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Abstract
Groupwise registration has been recently introduced to simultaneously register a group of images by
avoiding the selection of a particular template. To achieve this, several methods have been proposed
to take advantage of information-theoretic entropy measures based on image intensity. However,
simplistic utilization of voxelwise image intensity is not sufficient to establish reliable
correspondences, since it lacks important contextual information. Therefore, we explore the notion
of attribute vector as the voxel signature, instead of image intensity, to guide the correspondence
detection in groupwise registration. In particular, for each voxel, the attribute vector is computed
from its multi-scale neighborhoods, in order to capture the geometric information at different scales.
The probability density function (PDF) of each element in the attribute vector is then estimated from
the local neighborhood, providing a statistical summary of the underlying anatomical structure in
that local pattern. Eventually, with the help of Jensen-Shannon (JS) divergence, a group of subjects
can be aligned simultaneously by minimizing the sum of JS divergences across the image domain
and all attributes. We have employed our groupwise registration algorithm on both real (NIREP NA0
dataset) and simulated data (12 pairs of normal control and simulated atrophic dataset). The
experimental results demonstrate that our method yields better registration accuracy, compared with
a popular groupwise registration method.
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1. Introduction
Medical image registration has been a hot area of research for decades, due to its valuable
applications to clinical studies for comparison of longitudinal and cross-sectional data,
computer-assisted diagnosis and treatment guidance, and quantitative monitoring of the disease
progression (Hill et al., 2001; Maintz and Viergever, 1998; Zitová and Flusser, 2003). For
example, to analyze and monitor tumor growth based on the observation of patient images at
different time points, meaningful diagnosis can only be conducted after aligning those images
to a common space and preserving morphological variability related to the disease (Hajnal et
al., 1995; Holden et al., 2000; Woods et al., 1992).

© 2010 Elsevier Inc. All rights reserved.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errorsmaybe discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2011 May 1.

Published in final edited form as:
Neuroimage. 2010 May 1; 50(4): 1485–1496. doi:10.1016/j.neuroimage.2010.01.040.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Pairwise image registration seeks to register the moving image to the space of the fixed image
by minimizing the distance between two images. For example, given a set of corresponding
landmarks on both the moving and the fixed images, the minimal landmark distance can be
measured and optimized using the Iterative Closest Point (ICP) algorithm (Maintz and
Viergever, 1998). However, no matter done manually or automatically, the determination of
correspondences between these landmarks is challenging and usually ends in unreliable results.
To this end, voxel-based registration methods are proposed in the literature, where energy terms
capturing the distance between two intensity images are minimized in registration. There are
a variety of image distance/similarity metrics available nowadays, ranging from the L2 norm
of the intensity differences between two images (Christensen et al., 1996), to information
theoretic measurements such as mutual information (MI) (Maes et al., 1997; Wells et al.,
1996) and normalized mutual information (NMI) (Studholme et al., 1999) which are both
capable of measuring multi-modality similarity. On the other hand, transformation models also
play critical roles in registration. Non-linear transformations, which have much higher degrees
of freedom (DOF) than linear counterparts such as rigid or affine transformations, can generally
better describe the subtle changes of anatomical structures in medical images. Such
transformations can usually be represented by a linear combination of polynomials (Woods et
al., 1998a; Woods et al., 1998b), basis functions (Friston et al., 1995), or B-Splines (Rueckert
et al., 1999), etc.

To better understand and analyze the group similarity and variation within a population, it is
now more important that a group of images, instead of a single pair, is processed and evaluated
together in clinical and research applications. However, if pairwise registration methods are
directly applied to more than two images, one image needs to be selected as the template and
would inevitably bias the subsequent image analysis. To this end, several groupwise
registration algorithms have been proposed recently to seek for spatial correspondences among
a group of subjects and simultaneously warp them to a common space (Crum et al., 2004; Toga
and Thompson, 2001). For example, Seghers et al. (Seghers et al., 2004) proposed a groupwise
registration algorithm which performs exhaustive pairwise registrations between all possible
pairs of images in the group. The final atlas is constructed by averaging all the images after
they have been warped to their mean morphological templates, each of which is determined
by averaging the transformations between the given image and all other images. In the method
proposed by Park et al. (Park et al., 2005), the image closest to the population mean geometry,
which is estimated through multi-dimensional scaling (MDS) of all images in the beginning,
is defined as the tentative template. All images are registered to the template, as the template
is refined by updating itself with the mean of those aligned images. Recently, minimum
spanning tree (MST) was introduced to describe the linkages of different subjects within a
group (Munsell et al., 2009), and the tree structure was used to reduce the groupwise registration
into a series of pairwise registration problems. Though the method focuses on 3D shapes, it
could easily be extended to medical images. While enjoying effectiveness of groupwise
registration, the methods described above suffer from high computational complexity,
especially when the size of the image population increases.

More efficient groupwise registration methods, which completely avoid the traditional pairwise
registration paradigm, have consequently been investigated. In Joshi et al. (Joshi et al.,
2004), a widely accepted large deformation diffeomorphic registration framework (Beg et al.,
2005) is adapted for groupwise registration. In Zöllei et al. (Zöllei et al., 2005), a groupwise
registration scheme based on the congealing framework (Learned-Miller, 2006; Miller et al.,
2000) is proposed, where intensity based entropy drives a gradient-based stochastic optimizer
and pushes all images to the population center simultaneously. This method, which works
under the constraint of affine transformations only in Zöllei et al., is further extended in Balci
et al. (Balci et al., 2007) by using B-Splines to model nonlinear deformations. Stack entropy,
the cost function for the formulation in Balci et al. and Zöllei et al., measures the compactness
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of the cross-subject intensity distribution for a certain voxel location. If all images were
perfectly registered, the stack entropy would ideally approach to zero. However, the
shortcomings of these methods are that they rely on voxelwise intensity information, leaving
out regional contextual information and anatomical shape characteristics, and that each voxel
contributes equally to the registration.

To improve the robustness of registration, we propose a novel groupwise registration algorithm
in this paper, which utilizes multi-scale attribute vectors, rather than only image intensities, as
feature descriptors. To better capture the variability of each attribute in the attribute vector, a
local neighborhood, instead of a single voxel, is taken into consideration. The neighborhood
works as a local pattern, and is described by the distribution of attributes within the
neighborhood. The inhomogeneity of corresponding local patterns across all input images is
measured by the Jensen-Shannon (JS) divergence (Lin, 1991), whose overall sum for all
attributes and for all voxels is used as the cost function for groupwise registration. We provide
a gradient-based solution to optimize this cost function. In the end, all subjects in the group
will be gradually registered to a common space without introducing any bias.

Our groupwise registration method was evaluated on both real data and simulated data. For
the real data, we performed our method on the NIREP NA0 dataset of 16 brain images and
compared the overlap ratios on 32 manually delineated ROIs. In another experiment, we
simulated atrophies at pre-central gyrus (PCG) and superior temporal gyrus (STG). After
normalizing both the atrophic subjects and the normal controls, the Jacobian determinant maps
of the estimated deformation fields were used for t-test in SPM to measure the atrophy
discrepancy capability. All experimental results were compared with the intensity guided
groupwise registration method which was implemented in Balci et al. (Balci et al., 2007). And
the comparison demonstrated that our method could achieve more accurate and consistent
groupwise registration.

2. Methods
One novelty of our groupwise registration algorithm is that we utilize multi-scale attribute
vectors as voxel anatomical signatures to guide groupwise registration. For each voxel location
in the image domain, we consider the statistical information of attributes in its local
neighborhood. Specifically, a set of probability density functions (PDFs) is estimated to
describe the corresponding local patterns from individual images. We then use the JS
divergence to measure inhomogeneity of the cross-subject PDFs. By minimizing the overall
JS divergence integrated for all attributes and all voxels, a collection of transformations are
optimized to pull each subject from its own space, which is initially far away from each other,
to the final common space. We will describe our method in more details in the following
sections.

2.1 Attribute and Attribute Vector
In medical image analysis, it is important to build anatomical models that take the underlying
anatomy into account, rather than only the similarity on image intensities. This motivates the
utilization of descriptive features which are able to more effectively represent different shapes
of complex anatomical structures in medical images. This is in the spirit of HAMMER (Shen
and Davatzikos, 2002), where geometric invariant moments are introduced as elements to form
the attribute vector, and elastic registration is guided by those hierarchically selected driving
voxels whose correspondences can be estimated more reliably based on their attribute vectors.
These driving voxels are usually located at transition areas between two types of tissue labels
(e.g., the interface of white matter and gray matter), and highlight the importance of contextual
information to registration.
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The composition of the attribute vector is quite flexible and can be easily fine-tuned to cater
for different applications. Besides complex feature descriptors that are popular in the computer
vision society, relatively simple attributes can also contribute to achieve high registration
accuracy. Under the assumption that intensity transitions should occur at the same location
after two images are well aligned, the metric of the registration between two images is then
related to the directions of the intensity gradients in Haber and Modersitzki (Haber and
Modersitzki, 2006). Recently, a combination of features, including the gradients and the
Hessians in the intensity space, is applied to the registration of cervical MR images in Staring
et al. (Staring et al., 2009). Although the studies mentioned above belong to the category of
pairwise registration, they have indeed confirmed that the gradient information is quite helpful
to guide registration. Therefore, better registration results can be expected with the help of
more descriptive attributes.

For N images under groupwise registration, we denote the attribute vector at voxel location x

of the i-th image as a D-tuple , where D denotes the number of

attributes. Each attribute  is a scalar value, and describes a type of features which can
constitute not only the voxel intensity but also more regional information (as ① in Fig. 1).
Therefore, the groupwise registration of N input images is then posed as the problem of
registering N vector images.

It is worth noting that different attributes should ideally be orthogonal or statistically
independent. For example, if the intensity gradients are calculated in median difference
manner, the obtained gradients would be dependent only on the two adjacent voxels but
independent of the center location under consideration. Then the correlation between any two
different attributes approaches to zero. This requirement or assumption simplifies the
optimization in registration, in that it enables us to evaluate the contribution of each attribute
independently. Further, different image attributes should have different significances
according to the specific ongoing stage of registration. In the next section we will explain how
to specify the importance of a certain attribute.

2.2 Local Pattern Matching
For intensity guided registration, the common criterion to determine whether registration
should be further continued or have already converged is based on the estimation of intensity
similarity/dissimilarity, though the metric itself can be formulated in a variety of ways. In the
case of groupwise registration, the variance of intensities can be computed for each location,
where voxels from different images form a stack. The integration of the variances across the
whole image domain results in a cost function, which can be minimized for groupwise
registration. However, such a measurement is especially susceptible to imaging distortions and
anatomical ambiguities, since intensity from a single voxel is hardly robust.

An improvement to intensity variance is the stack entropy (Balci et al., 2007; Zöllei et al.,
2005) which plots the histogram of intensities in each voxelwise stack and calculates the
Shannon entropy for the histogram. Nevertheless, to accurately estimate the entropy is
challenging when sample size is not large enough (Paninski, 2003). Meanwhile, sampling
strategy is widely applied in medical image registration. In Balci et al. (Balci et al., 2007), a
subset of voxels, which are randomly sampled from the domain of input images, is used to
steer the estimations of deformation fields. The sampling rate can be very low (e.g., 1% of the
volume size or even less). Though this strategy can greatly alleviate computation complexity,
it raises the concern related to the accuracy and consistency of registration. In particular, a
uniformly distributed voxel subset can hardly well reflect the original image, especially when
all sampled voxels are equally treated regardless of their intrinsic significances.
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For better registration, we introduce the local pattern matching mechanism into the proposed
method. Given the center voxel location in a certain image, its neighborhood is regarded as the
local pattern of the center voxel. Registration is then formulated as the problem of finding the
transformations which could minimize the inhomogeneity among corresponding local patterns
with the same center locations in different images. For each location, a PDF could be estimated
to reflect the distribution of a given attribute within the neighborhood (as ② in Fig. 1).
Following Parzen windowing in probability estimation, the probabilistic distribution of
attribute aj, centered at location x, can be written as:

(1)

where Gσ is a Gaussian kernel with variance σ, K is the overall number of voxels in the
neighborhood, and Δx is the offset from the center location. The allowable offset in our method
is set within a 3×3×3 cubic neighborhood currently.

The PDF here works as the signature of the local pattern for each voxel. Assuming that all
input images are already registered, the series of PDFs {Pr(aj|i, x)|i = 1, ⋯, N} in the stack
should be very similar. Therefore, a well-behaved groupwise registration algorithm should give
the minimal divergence for the PDF stack which consists of voxels from the same locations of
different images. To measure this divergence, a popular information-theoretic metric, called
the Jensen-Shannon (JS) divergence (Lin, 1991), can then be employed:

(2)

where Hp(·) indicates the Shannon entropy, and each individual image is given a factor πi to
weight its contribution. It is worth noting that the JS divergence was adopted in Wang et al.
(Wang et al., 2008) for groupwise registration of different point sets, by regarding the whole
point set as a global pattern represented by Gaussian mixtures. In contrast, we consider local
patterns (PDFs of each attribute in the neighborhood) as representations of regional anatomical
structures.

By setting the weighting factor πi of each image to 1/N, the divergence of the local patterns for
the neighborhoods centered at x across different images can be rewritten from Eq. 2 as:

(3)

Further, given the center location of the neighborhood and the specific attribute under
consideration, we could define a quantity V(x,j):

(4)
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and thus the local JS divergence in Eq. 3 equals to the conditional expectation of V(x,j):

(5)

The expectation would approach to zero if all patterns had the same PDF.

2.3 Cost Function and Implementation Issues
Across the whole image domain should be the contributions from all locations and different
attributes summed up, in order to form a unified metric which is used as a goodness
measurement of the groupwise registration. As mentioned above, the correlation between any
two selected attributes is assumed to be close to zero. Therefore, contributions from different
attributes are calculated individually and then combined linearly. In this study, we formulate
the attribute vector by incorporating intensity as well as the magnitude of the intensity gradient.
The reason for utilizing the gradient magnitude is that it can provide accurate guidelines to
match local boundaries. In the appendix, we use a toy example to demonstrate the power of
the attribute vector and to illustrate the motivation for local pattern matching.

It is, however, not clear how each attribute should be weighted according to its significance
and to the stages of registration. We could use the previously reported learning method (Wu
et al., 2007) to extract a series of attributes, and determine the optimal combination of their
weightings through a training procedure prior to registration. For the sake of simplicity, we
design a linearly adaptive assignment strategy to weight these two types of attributes and
balance between intensity as well as the gradient magnitude. Empirically, intensity based
matching is relatively less sensitive to mismatches of boundaries than gradient. Therefore, we
set higher intensity weight in the initial stages of registration. As the registration progresses
and images become better aligned, the weight given to the gradient magnitude can be increased,
in order to refine the alignment of the structural boundaries. Assuming the weighting factor of
the j-th attribute is Wj (constrained by ΣjWj = 1), then the overall cost function for minimization
can be written as:

(6)

In Eq. 6, the term Pr(x) serves as spatial weighting factors for different locations in the image
domain. Traditionally, a subset of voxels is uniformly sampled from the image domain, and a
specific weighting factor can be assigned to each voxel location. For example, the optimal scale
saliency measurement (Kadir and Brady, 2001) was introduced to mutual information based
registration and succeeded in improving the robustness and consistency of the algorithm (Luan
et al., 2008). However, the relationship between the cost function and the weighting method
is still under investigation. And usually the calculation of potential weighting factors (e.g.,
optimal scale saliency) is very computation intensive.

To avoid the above problems, we have applied the concept of importance sampling strategy
(Bhagalia et al., 2009; Sundar et al., 2007) to the proposed groupwise registration method.
Taking advantage of the intensities and the gradient magnitudes already computed for the
purpose of registration, we could average, smooth, and then normalize the gradient magnitude
values on the overall image domain. The produced values signify the importance of each voxel.
Based on the generated importance map, a number of voxels can be sampled to drive the
registration. Higher importance implies that the location under consideration is more likely to
be drawn in non-uniform sampling, while lower value denotes higher possibility of rejection.
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Based on the importance map in Fig. 2(b), for instance, an initial subset of voxels, shown in
red in Fig. 2(a), can be sampled to guide the registration. Note, with the progress of registration,
more and more sampled voxels will gradually participate (red followed by green, and blue) in
the registration. The spatial distribution of sampled voxels confirms that samples are more
concentrated in boundary abundant areas, where importance values are generally higher.

Given a subset of voxel locations {xm, m = 1, ⋯, M} drawn from the non-uniform sampling
procedure, the term Pr(x) in Eq. 6 can then be implicitly represented by the intrinsic spatial
distribution within the subset. As a result, the overall cost function in Eq. 6 could be expressed
as:

(7)

where {xm, m = 1, ⋯, M} complies with the distribution Pr(x) in Eq. 6.

To minimize the overall f in Eq. 7, we can analytically solve for its gradient and feed it as the
steepest descent direction to a first order optimizer. As mentioned above, Wj is associated with
the stage of registration. Given a certain iteration in optimization, the configuration of Wj is
constant. Therefore, the partial derivative of the cost function can be expressed as:

(8)

where Ti indicates the transformation estimated for the i-th image.

To further improve the robustness, a multi-resolution registration strategy is adopted. In each
resolution, except for the highest one, images are down-sampled firstly. The attributes are then
calculated on those down-sampled images. This approach ensures that the generated attribute
vector is scale-related, thus can better capture anatomical structures in different resolutions.
B-Spline transformation model is employed to describe the deformation for each image. To
better avoid local minima in registration, the number of B-Spline control points is associated
to the resolution of registration. At a coarser resolution, the optimization problem is effectively
reduced to a lower degree-of-freedom (DOF) problem, which is achieved by using a smaller
number of B-Spline control points. The estimated transformations will be progressively refined
as the registration progresses by gradually increasing the number of B-Spline control points.

3 Experimental Results
We will demonstrate in this section the performance of the proposed attributed vector guided
groupwise registration using experiments on both real and simulated data. All results are
compared with the implementation of the congealing method reported in Balci et al. (Balci et
al., 2007), which is designated as the “intensity” guided method in the following. For fair
comparison, the two methods are constructed using the same framework, with the same
optimizer, transformation model, and multi-resolution registration strategy. For real data, the
alignment of the NIREP NA0 data by our method was more accurate than the intensity guided
method in terms of both intensity residual errors and ROI overlap ratios. Another experiment
was performed on simulated atrophic data. And our method again yielded better results in
detecting abnormal atrophies in brain images, indicating its potential clinical applications.
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3.1 Anatomical Correspondence
We have employed the NIREP NA0 dataset (Christensen et al., 2006) to demonstrate the
capability of the attribute vector guided registration algorithm. In the dataset, there are 16
individual brain MR images, each of which has 32 manual anatomical labels. A typical slice
from one subject in the dataset is shown in Fig. 3(a), with its manual labels displayed in Fig.
3(b). For the sake of fairness, the same registration settings are applied to the intensity guided
and the attribute vector guided methods. For example, both methods use the same number of
levels for the multi-resolution registration framework, and the same number of B-Spline control
points in each level.

To quantify the performance, we calculate intensity residual errors between each of the 16
aligned images and their group mean. Then, a standard deviation volume of the intensity
residual errors for the 16 images is computed. The histograms of the standard deviation volumes
yielded by both two methods are shown in Fig. 4(a). The result of our method (blue curve)
shows a distribution much more concentrated to the low error range. This implies that more
accurate alignment of the 16 images is achieved by the attribute vector guided method
compared to the intensity guided method (red curve). The 3-D rendering views of the standard
deviation volumes are also provided in Fig. 4(a). It is worth noting that the two views are
adjusted to the same contrast. The relatively darker volume associated with the blue curve
confirms that our method leads to fewer mismatches for both cortical and subcortical regions.
Besides, in Fig. 4(b), we provide typical slices extracted from each of the mean images yielded
by both methods, as well as the 3-D renderings of the two images. Similar conclusion can be
reached that our method is superior to the intensity guided registration method. Specifically,
more anatomical details are preserved and the produced mean image is sharper.

We further evaluate the neuroanatomical consistency in registration with the help of the
manually delineated labels. We warp the labels according to the estimated deformations for
comparison. Taking the left and the right precentral gyri (L/R-PCGs) as example, a voxel-wise
probability map can be estimated by counting for each voxel the total number of registered
images which have the specific L/R-PCG labels. If the probability value is 1.0, all 16 subjects
after registration have the same L/R-PCG labels at the voxel under consideration. In Fig. 5, we
provide 3D renderings of the two probability maps related to the intensity guided method and
the attribute vector guided method, respectively. It can be observed that our method on average
produces higher overlap probabilities for L/R-PCGs. Areas with significant improvement are
highlighted by the green elliptic contours in Fig. 5.

Registration consistency is further evaluated on all anatomical labels by quantitatively
comparing the overlap ratios. We boost labels in common space by voting out the majority
label across all registered images voxel by voxel. After that, we calculate the intersection as
well as the union between the voted label and each warped label. The measure utilized here is
the Jaccard coefficient, or overlap ratio, which is defined as the division between sizes of the
intersection region and the union region. In Fig. 6, we provide the overall overlap ratios, as
well as the standard deviations, of all 32 labels averaged from 16 registered images. The results
for the intensity guided and the attribute vector guided methods are indicated by red and blue,
respectively. Our method shows consistent improvement in all 32 labels in terms of overlap
ratio, with an average increase of 5.06%. Additionally, we define the voted label as the positive
while its complement the negative. And then, given a warped label as an observation, the
specificity and the sensitivity for that observation can be calculated following:

(9)
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In Fig. 7, the mean specificity and sensitivity for each individual label are provided along with
their standard deviations. For all labels, the attribute vector guided method shows improvement
of mean values, which implies more reliable registration results. Furthermore, Fig. 8 shows
seven subjects (at the same slice) selected from 16 registered images. As indicated by the
arrows, images registered by our method (Fig. 8(b)) are much more consistent than those
yielded by the intensity guided method (Fig. 8(a)).

3.2 Application: Atrophy Detection
After groupwise registration, all input images are expected to be warped to a common space
and their group mean can be taken as an atlas. The morphological diversity in the intensity
space is then conveyed by the collection of transformation fields which are estimated for
individual subjects. The deformation fields can be used not only to define the anatomical
correspondence but also to capture morphological differences between input image and the
atlas (Baloch et al., 2007; Davatzikos et al., 1996). For example, using the estimated
deformation fields, quantitative analysis can be performed to characterize the pathological
abnormalities between normal controls and dementia subjects (Christensen et al., 1993; John
and Karl, 1999; Miller et al., 1997; Miller and Younes, 2001; Shen and Davatzikos, 2002).

In this experiment, we use two sets of images, each of which contains 12 images. The first set
is composed of 12 images as control subjects, and the second set is obtained from the first set
by introducing simulated atrophies in the neighborhoods of both the pre-central gyrus (PCG)
and the superior temporal gyrus (STG) (Davatzikos et al., 2001; Xue et al., 2006). Sample
slices are shown in Fig. 9(a) and (b), where atrophies in PCG and STG are highlighted. Also,
the difference between normal control and atrophic subject is shown at the bottom of Fig. 9.
Note that the contrast of the differences has been adjusted for better visual inspection. The
amount of atrophy, in both STG and PCG respectively, is around 10% reflecting realistic
abnormalities in aging or pathological brains (Desikan et al., 2009; Ferdinando et al., 2009;
Petersen et al., 1999; Petersen et al., 2005).

After groupwise registration, the Jacobian determinant map corresponding to each deformation
is computed. The Jacobian determinant value measures the change of the voxel volume.
Considering the fact that the determinant equal to 1.0 represents a voxelwise identical
transformation, a >1.0 determinant represents expansion of the volume while a <1.0
determinant implies shrinkage. Based on the Jacobian determinant maps, we perform analysis
on scalar values, in contrast to the dense deformation fields which are described by 3D vectors.

With the software package SPM (www.fil.ion.ucl.ac.uk/spm/), a two-sample t-test is
performed on the Jacobian determinant maps to compare the group differences between the
two sets of images. The two sample t-test can identify significant group differences and ignore
the random distortions. Under the same confidence interval, a higher t-value indicates a more
salient group difference occurring at that specific location. Detailed results of the t-test are
provided in Table 1, which confirms that our method yields improved t-values by 12.95% in
PCG and 13.99% in STG. It implies that the estimated deformations of our registration method
can more accurately capture subtle morphological changes (e.g. tiny atrophies) within input
images. This improvement is crucial for automatic atrophy detection in potential clinical
applications.

4. Conclusion and Discussion
We have developed a novel attribute vector guided groupwise registration algorithm which is
guided by attribute vectors. Although intensity similarity is a key factor and important in image
registration, integrating more attributes into registration has been proven useful. In our
algorithm, different attributes which capture different aspects of regional characteristics are
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used as structural signature for each voxel. Registration is then achieved by using a local pattern
matching mechanism and by minimizing the attribute PDF dissimilarity across all subjects.
Contributions from different attributes and different locations are adaptively weighted, and are
mathematically integrated into a cost function which is minimized by following its steepest
descent direction. More consistent and accurate registration results can thus be achieved, as
experimental results confirm less residual intensity error and higher overlap ratio. Our future
work includes incorporating more image attributes to further improve the groupwise
registration accuracy. Also, we will apply our method to real brain data to seek for its potential
clinical usages.

Appendix
In this study, the intensity and the gradient magnitude are selected to form the attribute vector,
due to the reason that the gradient magnitude is more sensitive to misalignment which needs
to be eliminated in registration. To illustrate this, we apply random left-right perturbations to
the binary image shown in Fig. 11(a) and acquire a set of simulated images. The perturbation
scales are uniformly distributed within the range of zero to a maximal allowable offset (e.g.,
4 voxels), thus misalignment can be simulated. We then sample, at a location exactly on the
ridge of the original image, the intensities and the gradient magnitudes of the set of simulated
images. The curves of the normalized stack entropies, computed based on the sampled
intensities and the gradient magnitudes, are plotted in red and in blue respectively in Fig. 10
(b). Both the red and blue curves reach their peaks, and then decrease as the maximal
perturbation increases. We observe that the peak of the blue curve (gradient magnitude) is to
the left of that of the red curve (intensity). The steeper profile of the blue curve left to the peak
helps the steepest descent optimizer converge to the “perfection” (where perturbation is
eliminated) more quickly and implies that the gradient magnitude is more sensitive to
misalignment. On the other hand, an early emerging peak leads to relatively compromised
robustness – optimizer will end in local minima if it starts from a position right to the peak.

Local pattern matching incorporates the benefits from various attributes and alleviates local
minima. Recalling from Eqs. 1 and 2, the local JS divergence is equivalent to the stack entropy
if the size of the neighborhood is limited to the voxel itself. By considering local neighborhood
(or local pattern), the cost function incorporates the idea of sub-volume matching (Shen and
Davatzikos, 2002) which has been proven effective. In Fig. 10(c), the normalized JS
divergences on the intensity and the gradient magnitude are plotted for the same dataset as that
of Fig. 10(b), using a 3×3 neighborhood. We observe that the local minima are removed, and
optimization can hence be easily solved by using a steepest descent optimization algorithm.

As in our scheme, contributions from different attributes are linearly combined. The weighting
factors for individual attributes are coupled and varying according to different stages of the
hierarchical registration. However, irrespective of how we choose the weighting factors, the
overall cost function is regulated to stay between the lower and the upper bounds, which are
determined by the individual cost functions based on the intensity and the gradient magnitude,
respectively. In Fig. 10(b) and (c), the intensity (red curve) and the gradient magnitude (blue
curve) are assigned the same weighting factor (0.5), and their arithmetic mean contributions
are plotted in green. Obviously, the new curves are trade-offs between different attributes. In
practice (Section 2.3), the weight on the intensity will decrease as registration processes, while
the weight on the gradient magnitude will increase since it is more sensitive to tiny
misalignment. As a result, this mechanism can better preserve benefits from different attributes
and achieve more accurate and robust registration.
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Fig. 1.
An attribute vector is the signature of a given voxel (as ①). The local pattern of an attribute is
estimated from the neighborhood centered at location x, and described in the probabilistic
fashion (as ②).
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Fig. 2.
Non-uniform sampling is applied, and a subset of voxel locations is drawn and overlaid on the
original slice in (a). Initially, only the red voxels in (a) will be sampled to drive the registration.
As registration progresses, more and more voxels indicated in green and blue, will gradually
take part in the registration. It is worth noting that most sampled voxels are located at the
boundaries of prominent anatomical structures, as indicated by the importance map for the
non-uniform sampling, as shown in (b).
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Fig. 3.
A typical slice (a) from the NA0 dataset, and its manual anatomical labels (b): Different colors
indicate different manually delineated anatomical structures.
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Fig. 4.
Comparison of histograms of standard deviation volumes in (a) and the produced mean images
in (b). The 3D rendering views of standard deviation volumes in (a) confirm that the attribute
vector guided groupwise registration leads to lower intensity residual errors than the
registration guided by intensity alone. In (b), a typical cortical/sub-cortical slice as well as the
3D rending of the mean image yielded by our method (in blue box) show more abundant details
than that of the intensity guided method (in red box).
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Fig. 5.
L/R-PCG overlap probability maps of the intensity guided method (left) and the attribute vector
guided method (right). It can be observed that the latter yields higher label consistency.
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Fig. 6.
The overlap ratios of 32 manually labeled ROIs by both the intensity guided and the attribute
vector guided groupwise registration methods are shown in red and blue, respectively. Besides
the mean ratio, the standard deviation is also plotted as error-bar for each label. Our method
produces better label overlaps for all 32 labels and achieves more consistent registration results.
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Fig. 7.
For each label, the specificity and the sensitivity are plotted in left panel and right panel,
respectively. For each label, values for both the left (top) and right (bottom) hemispheres are
plotted. The cross symbol indicates mean specificity/sensitivity, and the length of the bar shows
the standard deviation.
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Fig. 8.
Seven selected subjects are shown at the same slice after registration via (a) the intensity guided
method and (b) the attribute vector guided method, respectively. Ventricles in row (b) are more
similar to each other than those in row (a), especially for the locations indicated by arrows.
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Fig. 9.
Control images, and simulated images with atrophy introduced to the pre-central gyrus (PCG)
in (a) and the superior temporal gyrus (STG) in (b). The difference between the control image
and the atrophic image is provided in the bottom. Note that the contrast of the two differences
has been adjusted, for better visual inspection.

Wang et al. Page 22

Neuroimage. Author manuscript; available in PMC 2011 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Random perturbations (left-right) are applied to the image in (a), to generate a set of simulated
images. Normalized stack entropies of both intensity and gradient magnitude at the sampling
voxel are shown in (b). The corresponding normalized JS divergence curves are displayed in
(c). The arithmetic average curves (green) are the means of the red and the blue curves. This
result shows the importance of using the JS divergence in improving the performance of the
groupwise registration.
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