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Abstract

The (3 + 1)-dimensional (generalized) Dirac equation is shown to have the same form as the

equation expressing the condition that a given point lies on a given line in 3-dimensional projective

space. The resulting Hamiltonian with a γ5 mass term is not Hermitian, but is invariant under

the combined transformation of parity reflection P and time reversal T . When the PT symmetry

is unbroken, the energy spectrum of the free spin-1
2
theory is real, with an appropriately shifted

mass.
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I. INTRODUCTION AND SUMMARY

Conventional quantum mechanics requires the Hamiltonian H of any physical system be

Hermitian (transpose + complex conjugation) so that the energy spectrum is real. But as

shown in the seminal paper by Bender and Boettcher [1], there is an alternative formulation

of quantum mechanics in which the requirement of Hermiticity is replaced by the condition

of space-time PT reflection symmetry. (For a recent review, see Ref. [2].) If H has an

unbroken PT symmetry, then the energy spectrum is real. Examples of PT -symmetric non-

Hermitian quantum-mechanical Hamiltonians include the class of Hamiltonians with complex

potentials: H = p2 + x2(ix)ǫ with ǫ > 0. Incredibly the energy levels of these Hamiltonians

turn out to be real and positive. [1] Now Hermiticity is an algebraic requirement whereas

the condition of PT symmetry appears to be more geometric in nature. Thus one may

wonder whether a purely geometric consideration can naturally lead to a Hamiltonian which

is PT -symmetric rather than its Hermitian counterpart. In this note we provide one such

example.

In the next section, we “derive” the (3 + 1)-dimensional Dirac equation from a consid-

eration of the condition that a given point lies on a given line in 3-dimensional projective

space. By associating the (homogeneous) coordinates of the point with the Dirac spinor

components ψ(x, t), and the coordinates of the line with the four-momentum and two real

mass parameters m1 and m2 of the Dirac particle, we are led to an equation taking on the

form of a generalized Dirac equation with Hamiltonian density

H(x, t) = ψ̄(x, t)(−i∇/ +m1 +m2γ5)ψ(x, t) (m2 real). (1)

As noted in Ref. [3], the Hamiltonian H =
∫

dxH(x, t) associated with the above H is not

Hermitian but is invariant under combined P and T reflection. For µ2 ≡ m2

1
− m2

2
≥ 0,

it is equivalent to a Hermitian Hamiltonian for the conventional free fermion field theory

with mass µ. Studies of spin-1
2
theories in the framework of projective geometry have been

undertaken before. See, e.g., Ref. [4]. 1 But the idea that there may be a natural connection

1 These papers are rather mathematical and technical. The authors of the first two papers discuss the Dirac

equation in terms of the Plucker-Klein correspondence between lines of a three-dimensional projective

space and points of a quadric in a five-dimensional projective space. The last paper shows that the Dirac

equation bears a certain relation to Kummer’s surface, viz., the structure of the Dirac ring of matrices is
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between the projective geometrical approach (perhaps also other geometrical approaches)

and PT -symmetric Hamiltonians as pointed out in this note appears to be novel.

II. PROJECTIVE GEOMETRY AND PT -SYMMETRIC DIRAC EQUATION

It is convenient to use homogeneous coordinates to express the geometry in a projective

space. [5] A point x ≡ (x, y, z) in three-dimensional Euclidean space can be expressed by

the ratios of four coordinates (x1, x2, x3, x4) which are called the homogenous coordinates of

that point. One possible definition of (x1, x2, x3, x4), in terms of x is x1 = x
d
, x2 = y

d
, x3 =

z
d
, x4 =

1

d
, with d being the distance of the point from the origin. Obviously, for any constant

c, (cx1, cx2, cx3, cx4) and (x1, x2, x3, x4) represent the same point x.

Consider the line through two points (a1, a2, a3, a4) and (b1, b2, b3, b4). For (x1, x2, x3, x4)

to lie on that line, the following determinant has to vanish, for any (r1, r2, r3, r4),
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pij = −pji ≡
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, (4)

Eq. (3) can be written as

p34x2 − p24x3 + p23x4 = 0. (5)

related to that of Kummer’s 166 configuration. All these authors, explicitly or implicitly, put one of the

two masses, viz., m2 in (1), to be zero by hand. In this note, we “derive” the generalized Dirac equation

from the projective geometrical approach in a relatively simple way and point out that there is no need

to put m2 = 0 and perhaps it is even natural to keep both masses m1 and m2.
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Similarly, for any r2, r3, r4, the following equations respectively must hold

p41x3 − p31x4 + p34x1 = 0,

p12x4 − p42x1 + p41x2 = 0,

p23x1 − p13x2 + p12x3 = 0. (6)

Note that the Plucker line coordinates are not independent; the identical relation that

connects them can be found by expanding the determinant
∣
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= 0, (7)

from which

p12p34 + p13p42 + p14p23 = 0. (8)

Next, we relabel the homogeneous coordinates (x1, x2, x3, x4) as the four Dirac spinor

components ψ. Let us first use the Dirac representation for the 4× 4 Dirac matrices

γ0 =







1 0

0 −1





 , γ =







0 σ

−σ 0





 , and γ5 =







0 1

1 0





 , (9)

where 0 is a 2×2 zero matrix, 1 is a 2×2 unit matrix, and σ are the three 2×2 Pauli matrices.

Let us further write the six Plucker coordinates (under the so-called Klein transformation)

in terms of pµ with µ running over 0, 1, 2, 3 (to be interpreted as the four-momentum of the

Dirac particle) and m1 and m2 (to be interpreted as two real mass parameters) as follows:

p34 = +p0 +m1, p12 = −p0 +m1,

p13 = +p1 − ip2, p24 = −p1 − ip2,

p41 = +p3 +m2, p23 = −p3 +m2. (10)

Then we can rewrite Eqs. (5) and (6) as

(γ0p0 + γ · p+m1 +m2γ5)ψ = 0, (11)

the generalized Dirac equation in energy-momentum space! In coordinate space, we get

(

i∂/−m1 −m2γ5
)

ψ(x, t) = 0. (12)
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The above choice (10) of pij in terms of pµ, m1 and m2 is dictated by the representation

of the Dirac matrices we have adopted. A different representation would result in a different

choice. To wit, if we use the Weyl or chiral representation for the Dirac matrices

γ0 =







0 1

1 0





 , γ =







0 σ

−σ 0





 , and γ5 =







−1 0

0 1





 , (13)

we have to choose the Plucker coordinates according to

p34 = +m1 −m2, p12 = +m1 +m2,

p13 = +p1 − ip2, p24 = −p1 − ip2,

p41 = +p0 + p3, p23 = +p0 − p3, (14)

to yield (11) or (12).

Associated with the generalized Dirac equation (12) is the Hamiltonian density for the free

Dirac particle given in (1). Following Bender et al. [3], one can check that the Hamiltonian

H is not Hermitian because them2 term changes sign under Hermitian conjugation. However

H is invariant under combined P and T reflection given by

Pψ(x, t)P = γ0ψ(−x, t),

Pψ̄(x, t)P = ψ̄(−x, t)γ0, (15)

and

T ψ(x, t)T = C−1γ5ψ(x,−t),

T ψ̄(x, t)T = ψ̄(x,−t)γ5C, (16)

where C is the charge-conjugation matrix, defined by C−1γµC = −γTµ . Therefore, the

projective geometrical approach yields (at least in this particular example) a PT -symmetric

Hamiltonian rather than a Hermitian Hamiltonian. [6]

By iterating (12), one obtains

(

∂2 + µ2
)

ψ(x, t) = 0. (17)

Thus, the physical mass that propagates under this equation is real for µ2 ≥ 0, i.e.,

m2

1
≥ m2

2
, (18)
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which defines the parametric region of unbroken PT symmetry. If (18) is not satisfied, then

the PT is broken. [7] And one recovers the Hermitian case only if m2 = 0.

Of course, it would be nice if the geometrical picture alluded to in this paper could

give us some additional insight and/or predictions. For example, one may ask whether the

values of the special cases m2 = 0, which corresponds to the standard Dirac equation, and

m1 = m2, i.e., µ = 0, which marks the onset of broken PT symmetry, have any particular

geometrical significance. [8] Eq. (10) (Eq. (14)) shows that m2 = 0 is given by the condition

p14 = p23 (p12 = p34) and that µ = 0 corresponds to p12 + p34 = p41 + p23 (p34 = 0) for

the Plucker coordinates for the case of the Dirac representation (the Weyl representation)

of the Dirac matrices. Unfortunately since these conditions are representation-dependent,

any potential geometrical significance that can be attached to these two special cases will

probably be hard to identify. On the other hand, as shown above, the projective geometrical

method of “deriving” the Dirac equation is very general. It includes both the standard

Dirac equation and the generalized Dirac equation which yields a non-Hermitian yet PT -

symmetric Hamiltonian. One can trace this feature to the simple fact that there are six

Plucker coordinates which, in general, can naturally accommodate two types of masses (in

addition to the four energy-momentum) for the spin-1
2
particles.

Finally we note that (17) in the form of (−pµpµ +m2

1
−m2

2
)ψ = 0 is simply a reflection

of the relation (8) among the Plucker coordinates when they are written in terms of pµ , m1

and m2 given by either (10) or (14).

For completeness, we should mention that Bender and collaborators [3] have constructed

a Hermitian Hamiltonian h that corresponds to the non-Hermitian Hamiltonian H of (1) for

µ2 = m2

1
−m2

2
≥ 0. The two Hamiltonians are related by the similarity transformation

h = e−Q/2HeQ/2, (19)

where

Q = − tanh−1ε
∫

dxψ†(x, t)γ5ψ(x, t), (20)

with ε = m2/m1. The resulting h is given by

h =
∫

dx ψ̄(x, t)(−i∇/ + µ)ψ(x, t), (21)

in agreement with (17).

6



Acknowledgments

This work was supported in part by the U.S. Department of Energy and the Bahnson

Fund at the University of North Carolina. YJN thanks P. D. Mannheim and K. A. Milton

for useful discussions on PT -symmetric theories. We thank an anonymous referee for useful

suggestions.

[1] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998). Also see C. M. Bender and

K. A. Milton, Phys. Rev. D 55, 3255 (1997). The idea of PT symmetry was prefigured in the

latter paper.

[2] C. M. Bender, Rept. Prog. Phys. 70, 947 (2007).

[3] C. M. Bender, H. F. Jones and R. J. Rivers, Phys. Lett. B625, 333 (2005).

[4] O. Veblen, Proc. Nat. Acad. Sci. USA, 19, 503 (1933); E. M. Bruins, Proc. Nederl. Akad.

Wetensch. 52, 1135 (1949); F. C. Taylor Jr., Master thesis, University of North Carolina at

Chapel Hill (1968), unpublished.

[5] M. Kline, in The World of Mathematics (Simon and Schuster, New York, 1956), Vol. I; O. Veblen

and J. W. Young, Projective Geometry (Ginn and Company, Boston, 1910), Vol. I.

[6] If we use im2 instead of m2 (for realm2) in Eq. (10) or Eq. (14), then instead of Eq. (12), we get
(

i∂/−m1 − im2γ5

)

ψ(x, t) = 0. The resulting H would be Hermitian but not PT -symmetric.

(Recall that under both Hermitian conjugation and T reflection, i changes sign.) And in that

case, the shifted mass (see Eq. (17)) is given by µ = (m2
1 +m2

2)
1

2 .

[7] This would correspond to the case of a conventional tachyonic spin-1
2
particle. But we note that

additional physics is required to discover that a Dirac equation for an imaginary value of mass

actually cannot describe a fermionic tachyon. See H. van Dam, Y. J. Ng and L. C. Biedenharn,

Phys. Lett. 158B, 227 (1985).

[8] This issue is raised by an anonymous referee.

7


	Introduction and Summary
	Projective geometry and PT-symmetric Dirac equation
	Acknowledgments
	References

