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Abstract

Recent genome-wide association studies (GWAS) have made substantial progress in identifying 

disease loci. The next logical step is to design functional experiments to identify disease 

mechanisms. This step, however, is often hampered by the large size of loci identified in GWAS 

that is caused by linkage disequilibrium (LD) between SNPs. In this study, we demonstrate how 

integrating methylome-wide association study (MWAS) results with GWAS findings can narrow 

down the location for a subset of the putative casual sites. We use the disease schizophrenia as an 

example. To handle “data analytic” variation we first combined our MWAS results with two 

GWAS meta-analyses (N=32,143 and 21,953), that had largely overlapping samples but different 

data analysis pipelines, separately. Permutation tests showed significant overlapping association 

signals between GWAS and MWAS findings. This significant overlap justified prioritizing loci 

based on the concordance principle. To further ensure that the methylation signal was not driven 

by chance, we successfully replicated the top three methylation findings near genes SDCCAG8, 

CREB1 and ATXN7 in an independent sample using targeted pyrosequencing. In contrast to the 

SNPs in the selected region, the methylation sites were largely uncorrelated explaining why the 

methylation signals implicated much smaller regions (median size 78bp). The refined loci showed 

considerable enrichment of genomic elements of possible functional importance and suggested 

specific hypotheses about schizophrenia etiology. Several hypotheses involved possible variation 

in transcription factor binding efficiencies.
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Introduction

Schizophrenia (SCZ) is a major public health problem (Collins et al. 2011) that ranks ninth 

in global burden of illness (Murray and Lopez 1996). Patients experience hallucinations, 

delusions and impairment of sensory processing and higher cognitive function such as 

reasoning and planning (Uhlhaas and Singer 2010). Onset is typically in adolescence or 

early adulthood and the course of illness is characterized by exacerbations, remissions, and 

relapses. It is characterized by substantially increased morbidity and mortality, with a 

projected lifespan of about 15 years less than the general population (Harris and Barraclough 

1998).

Of a large set of prenatal risk factors, having a first-degree relative with SCZ is one of the 

major risk factors (Sullivan et al. 2003), with genetic factors accounting for the majority of 

this familial risk (Murray et al. 2003). Although SCZ genetics has proven difficult, recent 

mega/meta GWAS studies have made substantial progress in identifying specific disease 

loci (Aberg et al. 2013a; Genome-wide association study identifies five new schizophrenia 

loci 2011; Ripke et al. 2013; Shi et al. 2009). The next logical step is to design functional 

experiments to identify neurobiological disease mechanisms. This step, however, is 

hampered by the large size of the loci implicated by GWAS, caused by linkage 

disequilibrium (LD) between SNPs. For example, the average size of the 22 loci reported in 

Ripke et. al. (Ripke et al. 2013) was 447kb with the largest locus spanning over 7 Mb. 

Clearly, the possibility to refine these putative causal loci would greatly expedite our ability 

to design targeted functional experiments.

Convergent genomic approaches that integrate different kinds of data may reduce platform 

specific errors and increase confidence in the robustness of the findings when multiple lines 

of evidence converge to the same biological factors (Niculescu et al. 2000). While our 

results will have these desirable properties, in this paper we focus on the ability of whole 

methylome data to refine disease loci. Multiple scenarios are conceivable where findings 

from GWAS and methylome-wide associations studies (MWAS) may implicate similar loci. 

For example, similar to SNPs, methylation in critical sites can inhibit the binding of 

transcription factor to their recognition elements (Prendergast and Ziff 1991), resulting in 

gene silencing. In contrast to LD between SNPs, correlations among methylation sites tend 

to be much more localized (Aberg et al. 2012). Therefore, combining results from MWAS 

with results from GWAS may help to refine GWAS implicated regions for further analysis.

The most comprehensive method to interrogate the methylome involves the use of next-

generation sequencing (NGS) after bisulfite conversion of unmethylated cytosines. 

However, this is currently not economically feasible with the sample sizes required for 

MWAS (Rakyan et al. 2011). As a cost-effective alternative, we first captured the 

methylated DNA fragments and then sequenced only this methylation-enriched portion of 

the genome (Serre et al. 2010) (see reference (Aberg et al. 2012) for discussion on the merits 
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of MBD-seq) in 1,459 subjects. Next, association test were performed on a methylome-wide 

scale (Aberg et al. 2014).

The MWAS data was combined with GWAS data. Even if the same data is used, differences 

in data analyses (e.g. quality control approach, software and methods) will accumulate to 

produce non-perfect correlations between GWAS test statistics/p-values. When focusing on 

the top results (i.e. a restriction of range), these non-perfect correlations will result in 

different lists of prioritized loci. To handle this “data analytical” variation we first combined 

our MWAS results with two GWAS meta-analyses separately (N=32,143 and 21,953). 

Those GWAS studies had largely overlapping samples but different data analysis pipeline. 

Next, we simply prioritized the loci present in both top lists for further analyses. Thus, 

highly prioritized findings observed only in one MWAS-GWAS combination were excluded 

from further analysis.

Two tests were performed to ensure the prioritized regions were not false positive findings. 

First, we performed permutation tests to demonstrate that GWAS and MWAS findings have 

significant overlapping association signals. Second, in contrast to the two GWAS meta-

analyses that were based on large samples, the MWAS was performed in a more modest 

sample size. We therefore replicated the three top methylation findings in independent 

samples using a different technology.

Methods

Data sets

Schizophrenia genome-wide association results—The study first analysed Swedish 

cases and controls and then conducted a meta-analysis with the first wave of PGC 

(Psychiatric Genomics Consortium) results for schizophrenia (Ripke et al. 2013). The 

combined number of subjects was 32,143 and the total number of SNPs (imputed on the 

1000 genome reference panel) was 9,898,078. We refer to this dataset as GWAS-1. The 

second SCZ meta-analysis referred to as GWAS-2, containing 21,953 subjects of European 

descent (Aberg et al. 2013a). In this study 1,085,772 SNPs genotyped and imputed SNPs 

were available. Though, the two meta-analysis, GWAS-1 and GWAS-2, had largely 

overlapping samples but different data analysis pipeline. The third SCZ dataset refered as 

GWAS-SW contain only swedish samples after removing smples of other European ancestry 

from GWAS-1.

Schizophrenia methylome-wide association results—For details about the MWAS 

see Aberg et al. (Aberg et al. 2014). In summary, whole blood samples for the case and 

controls were collected. Cases were identified from the hospital discharge register and 

controls were separately selected at random from the national population registers in 

Sweden as a part of larger study (Ripke et al. 2013). We sequenced the methyl-CpG 

enriched genomic fraction and obtained an average of 68.0 million (SD=26.8) reads for 759 

SCZ cases and 738 controls. We then estimated how many sequenced fragments covered 

each of the 26,752,702 autosomal CpGs in the reference genome (hg19/ GRCh37) to 

quantify methylation at each site. Extensive quality control was performed on reads, samples 

and sites. We also performed data reduction by combining correlated coverage estimates of 
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adjacent CpGs into “blocks”. This left 4,344,016 blocks for 1459 subjects. To control for 

potential confounders and improve power in the MWAS, we regressed out several 

laboratory variables, age/sex, and the first seven principal components (PCs).

Analyses

Testing for partly overlapping association signals—Integrating GWAS and 

MWAS results assumes that some of the findings overlap between the two approaches. To 

study this, for both GWAS-1 and GWAS-2, we mapped SNPs to the methylation blocks. 

SNPs may have good p-values because they tag effects of other SNPs in the region (i.e. LD) 

that are the causal variants. Therefore, when mapping methylation sites to SNPs, we can 

consider a broader region than just the location of the genotyped SNP itself. Specifically, we 

assumed an “LD” flanking region of 10kb around the genotyped SNP. Because of this 

flanking region we can now match methylation sites to SNPs, even if they do not overlap 

with the genotyped SNP but are merely located within 10kb. This is a reasonable approach 

because the causal variant could potentially still be at the methylation site. The advantage of 

using this flanking region is that we can now match many more methylation sites to SNPs, 

therefore improving the genome-wide coverage of the combined MWAS and GWAS 

analysis. Note that because we do not alter the size of the methylation site that is used to 

refine the association signal, this flanking method does not affect the fine mapping 

resolution.

Next, we used 10,000 permutations to test whether top SNPs from the GWAS analysis were 

also more likely to be among the top blocks from the MWAS. Our test statistic was an 

“information ratio” calculated as the observed number of GWAS association signals among 

the top MWAS findings divided by the expected number of GWAS association signals in 

the MWAS top results under the null hypothesis assuming no overlap. When defining what 

constitutes a significant association signal we avoided thresholds commonly used in 

traditional multiple testing approaches. This is because loci that may not reach genome-wide 

significance for a given platform may still represent true effects and emerge as a top finding 

when combined with results from different platforms. Instead, we explored combinations of 

four “empirical” percentile thresholds (1st, 5th, 10th and 25th) to define the top results in the 

GWAS and MWAS.

Concordance based prioritization—Results from the permutation tests described in the 

previous section are shown in Figure 1. They suggested that there was an overlap between 

loci among the top results in the MWAS and in the each of the GWAS studies. Thus, 

selecting the top 1% of both the MWAS and GWAS-1 suggested an almost 1.05 fold 

enrichment of GWAS findings among the top MWAS findings with a significant 

permutation p-value of 0.031 (Figure 1A). Similarly, selecting the top 5% of MWAS and 

GWAS-2 suggested an enrichment of almost 1.1 with a permutation p-value of 7×10−4 

(Figure 1B).

Next we used a simple algorithm to prioritize the overlapping loci for further study. Based 

on the results from the permutation testing we selected all sites in the top 1% of combined 

analysis of MWAS and GWAS-1 and also top 5% of combined analysis of MWAS and 
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GWAS-2. Next, to ensure robustness of our results across GWAS studies, we focused on 

loci selected by both analyses.

Targeted replication of selected methylation sites—In contrast to the GWAS 

results that were based on large samples and showed robust associations across different 

analyses, the MWAS involved a more modest sample size. To validate the top MWAS 

findings selected based on prioritization, we replicated the three top findings in an 

independent sample drawn from the same (Swedish) population using targeted 

pyrosequencing of bisulfite converted DNA. The genomic DNA was bisulfite converted 

using Epitect 96 (Qiagen, Germantown, MD). The bisulfite converted DNA was used as 

input material for PyroMark PCR and PyroMark pyrosequencing following the standard 

protocols provided by the vendor (Qiagen, Germantown, MD). The assays were designed 

using the Pyromark Assay Design software. Table S1 provides primer sequences. The 

laboratory evaluations of the assays included checks for unspecific binding and DNA assay 

with known methylation levels, as previously described (Aberg et al. 2014). Furthermore, to 

ensure consistency between plates, each plate included negative control and two controls 

with known methylation levels. To test for association between SCZ and methylation in the 

pyrosequencing data, SCZ disease status (affected/unaffected) was regressed on percent 

methylation at each CpG site. Age, sex and plate indicator variables were included as 

covariates to control for possible age and sex differences, and potential batch effects.

Annotation—We annotated MWAS blocks implicating SNPs in GWAS studies with 

genomic and epigenomic (histone tags from the blood cell-line GM12878) features using 

UCSC genome browser data (www.genome.ucsc.edu) (Karolchik et al. 2014). SNP 

annotations were mapped using snp135CodingDbSnp data and dbNSFP2.1(Liu et al. 2013) 

data downloaded from UCSC genome browser and www.dbnsfp.houstanbioinformatic.org, 

respectively.

Results

Results from our permutation tests, shown in Figure 1, suggested that there was an overlap 

between loci among the top results in the MWAS and in the each of the GWAS studies. For 

example, selecting the top 1% of both the MWAS and GWAS-1 suggested an almost 1.05 

fold enrichment of GWAS findings among the top MWAS findings with a permutation p-

value of 0.031 (Figure 1A). Similarly, selecting the top 5% of MWAS and GWAS-2 

suggested an enrichment of almost 1.1 with a permutation p-value of 7×10−4 (Figure 1B).

The significant overlap found between the MWAS results and each of the two GWAS 

justified combining the results from the different platforms to further prioritize findings. 

Starting with the top overlapping sites, defined as the sites that overlap with both GWAS 

and have the best p-values in the MWAS, we selected all methylation sites in the entire 

region implicated by the GWAS. Next, to find the loci where the methylation signals were 

also significant we performed a Bonferroni correction on all methylation signals p-values in 

the GWAS implicated region. This process was repeated until we encountered overlapping 

sites that did not result in methylation blocks that passed Bonferroni correction anymore.
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For illustrative purposes, we plotted p-values for the top three sites in Figure 2. The figures 

show that GWAS p-values remain small across a fairly large region. As implicated by the 

bottom panels of Figure 3, this pattern may be explained by the substantial LD in the 

regions, which makes it difficult to pinpoint the location of a potential casual disease locus. 

In contrast, the methylation p-values in Figure 2 are much more localized. The reason is that 

the absence of long range correlations between the methylation sites in this region (see top 

panels in Figure 3 that indicate the absence of correlation between methylation blocks). The 

median size of the methylation sites was 78bp suggesting considerable refinement of the 

GWAS implicated disease locus.

Table 1 reports all concordance based prioritized loci implicated by each of the two GWAS 

overlapping MWAS results. The Swedish samples used in the MWAS as well as the 

Swedish samples in the GWAS meta-analyses are all part of the same study (see (Ripke et 

al. 2013). To study whether concordance is also found within samples from the same study, 

Table 1 also reports the GWAS findings from just these Swedish samples (GWAS-SW). The 

sample sizes for GWAS-SW are much smaller (5,001 cases and 6,243 controls) compared to 

the sample sizes for the full meta-analysis (13,833 cases and 18,310 controls) resulting in 

reduced statistical power. Thus, the p-values for the GWAS SNPs are expected to be higher. 

Nevertheless, GWAS SNPs from the Swedish samples implicating our top three MWAS 

blocks all had p-values less than 0.05. Furthermore, with the possible exception of SNP 

rs1568853 KIF5C/LYPD6B (p-value 0.56) all other SNPs have p-values that reach or are 

close to nominal significance. Thus, among our concordance based prioritized loci the 

relationship between GWAS and MWAS seems to hold within samples from the same 

Swedish study as well.

To further confirm that these methylation peaks were not false positive findings, we 

replicated the top three sites in independent samples using targeted pyrosequencing of 

bisulfite converted DNA. We did not attempt to replicate the SNP finding as the replication 

sample would inevitably be much smaller than the two GWAS analyses (N=32,143 and 

21,953) that both implicated the SNPs. Table 2 shows that the negative control (originally 

reported in our recent MWAS (Aberg et al. 2014)) did not overlap between MWAS and 

GWAS, and did not replicate (p-values 0.32 and 0.52). In contrast all three sites selected 

through concordance based prioritization replicated with p-values in the 10−5 to 10−10 range 

and effect sizes (Cohen’s D) of about half a standard deviation. Thus, the methylation peaks 

overlapping GWAS findings seen in Figure 2 are unlikely caused by chance.

The top 3 finding identified with the concordance based prioritization approach implicated 

the genes SDCCAG8, CREB1 and ATXN7 respectively. All three genes have previously been 

implicated in schizophrenia. The top prioritized region was located on chromosome 1, 

(genomic coordinates: 243,493,888–243,493,966 and p-value 1.80×10−6). The methylation 

block overlaps with an exon of the gene SDCCAG8. The region is conserved among 

eutherian mammals and contains predicted transcription factor binding sites. Epigenetic 

annotations suggest binding of histone-lysine N-methyltransferase EZH2 and histone 3, 

trimethylated at lysine 36 (H3K36m3) to this region.
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The second methylation block (chr 2, genomic coordinates: 208,461,619–208,461,657 and 

p-value 2.73×10−6) overlapped both an exon (genomic coordinates: 208,461,637- 

208,470,284) and partial intron of CREB1. The block also partially overlapped with AluSx 

repeats of class SINE and family Alu, with the remainder of the block showing sequence 

conservation among eutherian mammals and predicted transcription factor binding sites. 

Epigenetic annotations suggest binding of histone-lysine N-methyltransferase EZH2; histone 

3 trimethylation at lysine 36 (H3K36m3) and histone 3 dimethylation at lysine 79 

(H3K79m2).

The third methylation block (chr 3, genomic coordinates: 63,980,718 -63,980,830 and p-

value 4.37×10−6) partly overlapped with an intron of ATXN7 and a DNase cluster indicating 

active chromatin in several cell types. The block also partially overlapped with repeat class 

LINE and transcription factor binding sites. This block was also associated with epigenetic 

features such as histone-lysine N-methyltransferase EZH2; histone 3 trimethylation at lysine 

36 (H3K36m3) and histone 4 monomethylation at lysine 20 (H4K20m1).

The other results in Table 1 suggest that the significant findings identified by our 

concordance based prioritization overlap with several functional genomic and epigenetic 

features. For example, methylation signals overlap with RERE, KIF5C, SRPK2 and a second 

site in CREB1. There is a methylation signal in the BTN2A1 gene located in its promoter 

region, upstream of the transcription start site of the gene. Similarly, active chromatin state 

and conserved regions are highlighted by several methylation blocks. Histone modification 

such as histone 3 trimethylation at lysine 36 (H3K36m3) and EZH2 binding sites suggests 

epigenetic features as a theme of the overlapping signals.

Discussion

In summary, our study shows how MWAS results can be used to refine GWAS implicated 

disease loci. The significant overlap between top results from MWAS and GWAS studies 

provided the justification for combining the two types of studies. In contrast to the 

substantial LD between significant GWAS SNPs, the disease associated methylation sites 

did not show long range correlations in the overlapping regions. The median size of the 

methylation sites was merely 78bp suggesting considerable refinement of the GWAS 

implicated disease locus. These methylation signals were unlikely detected by chance as 

they replicated in independent samples. The methylation signals in our top prioritization 

sites implicated regions that showed considerable enrichment of genomic elements of 

possible functional importance. For example, four of the nine methylation refined regions 

were transcription factor binding sites. As both SNPs and methylation can inhibit the 

binding of transcription factor to their recognition elements (Prendergast and Ziff 1991), this 

may also explain why these regions were implicated by both MWAS and GWAS. The 

refinement we obtained could potentially allow us to design functional experiments to 

identify neurobiological disease mechanisms.

SNPs that create or destroy CpGs, called CpG-SNPs, are common constituting about 30% of 

all SNPs (Shoemaker et al. 2010). A simple explanation for the overlap between MWAS and 

GWAS findings is that allele frequencies between cases and controls for such CpG-SNPs 
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imply methylation differences. For two reasons, however, it is unlikely that our top 

methylation sites merely tag allele frequency differences between cases and controls of such 

SNPs. First, only one of our top methylation blocks comprised a common (MAF > 0.05) 

CpG-SNP. Second, the statistical power is generally too low to detect methylation 

differences caused by CpG-SNPs. FigureS1 shows that only in extreme scenarios where the 

CpG-SNP explains a substantial proportion of the methylation variation (e.g. 5%) and the 

sample size is in the range of our methylation study, would there be sufficient power to 

detect the effect. Thus, rather than merely tagging CpG-SNP allele frequency differences 

between cases and controls, other mechanistic explanations need to be considered to explain 

the overlap.

Each of the genes at our top 3 findings, SDCCAG8 (Genome-wide association study 

identifies five new schizophrenia loci 2011; Ripke et al. 2013), CREB1 (Aberg et al. 2014) 

and ATXN7 (Greenwood et al. 2013), has been previously implicated in SCZ. The protein 

encoded by cAMP (cyclic adenosine monophosphate) response element binding protein 

(CREB1) is a transcription factor involved in regulating gene expression in the brain as part 

of cAMP signaling cascades (Montminy 1997), and is a critical component of memory-

related synaptic plasticity (Kandel 2012). In Table S2, we show that the MWAS block at 

CREB1 overlapped with several transcriptions factor binding sites, including for NKX2-2 

that may be involved in the morphogenesis of the central nervous system (Fancy et al. 

2004).

Serologically defined colon cancer antigen 8 (SDCCAG8, also known as CCCAP, BBS16 

and other aliases) encodes a centrosome-associated protein, which may be involved in 

centromsome organization during interphase and mitosis (Andersen et al. 2003; Kenedy et 

al. 2003). While the association evidence for SDCCAG8 involvement in SCZ is relatively 

strong (p-value 2.53×10−8, see Table 3 Ripke et. al.) (Ripke et al. 2013), its function as a 

centrosome-associated protein does not imply an obvious etiological mechanism and 

previous commentary on this topic has been scant (Hamshere et al. 2013). Exploratory 

functional genomics strategies may be needed to suggest new hypotheses for the role of 

SDCCAG8 in SCZ etiology. Potential targets for future characterization, however, are the 

non-synonymous SNPs that lead to non-conservative amino acid changes in the critical parts 

of the SDCCAG8 protein. The methylation block overlaps with missense SNPs (+/− 250bp) 

that are predicted to be damaging (probability of alleles affecting the molecular function) by 

both SIFT (Kumar et al. 2009) and PolyPhen2 (Adzhubei et al. 2010). These functional 

SNPs, however, are rare (MAF < 0.05). We also observed that our methylated CpG block 

completely overlaps with the 10th exon of SDCCAG8 and is only 28bp from the 5′ and 3′ 

splice sites. DNA methylation is known to affect splicing (Gelfman et al. 2013) and splice 

factors are recruited to certain histone modifications, including H3K36Me3 modification 

(Luco et al. 2010). Binding of this modified histone has been observed at the genomic region 

implicated at SDCCAG8, as indicated in Table 1. Together, these observations suggest 

altered transcript splicing as a potential risk mechanism at this locus.

The final gene among our top 3 findings was ataxin 7 (ATXN7). This gene is best known for 

its causative role in spinocerebellar ataxin type 7 (SCA7), which presents with retinal 

degeneration and visual loss, demetia, hypoacusia, severe hypotonia, and auditory 
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hallucinations (Benton et al. 1998). Notably, the latter symptoms are core features of SCZ. 

We observed that methylation block at ATXN7 overlaps with transcription factor binding 

sites (Table S2) where RELA (NF-kappa-B) binds. NF-kappa-B protein mediates the 

regulation of immune response and its abnormal expression is associated with Autism 

spectrum condition (ASC) (Young et al. 2011), characterized as having an inflammatory 

component.

In contrast to our top three findings that replicated in independent sample using a different 

technology, the other reported top results are more speculative. Statistical tools exist to 

estimate the prediction error in this set (Hastie et al. 2001) but are very difficult to 

implement in this specific case as they require access to the raw data of the two GWAS 

studies. Furthermore, non-standard features of our prioritization method that involves two 

separate analyses that each combine two different data sets, further complicates the 

estimation. Because of their more speculative nature, we only briefly summarize the other 

top findings. RERE and KIF5C as risk loci underlying shared genetic effects in five major 

psychiatric disorders (Identification of risk loci with shared effects on five major psychiatric 

disorders: a genome-wide analysis 2013). The methylation block implicating KIF5C 

partially overlaps with the transcription start site where transcription factor FOXD1 binds 

(Table S2). BTN3A3/ BTN2A1 that belongs to the cluster of immunoglobulin superfamily 

located in major histocompatibility complex (MHC) region and contain methylated CpGs in 

the upstream region. The MHC region near BTN3A3/BTN2A1 is strongly associated (p-value 

7.96×10−9) with psychiatric disorders (Identification of risk loci with shared effects on five 

major psychiatric disorders: a genome-wide analysis 2013). We observed different types of 

histone modification associated with our methylated CpG blocks. This observation is 

consistent with a well-known mechanistic link between histone modification and DNA 

methylation, for example H3K9me3 is required for DNA methylation (Henckel et al. 2009; 

Rothbart et al. 2012).

The pathogenic processes for SCZ likely involve the brain. Our methylation data, however, 

were obtained using DNA extracted from whole blood. Although the use of blood rather 

than brain methylome data likely reduced the number of overlapping GWAS and MWAS 

signals, we did find significant overlap. This can be explained by several mechanisms. None 

of these mechanisms assume that methylation in blood directly affects disease susceptibility, 

although this is in principle possible because blood provides a biological environment for 

other tissues including brain. First, factors that increase disease susceptibility may leave 

biomarker signatures in blood. For example, we previously found evidence for methylation 

biomarker signatures in genes involved in immune response (Aberg et al. 2014). The altered 

methylation in blood may be of no functional relevance and the actual disease causing 

process may involve different mechanisms that could partially be mediate by genetic factors. 

Indeed, GWAS studies have consistently implicated the MHC region that harbors many 

genes affecting immune response (Sullivan et al. 2012). Second, the methylation status of 

sites in blood may mirror the corresponding sites in blood. Although epigenetic differences 

are often associated with cell differences and critical for differentiation, correlated 

methylation profiles across tissues are fairly common (Christensen et al. 2009). These mirror 

sites occur because peripheral tissues may reveal methylation marks predating or resulting 
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from the epigenetic reprogramming events affecting germ line and embryogenesis 

(Efstratiadis 1994). In addition, a variety of factors can affect methylation levels in brain 

(Kerkel et al. 2008; Sutherland and Costa 2003) have been shown to leave corresponding 

changes in blood (Aberg et al. 2013b) as well.

A limitation of our approach is that not every GWAS signal has a methylation component 

and not every methylation signal has a GWAS component. For example, as environmental 

effects cannot alter sequence variation, these phenomena cannot be detected with GWAS 

studies. Thus, the value of methylation data to refine GWAS signals is limited to a subset of 

loci.

In this study, we show how integrating MWAS data with GWAS findings can be used to 

narrow down the location for a subset of the putative causal sites. Results suggested specific 

hypotheses about SCZ etiology that could be further explored using exploratory functional 

genomics strategies. A number of these hypotheses involved in transcription factor binding 

efficiencies at the implicated sites.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Permutation test results
This figure plots the “Information ratio”, calculated as the observed top 5% of CpG blocks 

overlapping at four “empirical” percentile thresholds (1st, 5th, 10th and 25th) in the auxiliary 

datasets GWAS-1 and GWAS-2. The information ratio for each threshold shown in red, 

while the blue dotted line indicates upper 95% percentile of the permutation in our 

significance threshold.
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Figure 2. Regional Plot
Fine-map of top three MWAS blocks implicated in the GWAS datasets. MWAS block (CpG 

block), GWAS-1 SNPs and GWAS-2 SNPs are marked by different colours and shapes as 

red diamond, green-yellow triangle and cyan-blue circle, respectively. Filled triangles and 

circles represent a CpG-SNP in respective datasets. The horizontal dotted red line suggests 

significance of blocks after Bonferroni correction. Left (A), middle (B) and right (C) figures 

in this panel represent genomic regions near genes SDCCAG8, CREB1 and ATXN7, 

respectively.
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Figure 3. Block correlations and LD association in the region of our top 3 findings
Top panels show blocks correlations in the region of our top MWAS findings. Lower panels 

show the D’ between SNPs caused by linkage disequilibrium (LD) in the corresponding 

regions for each of the top findings.
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