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Abstract

Molecular motors are protein structures that play a central role in accomplishing me-
chanical work inside a cell. While chemical reactions fuel this work, it is not exactly known
how this chemical-mechanical conversion occurs. Recent advances in microbiological tech-
niques have enabled at least indirect observations of molecular motors which in turn have
led to significant effort in the mathematical modeling of these motors in the hope of shed-
ding light on the underlying mechanisms involved in intracellular transport. Kinesin which
moves along microtubules that are spread throughout the cell is a prime example of the
type of motors that are studied in this work. The motion is linked to the presence of a
chemical, ATP, but how the ATP is involved in motion is not clearly understood. One
commonly used model for the dynamics of Kinesin in the biophysics literature is the Brow-
nian ratchet mechanism. In this work, we give a precise mathematical formulation of a
Brownian ratchet (or more generally a diffusion ratchet) via an infinite system of stochas-
tic differential equations with reflection. This formulation is seen to arise in the weak limit
of a natural discrete space model that is often used to describe motor dynamics in the lit-
erature. Expressions for asymptotic velocity and effective diffusivity of a biological motor
modeled via a Brownian ratchet are obtained. Linearly progressive biomolecular motors
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often carry cargos via an elastic linkage. A two-dimensional coupled stochastic dynamical
system is introduced to model the dynamics of the motor-cargo pair. By proving that
an associated two dimensional Markov process has a unique stationary distribution, it is
shown that the asymptotic velocity of a motor pulling a cargo is well defined as a certain
Law of Large Number limit, and finally an expression for the asymptotic velocity in terms
of the invariant measure of the Markov process is obtained.

1 Introduction.

Molecular motors are proteins, or structures consisting of multiple proteins, that play a central
role in accomplishing mechanical work in the interior of a living cell. Frequently, the exact
nature of the chemical-mechanical energy conversion is not completely understood. However,
recent advances in molecular biology have enabled in vitro observations of molecular motors
and/or their cargos which in turn have led to significant research in the mathematical mod-
eling of these motors in the hope of shedding light on the underlying mechanisms involved in
intracellular transport.

The motors which we have in mind for this paper, such as kinesin, have multiple heads
which move along a microtubule–stepping in a hand over hand manner. One head remains
fixed while the other diffuses into the next binding site. Then, the previously fixed head is
released and can diffuse to the next binding site, etc. Extending from this dual head structure
is a long protein strand which can attach to a cargo.

One commonly studied model for the dynamics of a molecular motor is the Brownian
Ratchet model. In a Brownian ratchet, a particle representing the biological motor diffuses
between equally spaced barriers. When the particle encounters the barrier from the left it
is free to pass through; however, it is instantaneously reflected back when it encounters the
barrier from the right. Hence, the ratchet mechanism has the effect of introducing a positive
drift to the dynamics of the particle. This ratcheting mechanism models the binding of the
motor head to the microtubule. In practice, one is interested in gaining information about the
asymptotic velocity of the motor, first passage times, locations and distances between barrier
sites, parameters of the governing diffusion, etc.

Our first goal in this study is to give a precise mathematical formulation of the stochastic
process that gives a pathwise representation for such a ratcheting mechanism. We will begin by
considering a pure Jump-Markov process that captures the dynamical description given above.
In view of the fact that the temporal and spatial scales at which the motor is observed are
typically much larger than the step sizes and mean time intervals between successive steps, we
consider diffusion approximation of the above pure Jump-Markov process by suitable scaling.
By using weak convergence methods we obtain a IR+ valued stochastic process with continuous
sample paths, which we call the ”Diffusion Ratchet”, that arises as the diffusion limit of the
above Jump-Markov process. This stochastic process, denoted as {X(t)} will be described via

2



an infinite system of stochastic differential equations with reflection. Next, we will consider two
quantities associated with the model which are of great practical interest: Asymptotic velocity
and effective diffusivity. Using some basic renewal theory we will obtain an a.s. deterministic
limit, ν, for X(t)

t as t → ∞. This Law of Large Number(LLN) limit is referred to as the
asymptotic velocity of the motor. We will also obtain a Functional Central Limit theorem for
ξn(t)

.= X(nt)−νnt√
nt

showing that ξn converges weakly in C([0,∞) : IR) to σW , where W is
a standard Wiener process. The constant σ2 is referred to as the effective diffusivity of the
motor.

Biological motors are typically responsible for intracellular transport of cargoes, such as
large protein molecules, to locations in the cell where they are needed. Unlike the ratchet
process which models the dynamics of the motor, the process representing the cargo has no
reflecting barriers since the cargo is floating somewhat freely in the cell, attached to the motor
via a protein strand. However, there is interaction between the two processes. The farther
the cargo is behind the motor the greater the forward drift for the cargo and the greater
the backward drift of the motor. Since the motor is moving along a straight track (IR+),
which without loss of generality can be taken to be the x-axis, only the dynamics of the
x-coordinate of the location of the cargo is coupled with the motor dynamics. Denote the
location of the motor and the x-coordinate of the cargo at time instant t as X(t) and Y (t),
respectively. In Section 3, we will model the pair, (X(·), Y (·)), as a stochastic process with
paths in C([0,∞) : IR+× IR) given via an infinite system of partially reflected two dimensional
diffusion processes. In order to justify the model, we will once again consider the natural
Jump-Markov process that captures the dynamical description given above and prove that,
after appropriate scaling, the Jump-Markov process converges weakly (in a suitable function
space) to (X,Y ).

Finally in Section 4, we will undertake the study of asymptotic velocity for the case where
the motor is pulling a cargo. The renewal theory arguments, that rely on the underlying
independence of the motor dynamics between different barriers, break down in the coupled
motor-cargo case. Due to this difficulty, we will consider the special case where the interaction
between cargo and motor is modeled via a linear spring. Denoting the length of the elastic
linkage, X(t) − Y (t), by Z(t). We will show in Proposition 4.4 that the Markov process
Π(t) .= (bX(t)/LcL,Z(t)), where L denotes the distance between successive barriers, has a
unique invariant probability measure. This result will show that 1

t

∫ t
0 Z(s)ds converges in

probability to a deterministic quantity which is independent of the initial conditions, and Z(t)
t

converges in probability to zero. As an immediate consequence, we get that X(t)
t converges in

probability to a deterministic quantity (Theorem 4.5). This limiting quantity is defined to be
the asymptotic velocity of the motor and can be expressed in terms of the invariant distribution
of Π(t).

The paper is organized as follows. In Section 2 we will consider the model for the ”Motor
only” case. We will present here the key diffusion approximation result and also study the
asymptotic velocity and effective diffusivity of the motor. Section 3 considers the coupled
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motor-cargo system. The main result of this section is the weak convergence theorem that
proves the convergence of the natural Jump-Markov process that is associated with the dy-
namics of the motor-cargo pair to a pair of stochastic processes with continuous sample paths.
Finally in Section 4 we will study the asymptotic velocity of the motor-cargo pair. Some nota-
tion that will be used in this paper is as follows. IR and IR+ will denote the space of reals and
non-negative reals, respectively. The space of positive (non-negative) integers will be denoted
by IN (resp. IN0). The space of integers will be denoted by Z. For a metric space E, the
space of continuous (resp. right continuous with left limits) functions from [0,∞) to E will
be denoted by C([0,∞) : E) (resp. D([0,∞) : E)). Borel σ-field for a Polish space E will be
denoted by B(E).

2 Mathematical Formulation of a Diffusion Ratchet.

In this section we begin by describing the dynamics of a biological motor which is moving
along a linear track following a ”ratchet mechanism”. We then introduce a discrete state
Jump-Markov process that captures the described dynamics. By suitable scaling, we consider
a diffusion approximation for this Jump-Markov process and in the limit obtain a IR+ valued
stochastic process with continuous sample paths that we call the ”Diffusion Ratchet”. Finally,
using some basic renewal theory, we obtain the asymptotic velocity and effective diffusivity for
the motor that is predicted by the diffusion ratchet model.

Consider a particle, representing a biological motor moving on a track positioned along the
x-axis. Ratchet sites, L .= {iL : i ∈ IN0}, are located on the track at equally spaced intervals
of length L. When the particle is at a “non-ratchet” site it can move either to the left or to
the right. However, when the particle is at a ratchet site, it can move only to the right. As
stated earlier, the step sizes of the motor are much smaller in comparison to the spatial scales
at which observations are made. We will assume that the motor takes steps of size 1

n , where n
represents a scaling parameter and is assumed to belong to IN ′ .= {mL ,m ∈ IN}. The choice of
IN ′ in defining the step sizes rather than IN is made for convenience. It assures that the ratchet
sites are on the discrete lattice Sn

.= { jn , j ∈ IN0} for all n ∈ IN ′. We model the above described
dynamics by a Jump-Markov process (cf. [6], Chapter 7) with RCLL (right continuous with
left limits) paths, {Xn(t)}t≥0 where Xn(t) represents the location of the particle at time t.
The infinitesimal generator of the Markov process, denoted by qn ≡ {qn(x, y) : x, y ∈ Sn}, is
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given as follows. For x, y ∈ Sn, x 6= y:

qn(x, y)
.=


n2α(x) + nβ1(x), y = x+ 1

n ,
(n2α(x) + nβ2(x))1x∈Sn\L y = x− 1

n ,

0, otherwise.
(2.1)

Also, for x ∈ Sn, qn(x, x)
.= −(qn(x, x + 1

n) + qn(x, x − 1
n)). Here, α, β1, β2 : IR+ → IR are

assumed to be globally Lipschitz. The generator can be interpreted as follows. Given that the
motor is at x at some time instant, it spends a sojourn time which is exponentially distributed
with rate λn(x)

.= −qn(x, x). If x is a non-ratchet site, at the end of sojourn time, it moves to
either x+ 1

n (with probability pn(x) = nα(x)+β1(x)
2nα(x)+β1(x)+β2(x)), or it moves to x− 1

n (with probability
1− pn(x)). If x is a ratchet site, the particle moves to x+ 1

n , with probability one, at the end
of the sojourn time.

We next introduce the diffusion ratchet X(t), which is a stochastic process with continuous
sample paths given as follows. Roughly speaking,X(t) behaves like a reflecting diffusion when it
is in the interval [iL, (i+1)L); i ∈ IN0, with iL acting as the reflecting barrier. Let {W (i)}i∈IN0

be a sequence of independent standard Brownian motions given on some probability space
(Ω,F , IP ). Denote by Di the subset of D([0,∞) : IR) defined as

Di
.= {x ∈ D([0,∞) : IR)|x(0) = iL}.

Also, let
D̂i

.= {x ∈ D
(
[0,∞) : [iL,∞)

)
|x(0) = iL}.

Let Γi : Di → D̂i be the Skorokhod map defined as:

Γi(x)(t)
.= x(t)−

(
inf

0≤s≤t

(
x(s)− iL

)
∧ 0
)
. (2.2)

Let X(i)(·) be the unique strong solution of the integral equation (cf Section 1.2 of [1]):

X(i)(t) = Γi

(
iL+

∫ ·

0
b(X(i)(s))ds+

∫ ·

0
a(X(i)(s))dW (i)(s)

)
(t), t ∈ [0,∞), (2.3)

where in addition to the Lipschitz condition on the coefficients, we assume that there exist
b∗, a∗ and a∗ in IR such that for all x ∈ IR+

|b(x)| ≤ b∗ and 0 < a∗ ≤ a(x) ≤ a∗. (2.4)

Next, for i ∈ IN0, define stopping times τ (i) as

τ (i) .= inf{t : X(i)(t) ≥ (i+ 1)L}. (2.5)

Also set σ(0) = 0 and define
σ(i) .= τ (i−1) + σ(i−1), i ≥ 1. (2.6)

The following lemma will guarantee that the diffusion ratchet that we construct has paths
in the space C([0,∞) : IR+).
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Lemma 2.1. For all i ∈ IN , σ(i) ∈ (0,∞) almost surely, and σ(i) → ∞ almost surely as
i→∞.

Proof. In order to show IP (0 < σ(i)) = 1 it suffices to show that IP (0 < τ (0)) = 1. Note that
IP (X(0)(0) = 0) = 1, and so IP (X(0)(0) = L) = 0. The continuity of sample paths of X(0)(·)
then implies that and IP (0 < τ (0)) = 1.

In order to show IP (σ(i) < ∞) = 1, it suffices to show that IP (τ (j) < ∞) = 1 for all j.
However, this is an immediate consequence of Theorem 5.1 which in fact says that IEτ (j) <∞
(see appendix). This shows that IP (0 < σ(i) <∞) = 1 for all i.

For the second part of the lemma, in view of Borel-Cantelli Lemma, it suffices to show that
there exists δ, ε ∈ (0, 1) such that

inf
j∈IN0

IP (τ (j) > δ) > ε. (2.7)

Let ε ∈ (0, 1) be arbitrary. Define

U (i)(u) = iL+
∫ u

0
b(X(i)(s))ds+

∫ u

0
a(X(i)(s))dW (i)(s), u ∈ [0,∞). (2.8)

Note that for δ ∈ (0, 1)

IP (τ (j) ≤ δ) = IP ( sup
0≤s≤δ

|X(j)(s)− jL| ≥ L)

≤ IP ( sup
0≤s≤δ

|U (j)(s)− jL| ≥ L

2
)

≤ 2
IE(sup0≤s≤δ |U (j)(s)− jL|)

L

≤ Cδ1/2

L
, (2.9)

for a universal constant C, where the last step follows on using (2.4). Now (2.7) follows on
choosing δ small enough.

We are now ready to define the Diffusion ratchet.

Definition 2.2 (Diffusion Ratchet). Let, for i ∈ IN0, X(i), τ (i), σ(i) be defined via (2.3),
(2.5) and (2.6), respectively. A diffusion ratchet is the stochastic process X(·) with paths in
C([0,∞) : IR+) defined as follows.

X(t) .= X(i)(t− σ(i)); t ∈ [σ(i), σ(i+1)), i ∈ IN0.
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Note that the process X has the desired properties; namely, after the process has reached
iL and before it hits (i+1)L, it behaves as a reflected diffusion with drift coefficient b, diffusion
coefficient a and the reflecting barrier at iL, .

The following result gives the weak convergence of the Jump-Markov process with generator
qn to the diffusion ratchet introduced above. Let α, β1, β2 be as in (2.1). Set b(x) = β1(x) −
β2(x) and α(x) = a2(x)

2 .

Theorem 2.3. The sequence Xn(·) converges weakly to X(·), in D([0,∞) : IR+), as n→∞.

We will omit the proof of this theorem since it is very similar (in fact simpler) to the
corresponding proof for the motor/cargo coupled system which is presented in the next section.

An important numerical quantity of interest for biological motors is their asymptotic ve-
locity. The following theorem shows that, under appropriate periodicity conditions on the
coefficients, the diffusion ratchet model for a biological motor given in Definition 2.2 has a well
defined asymptotic velocity.

Theorem 2.4. Assume that the coefficients a and b, in addition to the Lipschitz condition
and (2.4) satisfy the periodicity conditions

a(x+ iL) = a(x), b(x+ iL) = b(x), ∀ x ∈ [0, L), i ∈ IN0. (2.10)

Then X(t)
t converges almost surely to ν .= L

IE(τ (0))
, where τ (0) is as defined in (2.5).

Remark 2.5. The periodicity condition in the above theorem can be relaxed to the assumption
that there exist functions b̃ : [0, L] → IR, ã : [0, L] → IR such that as i→∞

sup
0≤x≤L

(
|b(x+ iL)− b̃(x)|+ |a(x+ iL)− ã(x)|

)
→ 0.

In this case τ (0) in the above theorem is given via (2.3) and (2.5) with a, b there replaced by
ã, b̃.

Proof of Theorem 2.4. The periodicity assumption gives that {τ (i)}i∈IN0 defined in (2.5)
is an i.i.d. sequence. This yields that v(t) .= max{m :

∑m−1
i=0 τ (i) ≤ t} is a renewal process.

The result now follows on observing that |X(t)
t − v(t)L

t | ≤ L1
t , IE(τ (0)) <∞ (See Theorem 5.1)

and the LLN for renewal processes (cf. Theorem 1.7.3 of [3]).

Theorem 2.4 shows that in order to compute the asymptotic velocity it suffices to compute
the expected value of a certain first passage time. Typically this expected value does not have
a simple closed form solution and one needs numerical methods for its computation. However,
in the special case where b(x) ≡ µ and a(x) ≡ σ one can give an exact closed form expression
for the asymptotic velocity as the following result shows. The value of the asymptotic velocity
obtained below agrees with results obtained in biophysics literature via formal limiting analysis
of Fokker-Planck equations associated with ”imperfect ratchets”[4].
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Theorem 2.6. Suppose that b(x) = µ and a(x) = σ for all x ∈ IR+. Then

lim
t→∞

X(t)
t

=


D
L

ω2
l

eωl−1−ωl
if µ 6= 0

2D
L . if µ = 0,

(2.11)

where D = σ2

2 and ωl = −2µ
σ2L.

Sketch of the Proof. The proof is a consequence of the fact that the Laplace transform
of τ (0): φ(λ) .= E0[e−λτ

(0)
], is given as (cf. [7], Chapter 5):

φ(λ) =
α+ β

βe−αL + αeβL
(2.12)

where

α ≡ α(λ) =

√
µ2 + 2σ2λ

σ2
+

µ

σ2
, β ≡ β(λ) =

√
µ2 + 2σ2λ

σ2
− µ

σ2
.

The result now follows on using Theorem 2.4 and taking limit of φ′(λ) as λ→ 0.

The following theorem gives a functional central limit theorem for fluctuations of X(t)
t about

the asymptotic velocity.

Theorem 2.7. Under the assumptions of Theorem 2.4,

1√
n

(
X(n·)− L

m
·
)

converges weakly to
Ls

m3/2
B(·)

in C([0,∞) : IR) as n→∞, where m = IEτ (0), s2 = Var(τ (0)), and B is a standard Brownian
motion.

The above theorem yields the effective diffusivity of the biological motor as L2s2

m3 .

Proof. Note that X(t) = Lv(t) + εt where v(·) is as in the proof of Theorem 2.4 and
εt = X(t)− bX(t)

L cL. Thus, X(nt) = Lv(nt) + εnt. Centering and normalizing, we obtain

m3/2

Ls
√
n

(
X(nt)− Lnt

m

)
=
v(nt)− nt

m

sm−3/2
√
n

+
εnt

Lsm−3/2
√
n
.

Since 0 ≤ εnt < L, sup0≤u≤t

∣∣∣ εnsu

Lsm−3/2
√
n

∣∣∣ → 0 for all t with probability one as n → ∞. The
first term on the right side converges weakly to a standard Brownian motion by Theorem 14.6
of [2]. This proves the result.
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3 The Coupled System: Motor and Cargo.

In this section, we introduce a model for the dynamics of a biological motor which is pulling a
cargo linked to the motor via a protein strand. As noted in the introduction, since the motor
moves on a straight track along the x-axis, it suffices to describe the x- coordinate dynamics
of the cargo. The evolution of the motor-cargo pair is given as follows. Once more, ratchet
sites are located on the track at equally spaced intervals of length L; when the motor is at a
“non-ratchet” site it can either move to the left or to the right in steps of size 1

n . However,
when the motor is at a ratchet site, it can only move to the right. Here n is, as before, a scaling
parameter taking values in IN ′.

The cargo, (or more precisely, ”the projection of its location on the x -axis”)in contrast to the
motor, is free to move to the left or to the right, at every site in S̃n

.= { jn : j ∈ Z}. More
precisely, denoting the location of the motor at time t by Xn(t) and that of the (x-coordinate of
the) cargo by Yn(t), the pair (Xn, Yn) is a Jump-Markov process with state space Sn

.= Sn× S̃n
and infinitesimal generator qn ≡ {qn(z, z̃) : z, z̃ ∈ Sn} given as follows. Let e1

.= (1, 0) and
e2

.= (0, 1). For z = (x, y) ∈ Sn:

qn(z, z + n−1e1) = n2α1(z) + nβ11(z); qn(z, z − n−1e1) = (n2α1(z) + nβ12(z))1x∈Sn\L

qn(z, z + n−1e2) = n2α2(z) + nβ21(z); qn(z, z − n−1e2) = n2α2(z) + nβ22(z).

We set qn(z, z)
.= −

∑2
i=1(qn(z, z + 1

nei) + qn(z, z − 1
nei)). For all remaining z, z̃ ∈ Sn, qn(z, z̃)

is set to be 0. In the above αi, βij , i, j = 1, 2 are Lipschitz functions from IR+ × IR → IR+.
The dynamics of this Markov process can be described as follows. Given that the process is at
z = (x, y) at time t, the waiting time to the next transition is exponentially distributed with
rate −qn(z, z) = (λ1

n(z) + λ2
n(z)), where for i = 1, 2 λin(z)

.= qn(z, z + 1
nei) + qn(z, z − 1

nei).
At the end of sojourn time, there is a either a transition in the y coordinate (with probability
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λ2
n(z)

λ1
n(z)+λ2

n(z)
); otherwise, there is a transition in the x coordinate. If the transition is in the y

coordinate, the y component increases by 1
n with probability p2

n(z) = qn(z,z+ 1
n
e2)

λ2
n

and decreases
with probability 1− p2

n(z) . Similarly, if the transition is in the x component, the x coordinate
increases by 1

n with probability p1
n(z) and decreases by 1

n with probability 1 − p1
n(z), where

p1
n(z) = qn(z,z+ 1

n
e1)

λ1
n

. Note that if x is a ratchet site, i.e. x ∈ L, p1
n(z) = 1. Thus in this case

the probability of x coordinate moving to the left is 0.

Our next step will be to study the diffusion limit of the above Markov chain, as n → ∞.
In the limit, one would expect to obtain a diffusion ratchet, representing the dynamics of the
biological motor, which is coupled with an unconstrained diffusion process representing the
cargo. More precisely, we will prove that as n→∞, (Xn, Yn) converges weakly, in D([0,∞) :
IR+ × IR) to the process (X,Y ), with paths in C([0,∞) : IR+ × IR), defined as follows.

Definition 3.1 (Motor and Cargo). The Motor-Cargo pair is a stochastic process (X,Y )
with sample paths in C([0,∞) : IR+ × IR), defined as follows

Y (i)(t) = Y (i)(0) +
∫ t
0 b2(X

(i)(s), Y (i)(s))ds+
∫ t
0 a2(X(i)(s), Y (i)(s))dB(i)(s), t ≥ 0

X(i)(t) = Γi
(
iL+

∫ ·
0 b1(X

(i)(s), Y (i)(s))ds+
∫ ·
0 a1(X(i)(s), Y (i)(s))dW (i)(s)

)
(t), t ≥ 0

τ (i) .= inf{t : X(i)(t) = (i+ 1)L}, σ(i) .= τ (i−1) + σ(i−1), σ(0) = 0

X(t) .= X(i)(t− σ(i)), Y (t) .= Y (i)(t− σ(i)), t ∈ [σ(i), σ(i+1)), i ∈ IN0

Y (i)(0) .= Y (i−1)(τ (i)) for i ≥ 1, Y (0)(0) .= y0.

(3.13)
where W (i) and B(i) are sequences of independent Wiener processes defined on some probability
space (Ω,F , IP ), Γi is defined via (2.2). It is assumed that for all (x, y) ∈ IR+ × IR, bi(x, y) is
uniformly bounded for i = 1, 2 and 0 < a∗ ≤ ai(x, y) ≤ a∗ for i = 1, 2. Also, bi(·, ·) and ai(·, ·)
are assumed to be globally Lipschitz continuous.

Note that in contrast to the ”motor only” case (X(i), Y (i)) is not independent of (X(i+1), Y (i+1))
since they are related through the initial condition of Y (i+1). For some of the proofs and cal-
culations, we need to define an “unreflected” form of X(i)

U (i)(t) .= iL+
∫ t

0
b1(X(i)(s), Y (i)(s))ds+

∫ t

0
a1(X(i)(s), Y (i)(s))dW (i)(s). (3.14)

To ensure that the above definition of the stochastic process (X,Y) is well-defined for all
t ∈ [0,∞), we have the following lemma.

Lemma 3.2. For all i ∈ IN0, σ(i) ∈ (0,∞) with probability one and σ(i) → ∞ almost surely
as i→∞.

Proof. Proof of the first part of the lemma is identical to that of Lemma 2.1. For the
second part, note that for an arbitrary δ ∈ (0, 1), we have as in (2.9) that for all j in IN
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IP [τ (j) ≤ δ|Fj ] ≤ Cδ1/2

L , where Fj = F̂σ(j) and F̂t = σ{X(s), Y (s) : s ≤ t}. As a consequence,
we have for δ small enough,

∞∑
j=0

IP [τ (j) ≥ δ|Fj ] = ∞ a.s.

From the Borel-Cantelli Lemma (see Corollary 3.2 of Chapter 4 of [3]), we now have that
IP [τ (j) ≥ δ for infinitely many j] = 1. This proves the result.

The following theorem is the main result of this section. Let bi, ai, i = 1, 2 be as in
Definition 3.1. Set, for i = 1, 2, βi1

.= b+i , βi2
.= b−i and αi

.= 1
2a

2
i . Recall the Jump-Markov

process, (Xn, Yn), introduced at the beginning of the section. Let the initial condition of the
process be δ0,yn , where yn ∈ S̃n and yn → y0 as n→∞.

Theorem 3.3. The sequence (Xn, Yn) converges weakly to (X,Y ), in D([0,∞) : IR+× IR), as
n→∞.

The key steps in the proof are the following two lemmas. Let

X0
.= D([0,∞) : IR+)×D([0,∞) : IR)× [0,∞],

where [0,∞] denotes the one point compactification of IR+. Let X .= X⊗∞
0 . We will endow X

with the usual topology and consider the Borel σ-field B(X ). Define

X̃ .= {(xi, yi, βi)i∈IN0 ∈ X |0 < βi <∞, xi ∈ A, yi ∈ C([0,∞) : IR) ∀ i ,
and

∑j
i=0 βi →∞ as j →∞} (3.15)

where A is defined as

A .= {φ ∈ C([0,∞) : IR+) : ∀δ > 0,∃ some t′ ∈ [τ(φ), τ(φ) + δ]
such that φ(t′) > L}, (3.16)

with
τ(φ) .= inf{t : φ(t) ≥ L}. (3.17)

Lemma 3.4. Let τ be defined via (3.17). Let φ ∈ A and {φn} be a sequence in D([0,∞) : IR+)
such that φn → φ. Then τ(φn) → τ(φ).

For ζ = {x(i), y(i), τ (i)}i∈IN0 ∈ X , define (xζ , yζ) ∈ D([0,∞) : IR+ × IR) as:

xζ(t)
.= x(i)(t− σ(i)), yζ(t)

.= y(i)(t− σ(i)) if t ∈ [σ(i), σ(i+1)); i ∈ IN0 (3.18)

where σ(i) =
∑i−1

j=0 τ
(j) for i ≥ 1, σ(0) .= 0.

Lemma 3.5. Let Ψ : X → D([0,∞) : IR+ × IR) be defined as Ψ(ζ) = (xζ , yζ), ζ =
{x(i), y(i), τ (i)}i≥0, where (xζ , yζ) is given via (3.18). Then Ψ is continuous at every ζ ∈ X̃ .
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Proof of Lemma 3.4 is contained in that of Theorem 9.4.3 of [9]. Lemma 3.5 will be proved
after Theorem 3.3.

Proof of Theorem 3.3. To prove the theorem, we will use a somewhat more convenient
representation (in distribution) for (Xn, Yn), given as follows. Let λ .= supn supz∈Sn

n−2|qn(z, z)|.
Define a transition probability function µ′n : (Sn,B(Sn)) → [0, 1] as

µ′n
(
z,Λ

)
=

(
1 +

qn(z, z)
n2λ

)
δz(Λ) +

λ1
n(z)
n2λ

[
p1
n(z)δz+ 1

n
e1

(Λ) + (1− p1
n(z))δz− 1

n
e1

(Λ)
]

+
λ2
n(z)
n2λ

[
p2
n(z)δz+ 1

n
e2

(Λ) + (1− p2
n(z))δz− 1

n
e2

(Λ)
]
.

Now, let Yn ≡ (Yn1 ,Yn2 ) be a Markov chain with transition function µ′. Let V (t) be a unit rate
Poisson process which is independent of Yn. Then it can be checked (cf. Section 4.2 of [5])

(Xn(t), Yn(t))t≥0
L= (Yn1 (V (λn2t)),Yn2 (V (λn2t)))t≥0

From Proposition 4.5 of [8] it follows that (Xn, Yn) converges weakly in D([0,∞) : IR+× IR) iff
(X∗

n(·), Y ∗
n (·)) .= (Yn1 (bλn2·c),Yn2 (bλn2·c)) converges weakly in D([0,∞) : IR+ × IR) in which

case the limits are the same. Thus to prove the result it suffices to show that (X∗
n, Y

∗
n )

converges weakly to (X,Y ), in D([0,∞) : IR+ × IR), as n → ∞. In order to explicitly bring
out the reflection mechanism in the prelimit process X∗

n, we define, for each n ∈ IN ′, a family
of processes {(X̃(i)

n , Ỹ
(i)
n , Ũ

(i)
n )}i∈IN0 and stopping times {τ (i)

n }i∈IN0 recursively as follows. For
i = 0,

(X̃(i)
n (t), Ỹ (i)

n (t), Ũ (i)
n (t)) .= Ξ(i)

n (bn2λtc)

where {Ξ(i)
n (k)}k∈IN0 is a discrete space Markov chain with state space Gn ≡ Sn× S̃n× S̃n and

transition function µ̂(i)
n given as follows. Define ψi : Gn → Gn as ψi((x, y, u))

.= (iL+(x−1/n−
iL)+, y, u−1/n). Set ê1 = (1, 0, 1) and ê2 = (0, 1, 0). Let λ2

n and p2
n be as given above Definition

3.1. Also define q̂n(z, z − 1
ne1)

.= n2α1(z) + nβ12(z), λ̂1
n(z)

.= qn(z, z + 1
ne1) + q̂n(z, z − 1

ne1),

p̂1
n(z) = qn(z,z+ 1

n
e1)

λ̂1
n

and −q̂n(z, , z) = (λ̂1
n(z) + λ2

n(z)). For ξ ≡ (x, y, u) ≡ (z, u) ∈ Gn and
Λ ⊂ Gn

µ̂(i)
n

(
ξ,Λ

) .=
(

1 +
q̂n(z, z)
n2λ

)
δξ(Λ) +

λ̂1
n(z)
n2λ

[
p̂1
n(z)δξ+ 1

n
ê1

(Λ) + (1− p̂1
n(z))δψi(ξ)(Λ)

]
+

λ2
n(z)
n2λ

[
p2
n(z)δξ+ 1

n
ê2

(Λ) + (1− p2
n(x, y))δξ− 1

n
ê2

(Λ)
]
, (3.19)

where the initial condition of the above Markov chain is δ(0,yn,0). Also, define

τ (i)
n = inf{t : X̃(i)

n (t) = (i+ 1)L} (3.20)

Having defined (X̃(j)
n (t), Ỹ (j)

n (t), Ũ (j)
n (t)) for j = 1, . . . , i− 1, define for j = i,

(X̃(i)
n (t), Ỹ (i)

n (t), Ũ (i)
n (t)) .= Ξ(i)

n (bn2λtc)
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where {Ξ(i)
n (k)}k∈IN0 is as before the discrete space Markov chain with state space Gn and

with transition function µ̂
(i)
n defined via (3.19). The initial condition of this Markov chain is

δ
(iL,Ỹ

(i−1)
n (τ

(i−1)
n ),iL)

where τ (i−1)
n is defined via (3.20). Set σ(i)

n =
∑i−1

j=0 τ
(j)
n .

Now, define

(X̂n(t), Ŷn(t)) = (X̃(i)
n (t− σ(i)

n ), Ỹ (i)
n (t− σ(i)

n )); t ∈ [σ(i)
n , σ(i+1)

n ); i ∈ IN0.

By construction, X̃(i)
n = Γi(Ũ

(i)
n ), i ∈ IN0. Furthermore, (X̂n, Ŷn) has the same law as (X∗

n, Y
∗
n ).

So, it suffices to show that (X̂n, Ŷn) ⇒ (X,Y ), as n → ∞. The advantage of working with
(X̂n, Ŷn) rather than (X∗

n, Y
∗
n ) is that the dynamical description of the former is very similar

to that of (X,Y ) given in Definition 3.1. In particular (X̂n, Ŷn) = Ψ(Zn) and (X,Y ) = Ψ(Z)
where Zn ≡ {Zn(i)}i∈IN0 and Z ≡ {Z(i)}i∈IN0 are X valued random variables, where X is
defined above (3.15) and

Zn(i)
.= (X̃(i)

n , Ỹ (i)
n , τ (i)

n ) and Z(i) .= (X(i), Y (i), τ (i)) (3.21)

Furthermore, since the diffusion coefficient a1(x, y) is uniformly non-degenerate, X(i) ∈ A for
each i. We see from this fact and Lemma 3.2 that

IP (Z ∈ X̃ ) = 1. (3.22)

The key step in the proof of Theorem 3.3 is to establish the weak convergence of Zn to Z as
n→∞. Observing that, conditioned on Ỹ (i−1)

n (τ (i−1)
n ), Zn(i) is independent of {Zn(j), j < i}

and (X̃(i−1)
n (τ (i−1)

n ), Ỹ (i−1)
n (τ (i−1)

n )) = (X̃(i)
n (0), Ỹ (i)

n (0)), we have that for convergence of Zn →
Z it suffices to show that Zn(i) → Z(i) for each i. We will proceed inductively.

Induction Step. Assume that for some i ∈ IN , Zn(i− 1) ⇒ Z(i− 1). We will now show that
Zn(i) ⇒ Z(i).

Using the Skorokhod representation theorem we can assume without loss of generality that
Zn(i− 1) → Z(i− 1) almost surely. Note that since Ỹ (i−1) has continuous paths almost surely
we have that Ỹ (i−1)

n → Ỹ (i−1) uniformly on compact intervals. Also, since τ (i−1)
n → τ (i−1)

and τ (i−1) < ∞ a.s., it follows that Ỹ (i−1)
n (τ (i−1)

n ) → Ỹ (i−1)(τ (i−1)) . Noting that Ỹ (i)
n (0) =

Ỹ
(i−1)
n (τ (i−1)

n ), we have that {Ỹ (i)
n (0)}n∈IN ′ is a tight family. Since X̃(i)

n (0) = Ũ
(i)
n (0) = iL,

{X̃(i)
n (0), Ũ (i)

n (0)}n∈IN ′ is also a tight family. In what follows once more, we will suppress i
from the notation when needed. Define N(t) .= bn2λtc and ∆j Ỹn

.= Ỹn( j+1
n2λ

)− Ỹn( j
n2λ

). Define
∆jŨn similarly. Define for t ≥ 0,

w̃(i)
n (t) .=

N(t)−1∑
`=0

[∆`Ũ
(i)
n − IEn` ∆`Ũ

(i)
n ]

a1(X̃
(i)
n ( `

n2λ
), Ỹ (i)

n ( `
n2λ

))
, B̃(i)

n (t) .=
N(t)−1∑
`=0

[∆`Ỹ
(i)
n − IEn` ∆`Ỹ

(i)
n ]

a2(X̃
(i)
n ( `

n2λ
), Ỹ (i)

n ( `
n2λ

))
.

Here IEnj is the expected value conditioned on F(X̃n(s), Ỹn(s), Ũn(s), s ≤ j
n2λ

). We will next
show that {(X̃n, Ũn, Ỹn, w̃n, B̃n)}n∈IN ′ is tight. The tightness of Ũn, Ỹn, w̃n, and B̃n will
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follow as a consequence of the Aldous-Kurtz criterion for tightness in the Skorohod space (see
Theorem 2.1 in Section 9.2 of [9]), and the tightness of X̃n will be an immediate consequence
of the continuity of the Skorokhod map, Γi.

Using (3.19), it is easy to check that the following ”local consistency” conditions hold. Let
x′ = X̃n( j

n2λ
), y′ = Ỹn( j

n2λ
).

IEnj ∆jŨn = b1(x′, y′)(n2λ)−1 +O(n−3), IEnj ∆j Ỹn = b2(x′, y′)(n2λ)−1 +O(n−3)

Varnj (∆jŨn) = a2
1(x

′, y′)(n2λ)−1 +O(n−3), Varnj (∆j Ỹn) = a2
2(x

′, y′)(n2λ)−1 +O(n−3),

Covarnj (∆jŨn,∆j Ỹn) = O(n−3). (3.23)

where O(n−3) is a quantity which is bounded in absolute value by C
n3 where C is a universal

constant.

Using these local consistency conditions, we can establish the following inequality in a
straightforward manner

IEn|Ũn(t)− Ũn(0)|2 ≤ 2
∣∣Kt+N(t)O(n−3)

∣∣2 + 2
(
K2t+N(t)O(n−3)

)
, (3.24)

where K is the bound for the maximum of |b+1 |, |b
−
1 | and |a1|. Observing that N(t) ≤ n2λt,

we have that the first condition of the Aldous-Kurtz criterion (Theorem 2.1 in Section 9.2 of
[9]) is satisfied.

For the second condition of the Aldous-Kurtz criterion, fix T > 0 and take an arbitrary
stopping time ς s.t. ς ≤ T w.p.1. Note that for δ′ > 0

IEn(1 ∧ |Ũn(ς + δ′)− Ũn(ς)|) ≤ (IEn|Ũn(ς + δ′)− Ũn(ς)|2)1/2

≤
(

2
∣∣Kδ′ +N(δ′)O(n−3)

∣∣2
+2
(
K2δ′ +N(δ′)O(n−3)

)) 1
2

,

where K is a universal constant. Since the right side above converges to 0 as δ′ → 0 and
n → ∞, we have that the second condition of the Aldous-Kurtz criterion holds. This shows
that {Ũn} is tight. The tightness of X̃n is now an immediate consequence of the fact that
X̃n = Γi(Ũn) and that Γi is a continuous map. Proof of tightness of {Ỹn, wn, Bn} is very
similar. In particular, note that (3.24) follows with Ũn replaced by Ỹn in exactly the same
manner. This along with the already proved tightness of {Ỹn(0)} gives that the first condition
in the Aldous-Kurtz criterion is satisfied. The remainder of the proof is virtually identical to
that for Ũn.

Denote the measure induced (on an appropriate path space) by (X̃n, Ũn, Ỹn, w̃n, B̃n) by Qn.
The above tightness shows that every subsequence of Qn admits a convergent sequence. So,
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in order to prove that Zn(i) ⇒ Z(i), it suffices to show that for any weakly convergent subse-
quence, {n′}, the weak limit of (X̃(i)

n′ , Ũ
(i)
n′ , Ỹ

(i)
n′ , w̃

(i)
n′ , B̃

(i)
n′ ), denoted by (X̃(i), Ũ (i), Ỹ (i), W̃ (i), B̃(i))

has the same law as (X(i), U (i), Y (i),W (i), B(i)) defined in Definition 3.1. We will use n for
n′ to simplify notation and as before, evoking the Skorokhod representation theorem, assume
without loss of generality that the convergence is almost sure. Using standard martingale char-
acterization results (cf. Theorem 9.4.2 of [9]) and the local consistency conditions in (3.23)
one can easily show that (W̃ (i), B̃(i)) are independent Brownian motions with respect to the
filtration F (i)

t
.= σ{X̃(i)(s), Ũ (i)(s), Ỹ (i)(s), W̃ (i)(s), B̃(i)(s), s ≤ t}.

Next, we identify the limit process (X̃, Ũ , Ỹ ). For each δ > 0 and t ∈ [jδ, (j + 1)δ), define
Ũ δn(t)

.= Ũn(jδ), Ũ δ(t)
.= Ũ(jδ). Processes X̃δ

n, X̃
δ, Ỹ δ

n , Ỹ
δ are defined in a similar way. We set

Z̃δn
.= (X̃δ

n, Ỹ
δ
n ); Z̃δ is defined similarly. Also, let N δ(t) = bt/δc. Using the definition of w̃n(·)

and the local consistency properties (3.23), it follows that for each t ∈ [0,∞)

Ũ δn(t)− Ũn(0) =
∫ t

0
b1(Z̃δn(s))ds+

N(t)−1∑
j=0

a1(Z̃δn(δj))[w̃n(δ(j + 1))− w̃n(δj)] + εδ,tn ,

where IE sup0≤s≤t |ε
δ,s
n | → 0 as δ → 0, uniformly in n. A similar representation holds for

Ỹ δ
n (t)− Ỹn(0) with b1, a1 above replaced by b2, a2 and w̃n replaced by B̃n. Since (X̃n, Ũn, Ỹn) →

(X̃, Ũ , Ỹ ), we have that (X̃δ
n, Ũ

δ
n, Ỹ

δ
n ) → (X̃δ, Ũ δ, Ỹ δ) in the D-space. Letting n → ∞ in the

above display, we have

Ũ δ(t)− Ũ(0) =
∫ t

0
b1(Z̃δ(s))ds+

N(t)−1∑
j=0

a1(Z̃δ(δj))[W̃ (δ(j + 1))− W̃ (δj)] +O(δ) + εδ,t,

where IE|εδ,t| → 0 as δ → 0. So, using the boundedness of the coefficients we have

Ũ δ(t)− Ũ(0) =
∫ t

0
b1(Z̃δ(s))ds+

∫ t

0
a1(Z̃δ(s))dW̃ (s) + εδ,t,

where IE|εδ,t| → 0 as δ → 0. By the continuity of ai(·), i = 1, 2, X̃(·), and Ỹ (·), we have
that

∫ t
0 a1(X̃δ(s), Ỹ δ(s))dW̃ (s) →

∫ t
0 a1(X̃(s), Ỹ (s))dW̃ (s) in probability, as δ → 0. Similarly,∫ t

0 bi(X̃
δ(s), Ỹ δ(s))ds →

∫ t
0 bi(X̃(s), Ỹ (s))ds for i = 1, 2 . Furthermore, since X̃n = Γ(Ũn) for

all n, we have that X̃ = Γ(Ũ). Therefore, the limit process (X̃, Ũ) solves

Ũ(t) = Ũ(0) +
∫ t

0
b1(X̃(s), Ỹ (s))ds+

∫ t

0
a1(X̃(s), Ỹ (s))dW̃ (s), X̃(t) = Γ(Ũ)(t).

Exactly the same way one shows that Ỹ solves

Ỹ (t) = Ỹ (0) +
∫ t

0
b2(X̃(s), Ỹ (s))ds+

∫ t

0
a2(X̃(s), Ỹ (s))dB̃(s).
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Noting that Ỹ (i)
n (0) = Ỹ

(i−1)
n (τ (i−1)

n ) and recalling that Ỹ (i−1)
n (τ (i−1)

n ) → Ỹ (i−1)(τ (i−1)), we
have Ỹ (i)(0) = Ỹ (i−1)(τ (i−1)).

By strong (and weak) uniqueness of the solution to the above equations, we now have
that (X̃, Ũ , W̃ , Ỹ , B̃) has the same probability law as (X(i), U (i),W (i), Y (i), B(i)). Finally note
that X(i) ∈ A a.s., where A is defined in 3.16. Thus, we have on using Lemma 3.4 that
Zn(i) → Z(i). This completes the proof of the ”Induction Step”. Since Ỹ (0)

n (0) = yn → y0 as
n→∞, one can show exactly as in the proof of the induction step that Zn(0) ⇒ Z(0). Thus
Zn(i) → Z(i) for each i. As noted earlier in the proof, an immediate consequence of the above
results is that Zn → Z as n→∞. The theorem now follows as an immediate consequence of
Lemma 3.5, (3.22) and the continuous mapping theorem on observing that (X̂n, Ŷn) = Ψ(Zn),
(X,Y ) = Ψ(Z), and recalling that (X̂n, Ŷn)

L= (X∗
n, Y

∗
n ) L= (Xn, Yn).

We now give the proof of Lemma 3.5.

Proof of Lemma 3.5. Let ζn, ζ ∈ X and sn, s ∈ [0,∞) be such that ζn → ζ, sn → s and
ζ ∈ X̃ . It suffices to show that Ψ(ζn)(sn) → Ψ(ζ)(s) as n → ∞. Let i ∈ IN0 be such that
s ∈ [σ(i), σ(i+1)). For notational convenience, we will denote (x(j)

n , y
(j)
n ) and (x(j), y(j)) by zjn

and zj respectively. Consider first the case when s ∈ (σ(i), σ(i+1)). In this case, we can assume,
without loss of generality, that sn ∈ (σ(i)

n , σ
(i+1)
n ) for all n. Thus

Ψ(ζn)(sn) = zin(sn − σ(i)
n ) → zi(s− σ(i)) = Ψ(ζ)(s),

where the convergence in the display follows from the convergence of zin → zi in the D space,
continuity of zi and convergence of (sn, σ

(i)
n ) to (s, σ(i)). Finally consider the case where

s = σ(i). Note that in this case

Ψ(ζ)(s) = zi(0) = zi−1(τ (i−1)). (3.25)

Without loss of generality, we can assume that sn ∈ [σ(i), σ(i+1)) or sn ∈ [σ(i−1), σ(i)). In the
former case Ψ(ζn)(sn) = zin(sn − σ

(i)
n ) while in the latter case Ψ(ζn)(sn) = z

(i−1)
n (sn − σ

(i−1)
n ).

Once more using the convergence of zjn → zj for j = i and i−1, convergence of (sn, σ
(i)
n , σ

(i−1)
n )

to (s, σ(i), σ(i−1)) and recalling (3.25), we see that Ψ(ζn)(sn) → Ψ(ζ)(s).

4 Asymptotic Velocity of a Motor Pulling a Cargo.

In this section, we study the problem of existence of asymptotic velocity of a motor-cargo
pair whose dynamics is modeled via a system of SDEs given as in Definition 3.1. The coupled
problem, unlike the ”motor only” case studied in Section 2, does not have a natural regenerative
structure that can be exploited to guarantee the existence of the limit X(t)

t as t → ∞. We
will consider the special case where the linkage between the motor and cargo is given by a
linear spring. More precisely, letting X(t) and Y(t) represent the location of the motor and
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the cargo, respectively; at time t the dynamics of (X(t), Y (t)) is given as in Definition 3.1 with
b1(x, y) replaced by −β1(x−y) and b2(x, y) replaced by −β2(y−x), where βi ∈ (0,∞), i = 1, 2.
Furthermore, for the sake of simplicity we take a1(x, y) ≡ a1 and a2(x, y) ≡ a2 where a1, a2 ∈
(0,∞). Note that the drift coefficients do not satisfy the boundedness assumption made in
Definition 3.1. However, by a slight modification of the proof, one can show that Lemma 3.2
holds for this choice of coefficients as well. One can also carry out the proof of Theorem 3.3
for this unbounded case by a suitable localization argument. In view of the space limitation,
this result will be reported elsewhere. Using the strong Markov property of the Brownian
motion, the dynamics of (X,Y ) can be expressed somewhat more explicitly as follows. Fix
x ∈ [0, L), z ∈ IR. These represent the initial position of the motor and the initial distance
between the motor and cargo, respectively. Set Z .= X − Y .

dX(t) = −β1Z(t)dt+ a1dW1(t) + dl(t), X(0 = x

dY (t) = +β2Z(t)dt+ a2dW2(t), Y (0) = z + x

l(t) .=
J(t)−1∑
j=1

lj + LJ(t)−1(t); lj
.= Lj−1(σj)

J(t) .= inf{i : σi ≥ t}, σi = inf{t : X(t) ≥ (i+ 1)L} for i ∈ IN, σ0
.= 0

Lj(t) = − inf
σj≤s≤t

(
(−β1

∫ s

σj

Z(u)du+ a1(W1(s)−W1(σj)))
∧

0
)
I[σj ,∞)(t).

In the above representation W1,W2 are two independent Brownian motions. Notice that if
X(t) is greater than Y (t) then there is a positive drift in the cargo dynamics and a negative
drift in the motor dynamics. The reverse is true when Y (t) is greater than X(t). Thus one
expects that the distribution of Z(t) converges to a stationary distribution as t → ∞. The
evolution of Z(t) is described by the following equation:

dZ(t) = −βZ(t)dt+ σdW (t) + dl(t);Z(0) = z, (4.26)

where β .= β1 +β2, σ
.=
√
a2

1 + a2
2, and W is a Brownian motion given as W .= 1√

a2
1+a2

2

(a2
1W1 +

a2
2W2).

The main result of this section shows that the asymptotic velocity of the motor is well-
defined; namely, the quantity X(t)

t converges in probability to a deterministic value. Note
that

X(t)
t

=
y

t
− β2

t

∫ t

0
Z(s)ds+ a2

W2(t)
t

+
Z(t)
t
, (4.27)

where y .= z + x. We will show that Z(t)
t → 0 in probability and 1

t

∫ t
0 Z(s)ds converges in

probability to a deterministic constant µ as t→∞. This will yield the desired result, namely,
l.i.p.t→∞

X(t)
t = −β2µ, where l.i.p. denotes limit in probability. The key lemma in the proof of

the result is the following. For a continuous function φ : [0,∞) → IR, let |φ|∗,t
.= sup0≤s≤t |φ(s)|.
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Lemma 4.1. There exist c, α, b, κ, δ0 ∈ (0,∞) such that for all z ∈ IR, x ∈ [0, L) and all
∆ ≤ δ0,

IEx,z|Z(s)− z|2∗,∆ ≤ C∆(1 + ∆z2), IEx,zZ2(∆)− z2 ≤ −α∆z2 + bI{|z|<κ}, (4.28)

where IEx,z refers to expectation with respect to probability measure under which X(0) = x and
Y (0) = x+ z a.s.

Remark It is easy to check that (LbX(t)
L c, Z(t)) is a Markov process with respect to Ft

.=
σ{X(s), Y (s) : s ≤ t}. Ergodic properties of this Markov process will play a critical role in the
analysis below.

The proof of Lemma 4.1 will be given at the end of this section. We begin by observing
the following important consequence of the Lemma.

Lemma 4.2. For all ∆ ≤ δ0 and π ≡ (x, z) ∈ [0, L)× IR, there exist d1, d2 (possibly depending
on ∆) such that

lim sup
n→∞

IEπ(Z2(n∆)) < d1|π|2 + d2.

Proof. Let Π(t) .= (LbX(t)
L c, Z(t)). Then observing that the first component of Π(t) takes

values in a compact set [0, L], we have from Lemma 4.1 that for some α̃, b̃, κ̃ ∈ (0,∞),

IEπ|Π(n∆)|2 − |π|2 ≤ −α̃|π|2 + b̃I{|π|≤κ̃}, (4.29)

for all π ∈ [0, L] × IR. Noting that (4.29) implies the condition (V2) (from page 262 of [10]),
we have from Theorem 12.3.4 of [10] that the Markov chain {Π(n∆)}n≥1 has at least one
invariant measure. Due to the non-degeneracy of the diffusion coefficients a1, a2, this Markov
chain, {Π(n∆)}n≥1, is ψ-irreducible in the sense of Section 4.2 of [10] for ψ = λ1 ⊗ λ2 where
λ1 is the normalized Lebesgue measure on [0, L] and λ2 is the standard normal measure on IR.
Furthermore the chain is strongly aperiodic in the sense of Section 5.4.3 of [10]. This shows
that the chain, {Π(n∆)}n≥1, has a unique invariant measure. Denote this measure by ν∆.

From (4.29), we have that condition (V3) from page 337 of [10] is satisfied with f(π) =
α
2 ∆|z|2 + 1. From Theorem 14.2.6 and Proposition 14.3.1 [10], we then obtain

IEπ(Z(n∆)2) →
∫

[0,L]×IR
z2ν∆(dx, dz) as n→∞. (4.30)

Furthermore from Theorem 14.2.3(i) of [10] and the representation for the invariant measure
in Theorem 10.0.1 of [10], we obtain∫

[0,L]×IR
z2ν∆(dx, dz) ≤ 2|π|2

α∆
+ C3, (4.31)

where C3 ∈ (0,∞) is independent of ∆. Combining (4.30) and (4.31), we obtain the result.
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Lemma 4.3. For all π ≡ (x, z) ∈ [0, L]× IR, Z(t)
t → 0 in L1(IPπ) as t→∞.

Proof. Note that
Z(t)
t

=
Z(∆b t∆c)

t
+
Z(t)− Z(∆b t∆c)

t

Thus,

lim sup
t→∞

IEπ

∣∣∣∣Z(t)
t

∣∣∣∣ ≤ lim sup
t→∞

IEπ|Z(∆b t∆c)|
t

+ lim sup
t→∞

IEπ|Z(t)− Z(∆b t∆c)|
t

.

From Lemma 4.2, we have that the first term above equals zero. Also, from the first inequality
in Lemma 4.1, we have that

lim sup
t→∞

IEπ|Z(t)− Z(∆b t∆c)|
t

≤ lim sup
t→∞

√
C∆(1 + ∆IE|Z(∆b t∆c)|2

t
.

Applying Lemma 4.2 again, we see that the expression on the right side equals 0. This proves
the result.

Proposition 4.4. The Markov process {Π(t)}t≥0 admits a unique invariant measure: ν.

Proof. It suffices to show that the family of probability measures, {ν̃t, t ≥ 0}, where

ν̃t(A) .=
1
t

∫ t

0
IPπ[Z(s) ∈ A]ds,A ∈ B(IR), (4.32)

is tight. We will show that lim supt→∞
∫
[0,L]×IR |z̃|

2dν̃t(dx̃, dz̃) <∞. This clearly will prove the
required tightness and hence prove the result. Note that∫

[0,L]×IR
|z̃|2dν̃t(dx̃, dz̃) =

1
t

∫ t

0
IEπ|Z(s)|2ds. (4.33)

Also, note that

IEπ|Z(s)|2 ≤ 2IEπ|Z(∆b s
∆
c)|2 + 2IEπ|Z(s)− Z(∆b s

∆
c)|2 (4.34)

≤ 2IEπ|Z(∆b s
∆
c)|2 + 2C∆(1 + ∆IEπ|Z(∆b t

∆
c)|2 (4.35)

where the second inequality follows from Lemma 4.1. Substituting the above inequality into
(4.33) and using Lemmas 4.1 and 4.2, we get

lim sup
t→∞

∫
[0,L]×IR

|z̃|2dνt(dx̃, dz̃) ≤ C∆ + (1 + C∆2)(d1|z|2 + d2) <∞. (4.36)

This proves the result.

We now come to the main result of the chapter.
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Theorem 4.5. For all π ≡ (x, z) ∈ [0, L]× IR,

X(t)
t

→ −β2

∫
[0,L]×IR

zν(dx, dz)

in L1(IPπ) as t→∞; where ν is as in Proposition 4.4.

Proof. Recalling (4.27), we have from Lemma 4.3 that

lim sup
t→∞

IEπ

˛̨̨̨
˛X(t)

t
+ β2

Z
[0,L]×IR

zν(du, dz)

˛̨̨̨
˛ = β2 lim sup

t→∞
IEπ

˛̨̨̨
˛1t

Z t

0

Z(s)ds−
Z

[0,L]×IR

zν(du, dz)

˛̨̨̨
˛

From the ergodicity proven in Proposition 4.4, we have for all k ∈ IN

IEπ

∣∣∣∣∣1t
∫ t

0
fk(Z(s))ds−

∫
[0,L]×IR

fk(z)ν(du, dz)

∣∣∣∣∣→ 0

as t→∞, where fk(z) = (z∨k)∧(−k). The result will follow from the dominated convergence
theorem if we have that supt

1
t

∫ t
0 IEπ|Z(s)|2ds <∞. However, this an immediate consequence

of (4.36) which was established in the proof of Proposition 4.4. This proves the result.

We will now provide the proof of Lemma 4.1 which was critically used in the proof of the
above theorem. In what follows c1, c2, ... will denote generic constants whose values change
from one proof to the next. We begin by obtaining some preliminary bounds.

In order to bound IEZ2(∆)−z2, we first obtain a bound on the “reflection term” as follows:

l(t) ≤ β1t|Z|∗,t + a1

∞∑
j=1

sup
σj−1∧t≤s≤σj∧t

|W1(s)−W1(σj−1)|︸ ︷︷ ︸
Mj(t)

. (4.37)

Writing
l(t) = l(t)− β1t|Z|∗,t︸ ︷︷ ︸

l̃(t)

+β1 t|Z|∗,t︸ ︷︷ ︸
l∗(t)

, (4.38)

we have from (4.37) that l̃(t) ≤ a1
∑∞

j=1Mj(t). This bound enables us to prove the following
inequality.

Lemma 4.6.
IEl̃2(t) ≤ ct(

√
IE[X2(t)] + 1). (4.39)

Proof. Observe that

IEl̃2(t) ≤ a2
1

∞∑
j=1

IEM2
j (t) + 2a2

1

∞∑
k=1

∞∑
i=k+1

IEMi(t)Mk(t). (4.40)
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From Burkholder-Grundy-Davis inequalities, we have that

IEM2
j (t) ≤ c1IE(σj ∧ t− σj−1 ∧ t), (4.41)

where c1 is a universal constant.

This immediately yields that

∞∑
j=1

IEM2
j (t) ≤ c1IE

∞∑
j=1

(σj ∧ t− σj−1 ∧ t) = c1t. (4.42)

Let Gt = σ{Wi(s) : s ≤ t, i = 1, 2}, and set Fk
.= Gσk

. Then, recalling the definition of J(t) in
(4.26) we have

IE[
∞∑

i=k+1

Mi(t)|Fk] = IE[
J(t)∑
i=k+1

Mi(t)|Fk]

≤ IE[

( ∞∑
i=k+1

M2
i (t)

)1/2

J(t)1/2|Fk]

≤

(
IE[

∞∑
i=k+1

M2
i (t)|Fk]

)1/2

(IE[J(t)|Fk])1/2

≤
√
c1
√
t
√
IE[J(t)|Fk], (4.43)

where in the last step we have once more used the Burkholder-Grundy-Davis inequalities. An
immediate consequence of the above inequality is the following:

∞∑
k=1

∞∑
i=k+1

IE[Mk(t)Mi(t)] = IE
∞∑
k=1

Mk(t)IE[
∞∑

i=k+1

Mi(t)|Fk]

≤
√
c1
√
tIE

J(t)∑
k=1

Mk(t)
√
IE[J(t)|Fk]

≤
√
c1
√
tIE

( ∞∑
k=1

M2
k (t)

)1/2( ∞∑
k=1

1{k≤J(t)}IE[J(t)|Fk]

)1/2


≤
√
c1
√
t

(
IE

∞∑
k=1

M2
k (t)

)1/2(
IE

∞∑
k=1

1{k≤J(t)}IE[J(t)|Fk]

)1/2

≤ c1t

(
IE

∞∑
k=1

1{k≤J(t)}IE[J(t)|Fk]

)1/2

, (4.44)
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where we have used (4.43) in the first inequality and (4.42) in the fourth inequality. On
observing that the event {k ≤ J(t)} is Fk-measurable. We rewrite the right side of (4.44) as

c1t

(
IE

∞∑
k=1

1{k≤J(t)}IE[J(t)|Fk]

)1/2

= c1t

(
IE

∞∑
k=1

J(t)1{k≤J(t)}

)1/2

= c1t
√
IEJ2(t).

Substituting the above, (4.42) and (4.44) into (4.40), we have IEl̃2(t) ≤ c2(t + 2t
√
IE[J2(t)]).

Finally, observing that J(t) ≤ X(t)+L
L , we obtain from the above inequality that IEl̃2(t) ≤

ct(
√
IE[X2(t)] + 1), for a suitable constant c.

Next we obtain a bound on IE(X2(t)).

Lemma 4.7. There exists a γ1 ∈ (0,∞) such that IE(X2(t)) ≤ γ1(1 + t2 + t2IE|Z|2∗,t) for all
t ≥ 0.

Proof. Recalling the representation of X in (4.26) and that x ∈ [0, L], we have from Lemma
4.6 and (4.38) that

IEX2(t) ≤ c1[L2 + β2
1t

2IE|Z|2∗,t + t+ t(
√
IE[X2(t)] + 1)]

≤ c2[1 + t+ t2IE|Z|2∗,t + t
√
IEX2(t)]. (4.45)

Set d1 = c2[1 + t + t2IE|Z|2∗,t], d2 = c2t, IEX
2(t) .= α2. Then (4.45) can be rewritten as

α2 ≤ d1 +d2α. This immediately yields that α2 ≤ c3(1+ t+ t2IE|Z|2∗,t). This proves the result.

Combining Lemmas 4.6 and 4.7, we have that

IEl̃2(t) ≤ t
√
γ1(
√

1 + t2 + t2IE|Z|2∗,t + 1) ≤ γ2(t+ t2 + t2
√
IE|Z|2∗,t), (4.46)

for a suitable γ2 ∈ (0,∞). Now, we proceed to the proof of Lemma 4.1.

Proof of Lemma 4.1. Define Z̃(s) .= Z(s)− z. Applying Itô’s formula we have

Z̃2(t) = −2β
∫ t

0
Z̃(s)Z(s)ds+ 2

∫ t

0
Z̃(s)dW (s) + 2

∫ t

0
Z̃(s)dl(s) + σ2t.

Thus,

(1− 2β∆)|Z̃|2∗,∆ ≤ 2|
∫ ·

0
Z̃(u)dW (u)|∗,∆ + 2|

∫ ·

0
Z̃(u)dl(u)|∗,∆ + σ2∆ + 2∆β|z||Z̃|∗,∆.

Taking expectations in the above inequality, we have

(1− 2β∆)IE|Z̃|2∗,∆ ≤ 4
√

∆
√
IE|Z̃|2∗,∆ + 2IE(|Z̃|∗,∆l(∆)) + σ2∆ + 2∆β|z|IE|Z̃|∗,∆. (4.47)
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Furthermore, from (4.38) we have

IE(|Z̃|∗,∆l(∆)) ≤ IE(|Z̃|∗,∆ l̃(∆)) + β1∆IE|Z̃|2∗,∆ + β1∆|z|IE|Z̃|∗,∆. (4.48)

Next, using (4.46) we get

IE(|Z̃|∗,∆|l̃(∆)) ≤ (IE|Z̃|2∗,∆)
1
2 (IEl̃2(∆))

1
2

≤ c3(IE|Z̃|2∗,∆)
1
2

(
∆ + ∆2 + ∆2

√
IE|Z|2∗,∆

) 1
2

≤ c4(IE|Z̃|2∗,∆)
1
2

(
∆ + ∆2 + ∆2

√
IE|Z̃|2∗,∆ + |z|∆2

) 1
2

≤ c5(IE|Z̃|2∗,∆)
1
2

(
∆

1
2 + ∆ + ∆(IE|Z̃|2∗,∆)

1
4 +

√
|z|∆

)
. (4.49)

Letting Θ = IE|Z̃|2∗,∆, we have from (4.47), (4.48), and (4.49) that

(1− (2β + 2β1)∆)Θ ≤ 4
√

∆
√

Θ + (2β + 2β1)∆|z|
√

Θ

+2c5
√

Θ(
√

∆ + ∆ + ∆Θ
1
4 + ∆

√
|z|) + σ2∆.

Renaming constants and dividing by
√

Θ,

(1− (2β + 2β1)∆)
√

Θ ≤ (2β + 2β1)∆|z|+ c6(
√

∆ + ∆ + ∆Θ
1
4 + ∆

√
|z|) +

σ2∆√
Θ

≤ c7(
√

∆ + ∆Θ
1
2 ) + ∆(1 + |z|)) +

σ2∆√
Θ

Subtracting and absorbing constants, we have for ∆ < 1,

(1− (2β + 2β1 + c7)∆)
√

Θ ≤ c8
√

∆ + c8∆|z|+
σ2∆√

Θ
.

Now choosing δ0 sufficiently small, we obtain that for all ∆ < δ0,

√
Θ ≤ c9

(√
∆(1 +

√
∆|z|) +

∆√
Θ

)
.

Thus, Θ ≤ c9

(√
∆(1 +

√
∆|z|)

√
Θ + ∆

)
. Using the quadratic formula, we obtain that, for all

∆ ≤ δ0,
Θ ≤ C∆(1 + ∆z2), (4.50)

for a suitable constant C. This proves the first inequality in Lemma 4.1.

Next, from (4.26), we have via another application of Itô’s formula

IEZ2(t ∧ τk) = z2 − 2βIE
∫ t∧τk

0
Z2(s)ds+ 2IE

∫ t∧τk

0
Z(s)dl(s) + σ2IE(t ∧ τk), (4.51)
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where τk
.= inf{t : |Z(s)| ≥ k}. Note that∣∣∣∣∫ t∧τk

0
Z(s)dl(s)

∣∣∣∣ ≤ (|Z|∗,t) l(t) = (|Z|∗,t)[l̃(t) + β1l
∗(t)], (4.52)

where the last equality follows from (4.38). Recalling the definition of l∗(s),

IE[|Z|∗,tl∗(t)] ≤ tIE|Z|2∗,t. (4.53)

Also, using (4.46), we have

IE|Z|∗,t l̃(t) ≤
√
IE|Z|2∗,t

√
IEl̃2(t) ≤ c1

√
IE|Z|2∗,t

(√
t+ t+ t

(
IE|Z|2∗,t

) 1
4

)
. (4.54)

Now fix ∆ ≤ δ0, and let α∆
.= IE|Z|2∗,∆. From (4.52), (4.53), and (4.54), we have on taking

k →∞ in (4.51), that,

IEZ2(∆)− z2 ≤ −2β∆IE inf
0≤u≤∆

|Z(u)|2 + 2β1∆α∆

+c2
√

∆
√
α∆(1 +

√
∆ +

√
∆ (α∆)

1
4 ) + σ2∆. (4.55)

Next, noting that |Z(u)| = |Z̃(u) + z|, we have Z2(u) = Z̃2(u) + z2 + 2zZ̃(u). Thus,

IE inf
0≤s≤∆

|Z(u)|2 ≥ z2 − 2|z|IE|Z̃|∗,∆ ≥ z2 − 2|z|
√

Θ. (4.56)

Combining (4.55), (4.50), and (4.56)

IEZ2(∆)− z2 ≤ −2β∆(z2 − 2|z|
√

Θ) + 2β1∆(z2 + Θ + 2|z|
√

Θ)

+c2
√

∆
√

2z2 + 2Θ(1 +
√

∆ +
√

∆
(
2z2 + 2Θ

) 1
4 ) + σ2∆.

Recalling the definition of Θ and renaming constants, we have

IEZ2(∆)− z2 ≤ −2β2∆z2 + c10(z2 + 1) + c10∆(|z|3/2 + 1).

The second inequality of Lemma 4.1 now follows with a sufficiently large value of κ , on choosing
∆ sufficiently small.

5 Appendix

Theorem 5.1. Let W be a standard Brownian motion given on some filtered probability space
and let x ∈ IR+. Define the process Xx as follows. For t ≥ 0,

Xx(t) .= Γ0

(
x+

∫ ·

0
b(Xx(s))ds+

∫ ·

0
a(Xx(s))dW (s)

)
(t), (5.57)
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where b and a are Lipschitz continuous functions and infx∈IR |a(x)| ≥ m > 0. Let L ∈ (0,∞)
and define

τx
.= inf{t : Xx(t) /∈ [0, L)}. (5.58)

Then there exists an ε > 0 such that IEeτ
xu <∞ for all −ε < u < ε.

In order to prove the theorem, we begin with the following lemma.

Lemma 5.2. Let τx be given by (5.58). Then supx∈[0,L] IP [τx > 1] < 1.

Proof. We will argue by contradiction. Suppose that supx∈[0,L] IP [τx > 1] = 1. Then,
there is a sequence {xn} ∈ [0, L] such that IP [τxn > 1] → 1. Since [0, L] is in a compact set,
there is a convergent subsequence {x′n} which converges to some x ∈ [0, L]. We know that
IP [τx

′
n > 1] → 1. Now, if P [τy > 1] is a continuous function in y, then IP [τx

′
n > 1] → IP [τx > 1]

which implies that IP [τx > 1] = 1. This in particular says that IP (Xx(1
2) ∈ [0, L]) = 1 which is

clearly impossible in view of the uniform non-degeneracy of the diffusion coefficient. Thus we
have a contradiction, which proves the lemma. Therefore it suffices to show that IP [τy > 1] is a
continuous function of y. Note that IP [τy > 1] = IP (Z(y) < L), where Z(y) .= sup0≤s≤1X

y(s).
Note that Z(yn) → Z(y) in probability as yn → y. Finally, observing that the distribution of
Z(y) is absolutely continuous with respect to the Lebesgue measure on [0,∞), we have that
IP (Z(yn) < L) → IP (Z(y) < L) as yn → y. This proves that IP [τy > 1] is a continuous
function of y.

Proof of Theorem 5.1. Let α .= supx∈[0,L] IP [τx > 1]. From Lemma 5.2 we have that
α ∈ (0, 1). Now, fix x ∈ [0, L] and suppress it from the notation.

IP [τ > n] = IE

(
I[τ>n]I[τ>n−1]

)
= IE

(
IE[I[τ>n]|Fn−1]I[τ>n−1]

)
≤ αIP [τ > n− 1],

where Ft
.= σ{W (s) : 0 ≤ s ≤ t}. Thus, IP [τ > n] ≤ αn. This proves that IEeτu <∞ for all u

such that |u| < | log(α)|.
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