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Abstract. We consider wavefronts that arise in a mathematical model for high Lewis number com-
bustion processes. An efficient method for the proof of the existence and uniqueness of combustion
fronts is provided by geometric singular perturbation theory. The fronts supported by the model
with very large Lewis numbers are small perturbations of the front supported by the model with
infinite Lewis number. The question of stability for the fronts is more complicated. Besides discrete
spectrum, the system possesses essential spectrum up to the imaginary axis. We show how a geo-
metric approach which involves construction of the Stability Index Bundles can be used to relate the
spectral stability of wavefronts with high Lewis number to the spectral stability of the front in the
case of infinite Lewis number.
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1. Introduction

1.1. Model. We consider a well-known model for the propagation of combustion waves in the case
of premixed fuel, with no heat loss, in one spatial dimension x ∈ R. The system describing evolution
of the temperature u and concentration of the fuel y reads

ut = uxx + yΩ(u),

yt = εyxx − βyΩ(u).(1)

The reaction rate has the form of an Arrhenius law without ignition cut off: Ω(u) = e−1/u for u > 0
and Ω(u) = 0 otherwise. The system has two parameters. One is the exothermicity parameter β > 0
which is the ratio of of the activation energy to the heat of the reaction. The other is the reciprocal
of the Lewis number ε = 1/Le > 0. Therefore, ε represents the ratio of the fuel diffusivity to the
heat diffusivity. The system has been studied for various parameter regimes. Of interest to us are
traveling wave solutions to (1) in two cases. One is the system (1) with ε = 0 (Le = ∞). Its physical
prototype is the combustion of solid fuels. The other is the case of 0 < ε � 1, i.e., when Le is very
large but finite. This situation is also physical: (1) then describes burning of very high density fluids
at high temperatures. Moreover, even during the burning of solid fuels some liquefaction of the fuel
might occur in the reaction zone, thus causing a non-zero value of 1/Le. Our main goal is to relate
the stability of the combustion wave of (1) with ε > 0 to the stability of the combustion wave of (1)
with ε = 0.

1.2. Existence of the front. We concentrate our attention on the traveling wave solutions of front
type. In particular, we are interested in fronts of (1) that asymptotically connect

(2) (u, y) = (1/β, 0) at −∞, and (u, y) = (0, 1) at ∞,

and approach these rest states at exponential rates. The boundary conditions represent the physical
state where the fuel is completely burnt, i.e., y = 0, and the maximal temperature u = 1

β is reached,

and the state when none of the fuel is yet burnt and the temperature u is still zero.
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The traveling waves are sought as solutions of

u′′ + cu′ = −yΩ(u),

εy′′ + cy′ = βyΩ(u),(3)

where ε ≥ 0. There is a linear algebraic relation satisfied along any solution of (3), coming from an
invariant of the equations,

βu′′ + βcu′ + εy′′ + cy′ = 0.

Thus, the quantity βu′ + βcu + εy′ + cy is conserved along trajectories. To satisfy boundary
conditions (2), it must equal to c:

(4) βu′ + βcu + εy′ + cy = c.

It is easy to see from (4), that, if 0 ≤ ε < 1, then there are no standing traveling waves (c = 0)
satisfying (2). We fix the direction of propagation of the front by choosing c > 0. In Sect. 4.1, we
show that both u and y which solve the traveling wave equation (3) are positive and monotone: u
is decreasing and y is increasing.

For (3) with no additional assumptions on β > 0, and when ε = 0, the existence and uniqueness
of a front that converges to its rest states exponentially fast has been proved in [4, 18]. There are
also solutions with algebraic rates of decay, but these are considered to be of little interest [18]. The
front has also been observed numerically in [19].

To prove the existence and uniqueness of the front in the case of 0 < ε � 1, geometric singular
perturbation theory seems to be a natural approach. More precisely, the system has a slow-fast
structure. In the case of ε = 0 the flow is restricted to a two dimensional invariant manifold.
The manifold is normally hyperbolic and attracting, therefore, by Fenichel’s First theorem [7], it
perturbs to an attracting manifold invariant for the flow with ε > 0. For the reduced problem, the
lower dimension of the problem can be used to show that the front in the ε = 0 case is realized as
a transversal intersection of relevant invariant manifolds. Transversality can be proved by Melnikov
integral calculation [2], or by following the blueprint provided by the proof of the existence and
uniqueness of subsonic detonation waves [8]. In [2], the formula for the corrective term for the
velocity of propagation of the perturbed front has also been obtained.

An essentially different approach based on Leray-Schauder degree theory has been used in [3] to
prove the existence and uniqueness of the front for when 0 < ε < 1. The traveling wave equation
(3), in an appropriate scaling, falls in a class of equations described in [3].

1.3. Stability. Concerning the stability properties of the combustion front, the question we want
to address here is about the relationship between two cases: ε = 0 and ε > 0. More precisely, do
combustion fronts with 0 < ε � 1 inherit stability properties of the front with ε = 0?

We denote by (uf , yf ) the front, and by cf the corresponding value of its speed, i.e., (uf , yf ), cf

refers to (u0, y0), c0 when ε = 0, and (uε, yε), cε when ε > 0. The linearization of (1) with c = cf

about (uf , yf ) is given by

pt = pξξ + cpξ + Ω(uf )r + yfΩu(uf )p,

rt = εrξξ + crξ − βΩ(uf )r − βyfΩu(uf )p.

The eigenvalue problem reads

λp = pξξ + cpξ + Ω(uf )r + yfΩu(uf )p,

λr = εrξξ + crξ − βΩ(uf )r − βyfΩu(uf )p.(5)

A traveling wave is called spectrally stable if the spectrum of the linearization of the system
about the traveling wave is contained in the left half-plane {λ ∈ C : Re λ ≤ 0}. Generally speaking,
the spectral stability need not imply the linear stability of the traveling wave, i.e., the decay of the
solutions of the linearization of PDE about the traveling wave (with the exception of the single mode
due to the translation invariance).
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If the linearized operator is sectorial, the linear stability is guaranteed if there exists B > 0
such that the spectrum belongs to the half-plane {λ ∈ C : Reλ < −B} with the exception of a
simple eigenvalue at zero, caused by translation symmetry. In Section 2.1 we show that the essential
spectrum of the linearization of (1) about the front reaches the imaginary axis for any ε ≥ 0.
Nevertheless, for this problem, it is possible to shift the essential spectrum to the open left half-
plane using exponential weights. The translational eigenvalue, λ = 0, is simple, as it has been shown
analytically in [9] using Evans function analysis for the case ε = 0. This result is also suggested
by a numerical investigation, for both ε = 0 and nonzero, see [10, 2, 17]. If we assume that there
are no other isolated eigenvalues in the closed right half-plane, then the front is spectrally stable in
some exponentially weighted space. For fixed ε > 0 the linearized operator is the perturbation of the
Laplacian by lower order derivatives and bounded operators, and, thus, it is also sectorial [11, 16].
Therefore, the linear stability of the front in appropriate exponentially weighted spaces follows from
the spectral stability. In this paper, the nonlinear stability is not discussed.

To discuss the point spectrum spectrum and its robustness under perturbations, we use the
concept of the Evans function. Evans function is an analytic function of complex variable λ, defined
for λ to the right of the essential spectrum [1]. Zeroes of the Evans function coincide with the
eigenvalues of the linearized operator with the order of a zero being equal to the multiplicity of the
eigenvalue. In Section 2.2, using the same approach as in [13], we show that the Evans function for
our system can be analytically continued across the boundary of the essential spectrum. We will
call this analytic continuation of the Evans function the extended Evans function. Embedded in the
essential spectrum, eigenvalues are still zeroes of the extended Evans function, but not necessarily
vice versa.

For both cases, ε = 0 and ε > 0, we distinguish three situations.

A. There is at least one zero of the Evans function, i.e., isolated eigenvalue, in the open right
half plane of the complex plane: the front is truly unstable.

B. There are no zeroes of the Evans function to the right of the imaginary axis. Moreover, with
the exception of the simple zero at the origin, the extended Evans function has no zeroes on
the imaginary axis: the most stable case.

C. There are no zeroes of the Evans function to the right of the imaginary axis, but there are
zeroes on the imaginary axis in addition to the zero at the origin: marginal case.

The main result of this paper is that cases A and B with ε = 0 are robust under singular
perturbations with ε > 0 sufficiently small. For brevity, in what follows, we denote the extended
Evans function E0 when ε = 0, and Eε when ε > 0.

Theorem 1. If the front (u0, y0) is unstable then there exists ε0 > 0 such that for any 0 < ε < ε0

the front (uε, yε) is also unstable.

Theorem 2. Assume the front (u0, y0) is spectrally stable, and, moreover, the statement B about
E0 is true. There exists ε0 > 0 such that for any 0 < ε < ε0 the statement B true for Eε; therefore,
the front (uε, yε) is also spectrally stable.

Theorems 1 and 2 are consequences of the following key proposition about the zeroes of the Evans
function.

Proposition 3. Assume that λ0 is a zero of order m of E0. There exists ε0 > 0, independent on
λ, such that for any ε (0 < ε < ε0), in a neighborhood of λ0 of order ε, there are exactly m zeroes
(counting multiplicity) of Eε.

This statement is proved in Section 3.
These analytic results confirm the expectations based on the numerical analysis in [2] where a

count of the number of eigenvalues in various bounded domains of the complex plane has been
performed and compared for ε = 0 and ε > 0. Here we have also used the fact that λ = 0 is a simple
eigenvalue when ε = 0, and, because of Proposition 3, persists as a simple eigenvalue when ε > 0.
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Therefore no eigenvalue can cross into the right half-plane through the origin when the problem is
perturbed by introducing non-zero ε.

There is numerical evidence [10] that the stability of the front (0 ≤ ε � 1) depends on the
parameter β. It has been shown numerically that there exist β0 = O(1) such that for β < β0 the
linearization about the front does not possess any unstable eigenvalues. For larger values of β a
pair of complex conjugate eigenvalues crosses the imaginary axis from left to right, causing a so-
called pulsating instability. The occurrence of Hopf bifurcation, with the speed of the front as the
bifurcation parameter, has been also noted in [17].

The numerical observation of pulsating instability is not unexpected. Its presence has been proved
under the assumption of high energy activation [14]. In this situation, the existence of two complex
conjugate, purely imaginary eigenvalues has been obtained. But in some way, the behavior of
the unstable eigenvalues as functions of β, when β is large, has not been completely captured by
the numerics. In other words, it is not clear from the numerics what happens with the unstable
eigenvalues for β � 1. Based on our estimates in Sect. 4.2, we claim that with further increase of β,
at some point, the real parts of the unstable eigenvalues start to decrease. The eigenvalues approach
the imaginary axis. This observation is in agreement with the stability analysis performed in high
energy activation limit in [14]. The investigation of bifurcations as large β varies will be addressed
in a different paper.

1.4. Main technique: Stability Index Bundles. To prove our results we apply the technique
developed in [1], where the stability index was introduced. The stability index is a topological
invariant which counts the number of eigenvalues inside a given closed contour. If there exists a
contour K enclosing all of the unstable eigenvalues, then the spectral stability of the wave can be
concluded from the stability index of the contour. More precisely, this topological invariant is the
first Chern number of the Stability Index Bundle. Stability Index Bundle, also called augmented
unstable bundle [1], is a bundle with fibers formed by certain invariant manifolds in the phase space
of the linearization (5) and the base given by a compactification of an infinite cylinder R × K (for
the real space variable and the complex parameter λ) capped at ±∞ by the contour K combined
with its interior.

The first Chern number of the Stability Index Bundle coincides with the winding number of Evans
function over the contour K and therefore counts eigenvalues inside K, because they are zeroes of the
Evans function. The detailed construction of the bundle is presented in Sect. 3 and the description
of the contour K is discussed in Sect. 2.2.

Because of the slow-fast structure of the eigenvalue problem (5), generally speaking, the Stability
Index Bundle can be decomposed into the Whitney sum of the associated slow and fast subbundles
[15]. In this particular case we were able to prove that the slow bundle is, in fact, the full unstable
bundle. The topological nature of the stability index makes it robust under small perturbations.
Therefore the Chern number of the full system (0 < ε � 1) is equal to the Chern number of the
reduced system (ε = 0) and the statement of the theorem follows. The construction of the Stability
Index Bundle is performed in the framework of exterior powers Λk(C) (see [6, 20]) of C

4.
The plan of the paper is as follows. In Sect. 2 we construct the extended Evans function. To do

so we need to know the location of the essential spectrum. The Stability Index Bundle is defined
by its fibers and the base. In Sect. 3 we define the fibers. The base of the bundle is defined in
Sect. 4 by means of a construction of a contour in the complex plane that leads us to the proof of
Theorems 1 and 2. We call such contour the Index Contour. The existence of Index Contour is
guaranteed by the bound on the modulis of the unstable eigenvalues, and properties of zeroes of an
analytic function, here, the extended Evans function. Monotonicity of the front (uf , uf ) is used to
obtain an estimate on the real parts of the unstable eigenvalues.

Acknowledgment. The authors wish to thank P. Simon for pointing to relevant literature. This
work was supported by the NSF grant DMS-0410267.
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2. Evans Function

The Evans function for (1) was successfully used to study the discrete spectrum of the problem
with fixed ε [2, 9, 10, 19]. We use Evans function to construct the base of the Stability Index Bundle.
To include the translational eigenvalue at the origin, embedded in the essential spectrum, in the
consideration, we want to to analytically continue the Evans function across the right boundary of
the essential spectrum. This section consists of two parts. First, we find the location of the essential
spectrum, then define the extended Evans function.

2.1. Essential spectrum. In this section we find the location of the essential spectrum, which is
the complement of the point spectrum in the spectrum.

Case ε > 0. The eigenvalue problem (5), written as a first order ODE, on the fast scale η = ξ/ε
reads

ṗ = εq,

q̇ = ε(−cfq − Ω(uf )r + yfΩu(uf )p + λp),

ṙ = εs,

ṡ = −cs + βΩ(uf )r + βyfΩu(uf )p + λr.(6)

The right-hand side of this system is an action of the matrix

M(ξ, λ, ε) =









0 ε 0 0
ε(λ + yfΩu(uf )) −cε −εΩ(uf ) 0

0 0 0 ε
βyfΩu(uf ) 0 λ + βΩ(uf )









on the vector (u, v, y, z)T . Let M±(λ, ε) = limξ→±∞ M(ξ, λ, ε). Then

M−(λ, ε) =









0 ε 0 0
ελ −cε −e−βε 0
0 0 0 ε
0 0 λ + βe−β −c









, M+(λ, ε) =









0 ε 0 0
ελ −cε 0 0
0 0 0 ε
0 0 λ −c









.

The eigenvalues of M±(λ, ε) are called the spatial eigenvalues as opposed to the temporal eigenvalues
λ. The eigenvalues of M−(λ, ε) are

κ−

1 = 1
2 (−c −

√

c2 + 4ε(λ + βe−β)), κ−

3 =
ε

2
(−c −

√

c2 + 4λ),

κ−

2 = 1
2 (−c +

√

c2 + 4ε(λ + βe−β)), κ−

4 =
ε

2
(−c +

√

c2 + 4λ).

When λ crosses the imaginary axis from right to left, κ−

4 crosses the imaginary axis from right to
left. The boundaries of the essential spectrum due to the behavior at −∞ are curves

(7) {λ = −εν2 + ciν; ν ∈ R} ∪ {λ = −ν2 + ciν; ν ∈ R}.
The eigenvalues of M+(λ, ε) are

κ+
1 = 1

2(−c −
√

c2 + 4ελ), κ+
3 =

ε

2
(−c −

√

c2 + 4λ),

κ+
2 = 1

2(−c +
√

c2 + 4ελ), κ+
4 =

ε

2
(−c +

√

c2 + 4λ).

When λ crosses the imaginary axis from right to left, both eigenvalues with positive real parts, κ−

2 ,
κ−

4 , cross the imaginary axis from right to left, and coincide at λ = 0. The boundaries of the essential
spectrum due to the behavior at +∞ are given by the curves

(8) {λ = −εν2 + ciν − βe−β; ν ∈ R} ∪ {λ = −ν2 + ciν; ν ∈ R}.
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The set of curves (8)-(7) divides the complex plane into regions which either are covered by
spectrum or, otherwise, contain only discrete eigenvalues. There is a component of it which contains
the open right half-plane of the complex plane. From the estimates described in Sect. 4.2, we know
that there can be no eigenvalues with positive real parts far away on the real axis. Therefore the
region to the right of the rightmost parabola from (7) and (8)

(9) {λ = −εν2 + ciν; ν ∈ R}
contains only discrete spectrum, i.e. isolated eigenvalues of finite multiplicity. The essential spectrum
is bounded on the right by (9) and includes that curve (see Fig. 1).

Case ε = 0. We rewrite the eigenvalue problem (5) as a first order ODE:

p′ = q,

q′ = −cq − Ω(uf )r + yfΩu(uf )p + λp,

r′ =
β

c
Ω(uf )r +

β

c
yfΩu(uf )p +

λ

c
r.

The right-hand side of the last system is an action of the matrix

M(ξ, λ) =





0 1 0
λ + yfΩu(uf ) −c −Ω(uf )

β
c yfΩu(uf ) 0 1

c (λ + βΩ(uf ))





on the vector (u, v, y)T . We denote M±(λ) = limξ→±∞ M(ξ, λ):

M−(λ) =





0 1 0
λ −c −e−β

0 0 λ
c + β

c e−β



 , M+(λ) =





0 1 0
λ −c 0

0 0 λ
c



 .

The eigenvalues of M−(λ) are

κ−

1 =
1

c
(λ + βe−β), κ−

2 =
1

2
(−c −

√

c2 + 4λ), κ−

3 =
1

2
(−c +

√

c2 + 4λ).

For fixed finite β > 0, if Reλ > 0, then Re κ−

1 , κ3 > 0, Re κ−

2 < 0. When λ crosses the imaginary
axis from right to left κ−

3 crosses the imaginary axis from right to left.
The eigenvalues of M+(λ) are

κ+
1 =

λ

c
, κ+

2 =
1

2
(−c −

√

c2 + 4λ), κ+
3 =

1

2
(−c +

√

c2 + 4λ).

If Reλ > 0, then Reκ+
1 , κ+

3 > 0, Re κ+
2 < 0. When λ crosses the imaginary axis from right to left

both eigenvalues with positive real parts, κ−

1 , κ−

3 , cross the imaginary axis from right to left. The
boundaries of the essential spectrum due to the behavior at −∞ are curves

(10) {λ = ciν; ν ∈ R} ∪ {λ = −ν2 + ciν; ν ∈ R}.
The boundaries of the essential spectrum due to the behavior at +∞ are given by the curves

(11) {λ = ciν − βe−β; ν ∈ R} ∪ {λ = −ν2 + ciν; ν ∈ R}.
The rightmost curve {λ = ciν; ν ∈ R} in (10) and (11) is the imaginary axis. The same argument
as in the case of ε = 0 shows that the essential spectrum belongs to the region to the left of and on
the imaginary axis (see Fig. 1). The open right half plane can contain isolated eigenvalues of finite
multiplicity only.

The direction in which spatial eigenvalues cross the imaginary axis is related to the group velocity
and determines where the system transports initial perturbations: here, to −∞.
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Figure 1. The essential spectrum belongs to the region to the left of the rightmost
curve and contains that curve.

2.2. Evans function and its analytic continuation. Evans function is defined, and analytic, for
λ’s to the right of the essential spectrum. The discrete isolated eigenvalues of the linearized operator
are zeroes of the Evans function [1].

In certain situations the Evans function can be analytically continued across the boundary of the
essential spectrum as well. In particular, it is possible, if the spacial eigenvalues cross the imaginary
axis on the λ plane moving in the same direction when λ crosses the imaginary axis from right to left.
In the case when a unique eigenvalue with positive real part moves into the essential spectrum as λ
crossed the imaginary axis, the analytic continuation of the Evans function has been constructed in
[12]. In our situation the construction is similar.

First, we construct the extended Evans function in the case ε > 0. We know that for Re λ > 0,
both M±(λ, ε) have two eigenvalues of positive real part (let us call this sets σu

±(λ), respectively)

and two eigenvalues of negative real part ( σs
±(λ)). By substituting ξ = 1

2k ln
(

1+τ
1−τ

)

, where k > 0 is

a constant, in the eigenvalue problem (6) we obtain the autonomous system

P ′ = M(τ, λ, ε)P,

τ ′ = k(1 − τ 2),(12)

where differentiation is with respect to ξ again. Since M(λ, τ) approaches M±(λ) exponentially fast
then, for an appropriately chosen k, equation (12) is C 1 on C

4 × [−1, 1] (see [1]). We will consider
the equation generated by (12) on Λ2

C
4 × [−1, 1]

P̂ ′ = M (2)(τ, λ, ε)P̂ ,

τ ′ = k(1 − τ 2).

The eigenvalues of the asymptotic systems P̂ ′ = M
(2)
± (λ)P̂ are the sums of any pair of the eigenvalues

of M±. If Reλ > 0, we set α−(λ) to be the eigenvalue of M
(2)
−

(λ) with the largest real part, and

α+(λ) to be the eigenvalue of M
(2)
+ (λ) with the smallest negative real part. More precisely, we set

α−(λ) = κ−

2 + κ−

4 and α+(λ) = κ+
2 + κ+

4 .
Both α−(λ) and α+(λ) are well defined not only for λ with positive real parts but also for λ

with Reλ > −γ for some γ < c2

4 and analytic in λ. If additionally, γ < βe−β then both α±(λ)
are simple. Therefore the associated eigenvectors depend on λ analytically. For Reλ > 0 then the
Evans function can be constructed in the same way as in [1, Sect. 4] and continued analytically in
the region Re λ > −γ.

The Evans function for the case ε = 0 is defined in a similar fashion.
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3. Stability Index Bundle

In this key section we construct the Stability Index Bundle: a bundle topological properties of
which can be used to locate eigenvalues of the linearized problem. We start by using the slow-
fast structure of the eigenvalue problem (5) to obtain a description for the flow that depends on ε
(0 ≤ ε � 1) continuously. Such a description allows us to define the fibers of the Stability Index
Bundle exactly the way it is introduced in [1]. Moreover, it will follow from the construction that
the fibers of the Stability Index are determined only by the slow dynamics of the flow. We use
this information combined with estimates on the moduli of the unstable eigenvalues to choose an
appropriate base for the bundle.

3.1. Fibers. The eigenvalue problem for the linearization about the front reads

p′ = q,

q′ = −cq + (λ − yfΩu(uf ))p − Ω(uf )r,

r′ = s,

εs′ = βyfΩu(uf )p + (βΩ(uf ) + λ)r − cs.(13)

Again, as in the definition of the Evans function, following [1], we transform (13) into an au-
tonomous system by introducing a new dependent variable τ defined by the relation

ξ =
1

2κ
ln

(

1 + τ

1 − τ

)

, or τ(ξ) =
e2κξ − 1

e2κξ + 1
,

where κ > 0 is a constant. The extended system is

τ ′ = κ(1 − τ 2),

p′ = q,

q′ = −cq + (λ − yfΩu(uf ))p − Ω(uf )r,

r′ = s,

εs′ = βyfΩu(uf )p + (βΩ(uf ) + λ)r − cs,

where derivatives are taken with respect to ξ, but now with an abuse of notation yf and uf are
functions of τ .

The front (yf , uf ) is converging to its rest states at rates independent of ε on the slow scale. It
has been shown in [1] that there exists κ such that (13) is C 1.

In the fast scaling

τ̇ = εκ(1 − τ 2),

ṗ = εq,

q̇ = ε(−cq + (λ − yfΩu(uf ))p − Ω(uf )r),

ṙ = εs,

ṡ = βyfΩu(uf )p + (βΩ(uf ) + λ)r − cs.(14)

For brevity, we denote

A(τ, ε, λ) :=









0 ε 0 0
ε(λ − yfΩu(uf )) −εc −εΩ(uf ) 0

0 0 0 ε
βyfΩu(uf ) 0 βΩ(uf ) + λ −c









System (14) reads

Ṗ = A(τ, ε, λ)P, P = (p, q, r, s)T ,

τ̇ = εκ(1 − τ 2).(15)
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Here s is the fast variable and p, q, r, τ are the slow variables. When ε = 0, the system (14), and,
equivalently, (15) have a set of equilibrium points

(16) s =
1

c
(βy0Ωu(u0)p + (βΩ(u0) + λ)r).

The flow reduced to this set is

p′ = q,

q′ = −cq + (λ − y0Ωu(u0))p − Ω(u0)r,

r′ =
1

c
(βyfΩu(u0)p + (βΩ(u0) + λ)r),(17)

together with the equation for τ : τ ′ = κ(1 − τ 2).

The equation Ṗ = A(τ, ε, λ)P induces a flow on the space Λk(C4)

(18) Ẏ = Ak(τ, ε, λ)(Y ).

Our goal now is to construct an invariant manifold for (18) which depends on ε continuously. To do
so, we choose to work not with (18) directly, but with its conjugate. Indeed, for Y ∈ Λk(Cn) one can
consider its Hodge star ∗Y ∈ Λn−k(Cn) (see [6, Sect.1.7] or [20, Ch.V]). The following statement [5,
Prop.2] holds: If Y satisfies (18), then (∗Y ) satisfies the conjugate equation

∗Ẏ = [Trace(A(τ, ε, λ))In−k − (An−k(τ, ε, λ))∗](∗Y ),

where In−k is the identity on Λn−k(Cn) and (An−k(τ, ε, λ))∗ is defined as in [5].
Based on the dimension of (16), we consider the case k = 3 and n = 4: ∗Y ∈ Λ1(C4) satisfies

Ẏ = A3(τ, ε, λ)(Y ), Y ∈ Λ3(C4) if and only if

∗Ẏ = [Trace(A(τ, ε, λ))I1 − (A1(τ, ε, λ))∗](∗Y ), ∗Y ∈ Λ1(C4),

where Trace(A(τ, ε, λ)) = −c(1 + ε). This equation gives a system on C
4 × [−1, 1] × C

∗ẏ1 = −c(1 + ε)(∗y1) − ε(λ − yfΩu(uf ))(∗y2) − βyfΩu(uf )(∗y4),

∗ẏ2 = −ε(∗y1) − c(∗y2),

∗ẏ3 = −εΩ(uf )(∗y2) − (c(1 + ε) + ε)(∗y3) + β(λ − Ω(uf ))(∗y4),

∗ẏ4 = −εc(∗y4),

τ̇ = εκ(1 − τ 2),

λ̇ = 0,

or, on the fast scale,

ε(∗y1)
′ = −c(1 + ε)(∗y1) − ε(λ − yfΩu(uf ))(∗y2) − βyfΩu(uf )(∗y4),

ε(∗y2)
′ = −ε(∗y1) − c(∗y2),

ε(∗y3)
′ = −εΩ(uf )(∗y2) − (c(1 + ε) + ε)(∗y3) + β(λ − Ω(uf ))(∗y4),

ε(∗y4)
′ = −εc(∗y4),

τ ′ = κ(1 − τ 2),

λ
′

= 0.

When ε = 0, the slow equation

(19) (∗Ẏ ) = [Trace(A(τ, 0, λ))I1 − (A1(τ, 0, λ))∗](∗Y )
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together with the equations for τ and λ can be written as:

∗ẏ1 = −c(∗y1) − βyfΩu(uf )(∗y4),

∗ẏ2 = −c(∗y2),

∗ẏ3 = −c(∗y3) + β(λ − Ω(uf ))(∗y4),

∗ẏ4 = 0,

τ̇ = 0,

λ̇ = 0,(20)

or in fast coordinates:

0 = −c(∗y1) − βyfΩu(uf )(∗y4),

0 = −c(∗y2),

0 = −c(∗y3) + β(λ − Ω(uf ))(∗y4),

∗y′4 = −c(∗y4),

τ ′ = κ(1 − τ 2),

λ
′

= 0.

There exists a 3-dimensional (parametrized by y4, τ and λ) manifold M of equilibria of (19)

∗y1 = −β

c
yfΩu(uf )(∗y4), ∗y2 = 0, ∗y3 =

β

c
(λ − Ω(uf ))(∗y4).(21)

For every fixed τ ∈ [−1, 1] and λ ∈ C, this manifold is a point in the space of the Grassmannian
manifold G1,4 or the projective space CP 3, both of which are compact spaces. A local coordinate
chart for CP 3 may be defined by the scaling: ∗ỹ1 = ∗y1/ ∗ y4, ∗ỹ2 = ∗y2/ ∗ y4, ∗ỹ3 = ∗y3/ ∗ y4. In
these local coordinates, (21) is given by

∗ỹ1 = −β

c
yfΩu(uf ), ∗ỹ2 = 0, ∗ỹ3 =

β

c
(λ − Ω(uf )).

The system (20) in these local coordinates reads

(22)





∗ ˙̃y1

∗ ˙̃y2

∗ ˙̃y3



 = −c





∗ỹ1

∗ỹ2

∗ỹ3



 +





−βyfΩ(uf )
0

β(λ − Ω(uf ))



 , τ̇ = 0, λ̇ = 0.

We consider the linearization of (22) about (21), for any fixed τ ∈ [−1, 1], λ ∈ C, on CP 3×[−1, 1]×C





∗ ˙̃y1

∗ ˙̃y2

∗ ˙̃y3



 = −c





∗ỹ1

∗ỹ2

∗ỹ3



 , τ̇ = 0, λ̇ = 0.

There are two zero eigenvalues which correspond to the to the dimension of the manifold of equilibria
(21) parametrized by τ and λ. There is also one negative eigenvalue, −c. It indicates that (21), for
each fixed τ and λ, as a point in CP 3 × [−1, 1] × C, is an attractor. Therefore (21) is an invariant
and normally hyperbolic manifold for (22). By Fenichel’s invariant manifold theory it persists under
small perturbations. For our case it means the following. For ε > 0 but sufficiently small, the
equation

(23) (∗Ẏ ) = [Trace(A(τ, ε, λ))I1 − (A1(τ, ε, λ)∗](∗Y ), τ̇ = εκ(1 − τ 2), λ̇ = 0

induces a flow on CP 3 × [−1, 1] × C which is a perturbation of (20) of order ε. Recall that the
front (uf , yf ) for this equation denotes the perturbed front. For the flow on CP 3 × [−1, 1] × C, by
Fenichel’s theorem, there exists a manifold (a curve in CP 3× [−1, 1]×C or G1,4× [−1, 1]×C) which
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is a perturbation of order ε of (21). It is invariant, normally hyperbolic, and attracting on the fast
scale. We can decompactify it by unfolding in the y4-direction.

Unfolding this ε-dependent manifold to a manifold ∗Mε in Λ1(C4) we obtain an invariant manifold
for (23) which is also attracting on the fast scale. That means that, for small enough ε > 0, the
linearization of (23) about the perturbed manifold has only eigenvalues with negative real part. We
apply the Hodge star operator to the points in ∗Mε and obtain a manifold Mε in Λ3(C4)×[−1, 1]×C.
Since Λ1(C4) is isomorphic to Λ3(C4), the manifold Mε is an invariant, attracting manifold for

(24) Ẏ = A3(τ, ε, λ)(Y ), Y ∈ Λ3(C4),

in Λ3(C4) × [−1, 1] × C.
Thus an invariant manifold for (24) exists. It depends on ε continuously and, moreover, it is

attracting. A reduced system can be obtained by restricting (24) to Mε. More precisely, the
equations are a perturbation of order ε of (17), projectivized and with the equation for τ appended.

At this point the construction [1] of the Stability Index Bundle is applicable. In our case, we
call the bundle slow, since, as it is shown above, it is constructed as a perturbation of the bundle
corresponding to ε = 0 case.

Assume we have a bounded simply connected domain K in C such that its boundary, contour K,
does not contain any of the eigenvalues of (5). For any λ ∈ K, the fibers of the bundle are defined
by means of the global unstable manifold of the point (p, q, r, τ) = (0, 0, 0,−1).

The standard capping-off procedure [1] provides fibers at K × {τ = ±1}, where K is K with its
boundary K. There exists a small γ > 0 such that each of the limiting systems

Ẏ = A3(±1, ε, λ)(Y ), Y ∈ Λ3(C4), τ = ±1,

with Re λ > −γ, has exactly one eigenvalue with positive real part, which is given by the sum of
2κ (from the flow in τ direction) and two of the largest eigenvalues. Thus it has a unique unstable
eigenvector ηε(±1, ε, λ, ξ) at τ = ±1 which provides the caps at K × {τ = ±1}.

We summarize the result.

Lemma 4. The augmented unstable bundle coincides with the slow bundle.

Proposition 3 is a direct consequence of Lemma 4.

4. Index Contour

To make a conclusion on existence of unstable eigenvalues based on the properties of the Stability
Index Bundle, we want to construct the base of the bundle using a contour that encloses all of the
unstable eigenvalues, but does not contain any of the zeroes of the extended Evans function. We also
want this contour to be independent of ε. We prove the existence of such contour in Subsect. 4.3. The
proof is based on two facts: all of the zeroes of the extended Evans function are isolated; the unstable
discrete spectrum belongs to a bounded region. The latter and the dependence of the boundary of
this region on parameter β is described in Subsect. 4.2. We start this section by obtaining properties
of the fronts (Subsect. 4.1) that we use to study the location of the unstable discrete spectrum.

4.1. Qualitative properties of the front. In this section we discuss some of the qualitative
properties of solutions of (3)

εy′′ + cy′ = βyΩ(u),(25)

u′′ + cu′ = −yΩ(u).(26)

Lemma 5. If a traveling wave (uf , yf ) with c > 0 exists, then yf (ξ) > 0 and uf (ξ) > 0 for any ξ,
and it is monotone in the sense that y ′

f (ξ) > 0, u′

f (ξ) < 0 for any ξ.

Remark. Monotonicity of the front for ε > 0 case has been proved in [17] under the assumption
yε > 0 and uε > 0.
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Proof. First, we recall the boundary conditions: (uf , yf ) → (1/β, 0) at −∞, (uf , yf ) → (0, 1) at
+∞.

Case ε = 0. Assume that the set of points ξ where y0(ξ) < 0 is not empty. Then there exists at
least one point ξ, where y0(ξ) < 0 and y′0(ξ) = 0. Since y0 is continuous together with its derivatives,
we can fix the very right such point: ξ1. For large ξ, y0 > 0. Therefore there exist a point ξ2 such
that y0(ξ) < 0, y′0(ξ) > 0 for any ξ ∈ (ξ1, ξ2). But from (25) for any such ξ

cy′0(ξ) = βy0(ξ)Ω(u0(ξ)) ≤ 0.

The contradiction shows that y0 ≥ 0, y′0 ≥ 0 everywhere.
Equation (26) can be written as

(27) (u′

0e
cξ)′ = −y0e

cξΩ(u0).

Integrating (27) from −∞ to ξ we obtain

u′

0(ξ)e
cξ = −

∫ ξ

−∞

ecηy0(η)Ω(u0(η)) d η ≤ 0,

and thus u′
0(ξ) ≤ 0. This together with the boundary conditions yields that u0(ξ) ≥ 0. Moreover

if there is a point ξ0 such that y0(ξ0) = 0, then y0(ξ) = 0, y′0(ξ) = 0 for any ξ ≤ ξ0, as well
as u0(ξ) = 1/β, u′

0(ξ) = 0. By the uniqueness of the solution, the solution is then u0(ξ) = 1/β,
u′

0(ξ) = 0, but that does not satisfy the boundary conditions at +∞.
Case ε > 0. We first concentrate on the yε-component of the solution. To prove yε(ξ) ≥ 0 for

any x we assume that it is not true. There then exists a point ξ such that yε(ξ) < 0 and y′ε(ξ) = 0.
Because of the smoothness of yε, there exists the largest such point, say, ξ1. The boundary conditions
guarantee that there exists a point ξ2 > ξ1 such that yε(ξ) ≤ 0, y′ε(ξ) > 0, for any ξ ∈ [ξ1, ξ2].

Equation (25) can be written as

(28) (y′εe
c
ε
ξ)′ =

β

ε
yεe

c
ε
ξΩ(uε(ξ)).

Integrating (28) from ξ1 to any ξ such that ξ1 < x < ξ2 and using y′ε(ξ1) = 0 we obtain:

y′ε(ξ)e
c
ε
ξ =

β

ε

∫ ξ

ξ1

yε(η)e
c
ε
ηΩ(uε(η)) d η ≤ 0.

and, consequently, y′
ε(ξ) ≤ 0 for ξ1 < ξ < ξ2, which is a contradiction. Therefore yε(ξ) ≥ 0.

Moreover, integrating (28) from −∞ to any ξ we obtain

(29) y′ε(ξ)e
c
ε
ξ =

β

ε

∫ ξ

−∞

βyε(η)e
c
ε
ηΩ(uε(η)) d η ≥ 0,

thus, y′ε(ξ) ≥ 0 and yε is non-decreasing.
Let us now assume that there is a point ξ0 such that yε(ξ0) = 0. Since yε is non-decreasing,

yε(ξ) = 0 and y′ε(ξ) = 0 for any ξ ≤ ξ0. By the uniqueness of the solution to a the initial value
problem then y ≡ 0, and it does not satisfy the boundary conditions of interest. Therefore yε(ξ) > 0
for any ξ and, from (29), y′

ε(ξ) > 0.
Having proved that yε(ξ) > 0 for any ξ we will prove that uε(ξ) is positive and decreasing. We

rewrite (26) as

(30) (u′

ε(ξ)e
cξ)′ = −yε(ξ)Ω(uε(ξ)).

Integrating (30) from −∞ to ξ we obtain

u′

ε(ξ)e
cξ = −

∫ ξ

−∞

yε(η)ecηΩ(uε(η)) d η < 0,

and thus u′
ε(ξ) < 0. This together with the boundary conditions yield that uε(ξ) > 0. Lemma 5 is

proved. �
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4.2. Point spectrum: estimates on |λ| with Re λ ≥ 0. We want to identify a region where the
unstable point spectrum, i.e., isolated eigenvalues of finite multiplicity from the open right half-plane,
might be located. For the case of ε = 0, the estimate on |λ|, Re λ ≥ 0, for which the eigenvalue
problem

λp = pξξ + c0pξ + Ω(u0)r + y0Ωu(u0)p,(31)

λr = c0r̃ξ − βΩ(u0)r − βy0Ωu(u0)p(32)

has a non-trivial solution from L2, has been obtained in [18, Sect.3]. More precisely, it has been
shown that for such λ

|λ| ≤ c2
0

4
+ max{y0Ωu(u0)} +

(∫

Ω(u0)
2|h|2

)1/2

,(33)

Re λ ≤ max{y0Ωu(u0)} +

(∫

Ω(u0)
2|h|2

)1/2

,(34)

where

h(ξ) =
β

c0
exp

[∫

∞

z
f(s)ds

](∫

∞

ξ
| exp

[

−2
β

c0

∫

∞

z
Ω(u0(s))ds

]

| (y0(z)Ωu(u0(z)))2d z

) 1

2

.

In other words, there exists an, independent of λ, constant such that any λ from the closed right-half
plane cannot exceed in absolute value a certain β-dependent constant. The proof of the estimate is
based on the fact that a bound on |r| in terms of ‖p‖L2 can be obtained by solving the first order
equation (32) for r, and then this bound can be used in an energy estimate in (31) to obtain (33)
and (34).

A straightforward application of Proposition 3 implies that for there also exists an upper bound
on |λ| and Re λ (Reλ ≥ 0) in the case ε > 0, where ε sufficiently small. That upper bound is a
perturbation of order ε of the upper bounds in (33) and (34). Obviously, since ε is small, say, ε < 1,
the upper bounds can be chosen independent of ε.

The estimates obtained above depend on β implicitly. Knowing that (uf , yf ) is monotone for any
ε ≥ 0, we can also obtain an upper bound on Re λ which depends on β explicitly.

The temporal eigenvalues are λ ∈ C such that system (5) has a nontrivial, localized at ±∞,
solution (p, r). We multiply the first equation in (5) by p̄ and the second one by r̄ and integrate over
the real axis. It is easy to see that

∫

pξξp̄ = −
∫

|pξ|2, Re
∫

pξp̄ = 0. Using Lemma 5, then we obtain

Reλ
∫

(|p|2 + |r|2) ≤
∫

yfΩu(uf )|p|2 − β

∫

yfΩu(uf )|r|2 + Re

∫

Ω(uf )rp̄ − Re

∫

βyfΩu(uf )pr̄

≤ 1

2

∫

[(β + 2)yfΩu(uf ) + e−1/uf ]|p|2 +
1

2

∫

[(2 − β)Ω(uf ) + yfΩu(uf )]|r|2.

Taking into account that 0 ≤ yf ≤ 1, 0 ≤ uf ≤ 1/β, we estimate further:

Re λ ≤
{

8e−1, if β < 2;
1
2 (4β2 + 1)e−β , if β ≥ 2.

This simple estimate provides an interesting piece of information. According to the numerics [2],
when the parameter β is increased a pair of complex eigenvalues crosses the imaginary axis and
moves into the unstable half-plane of the complex plane. The estimate shows that as β is increased
even further, the eigenvalues somehow are pushed back to the imaginary axis. We summarize the
results as a lemma.

Lemma 6. Assume λ, Reλ ≥ 0 be such that (5), with ε ≥ 0, has a non-trivial solution (p, q) ∈
L2 × L2. Then there exist positive, independent of ε, constants C1 and C2 such that |λ| < C1 and
Reλ ≤ C2. Moreover, as a function of β, C2 = C2(β) is strictly decreasing for β ≥ 2 and, when
ε = 0, limβ→∞ C2(β) = 0.
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Here, for the case ε > 0, we do not discuss limβ→∞ C2(β) because the upper bound on the size of
ε, for which the existence and uniqueness of the front has been proved, generally speaking, depends
on β. The nature of this dependence has not yet been investigated.

4.3. Construction of a contour. We want to show that it is possible to construct a closed contour
which would enclose all of the unstable eigenvalues λ of the linearization of the system about the
front with Reλ ≥ 0 and does not go through any of eigenvalues of either (u0, y0) or (uε, yε). We
base the construction of such contour on two facts. On the right of the imaginary axis we use the
estimates we obtained in Section 4.2 according to which there exists a constant C, independent of
ε, such that |λ| ≤ C for Reλ ≥ 0. The situation on the left of the imaginary axis is not that simple.
To describe the contour for Reλ < 0 we use Evans function.

For any contour not crossing any of the zeroes of the Evans function, the first Chern number of
the Stability Index Bundle over that contour coincides with the number of the zeros of the Evans
function inside of the contour [1].

Over the regions covered with the essential spectrum, the relation between the first Chern number
of the Stability Index Bundle and the number of zeroes of the extended Evans function is still valid,
but zeroes of the extended Evans function are not necessarily eigenvalues.

On the other hand, eigenvalues λ (embedded in the essential spectrum or not) are zeroes of the
extended Evans function. As zeroes of an analytic function they are isolated, therefore it is possible
to draw a contour which does not go through any of them. Moreover, from the construction of the
Stability Index Bundle in Sect. 3 we see that any zero of the extended Evans function, if ε > 0 is
sufficiently small, is located in a small neighborhood of a zero of the extended Evans function for a
problem with ε = 0. Therefore, if we assume that the Evans function does not have any non-trivial,
purely imaginary zeroes when ε = 0, then there exists ε0 > 0 such that there is a contour independent
of ε that encloses the unstable eigenvalues of the eigenvalue problems with all 0 ≤ ε ≤ ε0, and, at the
same time, does not enclose or go through any of the zeroes λ 6= 0, Reλ ≤ 0 of the Evans functions
corresponding to 0 ≤ ε < ε0.
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