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Abstract

The standard Support Vector Machine (SVM) minimizes the hinge loss function

subject to the L2 penalty or the roughness penalty. Recently, the L1 SVM was

suggested for variable selection by producing sparse solutions (Bradley and Man-

gasarian, 1998; Zhu et al., 2003). These learning methods are non-adaptive since

their penalty forms are pre-determined before looking at data, and they often per-

form well only in a certain type of situation. For instance, the L2 SVM generally

works well except when there are too many noise inputs, while the L1 SVM is more

preferred in the presence of many noise variables. In this article we propose and

explore an adaptive learning procedure called the Lq SVM, where the best q > 0

is automatically chosen by data. Both two- and multi-class classification problems

are considered. We show that the new adaptive approach combines the benefit of a
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class of non-adaptive procedures and gives the best performance of this class across

a variety of situations. Moreover, we observe that the proposed Lq penalty is more

robust to noise variables than the L1 and L2 penalties. An iterative algorithm is

suggested to solve the Lq SVM efficiently. Simulations and real data applications

support the effectiveness of the proposed procedure.

Keywords: adaptive penalty, classification, shrinkage, support vector machine,

variable selection.

1 Introduction

Classification, a supervised learning approach, is one of the most useful statistical tools

for information extraction. Among numerous classification methods, the support vector

machine (SVM) is a popular choice and has attracted much attention in recent years. As

an important large margin classifier, SVM was originally proposed by V. Vapnik and his

colleagues (Boser et al, 1992; Vapnik, 1998) using the idea of searching for the optimal

separating hyperplane with maximum separation. It has been successfully applied in

various disciplines including engineering, biology, and medicine, and now enjoys great

popularity in both machine learning and statistics communities.

Consider a general K-class classification problem in which a training dataset {xi, yi}n
i=1,

i.i.d. realizations from P (X, Y ), is given. Here xi ∈ S ⊂ <d is the input vector and yi

indicates its class label from 1, . . . , K. The goal is to construct a classifier which can be

used for prediction of y with a new input x. For simplicity, we begin with binary classifi-

cation problems with K = 2 and the class label is coded as Y ∈ {±1}. Using the training

set, one needs to construct a function f , mapping from S to <, such that sign(f(x)) is the

classification rule. As the ideal classifier, the Bayes rule minimizes the expected misclas-

sification rate, i.e., P (Y f(X) < 0) = 1/2E[1− sign(Y f(X))]. Consequently, the 0-1 loss,

i.e. 1/2(1 − sign), on the margin Y f(X) is the ultimate loss for accurate classification.

However, it is nonconvex and discontinuous, thus very difficult to implement. In practice,

convex surrogates are used to obtain good classifiers efficiently. The convex hinge loss of

SVM is among them. Under the general regularization framework, the standard binary

2



SVM solves the following problem

minf
1

n

n∑
i=1

l(f(xi), yi) + λ‖f‖2
2, (1)

where l(f(xi), yi) = [1 − yif(xi)]+ is the convex hinge loss, ‖f‖2
2, the L2 penalty of f ,

is a regularization term serving as the roughness penalty of f , and λ > 0 is a tuning

parameter which controls the trade-off between the goodness of data fit measured by l

and the complexity of f in terms of ‖f‖2
2, c.f., Wahba (1998). Lin (2002) showed that

binary SVM directly estimates the Bayes classifier sign(P (Y = +1|x)− 1/2) rather than

P (Y = +1|x) itself.

When the number of classes K is more than two, we need to deal with multi-classification

problems. Such problems are frequently encountered in many scientific studies. A good

scheme should be powerful in discriminating several classes altogether. Since the binary

SVM is not directly applicable in this case, numerous multi-classification procedures have

been proposed in the literature. One popular approach, known as “one-versus-rest”, pro-

poses to solve the K-class problem by training K separate binary classifiers. However,

as argued by Lee, Lin, and Wahba (2004), an approach of this sort may perform poorly

in the absence of a dominating class, since the conditional probabilities of all classes are

smaller than 1/2. This calls for alternative multicategory SVM methodologies that treat

all classes simultaneously. In the literature, there are a number of different multicategory

SVM generalizations; for instance, Weston and Watkins (1999), Crammer and Singer

(2001), Lee et al. (2004), and others.

Since the L2 penalty is used in the standard SVM, the resulting classifier utilizes all

input variables. This can be a drawback when there are many noise variables among the

inputs (Efron et al., 2004). In that situation, those methods for simultaneous classification

and variable selection are more preferable to achieve good sparsity and better accuracy.

Bradley and Mangasarian (1998) and Zhu et al. (2003) proposed the L1 SVM for binary

problems and showed that variable selection and classification can be conducted jointly

through the L1 penalty. Wang and Shen (2006) extended the idea to multicategory

problems. Ikeda and Murata considered the Lq penalty with q ≥ 1. In practice, a learning

procedure with a fixed (non-adaptive) penalty form has its advantages over others only

under certain situations, because different types of penalties may suit best for different
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data structures. This motivates us to consider an adaptive penalty for binary and multi-

class SVMs. We focus on the class of Lq SVMs, q > 0, which includes both the L1 and

L2 penalties as special cases in addition to many other choices. Since the best choice of q

varies from problem to problem, we propose to treat q as a tuning parameter and select

it adaptively. Numerical studies show that the choice of q is indeed an important factor

on the classification performance, and the adaptive approach works as good as or better

than any fixed q across a variety of situations.

The rest of this paper is organized as follows. In Section 2, we review the general Lq

penalty and its properties in linear regression problems. Section 3 proposes the adaptive

Lq SVM and discusses the choice of (λ, q). Both binary and multi-class problems are

studied. A local quadratic approximation algorithm is introduced in Section 4. Section

5 presents simulation studies, and real examples are illustrated in Section 6. Some final

discussion is given in Section 7.

2 The Lq Penalty and Its Use in Regression

To motivate our methodology, we first explore properties of the Lq penalty in the context

of regression problems. Throughout the paper, we assume the function f(x) lies in some

linear space spanned by basis functions {Bj(x), j = 1, . . . , M}, i.e., f(x) =
∑M

j=1 wjBj(x).

For linear regression or classification problems, the Bj’s are original inputs; alternatively,

they can be some nonlinear transformations of a single input or several inputs in x. The

Lq penalty on f is defined as

‖f‖q
q =

M∑
j=1

|wj|q.

When q = 0, the corresponding penalty is discontinuous at the origin and consequently

is not easy to compute. Thus we consider q > 0 in the paper. In the context of linear

regressions, the least squares subject to the Lq penalty with q > 0 was first studied by

Frank and Friedman (1993) and is known as bridge regression. Fu (1998) and Knight

and Fu (2000) studied asymptotic properties and the computation of bridge estimators.

When q = 1, the approach reduces to the LASSO (Tibshirani, 1996) and is named as basis

pursuit in wavelet regression (Chen et al., 1999). For q ≤ 1, the bridge estimator tends

4



to shrink small |w|’s to exact zeros and hence selects important variables. As pointed out

by Theorem 2 in Knight and Fu (2000), when q > 1 the amount of shrinkage towards zero

increases with the magnitude of the regression coefficients being estimated. In practice, in

order to avoid unacceptable large bias for large parameters, the value of q is often chosen

not too large. In our numerical examples, we concentrate on q ∈ (0, 2].
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Figure 1: Plots of Lq penalties with different q’s (left panel) and the corresponding solu-

tions θ̂ = argminθFq(θ) (right panel) with λ = 3, where Fq(θ) = (θ − z)2 + λ|θ|q.

To illustrate the effect of Lq penalties with different q’s, we consider a simple linear

regression model with one parameter θ and one observation z = θ + ε, where ε is a

random error with mean 0 and variance σ2. Without any penalty, the best linear unbiased

estimator (BLUE) θ̂ for the parameter θ is z itself. When the Lq penalty is used, we need

to solve argminθFq(θ), where Fq(θ) = (θ − z)2 + λ|θ|q. In Figure 1, we plot the form of

the Lq penalty and the corresponding minimizer of Fq(θ) for various values of q. The Lq

function is convex if and only if q ≥ 1, and not differentiable at z = 0 when q ≤ 1. The

singularity property at the origin is crucial for the shrinkage solution to be a thresholding

rule (Fan and Li, 2001). If z = 0, then the minimizer θ̂ = 0. Otherwise, when z 6= 0, the

behavior of the Lq penalty severely depends on the choice of q, as illustrated in the left

plot of Figure 1. If q ≥ 1, the larger q is, the more penalties are imposed on |θ|’s which

are larger than 1 and less penalties are imposed on |θ|’s which are smaller than 1. The

situation is opposite for q < 1. The following are several special cases for q:

• When q = 2, we have the ridge solution θ̂ = z/(λ + 1). Note θ̂ is biased and

Var(θ̂) = 1/(λ + 1)2Var(z). Therefore θ̂ is better than z when the bias is smaller
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compared to variance deduction.

• When q = 1, we obtain the lasso solution θ̂ = sign(z)[|z| − λ/2]+. This gives us a

thresholding rule, because small |z| leads to a zero solution.

• When q ∈ (0, 1), we can conclude that θ̂ = 0 if and only if λ > |z|2−q( 2
2−q

)[2(1−q)
2−q

]1−q,

that is when |z| < [λ(2−q
2

)( 2−q
2(1−q)

)1−q]1/(2−q) (Knight and Fu, 2000).

• When q = 0, minimizing (θ − z)2 + λI(|θ| 6= 0) gives θ̂ = zI(|z| <
√

λ). This

penalty is known as the entropy penalty in wavelet (Donoho and Johnstone, 1994;

Antoniadis and Fan, 2001).

For other values of q, it is not easy to get a closed form for θ̂. For q > 1, F (θ) is a strictly

convex function and there has only one unique minimizer. It is not hard to show that

θ̂ 6= 0 if z 6= 0, for any q > 1. Therefore the Lq penalty with q > 1 does not threshold.

The right plot in Figure 1 plots the minimizer of Fq(θ) for different q’s with λ = 3. For

q > 1, we observe that the solution |θ̂| is shrunk downward but never becomes zero unless

z = 0. When q = 1, the original estimator is shrunk by a constant and hence variable

selection can be achieved. When q < 1, the Lq penalty may achieve better sparsity than

the L1 penalty because larger penalty is imposed on small coefficients than the L1 penalty.
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Figure 2: Plots of the density function πλ,q(wj) with λ = 3 (left panel) and 6 (right panel).

The Lq penalty
∑M

j=1 |wj|q has a Bayesian interpretation if we view λ
∑M

j=1 |wj|q as

negative logarithm of the prior distribution exp(−λ
∑M

j=1 |wj|q) of w subject to a constant.
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In general, we can show that the density function of the prior distribution of wj is

πλ,q(wj) =
qλ1/q

2Γ(1/q)
exp

(
−|wj|q

λ−1

)
. (2)

Two special cases are the normal prior (q = 2) and the double exponential prior (q = 1),

as pointed out by Tibshirani (1996) and Fu (1998). In Figure 2, we plot the densities

πλ,q for different choices of (λ, q). We can observe πλ,q has more mass around 0 as q gets

smaller with a spike at zero only when q ≤ 1. As a result, the corresponding posterior

estimators of wj with q ≤ 1 are more likely to be 0.

3 The Lq SVM

3.1 Binary Classification

For binary classification problems with y ∈ {±1}, we propose to solve the following SVM

with the adaptive Lq penalty

min
f

1

n

n∑
i=1

c(−yi)[1− yif(xi)]+ + λ‖f‖q
q, (3)

where f(x) =
∑M

j=1 wjBj(x), c(+1) and c(−1) are respectively the costs for false posi-

tive and false negative. Different from the standard binary SVM, there are two tuning

parameters λ and q in (3). The parameter λ, playing the same role as in the non-

adaptive SVM, controls the tradeoff between minimizing the hinge loss and the penalty

on f . Another tuning parameter q determines the penalty function on f . Here q ∈ (0, 2]

is regarded as a tuning parameter, and it can be adaptively chosen by data together

with λ. Lin et al. (2002) showed that the minimizer of E{c(−Y )[1 − Y f(X)]+} is

sign(P (Y = +1|x)− c(−1)
c(+1)+c(−1)

), where [u]+ = u if u ≥ 0 and 0 otherwise. Clearly, when

equal costs are employed, (3) reduces to the standard case.

As mentioned in the previous section, a proper choice of q is important and depends

on the nature of data. If there are many noise input variables, the Lq penalty with

q ≤ 1 is desired since it automatically selects important variables and removes many noise

variables, consequently the resulting classifier has good generalization and interpretability.

On the other hand, if all the covariates are important, it may be more preferable to use
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q > 1 to avoid unnecessary variable deletion. Therefore, q should be chosen adaptively

by data. Figure 3 plots the contours of the normalizing constant qλ1/q

2Γ(1/q)
in πλ,q(θ) given

in (2) as a function of (λ, q). For a fixed q, the prior distribution with a larger λ tends to

put more mass around 0. This amounts to putting a larger weight on the regularization

term. For a fixed λ of reasonable size, the prior distribution with a smaller q tends to put

more mass around 0, thus more shrinkage on the estimated coefficients can be expected.

In summary, (λ, q) interacts much with each other, indicating that a good λ for one q

may not be a proper choice for a different q. In practice, we can use cross validation

or a separate validation set to tune λ and q together. More discussions about tuning

parameters λ and q are provided in Section 3.3.
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Figure 3: Contour plots of the density coefficient qλ1/q

2Γ(1/q)
in (2) with q ∈ (0, 2] and λ ∈

(0, 10).

3.2 Multiclass Lq SVM

Consider the multiclass classification problem with K possible class labels {1, . . . , K}.
Given the training set, we need to learn a function φ(x) : <d → {1, . . . , K} to distinguish
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K classes. Let pk(x) = P (Y = k|X = x) be the conditional probability of class k

given X = x, for k = 1, . . . , K. Represent ckl as the cost for classifying an observation

in class k to class l. Note that all ckk (k = 1, . . . , K) entries are set to be 0 since a

correct decision should not be penalized. The Bayes rule, minimizing the expected cost

of misclassifications

E
[
cY φ(X)

]
= EX

[
K∑

k=1

ckφ(x)P (Y = k|X = x)

]
= EX

[
K∑

k=1

ckφ(x)pk(x)

]
,

is given by

φB(x) = arg min
k=1,...,K

[
K∑

l=1

cklpk(x)

]
. (4)

When the misclassification costs are all equal, that is, ckl = 1 for l 6= k, the Bayes rule

simplifies to

φB(x) = arg min
k=1,...,K

[1− pk(x)] = arg max
k=1,...,K

pk(x), (5)

which can be interpreted as minimizing the expected misclassification rate E{Y 6= φ(X)}.
For multi-classification problems, we need to estimate a K-dimensional function vector

f(x) = (f1(x), . . . , fK(x))′. A sum-to-zero constraint
∑K

k=1 fk(x) = 0 for any x ∈ S is

employed to ensure uniqueness of the solution. Each fk(x) is assumed to be lying in

the space spanned by a number of basis functions, i.e., fk(x) =
∑M

j=1 wkjBj(x). Then

we consider a multivariate hinge loss function 1
n

∑n
i=1

∑K
k=1[fk(xi) + 1]+cyik. This loss

function was also adopted by Lee et al. (2004) and it is shown to be Fisher consistent.

For simplicity of the notations, we only illustrate the multiclass Lq SVM for the linear

case. The extension to nonlinear classifications is straightforward using basis expansion.

Moreover, we focus on equal costs with cyik = I(k 6= yi). Denote the linear decision

function as fk(x) = bk + wT
k x, where wk = (wk1, ..., wkd)

T and k = 1, ..., K. The sum-to-

zero constraint
∑K

k=1 fk(x) = 0 is equivalent to (
∑K

k=1 bk = 0,
∑K

k=1 wk = 0). Then the

optimization problem becomes

min
{(wk,bk)k=1,...,K}

1

n

n∑
i=1

K∑

k=1

[wT
k xi + bk + 1]+I(k 6= yi) + λ

K∑

k=1

d∑
j=1

|wkj|q, (6)

subject to
K∑

k=1

bk = 0,
K∑

k=1

wkj = 0, for j = 1, ..., d. (7)
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The final decision rule for classifying x is φ̂(x) = arg maxk=1,...,K f̂k(x). As a remark, we

note that problem (6) can be extended for the unequal cost case with I(k 6= yi) replaced

by cyik.

3.3 Parameter Tuning

For fixed parameters λ and q, let φ̂λ,q(x) be the optimal solution of (3) or (6). In particular,

when K = 2, φ̂(x) = sign(f̂(x)) where f plays the same role as f2 − f1 when the label is

switched from {−1, +1} to {1, 2}; when K > 2, φ̂(x) = arg maxk=1,··· ,K f̂k(x). With equal-

cost assumptions, the generalization performance of φ̂(x) is evaluated by the expected

misclassification rate

MISRATE(λ, q) = EP

[
Y 6= φ̂λ,q(X)

]
. (8)

Here φ̂λ,q is considered fixed and the expectation is taken over future, unobserved (X, Y )’s.

The best parameters are the pair which minimizes (8). However, (8) is not directly

computable since P is generally unknown. In the literature, one approach to approximate

(8) is to generate a separate tuning set of size n′, which is assumed to follow the same

distribution as the training set, and compute

1

n′

n′∑
j=1

I(y′j 6= φ̂(x′j)).

Another popular method is the cross validation. In our numerical examples, we generate

separate tuning sets in simulated examples, where the true joint distribution P (X, Y )

is known, and use five-fold cross validation in real examples. A two-dimensional grid of

(λ, q) will be searched over to find the best tuning parameters.

4 Local Quadratic Approximation Algorithm

When q = 2, the optimization problems (3) and (6) can be solved by quadratic program-

ming (QP). In the literature, the dual rather than primal problems are often easier to

handle. When q = 1, (3) and (6) can be reduced to linear programming (LP). Many stan-

dard software packages are available to solve them. Except for these two special cases, the

optimization problems (3) and (6) are essentially nonlinear programming (NLP) problems,
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which are not easy to solve in general. In this section, we suggest a universal algorithm

which solves (3) and (6) for any q > 0. As mentioned previously, when q < 1 the function

‖f‖q
q is not convex in w. Therefore standard optimization routines may fail to minimize

the Lq SVM. We propose to use the local quadratic approximation for the objective func-

tion and minimize (3) or (6) via iterative quadratic optimization. More details are given

in the Appendix.

For simplicity, define pλ(z) = λ|z|q for any fixed q. Using the fact that z+ = z+|z|
2

and

the proxy |z| ≈ 1
2

z2

|z0| + 1
2
|z0| with a nonzero z0 that is close to z, there are the following

approximations:

z+ ≈ 1

4

z2

|z0| +
1

2
z +

1

4
|z0|,

pλ(|z|) ≈ pλ(|z0|) +
1

2

p′λ(|z0|)
|z0| (z2 − z2

0).

Define the augmented input x̃i = [1,xT
i ]T , Vi = [x̃T

i , · · · , x̃T
i ]T as K − 1 copies of x̃i, and

aik = I(k 6= yi) for i = 1, ..., n, k = 1, ..., K. Define the vector v = (v1, ..., vd)
T with vj =

p′λ(|∑K−1
k=1 w0

kj |)
|∑K−1

k=1 w0
kj |

, where w0
kj denotes the initial value of wkj. For j = 1, ..., d, let sj = 1K−1⊗tj,

where 1K−1 is a vector of 1 with length K − 1, tj is the d + 1-dimensional zero vector

except the (j +1)th entry being one, and ⊗ denotes the Kronecker product. Furthermore,

the collection of parameters is denoted by η = [ηT
1 , ..., ηT

K−1]
T , where ηk = [bk, w

T
k ]T for

k = 1, ..., K. After plugging the equation constraints (7) into (6), we can update η by

iteratively minimizing the quadratic approximations until convergence. For fixed (λ, q),

the local quadratic approximation (LQA) algorithm to solve (6) is summarized as the

following three steps:

Step 1: Set ` = 1 and the initial value η(1).

Step 2: Let η0 = η(`). Minimize F (η) = ηT Qη +ηT L to obtain η(`+1), where Q and

L are defined in the appendix.

Step 3: Set ` = ` + 1 and go to Step 2 until convergence.

The algorithm stops when there is little change in η(k), say,
∑

j |η(k+1)
j − η

(k)
j | < ε,

where ε is a pre-selected small positive value. In our numerical examples, ε = 10−3 is

used. Based on our experience, the coefficients of the discriminant functions given by

linear discriminant analysis (LDA) provide a good starting value for η(1). As a remark,
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Figure 4: Plot of classification errors in Example 1 as q increases.

we note that the LQA algorithm is very efficient although it is a local algorithm and it

may not find the global optimum. Our numerical results in Section 5 suggest that the

LQA algorithm works effectively for the proposed Lq SVM.

5 Simulations

In this section, we demonstrate performance of the adaptive Lq SVM, and compare it with

those of L1 and L2 SVMs under different settings. Three binary classification examples

are considered in Section 5.1, with two linear cases and one nonlinear case. One three-

class example is illustrated in Section 5.2. The grid search is implemented to find the best

tuning parameters (λ, q) based on some independent tuning sets with q ∈ (0, 2].

5.1 Binary Classification

Example 1 (Linear; many noise variables). We generate the input x uniformly

from the hypercube [0, 1]20, and the class label y is assigned by sign(f(x)), where f(x) =

2x1+4x2+4x3−4.8. Thus the input space is S = [0, 1]20, but only the first three variables

are important and the rest seventeen variables are noise variables. As a result, the true

model size is 3. Both training and tuning sample sizes are 400. For each classifier, we

compute its testing error based on its prediction accuracy on an independent testing set

of size 3000. The experiment is repeated for 100 times; the average testing error and the

average model size are summarized in Table 1. The numbers in the parentheses are the
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standard deviations of the estimates.

Since only three out of twenty variables are important, variable shrinkage is necessary

in this example to achieve an accurate and sparse classifier. From Table 1, the L1 SVM

performs some model shrinkage and has the average model size 11.79; it also shows better

classification accuracy than the L2 SVM. However, compared with the Lq SVM, the L1

SVM does not give enough shrinkage. We can see, among the three procedures, the Lq

SVM performs the best by producing the sparsest model with the average size 5.28 and

the smallest testing error. Furthermore, the resulting Lq SVM classifier never misses

any of the three important variables over all 100 runs. In this example, the average q

selected by data is 0.4074; hence the data requires more shrinkage than that given by the

non-adaptive L1 penalty.

Method Test Error Model Size

Bayes rule 0.2216 (0.0070) 3

L1 SVM 0.2578 (0.0265) 11.79 (3.40)

L2 SVM 0.2673 (0.0136) 19.97 (0.17)

Lq SVM 0.2415 (0.0380) 5.28 (4.11)

Table 1: Classification accuracy and variable selection results for Example 1.

Figure 4 illustrates how the testing errors change as q increases. Clearly, the testing

errors tend to be smaller when q gets closer to 0. This is due to the fact that there are

many noise input variables and smaller q’s give more shrinkage thus better classification

accuracy.

Example 2 (Linear; varying number of sample sizes). The data generation mech-

anism is as follows. First, generate class label Y with P (Y = +1) = P (Y = −1) = 1/2.

After the class label is obtained, with probability 0.7, the first three variables {x1, x2, x3}
are drawn from xi ∼ yN(i, 1) and the second three variables {x4, x5, x6} are drawn from

xi = N(0, 1) (i = 1, 2, 3); with probability 0.3 the first three variables are drawn from

xi = N(0, 1) and the second three variables are drawn from xi = yN(i− 3, 1) (i = 4, 5, 6).

The remaining noise variables are drawn from N(0, 20) independently.

In this example, numbers of noise variables are increased up to 48. The results based
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Figure 5: Plots of classification errors in Example 2 as the number of noise variables

increases with n = 20, 40, 70, 100.

on 100 replications are plotted in Figure 5 with training sample sizes n = 20, 40, 70, 100.

The tuning sample sizes are same as the corresponding training sample sizes. Testing

errors are estimated using independent testing sets of size 3000. On each plot, the x-axis

represents the number of noise variables and y-axis represents testing errors of different

classifiers. As we can see from these plots, as the number of noise variables increases,

the classification task becomes more challenging and consequently the testing errors of all

three methods increase. However, the testing error of the Lq SVM increases the slowest

and thus its performance becomes more and more superior than the other two methods.

When we increase the training sample size, all methods perform better with corresponding

testing errors decreasing. Among the three methods, the Lq SVM appears to improve the

fastest as n gets bigger. Clearly, the Lq SVM performs the best compared to the other

two methods in this example. Moreover, the Lq SVM selects 5–9 variables consistently

as we increase the number of variables or decreases the sample size. Thus it is a rather

robust classification procedure.

It is interesting to point out that for cases of small sample sizes with n=20 and 40, the

L2 SVM sometimes outperforms the L1 SVM even when the number of noise variables
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Figure 6: Plot of best selected q’s in Example 2 as the numbers of noise variables increase.

is large. One possible explanation is that classification performance has large numerical

variability due to small sample sizes. When n gets large, we expect more stability in the

results which generally better reflect asymptotic behaviors of different classifiers. In the

bottom row of Figure 5, when n increases to 70 and 100, the L1 SVM clearly demonstrates

the overall advantages over the L2 SVM, as expected, especially when the number of noise

variables becomes large. Another possible explanation is that correlations exist among

input variables and such correlations can cause difficulties for the L1 penalty in selecting

all correct variables (Zou et al., 2005).

In Figure 6, we plot the best selected q’s as the number of noise variables increases. It

is clear from the plots that the average selected q’s tend to get smaller as the numbers of

noise variables increase. This matches our expectation since further shrinkage is needed

when there are more noise input variables.

Example 3 (Nonlinear). In this nonlinear example, the data are generated in the

following way: First of all, two important variables x1 and x2 are generated independently

and uniformly from [0, 1]. Secondly, the label y is assigned to either class according to

the values of y∗ = (x1 − .5)2 + (x2 − .5)2. In particular, we set y = 1 if y∗ < .07, y = −1

if y∗ > 0.13, and set y to be either +1 or −1 with equal probabilities if .07 ≤ y∗ ≤ 0.13.

After that, we add m noise variables generated from N(0, 1) to the input vector, where
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m = 0, 20, 40, ...100.

Polynomial embedding is used to fit three SVM methods; in particular, we map {xj}d
j=1

to {(xj, x
2
j)}d

j=1. The training, tuning, and testing sample sizes are respectively 200, 200,

3000. Figure 7 shows the results from 100 repetitions of the experiment. The left panel

displays how the average testing errors change as the number of noise variables increases

for three procedures. The performance of the Lq SVM is quite robust against the increase

of noise variables, while the accuracy of the L1 and L2 SVMs deteriorates rapidly. The

average number of selected variables for each method is shown on the right panel. As

observed, the Lq SVM has the smallest model size among the three methods, with the

average selected q around 0.25. Moreover, the Lq SVM selects all important variables

(x1, x
2
1, x2, x

2
2) in all replications. In contrast, the L2 SVM has no feature selection property

so that it includes all noise variables. The L1 SVM has smaller model sizes than the L2

SVM, but still keeps some noise variables.

An illustrating plot is given in Figure 8. We plot the projected classification boundaries

given by three methods on the two-dimensional space spanned by x1 and x2 for one

particular data set with m = 20. Clearly, the boundary of the Lq SVM is the closest to

the Bayes boundary, followed by that of the L1 SVM. The boundary of the L2 SVM is

the worst in this case.
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Figure 7: Plots of average misclassification rates and model sizes for Example 3 over 100

runs.
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Figure 8: Plot of typical projected decision boundaries on the two-dimensional space

spanned by x1 and x2 given by the L1, L2, and Lq SVMs in Example 3.

5.2 Multi-class Classification

Example 4. Consider one multi-class example with K = 3. The training data is gen-

erated from a mixture of bivariate Gaussian distributions. For class k = 1, 2, 3, we gen-

erate x independently from N(µk, σ
2I2), respectively with µ1 = (

√
3, 1), µ2 = (−√3, 1),

µ3 = (0,−2), and σ2 = 2. Sample sizes are 100 for the training and tuning data and 1000

for the testing data. We report the testing errors and the standard deviations for all three

methods in Table 2 based on 100 replications. Three SVM classifiers give comparable

performance. And the Lq SVM performs slightly better than the other two in view of its

smallest testing error and variation. The average q in this case is 0.783.

Method Test Error Model Size

Bayes 0.1845 (0.0013) 2

L1 SVM 0.2246 (0.0053) 2 (0)

L2 SVM 0.2214 (0.0048) 2 (0)

Lq SVM 0.2155 (0.0040) 2 (0)

Table 2: Classification accuracy for Example 4.
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Figure 9: Classification boundaries given by the Bayes rule, the L2 and Lq SVMs in

Example 4.

In Figure 9, we plot the classification boundaries given by the Bayes rule, the L2

SVM, and the Lq SVM for one particular dataset. The boundary of the L1 SVM is not

plotted since it is very close to that of the L2 SVM. Symbols “1”, “2”, and “3” in the plot

represent points from three different classes; the solid, dotted, and dashed lines correspond

to the Bayes rule, the L2 SVM, and the Lq SVM respectively. As shown by the plot, the

boundary of the Lq SVM is closer to the boundary of the Bayes rule than the L2 SVM.

6 Real Data

We apply the proposed Lq SVM, together with the non-adaptive L1 and L2 SVMs, to

three real data sets from the UCI benchmark repository. The first two examples are

for binary classification, and the third one is a multi-class problem. Relevant informa-

tion about these three data sets is: Statlog heart disease data (hea; binary, 13 variables,

n = 270), Pima Indians diabetes data (pid; binary, 8 variables, n = 768), and Bal-

ance scale data (bal; three class, 4 variables, n = 625). More details can be found at

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

For the Pima Indians diabetes dataset, some variables have “impossible” observations

as one referee pointed out. For example, Wahba et al. (1995) found that 11 instances
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of 0 body mass index and 5 instances of 0 plasma glucose, and they deleted those cases

and included the remaining 752 observations. Besides these unrealistic observations, some

other variables like diastolic blood pressure and skin-fold thickness also have unrealistic

zero values. In particular, the variable serum insulin has 374 (almost 50%) zero values. To

keep the sample size reasonably large, we remove the variable insulin and all the cases with

unrealistic zero values in variables 2,3,4,6 to get a reduced dataset. We have examined

both the full dataset (pid-c) as well as the reduced dataset (pid-r; binary, 7 variables,

n = 532).

Since there are no separate testing sets available for these data sets, we randomly

divide each data set into three parts and train the classifier on the first 2/3 and test on the

remaining 1/3. Five-fold cross validation within the training set is used to choose (λ, q).

We repeat this process 10 times and report the average testing errors for three classifiers

in Table 3. For all four data sets, the adaptive Lq SVM yields either equivalent good or

slightly better performance than the L1 and L2 SVMs. The average q is respectively 1.29,

1.35, 1.20, and 1.67 for the four datasets.

hea pid-c pid-r bal

L1 SVM .170 (.032) .240 (.015) .207 (.026) .124 (.021)

L2 SVM .166 (.033) .240 (.015) .204 (.028) .123 (.016)

Lq SVM .160 (.018) .233 (.010) .204 (.022) .123 (.025)

Table 3: Classification results for real data sets hea, pid-c, pid-r, and bal.

7 Discussion

In this paper, we propose a new adaptive SVM classification method with the Lq penalty.

The Lq SVM allows a flexible penalty form chosen by data; hence the classifier is built

based on the best q for any specific application. A unified algorithm is introduced to solve

the Lq SVM. Both our simulated and real examples show that the choice of q does play

an essential role in improving the accuracy as well as structure of the resulting classifier.

Overall, the Lq SVM enjoys better accuracy than the L1 and L2 SVMs.
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The procedure of selecting (λ, q) is an important step in implementing the Lq SVM.

Currently, we apply a grid search coupled with cross validation to the tuning procedure.

It is possible, however, to design a more efficient method such as the downhill search for

tuning. Further investigation will be pursued in the future.
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Appendix: Derivation of the LQA Algorithm

By adopting the sum-to-zero constraint, for each i, we have

K∑

k=1

[wT
k xi + bk + 1]+ =

K−1∑

k=1

[wT
k xi + bk + 1]+ + [wT

Kxi + bK + 1]+

=
K−1∑

k=1

[wT
k xi + bk + 1]+ + [−

K−1∑

k=1

wT
k xi −

K−1∑

k=1

bk + 1]+.

Then using the fact that z+ = z+|z|
2

and the approximation |z| ≈ 1
2

z2

|z0| + 1
2
|z0|, it is easy

to have z+ ≈ 1
4

z2

|z0| + 1
2
z + 1

4
|z0|, pλ(|z|) ≈ pλ(|z0|) + 1

2

p′λ(|z0|)
|z0| (z2 − z2

0), where z0 is some

non-zero value close to z. By absorbing the constraints into the objective function, the

LQA algorithm iteratively minimizes

F (η1, ..., ηK) = A1 + A2 + B1 + B2 + C1 + C2
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with

A1 =
1

4n

n∑
i=1

K−1∑

k=1

aik

|η0T
k x̃i + 1|(η

T
k x̃i + 1)2,

A2 =
1

2n

n∑
i=1

K−1∑

k=1

(ηT
k x̃i + 1)aik,

B1 =
1

4n

n∑
i=1

aiK

| −∑K−1
k=1 η0T

k x̃i + 1|(−
K−1∑

k=1

ηT
k x̃i + 1)2,

B2 =
1

2n

n∑
i=1

(−
K−1∑

k=1

ηT
k x̃i + 1)aiK ,

C1 = λ

d∑
j=1

K−1∑

k=1

|wkj|q,

C2 = λ

d∑
j=1

|
K−1∑

k=1

wkj|q.

After some matrix algebra, we can get A1 = ηT QA1η + ηT LA1 + constant, A2 = ηT LA2 +

constant, B1 = ηT QB1η + ηT LB1 + constant, B2 = ηT LB2 + constant, C1 = ηT QC1η +

constant, and C2 = 1
2

∑d
j=1 vj(η

T sj)(s
T
j η) = ηT QC2η, where

QA1 = 1
4n

diag
[∑n

i=1
ai1

|η0T
1 x̃i+1| x̃ix̃

T
i ,

∑n
i=1

ai2

|η0T
2 x̃i+1| x̃ix̃

T
i , · · · ,

∑n
i=1

ai,K−1

|η0T
K−1x̃i+1| x̃ix̃

T
i

]
,

QB1 = 1
4n

∑n
i=1

aiK

|∑K−1
k=1 η0T

k x̃i−1|ViV
T
i , QC1 = diag[U1, U2, ..., UK−1],

with Uk = 1
2
diag[0,

p′λ(|w0
k1|)

|w0
k1|

,
p′λ(|w0

k2|)
|w0

k2|
, · · · ,

p′λ(|w0
kd|)

|w0
kd|

], QC2 = 1
2

∑d
j=1 vjsjs

T
j ,

LA1 = 1
2n

[∑n
i=1

ai1

|η0T
1 x̃i+1| x̃

T
i ,

∑n
i=1

ai2

|η0T
2 x̃i+1| x̃

T
i , · · · ,

∑n
i=1

ai,K−1

|η0T
K−1x̃i+1| x̃

T
i

]T

,

LA2 = 1
2n

[∑n
i=1 ai1x̃

T
i ,

∑n
i=1 ai2x̃

T
i , · · · ,

∑n
i=1 ai,K−1x̃

T
i

]T
,

LB1 = − 1
2n

∑n
i=1

aiK

|∑K−1
k=1 η0T

k x̃i−1|Vi, and LB2 = − 1
2n

∑n
i=1 ViaiK .

Therefore, F (η) = ηT Qη + ηT L, where Q = QA1 + QB1 + QC1 + QC2 and L = LA1 +

LA2 + LB1 + LB2 . The desired algorithm then follows.
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