Ras escort proteins (galectins), which
possess putative farnesyl-binding domains, thereby dislodging Ras from the plasma
membrane and disrupting effector signaling. Studies show that galectin-1 interacts with
mutant H-Ras and K-Ras, and that this interaction is required for membrane localization of
the GTPases and subsequent transforming activity in human and rat epithelial cells [84, 85].

Salirasib blocks the membrane association of H-, K-, and N-Ras proteins in both
transformed cells and cancer cells with oncogenic mutant Ras or hyperactivated wild type
Ras, including pancreatic, melanoma, glioblastoma, neuroblastoma and neurofibromatosis
cancer cells [80, 86-92]. Additionally, Kloog and colleagues demonstrated that signaling
from three of the most-studied effector pathways downstream of Ras, Raf-MEK-ERK [88],
RalGEF-Ral [92], and PI3K-AKT [90-93], could be suppressed by treatment with salirasib.
Inhibition of aberrant Ras activation in cells by salirasib may alter a variety of cellular
properties, including cell survival [94], proliferation [80, 86], and migration [93, 95]. In
another study, tumor growth was inhibited by salirasib and was associated with a reduction
of the abundance of Ras in the tumor tissue in pancreatic and neurofibromatosis xenograft
tumor models [92, 96]. However, salirasib has also been shown to block mTOR activity
directly [97-99], an unexpected activity in light of the fact that mTOR is not farnesylated.
Therefore, salirasib may possess multiple mechanisms of action that can contribute to
inhibition of tumor growth. Finally, Phase I clinical trials have shown that salirasib was
well-tolerated and several Phase I/II trials are ongoing [100].

Targeting downstream Ras effector signaling pathways
Activated Ras binds preferentially to a spectrum of functionally diverse downstream
effectors in which most are characterized by Ras binding (RBD) or Ras association (RA)
domains that directly interact with Ras [101]. The Raf kinases are the best characterized of
all the effectors of Ras [102] (Fig. 4). However, there exist at least 10 functionally distinct
classes of Ras effectors, with evidence for Raf and four non-Raf effectors in Ras
transformation. The frequent mutational activation of B-Raf (20%) and the PIK3CA gene
product (12%), the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) in human
cancers, together with the well-established role of these pathways in signaling networks that
regulate cell growth [102, 103], have provided strong validation of the importance of these
two effectors in oncogenic Ras function.

Cell culture [104] and mouse model [105-107] studies support the importance of the Ral
GTPase-specific guanine nucleotide exchange factor (RalGEFs), phospholipase C epsilon
and Tiam1 effectors in Ras-mediated oncogenesis. The involvement of multiple effectors in
Ras-mediated oncogenesis prompts several questions. First, is there one “right” effector
pathway for targeting or will concurrent inhibition of multiple effector pathways be
required? Second, will mutant K-Ras utilize the same effector pathways in lung, colon and
pancreatic cancer, or will cancer type-specific approaches been required? Below we
summarize the validation and status of the development of inhibitors of the three best
validated Ras effector signaling networks.

Inhibitors of the Raf-MEK-ERK mitogen-activated protein kinase (MAPK) cascade
The best understood and most heavily studied Ras effector pathway is the Raf-MEK-ERK
MAPK cascade [102]. Raf serine/threonine protein kinases (A-Raf, B-Raf and c-Raf-1)
phosphorylate and activate the substrates MEK1 and MEK2 dual specificity protein kinases,
and MEK1/2 in turn phosphorylate and activate the ERK1 and ERK2 MAPKs. Activated

Baines et al. Page 8

Future Med Chem. Author manuscript; available in PMC 2012 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ERKs then phosphorylate and regulate the activities of a diverse spectrum of substrates that
are estimated to comprise over 160 proteins [108].

The non-overlapping occurrence of BRAF and RAS mutations in melanoma and CRC
cancer suggests functionally equivalent roles in Ras-mediated oncogenesis [109]. It is this
phenomenon that has made the Raf-MEK-ERK MAPK pathway an attractive target for
therapeutics against cancers harboring RAS mutations. Currently, multiple inhibitors of Raf
and MEK kinases are in preclinical and clinical development [110] (Fig. 5 and Table 1).
Below we focus on two Raf inhibitors (sorafenib and PLX4032) and one MEK inhibitor
(AZD) that have undergone significant clinical evaluation.

Originally developed as an inhibitor of Raf-1 [111], sorafenib (BAY 43-9006) is a potent
inhibitor of both wild type and mutant B-Raf kinases in vitro. From crystallographic
analyses, it was determined that the inhibitor bound to the ATP-binding pocket and
prevented kinase activation, preventing substrate binding and phosphorylation [112].
However, it was later reported that sorafenib is a potent kinase inhibitor of multiple cell
surface receptors involved in tumor angiogenesis including VEGFR-2, VEGFR-3, PDGFR-
β, Flt-3, c-Kit and FGFR-1[113].

Sorafenib, was approved in 2005 for the treatment of advanced renal cell carcinomas (RCC)
and in 2007 for unresectable hepatocellular carcinoma (HCC). Since the frequency of BRAF
and RAS mutations in these cancers is low [2, 114, 115], it is unclear whether Raf inhibition
is the mechanism for antitumor activity of sorafenib. Instead, the anti-angiogenesis activity
of sorafenib is most likely the basis for its efficacy in these cancers.

PLX4032 (now called Vemurafenib/RO5185426), a potent and selective inhibitor of mutant
B-Raf, is currently in Phase I/II clinical evaluation. In vitro analysis against a panel of 65
non-Raf kinase showed PLX4032 is a highly selective inhibitor of B-Raf kinase activity,
with an IC50 of 44 nM against V600E-mutant B-Raf [116]. Most of the kinases tested
showed >100-fold higher IC50 than mutant Raf. In addition, cell culture experiments showed
PLX4032 potently inhibited cell proliferation and MEK activation in melanoma and thyroid
carcinoma cell lines harboring mutant B-Raf.

Recent cell culture and mouse model studies with PLX4032 found that it is effective against
BRAF mutant tumor cell lines, but paradoxically, led to Raf activation in RAS mutant cell
lines [117-119]. For BRAF mutant tumor cells, inhibition of ERK activation and growth
were seen. In contrast, ERK activation rather than inactivation was seen in RAS mutant cell
lines. The mechanistic explanation for this unexpected activity is based on earlier
observations of a role for dimerization formation in Raf activation [119]. These studies
found that paradoxical Raf pathway activation by PLX4032 and other Raf inhibitors requires
Raf binding to mutationally activated Ras, but only when Raf activation is dependent on
Ras. These findings potentially argue against the use of Raf inhibitors in RAS mutant
tumors.

Consistent with these preclinical findings, recent Phase I/II evaluation of PLX4032 have
shown dramatic anti-tumor activity with mutant BRAF melanomas. In a Phase I/II clinical
trial, it was found that treatment of BRAF mutant metastatic melanoma with PLX4032
resulted in complete or partial tumor regression in the majority of patients [120]. However,
only 52% of patients with the BRAF mutation responded to PLX4032 and for those patients
who responded, drug resistance developed quickly, from 2-18 months and an average
duration of response of only 6.2 months. Hence, while dramatic initial tumor regression is
seen, which is far superior to what is seen with the standard of care (dasatinib), it remains to
be determined whether overall patient survival time is improved with PLX4032 in ongoing
Phase III clinical trials. Nevertheless, the significant initial tumor regression seen in a
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majority of treated patients has stimulated debate regarding the necessity and ethics of
randomized clinical trial design where the experimental arm is clearly showing more
significant tumor response [121].

Additional studies of PLX4032 provide further insight into the mechanism of action of
PLX4032. First, Bollag and colleagues determined that a near-complete suppression of ERK
activation is apparently required for a clinical response [122]. They also observed that
inhibition of cytosolic and not nuclear ERK better correlated with clinical efficacy. Second,
two studies addressed possible mechanisms of tumor resistance [123, 124]. In contrast to the
resistance mechanisms seen with BCR-Abl and the epidermal growth factor receptor, where
mutations in the drug target impair drug binding, indirect mechanisms (e.g., NRAS
mutation) were seen for PLX4032 resistance.

A number of potent and selective MEK1 and MEK2 inhibitors have been developed and are
currently under clinical evaluation (Fig. 5). With being the only known catalytic substrates
of Raf kinases, MEK1 and MEK2 are closely related dual-specificity kinases, capable of
phosphorylating both serine/threonine and tyrosine residues of their substrates, p44 ERK1
and p42 ERK2 (Fig. 3). The fact that ERK1/2 are the only known substrates of MEK1/2, has
led to perhaps an oversimplified perception of this signaling pathway, as a simply
unidirectional linear signaling pathway. Often depicted as such a simple pathway
downstream of Ras, it prompts the logical assumption that inhibition of this pathway at the
level of Raf or MEK should be equivalent in blocking ERK activation by mutant Ras.

Of the many MEK1/2 inhibitors under development, there has been significant preclinical
study of selumetinib (AZD6244). Selumetinib is an orally bioavailable benzimidazole
derivative known to potently inhibit MEK1/2 in vitro and in cell-based assays [6, 125-127].
Like other MEK inhibitors, selumetinib is an ATP, non-competitive inhibitor, contributing
to their very selective properties. Preclinical evaluation of selumetinib showed antitumor
activity in several human xenograft models including colon, pancreas, breast, NSCLC and
melanoma and has moved into clinical development. Cell culture studies suggest that MEK
inhibitors may be effective against BRAF but not RAS mutant cancer cells [126-128]. These
studies also reveal compensatory feedback mechanisms that may allow tumor cells to
overcome the growth inhibitory consequences of MEK inhibition [129].

Recently, initial results of a first in human dose-ranging study to assess the
pharmacokinetics, pharmacodynamics and toxicities of AZD6244 in patients with advanced
solid tumors concluded that AZD6244 was well tolerated [130]. Currently, there are up to 43
completed and ongoing Phase I/II clinical trials evaluating AZD6244 as monotherapy or in
combination with conventional cytotoxic drugs (clinicaltrials.gov).

Inhibitors of the PI3K-AKT-mTOR pathway
The second best-characterized Ras effectors are the catalytic subunits of the class I PI3Ks
(p110α, β, δ and γ) which has been shown to be required for Ras transformation [131]. The
PI3K-Akt-mTOR pathway is one of the most frequently altered signal transduction
pathways in human cancers [103]. It has been implicated in multiple cellular functions such
as proliferation and survival. PI3K converts phosphoinositides (4,5) bisphosphate to
phosphoinositide (3,4,5)bisphosphate (PIP3). Membrane-associated PIP3 promotes the
activation of diverse cytoplasmic signaling proteins, in particular, the Akt serine/threonine
kinases, as well as other signaling proteins. In addition to activation by Ras, the PI3K-AKT
pathway is deregulated by a variety of mechanisms in human cancers. This can include the
loss of phosphatase and tensin homolog deleted from chromosome ten (PTEN), a dual
specificity phosphatase and tumor suppressor gene, and is the primary negative regulator of
this pathway. Hence, the components of this pathway have been attractive targets for anti-
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cancer drug discovery, with many inhibitors of PI3K, AKT and mTOR currently under
clinical trial analyses [132, 133] (Fig. 5 and Table 2). Some PI3K inhibitors are pan-class I
PI3K inhibitors, others are isoform specific, and a number of PI3K inhibitors also have
activity for the structurally similar catalytic domain of mTOR. Two mTOR inhibitors have
already been approved for use for advanced renal cell cancer (temsirolimus and everolimus),
which interestingly is a cancer with infrequent RAS mutational activation.

The importance of PI3K in Ras-initiated oncogenesis was shown in mouse models where a
Ras binding impaired mutant of p110α impaired mutant HRAS-associated skin carcinoma
formation and mutant KRAS-induced lung tumor formation [134]. However, there is limited
evidence from cell culture and model studies that concurrent inhibition of the Raf-MEK-
ERK and PI3K-AKT-mTOR pathways may be required for pharmacologic inhibition of
mutant RAS-driven cancer growth. For example, in one study, mutant PIK3CA but not
KRAS-driven lung tumor formation was responsive to NVP-BEZ235, a dual pan-PI3K and
mammalian target of rapamycin (mTOR) inhibitor [135]. However, concurrent treatment
with selumetinib did impair KRAS-induced tumor formation.

RalGEF-Ral pathway
Past studies have demonstrated that in a subset of tumors there is no correlation between
KRAS mutation status and ERK activation [18, 136], suggesting that a Raf-independent
function of Ras is important. Recent studies have demonstrated that additional effector
pathways may play significant roles in Ras-mediated oncogenesis [101, 137, 138]. In
particular, RalGEFs are activators of the highly related Ras-like RalA and RalB small
GTPases (82% sequence identity) [139]. Similar to Ras, Ral GTPases function as GDP/
GTP-regulated switches in signal transduction. Although there has been no evidence of
mutations in the various components of this pathway, there is substantial evidence validating
a role for Ral GTPases in multiple human cancers.

The RalGEF-Ral pathway was characterized initially to play a relatively minor role in Ras
transformation of rodent fibroblasts [140]. However, subsequent studies by Counter and
colleagues established a very significant role for this effector pathway in Ras transformation
of human cells [141]. In particular, a significant role for Ral GTPases in pancreatic cancer
has been established [18, 142]. Additionally, studies of bladder and prostate cancer support
the role of RalGEF-Ral signaling in tumor invasion and metastasis [143, 144]. Finally
mouse model studies showed that homozygous deletion of RalGDS (a RalGEF) caused
resistance to Ras-induced skin tumor formation [107]. One RalGEF, Rgl2, was found
overexpressed in pancreatic tumors and important for pancreatic cancer cell line growth and
invasion in vitro [104]. Consequently, there is increasing interest in targeting this pathway
for novel anti-Ras strategies for cancer treatment [145].

Recent studies support the possibility that inhibitors of GGTase-I (GGTI) can be effective
inhibitors of Ral GTPases in oncogenesis [146]. Similar to Ras, Ral-GTPases terminate with
a carboxyl-terminal CAAX motif. GGTaseI catalyzes addition of a geranylgeranyl
isoprenoid to the cysteine residue of the CAAX motif, followed by modifications by the
same Rce1 and Icmt enzymes involved in Ras processing. However, as with FTIs, since
other GGTI substrates (e.g., RhoA, RhoC, Rac) are involved in oncogenesis, GTTI anti-
tumor activity may also involve inhibition of non-Ral targets. Finally, a recent study
identified RalA as a substrate for Aurora-A [147]. Since Aurora-A phosphorylation of RalA
was important for Aurora-A-induced cellular motility and transformation. Additionally, the
Aurora-A phosphorylation site (Ser-194) was shown to be essential for RalA-mediated
anchorage-independent growth and tumor formation [148]. These studies suggest that
inhibitors of Aurora-A, currently in Phase I clinical trial analyses may be effective inhibitors
of RalA function.
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Combination therapy
With only a few exceptions, conventional cytoxic cancer chemotherapy is most effective
when applied as concurrent treatment with a cocktail of drugs with different mechanisms of
activation. This approach is based on the fact that tumors are comprised of a genetically
heterogeneous population where different subpopulations will exhibit resistance to different
therapeutic approaches. Therefore, it is not surprising that an emerging paradigm is that
molecularly targeted therapies will also be most effective when applied in combination.
Finally, a second trend is that molecularly targeted therapies can enhance the effectiveness
of cytotoxic drugs as well as radiation treatment. Below we summarize representative
examples of these combination approaches. Other examples are summarized in Tables 1-3.

Concurrent inhibition of the Raf-MEK-ERK and the PI3K-AKT-mTOR pathways
That Ras can drive oncogenesis through multiple effectors suggests that effective inhibition
of Ras will require concurrent inhibition of different effector networks. Consistent with this
situation, several preclinical studies have found more effective anti-tumor activity with
concurrent inhibition of Raf-MEK-ERK and PI3K-AKT-mTOR. For example, mutant
KRAS-driven lung tumor formation in mice was inhibited only with concurrent treatment
with the ARRY-142886 MEK inhibitor and the BEZ235 dual specificity pan-PI3K and
mTOR inhibitor [135]. Pre-clinical studies have demonstrated synergistic inhibition with co-
targeting Raf-MEK-ERK MAPK and PI3K-AKT-mTOR pathways with Raf and AKT/
mTOR inhibitors in human melanoma cells [149]. Also, synergistic inhibition of
proliferation have been observed with in vitro and in vivo models of hepatocellular
carcinoma and non-small cell lung cancer using combinations of MEK and mTOR inhibitors
[150, 151]. These and other observations provide the rationale for planned or ongoing
clinical trials with combination inhibition of specific components of each of these two key
Ras effector pathways (Table 3).

Another basis for the requirement for combination approaches is the induction of
compensatory signaling mechanisms that overcome inhibition of a signaling pathway at a
specific point. Such mechanisms appear to account for the resistance to Raf inhibition. As
previously discussed, Raf inhibitors such as PLX4032 have been used in treating melanoma
with the disappointing observation of drug resistance from 2-18 months after initial
treatment [118]. One study found that resistance can occur through mutational activation of
NRAS or upregulated expression of the PDGFRβ receptor tyrosine kinase [124]. Another
study described upregulation of the Cot/Tpl2 serine/threonine kinase [123]. These
mechanisms bypass PLX4032 inhibition by activating MEK-ERK signaling by alternative
routes. These resistance mechanisms may then be overcome by concurrent treatment with
inhibitors of these mechanisms, for example, by MEK inhibition. One clinical trial is
utilizing the combined treatment with GSK2118436 and GSK1120212 for patients having
BRAF mutant tumors treated previously with GSK2118436 alone and with no evidence for
progression (Table 3).

Inhibition of the Raf-MEK-ERK MAPK and the PI3K-AKT-mTOR pathways with
chemotherapy

Chemotherapy remains as the prime treatment strategy for combating many different types
of cancers [152]. Chemotherapeutic drugs target various biological processes such as DNA
replication and cell division in the cell (normal and tumor) which can result in numerous
side effects [153]. Additionally, drug resistance to chemotherapy can develop over
prolonged use as has been seen with doxorubicin and taxol [153]. It is this combination of
side effects and drug resistance to chemotherapy that argues for the need to identify better
and alternative strategies for treating cancer.
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Although drug resistance occurs with chemotherapeutic drugs as well as small molecule
inhibitors in cancer, studies have been conducted combining both types of drugs for
determining potential synergistic growth inhibition effects against tumor cells with less
toxicity to the patient. In a pre-clinical study combining paclitaxel (taxol) and MEK
inhibitors in ovarian carcinoma cell lines, results demonstrated enhanced apoptosis and
growth inhibition [154]. In a phase II clinical trial conducted in patients with advanced
hepatocellular carcinoma, the combination of sorafenib (Raf inhibitor) and doxorubicin
improved progression-free and overall survival [155]. In a completed second phase II trial,
the progression-free survival of sorafenib and tegafur/uracil (UFUR) for the treatment of
advanced or metastatic hepatocellular carcinoma was studied (http://clinicaltrials.gov).

In addition to the advantanges of combining chemotherapy and small molecule inhibitors for
treating cancer, there are also challenges. Combinations of MEK inhibitors and
chemotherapy can have antagonistic results. Studies have shown that chemotherapeutic
drugs can activate the Raf-MEK-ERK MAPK pathway through diverse mechanisms.
Doxorubicin has been shown to activate both p53 and calcium calmodulin kinase which can
activate this pathway [153]. Also, taxol has been shown in studies to stimulate activation of
this pathway [156]. MEK inhibitors in combination with betulinic acid, a drug toxic for
melanoma cells, prevented an increase in betunlinic acid-induced apoptosis in vitro [157].
Another challenge with combining chemotherapy and inhibitors is the time schedule for
adding each drug regiment. The order of administration of the chemotherapeutic drugs and
inhibitors can determine a synergistic or antagonistic outcome.

Inhibition of the Raf-MEK-ERK MAPK and the PI3K-AKT-mTOR pathways with radiotherapy
Although radiation is one of the common methods for treating cancers, many advanced
cancers are radioresistant. Various inhibitors have been evaluated for their potential to serve
as a radiosensitizer. In one study, selumetinib (MEK inhibitor) pre-treatment radiosensitized
lung, prostate, and pancreatic cancer cells in vitro and in vivo [158]. A mitotic catastrophe
event (due to radiation-induced G2 cell cycle checkpoint activation abrogation) was found to
be increased in cells receiving both the MEK inhibitor and radiation versus the inhibitor
alone. In addition to the the Raf-MEK-ERK MAPK pathway, PI3K-AKT-mTOR inhibitors
have been demonstrated to radiosensitize the tumor vasculature both in vitro and in vivo
[159, 160]. Also, mTOR and radiation have been shown to be instrumental for the regulation
of autophagy [160, 161]. The combination of mTOR inhibitors and radiation may be
beneficial inducing autophagy as it relates to cancer treatment.

Oncogene addition and synthetic lethality: unbiased searchs for novel anti-Ras therapies
In light of the current lack of success in developing clinically useful anti-Ras drugs, recent
studies have taken advantage of KRAS oncogene addiction to search for synthetic lethal
partners of mutant KRAS. Utilizing RNA interference (RNAi) technologies, large-scale
interfering RNA screens have been applied to take a functional and unbiased approach to
identify therapeutic targets for anti-Ras inhibition [162-164]. Perturbation of these genes
may result in oncogene-specific “synthetic lethal” genetic interactions that could provide
new therapeutic opportunities.

These screens are based on the concept of synthetic lethality, in which two genes are defined
as synthetically lethal if mutation of either gene alone is compatible with viability but the
simultaneous mutation of both genes leads to death [165]. Mutationally-activated RAS
genes thus represent one gene and RNAi-mediated ablation in cancer cells of the expression
of a second gene provides the second hit. Synthetic lethal interactions can involve genes
within the same pathway, genes within parallel pathways that cooperate with respect to an
essential function, or genes within distant pathways that become functionally connected
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because of the response of the cell to a specific perturbation. Since normal cells lack mutant
RAS, genes identified in this manner should in principle be selectively lethal for tumors but
not normal cells.

In one study which included a limited RNAi library targeting 1,011 genes with a focus on
protein kinases, it was found that cells that were dependent on mutant KRAS genetically
interacted with the STK33 serine/threonine kinase as a synthetic lethal partner irrespective
of the tissue of origin, whereas STK33 was not required by KRAS-independent cells [163].
STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating
the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of
the death agonist BAD selectively in mutant KRAS-dependent cells. The synthetic lethality
functional screen was important, since there was no alteration in STK33 expression, no
mutations, and no transforming activity of STK33 was detected. Hence, with the classical
analyses of cancer-causing genes, STK33 would have not been identified. In a second study
that included a genome-wide RNAi screen, identification of synthetic lethal interaction
partners with the KRAS oncogene was done targeting 32,293 unique human transcripts
[162]. The genes identified encode a functionally diverse set of proteins that regulate several
biological processes, especially mitotic functions. One of these genes that was characterized
in this study was Polo-like kinase 1 (PLK1), a serine/threonine kinase that plays a key role
in mitosis. PLK1 is a component of the anaphase-promoting complex/cyclosome, and the
proteasome that, when inhibited, results in prometaphase accumulation and the subsequent
death of Ras mutant cells. Results from this study demonstrated that reduced expression of
genes in this pathway correlated with increased survival of patients bearing tumors with a
Ras transcriptional signature. Pharmacological inhibitors of PLK1 and other mitotic proteins
can selectively impair the viability of Ras mutant cells and be exploited fro therapeutic
purposes.

A third study of a limited RNAi screen to identify synthetic lethal partners of mutant KRAS
found the non-canonical IкB kinase, TANK-binding kinase 1 (TBK1) [164]. TBK1 is a
serine/threonine kinase that can activate the NF-kappaB transcription factor and support cell
survival. TBK1 was selectively essential in cells that harbor mutant KRAS. Interestingly,
TBK1 was identified previously as a key downstream effector of RalB-dependent tumor cell
survival [166]. Suppression of TBK1 induced apoptosis specifically in human cancer cell
lines that depend on oncogenic KRAS expression. In conclusion, the synthetic lethal
screening identified TBK1 and NF-κB signaling essential in KRAS mutant tumors.

In a fourth study, instead of using RNAi screening to identify synthetic lethal screening
partners with mutant KRAS as described in the previous three studies, the focus was to
identify a gene signature for KRAS dependency [167]. Comparing two classes of cancer
cells that do or do not require K-Ras to maintain viability revealed a gene expression
signature in K-Ras-dependent cells. Two of the genes that were found to encode
pharmacologically tractable proteins were the Syk and Ron tyrosine kinases. To validate this
screen, the study demonstrated that KRAS mutant tumor cell lines were more sensitive to
induction of apoptosis by treatment with a small molecule inhibitor of Syk.

While further validation of these synthetic lethal partners of mutant KRAS are needed, these
studies support the potential usefulness of synthetic lethality screens in identifying novel
targets and directions for anti-Ras drug discovery.However, caution for this approach is also
raised by a recent study that utilized both genetic and pharmacologic inhibition of STK33
and reached a conclusion which conflicts with the earlier library screening study [163].
Instead, they concluded that STK33 function is not essential for KRAS mutant-dependent
human tumor cells [168].

Baines et al. Page 14

Future Med Chem. Author manuscript; available in PMC 2012 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Future Perspectives
Despite the limited success from almost three decades of anti-Ras research and drug
discovery, substantial progress has been made in understanding Ras biology and function
that will shorten the final path to clinically effective anti-Ras drugs. First, a bitter lesson
learned from the development of farnesyltransferase inhibitors is the fact that the three RAS
genes do not encode functionally identical proteins. This has resulted in a shift in research
and drug discovery efforts which are now focused on K-Ras. Second, with the unexpected
findings made with Raf and MEK inhibitors, a better appreciation for the complex and
dynamic nature of signaling networks has been made, where the Raf-MEK-ERK cascade is
not a simple linear pathway. Understanding how the cancer cell can adapt to inhibition of
one specific signaling protein will help focus future efforts on approaches that target specific
signaling networks at multiple levels. Third, while the limitations of the classical tumor cell
line xenograft tumor models have long been appreciated, early observations made with
newer mouse models will accelerate the transition to greater reliance on genetically-
engineered mouse models of cancer to more accurately predict drug response in the patient.
Finally, the continued development and application of genome-wide unbiased functional
screening efforts will lead to novel and unexpected new directions for anti-Ras drug
discovery. The fact that these efforts have identified protein kinases may render Ras a more
tractable target. As we stay optimistic about Ras becoming a “tractable” druggable target in
the future, one has to keep in the mind the well known adage, “Nothing worth having comes
easy”.
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Defined key terms

GTPases

A large family of enzymes that exhibit high affinity binding for guanosine diphosphate
(GDP) and guanosine triphosphate (GTP) and catalyze the hydrolysis of the bound GTP
to GDP and release of orthophoshpate. GTPases function as molecular switches and
timers that cycle between inactive GDP-bound and active GTP-bound states. Guanine
nucleotide exchange promotes formation of the GTP-bound state due to the ~10-fold
cellular GTP:GDP ratio. The human genome encodes for ~220 GTPases, with the Ras
superfamily comprising the largest group (154 members), followed by the heterotrimeric
G protein alpha subunits (16 members). GTPases are characterized by short stretches of
amino acid sequence similarity that comprise the GDP-GTP binding pocket.

Mitogen-activated protein kinase cascades

These cascades are three component protein kinase modules, beginning with an
extracellular stimulus-activated mitogen-activated protein kinase (MAPK) kinase kinase
(MKKK/MEKK) serine/threonine kinase, which phosphorylates and activates a MAPK
dual specificity MAPK kinase (MKK/MEK), which then phosphorylates and activates a
MAPK serine/threonine kinase. There are four conventional mammalian MAPK families:
ERK1/ 2, p38 (α, β, γ and δ), JNK1/2/3 and ERK5.

Oncogene addiction

The dependence of a cancer cell on an overactive protein or signaling pathway necessary
for cell survival and growth. Usually, this is due to mutational activation or
overexpression. This greater dependence is proposed to account for why molecularly
targeted therapies (e.g., trastuzumab, imatinib, erlotinib) can preferentially block cancer
versus normal cell proliferation and survival.

Protein prenyltransferases

A family of three heterodimeric proteins that catalyzes the posttranslational addition of
either a farnesyl isoprenoid (farnesyltransferase) or geranylgeranyl isoprenoid
(geranylgeranyltransferase-I and geranylgeranyltransferase-II) to C-terminal cysteine
residues. Farnesyltransferase and geranylgeranyltransferase-I are also referred to as
CAAX prenyltransferases and geranylgeranyltransferase-II as Rab prenyltransferases.

Synthetic lethality

Two genes are synthetic lethal if mutation of either alone is compatible with viability but
mutation of both leads to death. Therefore, targeting a gene (e.g., by RNA interference)
that is synthetic lethal to a cancer cell-specific genetic mutation (e.g., RAS activation)
should kill only cancer cells with that genetic mutation and spare normal cells. Synthetic
lethality therefore provides a conceptual framework for the identification of cancer cell-
selective targets for anti-cancer drug discovery.
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Executive Summary

■ The three RAS genes are mutated in 33% of human cancers. KRAS is the most
commonly mutated RAS gene, and the predominant isoform mutated in lung,
colorectal and pancreatic cancers. Limited evidence also suggests that the three RAS
genes are not functionally equivalent. Thus, while HRAS was traditionally the most
intensely studied, recent studies have now shifted the focus to KRAS.

■ To date, efforts to develop direct antagonists of mutant Ras proteins have not been
successful. GTP competitive inhibitors are not feasible due to the picomolar binding
affinity for GTP binding. However, with new technology and information, it remains
possible that such approaches can still be identified.

■ Although all Ras proteins are modified by FTase, the Ras isoforms most
commonly mutated in human cancers (K-Ras and N-Ras) can be modified by
GGTase-I when FTase activity is blocked, resulting in alternative prenylation by the
related geranylgeranyl isoprenoid lipid. Despite this clear biochemical explanation
for the failure of farnesytransferase inhibitors, there remains a misconception that
these failed efforts suggest that Ras is not a clinically useful anti-cancer target.

■ Currently, the most promising approaches for blocking mutant Ras signaling
involve inhibitors of Raf or PI3K effector signaling. Combination approaches that
block a single effector signaling network at multiple points, or that block two distinct
effector signaling networks, are believed to be the most promising directions for
these efforts.

■ Recently, functional RNA interference screens have been performed to identify
synthetic lethal genetic partners of mutant KRAS. Interestingly, these screens have
identified protein kinases, thus identifying potentially more tractable directions for
the development of anti-Ras inhibitors.
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Figure 1. RAS mutation in human cancers
A. Human Ras proteins. RAS genes encode 188 or 189 amino acid proteins that share the
indicated amino acid identity. KRAS encodes K-Ras4A or K-Ras4B due to alternative exon
four utilization, with KRAS4B the predominant transcript. B. Frequency of specific RAS
mutations. KRAS mutations (17,342 unique samples with mutations in a total of 80,140
unique samples) comprise 86% of all RAS mutations documented in human tumor cells.
Next most frequent are NRAS mutations (2,279 mutations in 28,521 samples) and HRAS is
the least frequent (652 mutations in 19,589 samples). Data are compiled from COSMIC
(http://www.sanger.ac.uk/genetics/CGP/cosmic/0. C. Genetic progression of pancreatic
ductal adenocarcinoma. D. Genetic progression of colorectal carcinoma.
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Figure 2. Regulation of the Ras GDP-GTP cycle in normal and neoplastic cells
A. Normal Ras. Wild type Ras proteins cycle between inactive GDP-bound and active GTP-
bound states. Growth factors stimulate transient activation of Ras through activation of
RasGEFs (e.g., Sos). Ras-GTP binds preferentially to downstream effectors (E). RasGAPs
(e.g., neurofibromin) accelerate the intrinsic GTP hydrolysis activity, returning Ras to the
inactive state. B. Tumor-associated Ras. Missense mutations primarily at glycine-12,
glycine-13 or glutamine-61 impair intrinsic and GAP-stimulated GTP hydrolysis activity,
rendering Ras persistently active and GTP-bound.
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Figure 3. Targeting Ras membrane association for anti-Ras drug discovery
Ras proteins are synthesized initially as cytosolic and inactive proteins. The C-terminal
CAAX motif signals for three posttranslational modifications, beginning with cytosolic
FTase-catalyzed addition of a C15 farnesyl group and Golgi-associated Rce1 and Icmt
catalyzed carboxymethylation of the now terminal farnesylated cysteine residue. Inhibitors
of FTase (e.g., tipifarnib and lonafarnib) block all CAAX-signaled modifications. Farnesyl
group-containing small molecules (salirasib and TLN-4601) have been evaluated in clinical
trials as possible inhibitors of Ras membrane association and oncogenesis.
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Figure 4. Effectors of Ras-mediated oncogenesis
Ras-GTP binds preferentially to a spectrum of functionally diverse downstream effectors. Of
these, five have been validated in cell culture and/or mouse models for their requirement for
mutant Ras-induced oncogenesis. In addition to direct mutational activation of Ras, Ras can
also be activated indirectly, for example, by mutational inactivation of the neurofibromin
RasGAP or by mutational activation of the epidermal growth factor receptor (EGFR).

Baines et al. Page 29

Future Med Chem. Author manuscript; available in PMC 2012 May 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Inhibitors of Raf and PI3K effector signaling under clinical evaluation
Small molecule inhibitors of Raf and MEK, and PI3K, AKT and mTOR are currently being
evaluated in Phase I-III clinical trials. Also see Tables 1 and 2. Compiled from
http://clinicaltrials.gov
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Table 1

Inhibitors of Raf-MEK-ERK signaling under clinical evaluation
a

Agent Company Target Status Target population

BMS-908662/XL281 Exexis/Bristol-Myers Squibb Raf Phase I-II Alone or in combination with cetuximab
for KRAS or BRAF mutant advanced or
metastatic CRC

Phase I In combination with Ipilimumab with
unresectable stage III/IV melanoma

GSK2118436 GlaxoSmithKline Raf Phase I-II BRAF mutant melanoma, NSCLC and
other solid cancers

RAF265 Novartis Raf, VEGFR-2 Phase I-II Metastatic melanoma

RO5126766‡ Hoffmann-La Roche Raf, MEK1/2 Phase I Advanced tumors

Sorafenib/BAY 43-9006 Bayer Raf,
VEGFR-2,
VEGFR-3,
PDGFR-β,
Flt-3, c-Kit
and FGFR-1

Approved; Phase I-III Approved for advanced RCC and
primary liver cancer; in combination
with cytotoxic drugs or radiation for
various solid tumors and leukemia

Vemurafenib/PLX4032/RG 7204/RO5185426 Plexxicon/Hoffmann-La Roche Raf Phase I Malignant melanoma, CRC

Phase I-II Alone or in combination with a drug
cocktail for malignant melanoma

Phase III Unresectable BRAF mutant stage IIIC
or IV melanoma

Phase II Metastatic or unresectable BRAF
mutant papillary thyroid cancer and
resistant to radioactive iodine

ARRY-438162/MEK162 Array BioPharma/Novartis MEK1/2 Phase II BRAF or NRAS mutant metastatic
melanoma, advanced or metastatic
biliary cancer, metastatic CRC

ARRY-300 Array BioPharma/Novartis MEK1/2 Phase I Pharmacokinetics and
pharmacodynamics in healthy subjects

AS703026/MSC1936369B EMD Serono MEK1/2 Phase II In combination with gemcitabine for
pancreatic cancer

Phase I advanced hematological malignancies

Phase II AML

AZD8330 AstraZeneca MEK1/2 Phase I Advanced malignancies

BAY86-9766/ RDEA119 Bayer MEK1/2 Phase I Advanced or refractory solid tumors

Phase I-II In combination with gemcitabine for
pancreatic cancer

E6201 Eisai MEK1/2 Phase I Advanced solid tumors

GDC-0973/XL518 Exelixis/Genentech MEK1/2 Phase I Healthy volunteers

Phase I In combination with rabeprazole in
healthy volunteers

Phase I In solid tumors

Phase I In combination with GDC-0941 with
locally advanced or metastatic solid
tumors

GSK1120212 GlaxoSmithKline MEK1/2 Phase II Leukemia-relapsed or refractory

Phase I In combination with docetaxel,
erlotinib, pemetrexed, pemetrexed +
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Agent Company Target Status Target population

carboplatin, or nab-paclitaxel in
advanced solid tumors

Phase III Advanced or metastatic BRAF mutant
melanoma

Phase II In combination with gemcitabine for
pancreatic cancer

PD-0325901 Pfizer MEK1/2 Phase I In combination with PF-04691502 for
advanced cancers

RO4987655 Hoffmann-La Roche Raf, MEK1/2 Phase I Advanced cancers

Selumetinib/AZD6244 AstraZeneca/Array BioPharma MEK1/2 Phase I-II Alone or in combination with cytotoxic
drugs for multiple solid cancers

TAK-733 Millennium Pharmaceuticals MEK1/2 Phase I Advanced nonhematologic malignancies

abbreviations: AML, acute myelogenous leukemia; CRC, colorectal cancer; NSCLC, non-small cell lung cancer

a
Compiled from http://clinicaltrials.gov
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Table 2

Inhibitors of PI3K-AKT-mTOR signaling under clinical evaluation
a

Agent Company Target Status Target population

BKM120 Novartis Pan-class I PI3K Phase I In combination with carboplatin and
paclitaxel with advanced solid
tumors

Phase I In combination with irinotecan in
previously treated advanced CRC

Phase I In combination with fulvestrant in
estrogen receptor-positive stage IV
breast cancer

Phase I In combination with BEZ235 and
letrozole with hormone receptor and
metastatic breast cancer

Phase I In combination with GSK1120212
in advanced and selected solid
tumors

Phase I In combination with BEZ235 in
combination with paclitaxel with or
without trastuzumab in metastatic
or locally advanced solid tumors

Phase I In combination with trastuzumab
with relapsing HER2
overexpressing metastatic breast
cancer

Phase I-II Advanced solid tumors and
leukemias

Phase I-II In combination with bevacizumab
in glioblastoma multiforme and
RCC

Phase I-II In combination with MEK162 in
advanced solid tumors

Phase I In combination with capecitabine in
metastatic breast cancer

BYL719 Novartis PI3Kα Phase I Advanced PIK3CA mutant solid
tumors

Phase I Advanced solid tumors

CAL-101 Calistoga Pharmaceuticals PI3Kδ Phase I In combination with
chemotherapeutic agents and CD20
mAb in Non-Hodgkin's lymphoma
or chronic lymphyocytic leukemia

Phase II In combination with rituximab in
leukemia and lymphoma

Phase I-II Hematological malignancies

Phase I Allergic rhinitis

GDC-0941 Genentech/Piramed Pan-class I PI3K Phase I Non-Hodgkin's lymphoma, solid
cancers

Phase I In combination with GDC-0973 in
locally advanced and metastatic
solid tumors

Phase I In combination with trastuzumab-
MCC-DM1 in metastatic breast
cancer
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Agent Company Target Status Target population

Phase I In combination with erlotinib in
advanced solid tumors

Phase I In combination with paclitaxel and
bevacizumab in locally recurrent or
metastatic breast cancer

Phase I In combination with paclitaxel and
carboplatin in NSCLC

Phase I In combination with ketoconozole
in healthy volunteers

Phase I In combination with rabeprezole in
healthy patients

PX-866 Oncothyreon Pan-class I PI3K Phase I-II Advanced solid tumors

Phase I-II In combination with cetuximab in
incurable CRC and head and neck
cancers

Phase I-II In combination with docetaxel in
advanced solid tumors

Phase II Prostate cancer

XL147/SAR245408 Exelixis/Sanofi-Aventis Pan-class I PI3K Phase I-II In combination with trastuzumab or
paclitaxel with breast cancer

Phase I-II In combination with letrozole in
breast cancer

Phase I In combination with paclitaxel and
carboplatin in solid tumors

Phase I In combination with erlotinib in
solid tumors

Phase I In combination with
MSC1936369B in advanced solid
tumors

Phase I-II Solid tumors and lymphomas

Phase I In combination with XL647 in solid
tumors

GSK2141795 GlaxoSmithKline AKT Phase I Solid tumors and lymphoma

Phase I In combination with GSK1120212
in cancer

MK-2206 Merck AKT Phase I In combination with standard
chemotherapy in locally advanced
or metastatic solid tumors

Phase I In combination with gefitinib in
NSCLC

Phase I In combination with trastuzumab
and lapatinib in breast cancer and
advanced solid tumors

Phase I In combination with anastrazole,
letrolzole and exemestane in breast
cancer

Phase I In combination with AZD6244 in
advanced solid tumors

Phase I In combination with lapatinib in
advanced or metastatic solid tumors
or breast cancer
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Agent Company Target Status Target population

Phase I-II In combination with bendamustine
hydrochloride and rituximab in
leukemia and lymphoma

Phase I In combination with lapatinib with
metastatic breast cancer

Phase I In combination with dalotumuzab
and MK-0752 for advanced cancers

Phase I In combination with ridaflorolimus
in advanced cancers

Phase II In combination with bicalutamide in
prostate cancer

Phase II In combination with erlotinib in
lung cancer

Phase I-II In combination with AZD6244 in
CRC

Phase I-II Advanced solid tumors and
hematological cancers

Perifosine Asta Medica, Zentaris AKT Phase II In combination with single agent
chemotherapy in metastatic cancer

Phase II In combination with gleevac in
GIST

Phase I-II In combination with bortezomib
and dexamethasone for multiple
myeloma

Phase I In combination with sorafenib in
advance cancers

Phase I In combination with docetaxel in
relapsed ovarian cancer

Phase I In combination with gemcitabine in
cancers

Phase III In combination with capecitabine in
refractory CRC

Phase I In combination with sunitinib in
advanced cancers

Phase I-II In combination with temsirolimus
in recurrent and malignant glioma

Phase I-II Advanced solid tumors, sarcomas,
hematological cancers and
Waldenstrom's Macroglobulinemia

Phase I In combination with temsirolimus
in pediatric solid tumors

Phase II In combination with dexamethasone
in multiple myeloma

SR13668 SRI international AKT Phase I Healthy volunteers

BGT226 Novartis PI3K and mTOR Phase I-II Advanced solid tumors, breast
cancers, Cowden syndrome

Phase I Advanced solid tumors

BEZ235 Novartis PI3K and mTOR Phase I In combination with BKM120, in
combination with paclitaxel, with or
without trastuzumab in locally
advanced or metastatic solid tumors
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Agent Company Target Status Target population

Phase I-II In combination with MEK162 in
advanced solid tumors

Phase I In combination with BKM120 and
letrozole in metastatic breast cancer

Phase I-II Advanced solid tumors

GDC-0980 Genentech PI3K and mTOR Phase I In combination with rabeprazole in
healthy volunteers

Phase I In combination with paclitaxel,
bevacizumab and trastuzumab in
locally recurrent or metastatic
breast cancer

Phase I In combination with
fluoropyrimidine, oxaliplatin and
bevacizumab in advanced solid
tumors

Phase I In combination with paclitaxel,
carboplatin with or without
bevacizumab in solid tumors

Phase I Advanced solid tumors or NHL

GSK2126458 GlaxoSmithKline PI3K and mTOR Phase I Solid tumors or lymphoma

Phase I In combination with GSK1120212
in cancer

PF-04691502 Pfizer PI3K and mTOR Phase I Advanced malignant solid tumors

Phase I In combination with a MEK
inhibitor or irinotecan in advanced
cancer

PF-05212384/PKI-587 Pfizer PI3K and mTOR Phase I Solid tumors

SF1126 Semafore Pharmaceuticals PI3K and mTOR Phase I Solid tumors

XL765/SAR245409 Exelixis/Sanofi-Aventi PI3K and mTOR Phase I-II In combination with letrozole in
breast cancer

Phase I In combination with erlotinib in
solid tumors

Phase I In combination with temozolomide
with or without radiation in
malignant gliomas

Phase I Advanced solid tumors

AZD2014 AstraZeneca mTOR Phase I Advanced solid tumors

AZD8055 AstraZeneca mTOR Phase I Recurrent gliomas

Phase I-II Advanced solid tumors

Phase I-II Cancer, advanced HCC

CC-223 Celgene mTOR Phase I-II Advanced solid tumors, NHL, or
multiple myeloma

Everolimus/RAD001¶ Novartis mTOR Approved for RCC

Phase 1-III Alone or in combination with
cytotoxic drugs for multiple solid
and hematological cancers

Phase II NF2 mutant acoustic neuroma

Phase II NF1 mutant and chemotherapy-
refractory radiographic progressive
low grade gliomas
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Agent Company Target Status Target population

Ridaforolimus/MK-8669/AP23573 Ariad Pharmaceuticals/Merck mTOR Phase II In combination with trastuzumab in
metastatic breast cancer

Phase I In combination with doxorubicin in
cancer and sarcoma

Phase I In combination with bevacizumab
in solid tumors

Phase II In combination with bicalutamide in
prostate cancer

Phase II In combination with dalotumuzab in
breast cancer

Phase I In combination with MK-0752 or
MK-2206 in advanced neoplasms

Phase I In combination with standard
chemotherapy in soft tissue sarcoma

Phase I In combination with cetuximab in
head and neck cancer, NSCLC and
CRC

Phase I In combination with carboplatin and
taxol in endometrial, ovarian and
solid tumors

Phase I In combination with vironostat in
advanced RCC

Phase I In combination with dalotuzumab in
neoplasms

Phase I-III Advanced solid tumors, sarcomas,
lymphomas, hepatic insufficiency

Phase II KRAS mutant NSCLC

OSI-027 OSI Pharmaceuticals mTOR Phase I Advanced solid tumors or
lymphoma

Sirolimus/Rapamycin Wyeth mTOR Approved for the prevention of
acute renal allograft rejection

Phase I-III Alone or in combination with
cytotoxic drugs for multiple solid
and hematological cancers

Temsirolimus/CCI-779 Wyeth-Ayerst mTOR Approved for RCC

Phase I-III Alone or in combination with
cytotoxic drugs for multiple solid
and hematological cancers

a
Compiled from http://Clinicaltrials.gov. Abbreviations: CRC, colorectal cancer; GIST, gastrointestinal stromal tumor; NF1, neurofibromatosis

type 1; NF1, neurofibromatosis type 2; NHL, Non-Hodgkin's lymphoma; NSCLC, non-small cell lung cancer; RCC, renal cell cancer
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Table 3

Combination inhibition of Raf and PI3K effector signaling under clinical evaluation
a

MEK and/or Raf PI3K and/or mTOR Status Patient Condition

MEK162 BKM162 Not yet recruiting Phase I advanced solid tumors

Phase II selected solid tumors

MEK162 BEZ235 Not yet recruiting Phase I unspecified adult solid tumors

Phase II solid tumors

MSC1936369B SAR245409 Recruiting Phase I Locally advanced solid tumors, metastatic solid
tumors

PD-0325901 PF-04691502 Not yet recruiting Phase I Advanced cancer

GSK1120212 BKM120 Recruiting Phase I Advanced and selected solid tumors

BAY86-9766 BAY80-6946 Not yet recruiting Phase I Neoplasms

GDC-0941 GDC-0973/XL518 Recruiting Phase I Solid cancers

GSK1120212 GSK2126458 Recruiting Phase I Cancer

GSK1120212 GSK2141795 Recruiting Phase I Cancer

GSK1120212 Everolimus Active Phase I NSCLC, pancreatic cancer and solid cancers

Sorafenib Everolimus Recruiting Phase I Relapsed and/or refractory solid tumors

Phase II Radioactive iodine refractory thyroid cancer

Sorafenib Temsirolimus Recruiting Phase II Radioactive iodine refractory thyroid cancer

AZD6244 Temsirolimus Recruiting Phase II BRAF mutant stage IV melanoma

MEK162 and RAF265 none Not yet recruiting Phase I-II Advanced solid tumors harboring RAS or
BRAF mutations

GSK2118436 and GSK1120212 none Not yet recruiting Phase I BRAF mutant metastatic melanoma

Rollover Phase II To provide continued treatment with
GSK2118436 to BRAF mutant tumors

AZD6244 and sorafenib none Recruiting Phase I-II Advanced HCC

BAY86-9766 and sorafenib none Active Phase II HCC

a
Compiled from http://Clinicaltrials.gov. Abbreviation: HCC, hepatocellular carcinoma

Future Med Chem. Author manuscript; available in PMC 2012 May 08.

http://Clinicaltrials.gov

