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Abstract
Objective—Reduced maternal plasma levels of the peptide vasodilator adrenomedullin have
been associated with adverse pregnancy outcomes. We measured the extent to which genetic
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polymorphisms in the adrenomedullin signaling pathway are associated with birth weight,
glycemic regulation, and preeclampsia risk.

Study Design—We genotyped 1353 women in the Pregnancy, Infection, and Nutrition
Postpartum Study for 37 ancestry-informative markers and for single-nucleotide polymorphisms
(SNPs) in adrenomedullin (ADM), complement factor H variant (CFH), and calcitonin receptor-
like receptor (CALCRL). We used linear and logistic regression to model the association between
genotype and birth weight, glucose loading test (GLT) results, preeclampsia, and gestational
diabetes (GDM). All models were adjusted for pregravid BMI, maternal age, and probability of
Yoruban ancestry. P values of <0.05 were considered statistically significant.

Results—Among Caucasian women, ADM rs57153895, a proxy for rs11042725, was associated
with reduced birth weight z-score. Among African-American women, ADM rs57153895 was
associated with increased birth weight z-score. Two CALCRL variants were associated with GDM
risk. CFH rs1061170 was associated with higher GLT results and increased preeclampsia risk.

Conclusion—Consistent with studies of plasma adrenomedullin and adverse pregnancy
outcomes, we found associations between variants in the adrenomedullin signaling pathway and
birth weight, glycemic regulation, and preeclampsia.
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Introduction
Adrenomedullin (ADM), a peptide hormone vasodilator, plays critical roles in female
reproductive biology. Evidence from a wide range of in vitro experiments, rat and mouse
models, as well as human studies strongly supports the fact that ADM is essential in the
establishment and maintenance of a healthy pregnancy.1 Throughout the course of a normal
human pregnancy, ADM in the maternal plasma increases, peaking at levels three- to five-
fold higher than in the nonpregnant state2–7 by the third trimester. Precise regulation of
maternal ADM levels may be necessary in healthy pregnancies, as complications including
gestational diabetes,8 preeclampsia,7,9–13 and preterm labor14–15 have all been associated
with perturbations in ADM protein levels.

ADM mediates its effects via several signaling components, including its receptor,
calcitonin receptor-like receptor (CALCRL), and complement factor H (CFH), a protein that
binds directly to ADM and enhances its activity.16 Several single-nucleotide polymorphisms
(SNPs) in ADM, CALCRL, and CFH have been associated with health complications
including dysglycemia17 (ADM rs11042725), gestational hypertension13 and decreased
urinary sodium excretion18 (ADM rs3814700), glaucoma19 (CALCRL rs1157699,
rs6759535, and rs840617), essential hypertension in women20 (CALCRL rs696574), reduced
birth weight21 (CALCRL rs698576), age-related macular degeneration22 (CFH rs1061170),
and susceptibility to meningococcal disease23 (CFH rs1065489). However, despite what is
known about the important role of ADM in reproduction, few studies have addressed the
association of genetic polymorphisms in ADM and its signaling partners with adverse
pregnancy outcomes. Therefore, we sought to measure the extent to which SNPs in ADM,
CALCRL, and CFH are associated with birth weight, glycemic regulation in pregnancy, and
preeclampsia risk in a secondary analysis of a prospective cohort study among Caucasian
and African-American women in central North Carolina.
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Materials and Methods
The Pregnancy, Infection, and Nutrition (PIN) Cohort study comprises three prospective
cohorts of more than 5000 women enrolled in early to mid-pregnancy. The study’s primary
goal was to identify risk factors for preterm birth in a prospective fashion. Participants
enrolled in PIN1 and PIN2 were 24–29 weeks gestation at study entry, and were recruited
from University of North Carolina Resident and Private Physician Obstetrics Clinic and the
Wake County Department of Human Services and Wake Area Health Education Center
prenatal care clinics from August 1995 through June 2000. Subjects enrolled in PIN3 were
less than 20 weeks gestation at study entry and were recruited from the prenatal clinics at
UNC hospitals from January 2001 to June 2005. The Institutional Review Board of the
University of North Carolina at Chapel Hill approved the study. Women who consented for
genetic studies and had extracted DNA available were eligible for inclusion in this analysis.

Maternal consent and DNA extracted from peripheral blood was available for 1480
pregnancies. We allowed for only one pregnancy during the study period. If data were
available for multiple pregnancies (N=20), we included the pregnancy with the most
complete SNP data (n = 1460). We further excluded participants with discordant self-
reported race and ancestry estimates calculated from genotyped ancestry informative
markers (n=5) or failed genotyping in >20% of the ancestry markers (N=64), leaving 1391
eligible participants. Finally, we excluded women who were missing data on pre-gravid
BMI (n=38), leaving 1353 women available for analysis, of whom 940 were non-Hispanic
Caucasian and 413 were non-Hispanic African-American.

Determination of pre-gravid BMI
Pre-gravid BMI was calculated based on self-reported pre-gravid weight and height at the
first prenatal visit. Self-reported pre-gravid weights were examined for biological
plausibility and imputed if deemed appropriate (<5% of weights were imputed) according to
a previously described algorithm.24 This imputed weight was calculated using the measured
weight at the first prenatal visit (if taken prior to 15 weeks) minus the recommended amount
of weight to be gained in the first and second trimesters as defined by the Institute of
Medicine.25

Study covariates
The PIN datasets include information from telephone interviews, self-administered
questionnaires, medical chart abstraction, and biological specimen collection. Information
on race/ethnicity (non-Hispanic Caucasian, non-Hispanic African-American, and other) and
maternal age was self-reported by the mother.

Outcome assessment
Birth weight z-score was determined using reference populations for sex and self-reported
race.26 Glucose homeostasis was evaluated using glucose loading test (GLT) screening
results, which study participants underwent as part of routine clinical care at 24–29 weeks
gestation. Trained abstractors ascertained gestational diabetes through prospective review of
prenatal records. Participants with GLT values ≥140 mg/dL at UNC sites or ≥130 mg/dL at
Wake County sites underwent a diagnostic 100g oral glucose tolerance test (OGTT).
Individuals with 2 or more values above established cut points (fasting >95 mg/dL, 1 hour
>180mg/dL, 2 hour >155 mg/dL, 3 hour >140mg/dL) were diagnosed with gestational
diabetes.27

To ascertain preeclampsia and gestational hypertension, trained abstractors reviewed
prenatal and intrapartum records. Prenatal records were abstracted according to the
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following criteria. For PIN 1 and 2 (enrolled 1995–2000), gestational hypertension was
defined by contemporary ACOG criteria as either SBP ≥ 140 mmHg, DBP ≥ 90 mmHg, or
SBP increase ≥ 30 mmHg or DPB increase ≥15 mmHg over baseline measured at < 20
weeks’ gestation. For PIN 3 (enrolled 2001–2005), gestational hypertension was defined as
SBP ≥ 140 mmHg or DBP ≥ 90 mmHg with previously normal blood pressure.
Preeclampsia was defined as gestational hypertension with a urine dipstick ≥ 1+ or ≥ 300 mg
of protein in a 24-hour urine. Intrapartum records were reviewed for physician-recorded
diagnosis of either isolated gestational hypertension or preeclampsia. In some cases, prenatal
records and clinical intrapartum diagnoses were discordant. Among participants with
discordant results for prenatal record and intrapartum physician diagnosis of preeclampsia or
gestational hypertension (N = 125), we further reviewed the full intrapartum record.
Gestational hypertension was defined as SBP ≥ 140 mmHg or DBP ≥ 90 mmHg, and
preeclampsia was defined as gestational hypertension with concurrent proteinuria (≥ 300 mg
protein in a 24 hour urine, dipstick ≥ 1+, or urine protein to creatinine ratio ≥ .14). Isolated
gestational hypertension was defined as gestational hypertension in the absence of
proteinuria.

Genotyping
Genotyping for 8 SNPs was performed at the Children’s Hospital of Boston using the
Sequenom iPLEX platform.28 We genotyped SNPs in ADM, CALCRL, and CFH previously
reported to be associated with adverse health outcomes.13,17–23 All SNPs were tested for
Hardy-Weinberg equilibrium among self-identified Caucasian participants using a threshold
of p < 0.001.

Population stratification
In genetic association studies, differences in allele frequency among ethnic groups can
confound relationships between genotype and disease outcome. To address population
stratification in this cohort, genotyping was performed for 37 ancestry-informative markers
that have been used successfully in other genetic association studies.29 STRUCTURE was
used to infer population substructure and assign individuals to populations using
probabilistic clustering methods.30 We analyzed self-identified Caucasian and African-
American participants separately, and we included probability of Yoruban ancestry as a
covariate among self-identified African-American women.

Statistical analysis
We used linear regression to model associations between maternal genotype and birth
weight z-score and glucose loading test (GLT) results, adjusting for maternal age, pregravid
BMI, and pregravid BMI squared. We included a quadratic term to allow for non-linear
associations between pregravid BMI and outcomes of interest. We used maximum
likelihood logistic regression to model associations between maternal genotype and
diagnosis of gestational diabetes or preeclampsia, adjusting for maternal pregravid BMI and
age. In both models, we considered the association of the risk allele to be additive.

We excluded from logistic regression analysis SNPs for which there were fewer than 5 cases
among minor allele carriers. Because the purpose of our study was exploratory rather than
confirmatory, adjustment for multiple comparisons was not performed. Thus in this pilot
study, p values of <.05 were considered statistically significant.

Results
A total of 940 Caucasian and 413 African-American women were included in our analysis.
African-American participants were younger, had a slightly higher pregravid BMI, and
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delivered earlier than Caucasian participants (Table 1). Infants born to African-American
mothers had lower birth weights and mean birth weight z-scores than infants born to
Caucasian mothers (t-test p < .01). GLT results, GDM, and preeclampsia rates were similar
in the two groups (Table 2).

Table 3 shows the associations between the ADM signaling pathway genetic variants of
interest and pregnancy outcomes. Significant (p<0.05) associations are highlighted in bold in
the table. Among Caucasian women, ADM rs57153895, a proxy for rs11042725, was
associated with reduced birth weight z-score (−0.10 per G allele, 95% CI −0.19 to −0.01).
Among African-American women, ADM rs57153895 was associated with increased birth
weight z-score (0.18 per G allele, 95% CI 0.03 to 0.34). Two variants in CALCRL,
rs69696574 and rs840617, were associated with increased GDM risk (rs69696574: OR 2.35
per C allele, 95% CI 1.04–5.27 and rs840617: OR per T allele, 2.66, 95% CI 1.13–6.25).
CFH rs1061170 was associated with higher GLT results (4.39 mg/dL per T allele, 95% CI
0.22 to 8.57) and with increased preeclampsia risk (OR 2.02 per T allele, 95% CI 1.11–
3.68). Table 4 summarizes these SNPs, the human diseases they have been previously
associated with, and their significant associations with pregnancy outcomes in the current
study.

Comment
Consistent with studies of plasma ADM and pregnancy complications, we found
associations between variants in ADM signaling pathway components and birth weight,
glycemic regulation, gestational diabetes, and preeclampsia. These findings support our
hypothesis that genetic variants in ADM, its receptor, CALCRL, and its binding protein CFH,
that have previously been shown to be associated with disease conditions are also associated
with adverse pregnancy outcomes.

We found that an ADM variant previously associated with dysglycemia17 in non-pregnant
populations, rs57153895 (a proxy for rs11042725), was associated with birth weight. This
variant had opposing effects depending on race, as it was associated with lower birth weight
in Caucasian women but higher birth weight among African-American women, which may
reflect differences in linkage disequilibrium patterns in Caucasian versus African-American
women. The association between ADM and birth weight described here is consistent with
previous studies that have shown a relationship between ADM and fetal growth.
Antagonism of ADM has been shown to cause intrauterine growth restriction in the rat,31,32

and female mice that are haploinsufficient for Adm have pregnancies with increased rates of
fetal growth restriction.33 Most recently, using Adm knockout mice, we have shown that
fetal-derived ADM is required for the maternal vascular adaptation to pregnancy.34

Alterations in ADM levels have also been associated with fetal growth in studies in human
populations.35–38 Our finding of a genetic variant in ADM associated with birth weight
provides further evidence for the importance of maternal ADM in fetal growth.

Complement factor H, another important component of the ADM signaling pathway, binds
to ADM and enhances its activity.16 Here, we found that the CFH variant rs1061170,
previously associated with age-related macular degeneration,22 was associated with higher
GLT results and increased preeclampsia risk among African-American women. Circulating
levels of CFH have been shown to negatively correlate with insulin sensitivity in human
subjects.39 Consistent with this previous finding, our results suggest a role for CFH in
glucose tolerance, which may be especially important during pregnancy. Furthermore, this
CFH variant was also associated with increased preeclampsia risk, which is of particular
interest given that dysregulated activation of complement is known to play a role in the
pathogenesis of preeclampsia.40
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CALCRL, as the G-protein coupled receptor for ADM, is an essential mediator of ADM’s
effects. A prior study showed an association between a CALCRL SNP and reduced birth
weight in an African-American population,21 demonstrating the importance of CALCRL
variants in human pregnancy. Two of the CALCRL variants tested here, rs696574 and
rs840617, were previously shown to be associated with essential hypertension in women20

and glaucoma,19 respectively. In the present study, we found evidence that CALCRL also
plays a role in glycemic regulation during pregnancy, as both of CALCRL variant rs696574
and rs840617 were associated with increased gestational diabetes risk in African-American
women.

Our study has several strengths, including our use of ancestry informative markers to control
for population stratification and prospective ascertainment of outcomes within a pregnancy
cohort. However, our results must be interpreted in the context of the study design. The
small number of cases of GDM and preeclampsia led to large confidence intervals around
estimates of association. In addition, pre-pregnancy weight was self-reported. Furthermore,
multiple testing is a concern. We limited our analysis to variants known to be associated
with disease outcomes in other studies, but it is possible that our findings are due to chance,
and further studies will be needed to validate observed associations. Furthermore, future
studies should be directed at determining the mechanisms by which these ADM, CALCRL,
and CFH polymorphisms may alter ADM activity. An ADM SNP that was not part of our
analysis has been shown to associate with lower plasma ADM levels.41 Thus, it is
biologically plausible that the SNPs included in our study may similarly affect ADM levels
or alternatively, ADM activity through its signaling partners, CALCRL and CFH.

Taken together, these results support a central role for the ADM signaling pathway in human
pregnancy and pregnancy complications. Future studies are needed to determine whether
screening for maternal carriage of these SNPs could be used to identify women at risk for
adverse pregnancy outcomes.
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Table 1

Study population

Non-Hispanic Caucasian Non-Hispanic African-American

N 940 413

Maternal age (mean (SD)) 28.3 (6.1) 24.0 (5.4)

Pregravid BMI (mean (SD)) 25.1 (6.5) 27.8 (8.3)

Gestational age at birth, median (IQR) 39.3 (37.7, 40.3) 38.9 (36.7,40.1)

Am J Perinatol. Author manuscript; available in PMC 2015 April 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lenhart et al. Page 11

Table 2

Outcomes of interest

N* Non-Hispanic Caucasian N* Non-Hispanic African-American

Mean (SD) Mean (SD)

Birth weight, g 933 3275 (651) 402 2953 (733)

Birth weight z score 933 0.002 (1.00) 398 −0.460 (1.04)

GLT, mg/dL 842 108.5 (26.3) 366 105.9 (31.7)

N (%) N (%)

GDM 899 56 (6.2) 386 24 (6.2)

Preeclampsia 940 47 (5.0) 413 30 (7.3)

*
Number of participants with outcome data available
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Table 4

Summary of ADM, CALCRL, and CFH SNPs, their previously reported disease associations, and significantly
associated pregnancy complications in the current study

SNP Previously Reported Disease Association Association with Pregnancy Outcomes

ADM rs57153895 Dysglycemia17 Decreased birth weight (Caucasian)
Increased birth weight (African-American)

CLR rs696574 Essential hypertension in women20 Increased gestational diabetes mellitus risk (African-American)

CLR rs840617 Glaucoma19 Increased gestational diabetes mellitus risk (African-American)

CFH rs1061170 Age-related macular degeneration22 Higher glucose loading test result (African-American)
Increased preeclampsia risk (African-American)
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