
State Space Models and MIDAS Regressions∗

Jennie Bai† Eric Ghysels‡ Jonathan H. Wright§

First Draft: May 2009

This Draft: January 4, 2010

Abstract

We examine the relationship between MIDAS regressions and Kalman filter state space

models applied to mixed frequency data. In general, the latter involves a system of equations,

whereas in contrast MIDAS regressions involve a (reduced form) single equation. As a

consequence, MIDAS regressions might be less efficient, but also less prone to specification

errors. First we examine how MIDAS regressions and Kalman filters match up under ideal

circumstances, that is in population, and in cases where all the stochastic processes - low and

high frequency - are correctly specified by a linear state space model. We characterize cases

where the MIDAS regression exactly replicates the steady state Kalman filter weights. In cases

where the MIDAS regression is only an approximation, we compute the approximation error

and find it to be small (using two different metrics). We also study how MIDAS regressions

perform in comparison to the Kalman filter when the latter is subject to specification errors.

Our findings favor MIDAS regressions, as their approximation errors are typically small in

comparison to the model specification errors of the Kalman filter. The paper concludes with

an empirical application comparing MIDAS and Kalman filtering to predict future GDP growth,

using monthly macroeconomic series.
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1 Introduction

Not all economic data are sampled at the same frequency. Financial data are readily available

on a (intra-)daily basis, whereas most macroeconomic data are sampled weekly, monthly,

quarterly or even annually. The mismatch of sampling frequency has been addressed in

the context of state space models by Harvey and Pierse (1984), Harvey (1989), Bernanke,

Gertler, and Watson (1997), Zadrozny (1990), Mariano and Murasawa (2003), Mittnik and

Zadrozny (2004), Aruoba, Diebold, and Scotti (2009), Ghysels and Wright (2009), Kuzin,

Marcellino, and Schumacher (2009), among others.

State space models consist of a system of two equations, a measurement equation which

links observed series to a latent state process, and a state equation which describes the

state process dynamics. The setup treats the low-frequency data as “missing data” and

the Kalman filter is a convenient computational device to extract the missing data. The

approach has many benefits, but also some drawbacks. State space models can be quite

involved, as one must explicitly specify a linear dynamic model for all the series involved

: high-frequency data series, latent high-frequency series treated as missing and the low-

frequency observed processes. The system of equations therefore typically requires a lot of

parameters, for the measurement equation, the state dynamics and their error processes.

The steady state Kalman gain, however, yields a linear projection rule to (1) extract the

current latent state, and (2) predict future observations as well as states.

An alternative approach to dealing with data sampled at different frequencies has emerged

in recent work by Ghysels, Santa-Clara, and Valkanov (2002), Ghysels, Santa-Clara, and

Valkanov (2006) and Andreou, Ghysels, and Kourtellos (2008a) using so called MIDAS,

meaning Mi(xed) Da(ta) S(ampling), regressions.1 Recent work has used the regressions in

the context of improving quarterly macro forecasts with monthly data (see e.g. Armesto,

Hernandez-Murillo, Owyang, and Piger (2008), Clements and Galvão (2008a), Clements

and Galvão (2008b), Galvão (2006), Schumacher and Breitung (2008), Tay (2007)), or

improving quarterly and monthly macroeconomic predictions with daily financial data (see

e.g. Andreou, Ghysels, and Kourtellos (2008b), Ghysels and Wright (2009), Hamilton (2006),

Tay (2006)).

1The original work on MIDAS focused on volatility predictions, see e.g. Alper, Fendoglu, and Saltoglu
(2008), Chen and Ghysels (2009), Engle, Ghysels, and Sohn (2008), Forsberg and Ghysels (2006), Ghysels,
Santa-Clara, and Valkanov (2005), Ghysels, Santa-Clara, and Valkanov (2006), León, Nave, and Rubio
(2007), among others.
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The purpose of this paper is to examine the relationship between MIDAS regressions and the

linear filter that emerges from a steady state Kalman filter. The theory of the Kalman filter

applies, strictly speaking, to linear homoskedastic Gaussian systems and yields an optimal

filter in population. Consequently, in population, MIDAS regressions can at best match the

optimal filter. However, there are two important limitations to this result. First, it applies

only in population, ignoring parameter estimation error. Second, it of course assumes that

the state space model is correctly specified–state space model predictions can be suboptimal

if the regression dynamics are mis-specified. MIDAS regressions provide linear projections

given the (high- and low-frequency) regressors without specifying their data generating

process. Hence, MIDAS regressions are less prone to mis-specification. This is particularly

relevant for high-frequency financial data which feature conditional heteroskedasticity and

therefore do not fit within the standard homoskedastic Gaussian state space format. Thus,

either because of greater robustness to mis-specification,or because of parsimony, the MIDAS

model may end up doing better than the state space model in practice.

The first objective of this paper is to examine how MIDAS regressions and Kalman filters

match up under ideal circumstances, that is in population, and in cases where all the

stochastic processes - low and high frequency - are correctly specified by a linear state

space model.

One important contribution of the paper is that we show the exact relationship between

the steady state Kalman filter and various MIDAS regressions. By exact relationship we

mean that a MIDAS regression can be viewed as a reduced form expression for the linear

projection that emerges from the steady state Kalman filter. In the case of mixed sampling

frequencies this steady state Kalman filter has a periodic structure and this maps exactly

into a multiplicative MIDAS regression model considered by Chen and Ghysels (2009) and

Andreou, Ghysels, and Kourtellos (2008b). This multiplicative MIDAS regression consists of

a parameter-driven aggregation of the high-frequency data, combined with the low-frequency

observations using a ADL or autoregressive distributed lag model. We show that the

multiplicative scheme exactly matches the periodic features of the steady state Kalman

gain that drives the state space model filter.

Next, we examine the cases where the MIDAS regression is only an approximation. For those

cases, we compute the approximation error, either in terms of forecast mean square errors

or in terms of differences in weights, and we find that the approximation errors, regardless

of the metric chosen, are very small.
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The Kalman filter is more prone to specification errors, as noted before. Therefore we also

examine how MIDAS regressions perform in comparison to the Kalman filter when the latter

is mis-specified. Our findings favor MIDAS regressions, as their approximation errors are

typically small in comparison to the model specification errors of the Kalman filter.

Finally, the paper concludes with an empirical study similar to that of Kuzin, Marcellino,

and Schumacher (2009). Our empirical studies differ in many important ways. First, Kuzin,

Marcellino, and Schumacher (2009) adopt the so called mixed frequency VAR framework of

Zadrozny (1990) whereas we adopt the approach of Nunes (2005). The latter has at least two

advantages, (1) it handles nowcasting - predicting during the course of quarter as monthly

or daily data become available - well and (2) it is built on the factor approach of Stock and

Watson (1989), Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson (2002), among

others, widely used in the recent macro forecasting literature. We find the discrepancies

between MIDAS and Kalman filtering implementations to often be small - although in some

cases the Kalman filter can perform less well than MIDAS regressions - perhaps testimony

of specification error issues.

The paper is organized as follows. In section 2, we introduce the state space model of Nunes

(2005) and derive its relationship with MIDAS regressions. In this section we characterize

cases where the MIDAS regression is an exact reduced form representation of the steady

state Kalman filter. Section 3 computes measures of the discrepancy between the Kalman

filter and MIDAS regressions in cases where the state space model is correctly specified and

the MIDAS regression is only an approximation to the Kalman filter, and also considers

cases in which the Kalman filter is mis-specified. Section 4 contains the empirical work, and

section 5 concludes.

2 State space models and MIDAS regressions

We consider a dynamic factor model:

Ft+j/m =

p∑

l=1

ΦlFt+(j−l)/m + ηt+j/m ∀t = 1, . . . , T, j = 0, . . . ,m − 1 (2.1)

where Ft is a nf × 1 dimensional vector process and the matrices Φl are nf × nf , with

η being an i.i.d. zero mean Gaussian error process with diagonal covariance matrix Ση =
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diag(σ2
i,η, i = 1, . . . , nf ). Besides the time scale, the above equation is a typical multi-factor

model used for instance by Stock and Watson (1989), Forni, Hallin, Lippi, and Reichlin

(2000), Stock and Watson (2002), Bai and Ng (2004), among others. In anticipation of

the mixed frequency sampling scheme, we adopt a time scale expressed in a form that

easily accommodates such mixtures. For example, with m = 3 we will have monthly data

sampled every quarter, or with m = 22 we will have daily data sampled every month.

The monthly/quarterly combination will be most relevant for the empirical application and

simulations in later sections, but for the purpose of generality we start with a generic setup.

We have two types of data: (1) time series sampled at a low frequency - every t, and (2)

time series sampled at high frequency - every t + j/m j = 0, . . . ,m − 1. We will make

two convenient simplifications that depart from generality. First, we assume that there is

only one low-frequency process and call it yt. It would be easy to generalize this to a vector

process. Yet, our focus on single equation MIDAS regressions prompts us to consider a

single series - otherwise we would have a system of MIDAS regressions. Moreover, focussing

on a single low-frequency series is the most common situation involving macroeconomic

forecasting of say quarterly GDP growth, or of inflation, etc., using a collection of higher

frequency (monthly/weekly/daily) series. Second, we consider the combination of only two

sampling frequencies. For example, we do not consider say the combination of daily, weekly,

monthly data or daily, monthly, quarterly, etc. This simplification is made only to avoid

more cumbersome notation.

The high-frequency data, denoted xi,t−j/m for i = 2, . . . , n, relates to the factors as follows:

xi,t+j/m = γ′
iFt+j/m + ui,t+j/m i = 2, . . . , n ∀t j = 0, . . . ,m − 1 (2.2)

where {γi} are nf × 1 vectors and:

di(L
1/m)ui,t+j/m = εi,t+j/m di(L

1/m) ≡ 1 − d1iL
1/m − . . . − dkiL

k/m ∀i (2.3)

where the lag operator L1/m applies to high-frequency data, i.e. L1/mui,t ≡ ui,t−1/m, and

the εs are i.i.d. normal with mean zero and variance σ2
ε and are mutually independent. If

the low-frequency process were observed at high frequency, it would similarly relate to the

factors as follows:

y∗
t+j/m = γ′

1Ft+j/m + u1,t+j/m ∀t j = 0, . . . ,m − 1 (2.4)
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with u1,t+j/m having an AR(k) representation as in (2.3), denoting y∗ as the process which

is not directly observed. The observed low-frequency process y relates to the y∗ via a linear

aggregation scheme:

yc
t+j/m = Ψjy

c
t+(j−1)/m + θjy

∗
t+j/m (2.5)

where yt is equal to yc
t for integer t, and is not observed otherwise. The above scheme, also

used by Harvey (1989) and Nunes (2005), covers both stock and flow aggregation, and y∗
t is a

cumulator variable. We henceforth consider the case of stock variable only (setting Ψj = 1(

j 6= 0,m, 2m...) and θj = 1(j = 0,m, 2m...) where 1(.) denotes the indicator function).

However, if we were instead to pick Ψj = 1( j 6= 0,m, 2m...) and θj = 1/m ∀ j, then this

would correspond to a flow variable.

2.1 Periodic Data Structure and Steady State Predictions

The purpose of this subsection is to derive a steady state Kalman filtering formula that will

be used in the next subsections for comparisons with MIDAS regressions. The material in

this section is general and uses some derivations that appear in Assimakis and Adam (2009).

The above equations yield a periodic state space model with measurement equation:

Y j
t = Zjαt+j/m

{ Y j
t = (yt, x2,t, . . . , xn,t)

′ j = 0

Y j
t = (x2,t+j/m, . . . , xn,t+j/m)′ 0 < j ≤ m − 1

(2.6)

where

Z0 =





γ′
1

γ′
2 On×nf (p−1) In On×n(k−1)

:

γ′
n





Zj =




γ′

2

: O(n−1)×nf (p−1) In−1 O(n−1)×n(k−1)

γ′
n





for 0 < j ≤ m - 1 and state vector

αt+j/m =
(
F ′

t+j/m, . . . , F ′
t+(j−p+1)/m, u′

t+j/m, . . . , u′
t+(j−k+1)/m

)′
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where ut+j/m = (u1,t+j/m, . . . , un,t+j/m)′.

The transition equation is:

αt+j/m = Fαt+(j−1)/m + Rζt+j/m (2.7)

where

F =





Φ1 . . . Φp−1 Φp Onf×(k−1)n Onf×n

I(p−1)nf
O(p−1)nf×nf

O(p−1)nf×(k−1)n O(p−1)nf×n

On×(p−1)nf
On×nf

D1 . . . Dk−1 Dk

O(k−1)n×(p−1)nf
O(k−1)n×nf

I(k−1)n O(k−1)n×n





R =





Inf
Onf×n

O(p−1)nf×nf
O(p−1)nf×n

On×nf
In

On(k−1)×nf
On(k−1)×n





Di = diag(dl,i, l = 1, . . . , n) and ζt+j/m = (η′
t+j/m, ε1,t+j/m, ...εn,t+j/m)′. Let Σζ denote the

variance-covariance matrix of ζt+j/m.

The above state space model is periodic as it cycles to the data release pattern that repeats

itself every m periods. Such systems have a (periodic) steady state (see e.g. Assimakis and

Adam (2009)). If we let Pj|j−1 denote the steady state covariance matrix of αt+j/m|t+(j−1)/m,

then the equations:

Pj+1|j = RΣζR
′ + FPj|j−1F

′ − FPj|j−1Z
′
j[ZjPj|j−1Z

′
j]
−1ZjPj|j−1F

′ j = 0, . . . ,m − 2

P0|−1 = RΣζR
′ + FP2|1F

′ − FP2|1Z
′
j[ZjP2|1Z

′
j]
−1ZjP2|1F

′ j = m − 1 (2.8)

must be satisfied and Pj|j−1 = Pj+m|j+m−1, ∀ j. The periodic steady state Kalman gain is

therefore:

Kj|j−1 = Pj|j−1Z
′
j[ZjPj|j−1Z

′
j]
−1 (2.9)

with Kj|j−1 ≡ Kj+m|j−1+m, ∀ j. When we define the extraction of the state vector as:

α̂(t+j/m)|(t+j/m) = E[αt+j/m|(Y
ι
τ )τ≤t

ι≤j mod(m−1)] (2.10)
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the filtered states are:

α̂(t+j/m)|(t+j/m) = Aj|j−1α̂t+(j−1)/m|t+(j−1)/m + Kj|j−1Y
j
t (2.11)

where Aj|j−1 = F − Kj|j−1ZjF and Y m
t = Y 0

t+1.

Suppose we are interested in predicting at low-frequency intervals only, namely α̂(t+k)|t, for

k integer valued, using all available low and high-frequency data. First we note that:

α̂(t+k)|(t+k) = [Ãm
1 ]kα̂t|t +

m∑

i=1

k∑

j=1

[Ãm
1 ]k−jÃm

i+1Ki|i−1Y
i
t+j−1 (2.12)

where

Ãi
j =

{ Ai|i−1Ai−1|i−2 . . . Aj|j−1 i ≥ j

I i < j

Expression (2.12) can be obtained via straightforward algebra - see Assimakis and Adam

(2009). If all eigenvalues of F lie inside the unit circle, then all the eigenvalues of Aj|j−1,

j = 1, . . . , m − 1, and are also inside the unit circle, as are the eigenvalues of the product

matrices {Ãi
j} (see again Assimakis and Adam (2009)). This implies that we can rewrite

(2.12) as:

α̂t|t =
∞∑

j=0

m∑

i=1

[Ãm
1 ]jÃm

i+1Ki|i−1Y
i
t−j =

∞∑

j=0

[Ãm
1 ]jKm|m−1





yt−j

x2,t−j

:

xn,t−j





+
∞∑

j=0

m−1∑

i=1

[Ãm
1 ]jÃm

i+1Ki|i−1




x2,t−1−j+i/m

:

xn,t−1−j+i/m



 (2.13)

from which forecasts can easily be constructed as Et[yt+h] = Z0,1F
mhα̂t|t, where Z0,1 denotes

the first row of the matrix Z0.
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2.2 Using only High-Frequency Data and the DL-MIDAS

Regression Model

Suppose for the moment that we discard the observations of low-frequency data and only

consider projections on high-frequency data. The purpose of this subsection is to show that

this yields a linear projection linked to a standard steady state (aperiodic) Kalman gain

and that this projection has a reduced form representation that maps into what Andreou,

Ghysels, and Kourtellos (2008b) called a DL-MIDAS (or Distributed Lag MIDAS) regression.

Unlike the previous subsection, we will first start with a simple example to illustrate the

main finding and then we will cover the general case. In particular, let us consider a single

factor AR(1) model, instead of the general case in equation (2.1), namely:

ft+j/m = ρft+(j−1)/m + ηt+j/m ∀t = 1, . . . , T, j = 0, . . . ,m − 1 (2.14)

where η is white noise with variance σ2
η and there is only a single high-frequency series related

to the latent factor:

xt+j/m = ft+j/m + u2,t+j/m ∀t j = 0, . . . ,m − 1 (2.15)

instead of equation (2.2), and we also set the slope coefficient equal to one and assume that

u2,t−j/m in the above equation is white noise with variance σ2
x.

While it is still the case that:

yt = ft + u1,t ∀t (2.16)

with u1,t white noise being with variance σ2
y , we assume in this subsection that this

measurement is not taken into account. Still we use the fact that:

E
[
yt+h|I

HF
t

]
= ρmhf̂t|t (2.17)

where IHF
t is the high-frequency data set of past xs available at time t and f̂t|t is the filtered

estimate of the factor conditional on that information set. Let κ be the steady state Kalman

gain so that f̂t|t = (ρ − ρκ)f̂t−1/m|t−1/m + κxt. This implies that:

E
[
yt+h|I

HF
t

]
= ρmhκ

∞∑

j=0

(ρ − ρκ)jxt−j/m (2.18)
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Note that κ is a function of all the underlying state space parameters. We have deliberately

reduced those parameters to a small number by assuming slopes equal to one and assuming

that all measurement noise is uncorrelated. What is left are two variances σ2
η and σ2

x.

The above equation compares directly with a DL-MIDAS regression (again ignoring

intercepts):

yt+h = β

K̄∑

j=0

wjxt−j/m + εt ∀t (2.19)

where the weighting scheme adopted in Ghysels, Santa-Clara, and Valkanov (2006) and

Andreou, Ghysels, and Kourtellos (2008b), among others, is a two-parameter exponential

Almon lag polynomial:

wj(θ1, θ2) =
exp{θ1j + θ2j

2}
∑K̄

j=1 exp{θ1j + θ2j2}
(2.20)

Note that the weights are governed by two parameters and scaled such that they add up

to one, hence the presence of a slope parameter β. In the special case of θ2 = 0 and θ1 =

ln(ρ − ρκ) (assuming ρ > ρκ), the two weighting schemes are identical.

Note two important issues: (1) the DL-MIDAS regression provides an exact fit for the linear

projection emerging from the steady state Kalman filter for sufficiently large lag-length

L, and (2) this exact fit is accomplished with fewer parameters. Indeed, the DL-MIDAS

regression under-identifies the state space model parameters ρ, σ2
η and σ2

x which determine

the steady state Kalman gain. Note another important difference: for the MIDAS regressions

we do not write down explicit equations for the dynamics of the (high-frequency) regressor

x. In the case of a state space model this is required - hence the proliferation of parameters

- and also the potential danger of specification errors.

In the general case of the model given by equations (2.1)-(2.5) but where only the high-

frequency data are used for forecasting, let K denote the steady state Kalman gain, and

let

Z = Zj =




γ′

2

: O(n−1)×nf (p−1) In−1 O(n−1)×n(k−1)

γ′
n





Then (2.13) reduces to
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ŷt+h|t = ρmh
∑∞

j=0(F − KZF )jK




x2,t−j/m

:

xn,t−j/m





which is not exactly a MIDAS regression, but may be well approximated by one - a topic

which we will address in section 3.

2.3 Using Both Low- and High-Frequency Data and the ADL-

MIDAS Regression Model

We will start again with the simple example appearing in the previous subsection, yet

this time we also take into account past low-frequency measurements of y. For the sake

of simplicity we consider the quarterly/monthly data combination. Hence, we are interested

in for instance E
[
yt+h|I

M
t

]
, where IM

t is the mixed data set of past low (quarterly) and high

(monthly) frequency data, instead of the linear projection only involving high-frequency

data as in equation (2.18). In the latter case we obtained a standard (aperiodic) steady

state equation driving the linear projection. Here, however, we deal with a periodic Kalman

filter as in subsection 2.1 applied to the model consisting of equations (2.14), (2.15) and

(2.16). Then the periodic Kalman gain matrices are:

K1|0 =




κ1

∗

∗



 , K2|1 =




κ2

∗

∗



 and K3|2 =




κ3,1 κ3,2

∗ ∗

∗ ∗



 ,

where “ ∗ ” denotes some element that does not need to be explicitly named. In addition,

let us write κ3 = κ3,1+ κ3,2. The state vector is αt+j/m = (ft+j/m, u1,t+j/m, u2,t+j/m)′, and we

have

F =




ρ 0 0

0 0 0

0 0 0





and the first rows of the matrices Ãm
1 , Ãm

2 and Ãm
3 are ((ρ − ρκ1)(ρ − ρκ2)(ρ − ρκ3), 0, ...0),

((ρ − ρκ2)(ρ − ρκ3), 0, ...0) and (ρ − ρκ3, 0, ...0), respectively. From equation (2.13) it then
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follows that:

E
[
yt+h|I

M
t

]
= ρ3hft|t = ρ3hκ3,1

∞∑

j=0

ϑjyt−j + ρ3h

∞∑

j=0

ϑjx(θx)t−j (2.21)

where ϑ = [(ρ − ρκ1)(ρ − ρκ2)(ρ − ρκ3)], and

x(θx)t ≡ [κ3,2 + (ρ − ρκ3)κ2L
1/3 + (ρ − ρκ3)(ρ − ρκ2)κ1L

2/3]xt (2.22)

which is a parameter-driven low-frequency process composed of high-frequency data

aggregated at the quarterly level.

The above equation relates to the multiplicative MIDAS regression models considered by

Chen and Ghysels (2009) and Andreou, Ghysels, and Kourtellos (2008b). In particular

consider the following ADL-MIDAS regression:

yt+h = βy

Ky∑

j=0

wj(θy)yt−j + βx

Kx∑

j=0

wj(θ
1
x)

jx(θ2
x)t−j + εt+1 (2.23)

where wj(θy), wj(θ
1
x) follow an exponential Almon scheme and

x(θ2
x)t−j ≡

m−1∑

k=0

wk(θ
2
x)L

k/mxt−k/m (2.24)

also follows an exponential Almon scheme. Provided that ρ > 0, equations (2.21) and

(2.22) are a special case of this model with Ky = Kx = ∞, wj(θy) ∝ exp(log(ϑ)j),

wj(θ
1
x) ∝ exp(log(ϑ)j) and wk(θ

2
x) ∝ exp(θ2

x,1k + θ2
x,2k

2) where θ2
x,1 and θ2

x,2 are parameters

that solve the equations

log{(ρ − ρκ3)κ2/κ3,2} = θ2
x,1 + θ2

x,2

log{(ρ − ρκ3)(ρ − ρκ2)κ1/κ3,2} = 2θ2
x,1 + 4θ2

x,2

This constructed low-frequency regressor is estimated jointly with the other (MIDAS)

regression parameters. Hence, one can view x(θ2
x)t−j as the best aggregator that yields

the best prediction. This ADL-MIDAS regression involves more parameters than the usual

specification involving only one polynomial. The multiplicative specification was originally
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suggested in Chen and Ghysels (2009) to handle seasonal patterns (in their case the intra-

daily seasonal of volatility patterns). Comparing equations (2.21) and (2.23) again yields an

exact mapping, if ρ > 0.

3 Approximation and Specification Errors

From the previous section we know that the mapping between the Kalman filter and MIDAS

regressions can be exact. We now analyze cases where the MIDAS regression is instead only

an approximation. The purpose of this section is to assess the accuracy of a population

approximation to the Kalman filter obtained from a MIDAS regression.

We will focus on two cases where MIDAS regressions do not yield an exact mapping with

the Kalman filter. A subsection is devoted to each case. The first is a one-factor state

space model with measurement errors that are serially correlated over time. The second is

a two-factor state space model. The final subsection covers specification errors.

3.1 One-Factor State Space Model versus MIDAS

We start again with the example of a single factor AR(1) model in equation (2.14) appearing

in Section 2.2, yet allowing for persistence in the measurement errors. For the quarterly-

monthly data combination this yields:

ft+j/m = ρft+(j−1)/m + ηt+j/m ∀t j = 0, . . . ,m − 1

y∗
t+j/m = γ1ft+j/m + u1,t+j/m ∀t j = 0, . . . ,m − 1

xt+j/m = γ2ft+j/m + u2,t+j/m ∀t j = 0, . . . ,m − 1 (3.1)

where

ui,t+j/m − diui,t+(j−1)/m = ǫi,t+j/m i = 1, 2. (3.2)

Then the periodic Kalman gain matrices are:

K1|0 =




κ1

1

κ1
2

κ1
3



 , K2|1 =




κ2

1

κ2
2

κ2
3



 and K3|2 =




κ3

1,1 κ3
1,2

κ3
2,1 κ3

2,2

κ3
3,1 κ3

3,2



 .
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The state vector is αt+j/m = (ft+j/m, u1,t+j/m, u2,t+j/m)′ and we have

F =




ρ 0 0

0 d1 0

0 0 d2



 ,

Zj =
(

γ2 0 1
)

0 < j ≤ m − 1

Z0 =

(
γ1 1 0

γ2 0 1

)
j = 0.

Correspondingly, since Aj|j−1 = F−Kj|j−1ZjF , we can compute A1|0, A2|1 and A3|2 appearing

respectively in equations (A.1) through (A.3) in Appendix A. Using these matrices we

can compute the Kalman filter equation for h-quarter-ahead prediction, a long expression

appearing in equation (A.4) also in Appendix A. To simplify notation, write the Kalman

filter prediction as:

EKF (yt+h|I
M
t ) =

∞∑

j=0

wKF
y,j yt−j +

∞∑

j=0

wKF
x,j xt−j/m (3.3)

and the corresponding MIDAS regression as:

EMds(yt+h|I
M
t ) =

K̄∑

j=0

wMds
y,j yt−j +

3K̄∑

j=0

wMds
x,j xt−j/m (3.4)

We will consider two types of MIDAS regression specifications, both relate to the above

regression as follows: a multiplicative scheme referring to the ADL-MIDAS regression

appearing in equation (2.23), and a ‘regular’ MIDAS scheme which does not involve the

aggregator scheme, but instead has a single polynomial specification for the high-frequency

data, namely:

yt+h = βy

Ky∑

j=0

wj(θy)yt−j + βx

Kx∑

j=0

wj(θx)
jxt−j/m + εt+h (3.5)

We will compare the models using two criteria. The first is the prediction error minimization.

Assuming that the Kalman Filter weights are negligible beyond lag length K̄, let Σxy

denote the variance-covariance matrix of (xt, y
∗
t , xt−1/m, y∗

t−1/m, ..., xt−K̄ , y∗
t−K̄

)′, the elements

13



of which are as follows:

Cov(y∗
t−i/m, y∗

t−j/m) = γ2
1

ρ|i−j|σ2
η

1 − ρ2
+

d
|i−j|
1 σ2

y

1 − d2
1

Cov(xt−i/m, xt−j/m) = γ2
2

ρ|i−j|σ2
η

1 − ρ2
+

d
|i−j|
2 σ2

x

1 − d2
2

Cov(xt−i/m, y∗
t−j/m) = γ1γ2

ρ|i−j|σ2
η

1 − ρ2

for i, j = 0, 1, 2, . . . , 3K̄, where σ2
η = V ar(ηt), σ2

y = V ar(ε1,t) and σ2
x = V ar(ε2,t). Then, the

h-quarter-ahead Kalman Filter prediction error is w′
KF ΣxywKF where the weights appear in

Appendix A. Similarly, the corresponding MIDAS prediction error is w′
MdsΣxywMds, again

with details in the aforementioned Appendix.

We choose the MIDAS parameters to minimize the difference of prediction errors between

MIDAS and state space models, that is:

min (w′
MdsΣxywMds − w′

KF ΣxywKF )2 (3.6)

It will be convenient to report the results in relative terms, namely the ratio of prediction

error variances:
PE − Midas

PE − SS
=

w′
MdsΣxywMds

w′
KF ΣxywKF

. (3.7)

An alternative measure that we also consider is an L2 distance between the weights:

L
2 ≡

K̄∑

j=0

(wKF
x,j − wMds

x,j )2 +
K̄∑

j=0

(wKF
y,j − wMds

y,j )2 (3.8)

This comparison will tell us that while the two specifications may be close in terms of

prediction error, they may still differ in terms of polynomial weights.

Panel A of Table 1 shows the minimized values of L
2 comparing Kalman Filter and MIDAS

regressions (regular and multiplicative), with d = d1 = d2, γ1 = γ2 = 1 and σ2
η = σ2

y = σ2
x

= 1. Results are shown for combinations of d and ρ, and the forecast horizons h = 2 and

4. In Panel B we also report the values of L
2 that correspond to the minimized prediction

errors. We do not actually report the results for the prediction error ratios as they are easy
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to summarize - for all combinations of d and ρ the predictions are for all practical purposes

equal, i.e. the value of the PE-ratio is numerically extremely close to one uniformly in the

parameter space.

For d = 0 and ρ > 0, by construction, the multiplicative MIDAS provides a perfect fit to

the Kalman Filter, and so both distance measures are equal to zero. In contrast to the

multiplicative MIDAS, we do not expect the fit with the regular specification to be exact.

Yet the results in Table 1 - Panels A and B - show that the difference between the regular

MIDAS and Kalman filter weights is also negligible. For other combinations of d and ρ we

occasionally observe some significant differences. However, they are concentrated around

the extreme values for either d (-0.9 or 0.99) or ρ (also -0.9 or 0.99). The regular MIDAS

appears to handle the case ρ = -0.9 combined with positively autocorrelated measurement

noise better. Conversely, the multiplicative MIDAS better handles the ρ = 0.9 cases. For

all other entries to Table 1 the differences between MIDAS weights and the Kalman filter

ones are small with both criteria. The multiplicative MIDAS specification generally yields

smaller errors than regular MIDAS. This is somewhat expected since the former provides an

exact match for some parameter combinations. It is also worth noting that the impact of

forecast horizon appears to be small, judging by the differences between h = 2 and 4 in both

panels of Table 1.

3.2 Two-Factor State Space Model versus MIDAS

The second case we consider where the MIDAS regression is only an approximation is a

two-factor state space model:

Ft+j/m =

(
f1,t+j/m

f2,t+j/m

)
=

(
ρ1 0

0 ρ2

)(
f1,t+(j−1)/m

f2,t+(j−1)/m

)
+

(
η1,t+j/m

η2,t+j/m

)
j = 0, . . . ,m − 1

y∗
t+j/m = γ′

1Ft+j/m + u1,t+j/m ∀t j = 0, . . . ,m − 1

x2,t+j/m = γ′
2Ft+j/m + u2,t+j/m ∀t j = 0, . . . ,m − 1

where

ui,t+j/m − diui,t+(j−1)/m = ǫi,t+j/m i = 1, 2.
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Then the periodic Kalman gain matrices are:

K1|0 =





κ1
1

κ1
2

κ1
3

κ1
4




, K2|1 =





κ2
1

κ2
2

κ2
3

κ2
4




and K3|1 =





κ3
1,1 κ3

1,2

κ3
2,1 κ3

2,2

κ3
3,1 κ3

3,2

κ3
4,1 κ3

4,2




,

The state vector is αt+j/m = (f1,t+j/m, f2,t+j/m,u1,t+j/m, u2,t+j/m)′ and we have

F =





ρ1 0 0 0

0 ρ2 0 0

0 0 d1 0

0 0 0 d2




,

Zj =
(

γ2,1 γ2,2 0 1
)

0 < j ≤ m − 1

Z0 =

(
γ1,1 γ1,2 1 0

γ2,1 γ2,2 0 1

)
j = 0.

Correspondingly, since Aj|j−1 = F − Kj|j−1ZjF , we can compute again A1|0, A2|1 and A3|2

appearing respectively in equations (B.1) through (B.3) in Appendix B.

E(yt+h|I
M
t ) = E(γ1,1f1,t+h + γ1,2f2,t+h + u1,t+h|I

M
t )

= γ1,1ρ
3h
1 E(f1,t|I

M
t ) + γ1,2ρ

3h
2 E(f2,t|I

M
t ) + d3h

1 E(u1,t|I
M
t ),

we have:

E(yt+h|It) =
(

γ1,1ρ
3h
1 γ1,2ρ

3h
2 d3h

1 0
)

α̂t|t

This gives a Kalman filter prediction that can be written as

EKF (yt+h|I
M
t ) =

∞∑

j=0

wKF
y,j yt−j +

∞∑

j=0

wKF
x,j xt−j/m

As in the previous subsection, we can find the regular or multiplicative MIDAS parameters

that get as close as possible to the Kalman filter using the objective function, given in

equation (3.6). In this two-factor model, the elements of Σxy, the variance-covariance matrix
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of (xt, y
∗
t , xt−1/m, y∗

t−1/m, ....xt−K̄ , y∗
t−K̄

)′, are as follows:

Cov(y∗
t−i/m, y∗

t−j/m) = γ2
1,1

ρ
|i−j|
1 σ2

η,1

1 − ρ2
1

+ γ2
1,2

ρ
|i−j|
2 σ2

η,2

1 − ρ2
2

+
d
|i−j|
1 σ2

y

1 − d2
1

Cov(xt−i/m, xt−j/m) = γ2
2,1

ρ
|i−j|
1 σ2

η,1

1 − ρ2
1

+ γ2
2,2

ρ
|i−j|
2 σ2

η,2

1 − ρ2
2

+
d
|i−j|
2 σ2

x

1 − d2
2

Cov(xt−i/m, y∗
t−j/m) = 2γ1,1γ2,1

ρ
|i−j|
1 σ2

η,1

1 − ρ2
1

+ 2γ1,2γ2,2

ρ
|i−j|
2 σ2

η,2

1 − ρ2
2

for i, j = 0, 1, 2, ...3K̄, where σ2
η,1 = V ar(η1,t), σ2

η,2 = V ar(η2,t), σ2
y = V ar(ε1,t) and

σ2
x = V ar(ε2,t).

Panel A of Table 2 shows again the minimized values of the L
2 objective function comparing

Kalman Filter and MIDAS regressions (regular and multiplicative), with d = d1 = d2, γ1 =

γ2 = 1 and σ2
η = σ2

y = σ2
x = 1. Results are shown for combinations of d and ρ and the forecast

horizon, h = 2 and 4. In Panel B we also again report the L
2 values that correspond to the

minimized prediction errors. We do not report the results for the prediction error ratios as

they are again easy to summarize - for all combinations of d and ρ the predictions are for all

practical purposes equal, i.e. the value of PE-ratio is numerically extremely close to one.

Overall the results in Table 2 are quite similar to those in Table 1 and show that MIDAS

provides a good general fit to the Kalman filter weights. There are however a few differences

with the results for the one-factor case. First, for d = 0 and ρ > 0, multiplicative MIDAS is

no longer a perfect fit to the Kalman Filter. Yet, we see that it is for all practical purposes,

as is the regular MIDAS specification. Second, differences between the multiplicative and

regular specifications for the extremes are smaller than in the one-factor case considered

in Table 1, especially in the case of ρ = 0.99. Third, the entries to Panel A of Table 2 are

essentially all zero. Hence, according distance criteria, the differences are very small. Finally,

as in Table 1, we find the impact of the forecast horizon to be negligible.

3.3 Specification Errors

All the models considered so far are correctly specified, and so the MIDAS regression cannot

hope to do better than the Kalman filter, in population at least. However, this is not true any

more if the state space model is mis-specified. Accordingly in this section, we consider the
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case in which the Kalman filter weights are computed assuming that the data are generated

by a one-factor model, whereas in fact the data are generated by a two-factor model. The

MIDAS regressions are selected so as to approximate the data generating process minimizing

the objective function (3.6) from a two-factor model.

We consider two MIDAS specifications as before: regular and multiplicative. In terms of

parameter configurations for the two-factor model appearing in subsection 3.2 we consider

two experiments. The first involves ρ1 = ρ2 = ρ and d1 = d2 = d. The values taken by d

and ρ are the same as before, and the forecast horizon is h. The results appear in Table 3,

for the regular (Panel A) and multiplicative (Panel B) MIDAS regressions, respectively. The

second experiment sets ρ1 6= ρ2, d1 = d2 = 0 (so that the measurement noise is i.i.d.). The

results appear in Table 4. In contrast to Tables 1 and 2, we do have nontrivial differences

between the prediction errors. Hence, we report the ratio of prediction errors appearing in

equation (3.7) and cover again two forecast horizons h = 2, 4. In the interest of saving space

we do not report the corresponding minimized values of the L
2. They are available upon

request. Since the ratios are PE − MIDAS divided by PE − SS1, values below one imply

that MIDAS provides better predictions than the mis-specified Kalman filter. The results

in the two tables are quite remarkable. If we take away the extremes, especially ρ = 0.99, it

turns out that the MIDAS regressions are almost always better predictors. On average, the

gains range between 10% and 20%, although ratios as low as 0.58 can be reached.

One particularly interesting panel is the upper left one in Table 4, which covers ρ1 6= ρ2, d1

= d2 = 0 for h = 2 and the regular MIDAS specification. In this case none of the entries

are above one. This means that in all cases considered, regular MIDAS outperforms the

mis-specified Kalman filter. For the one-year horizon (h = 4) this appears almost true too,

except in the few cases where the Kalman filter only does slightly better. The multiplicative

specification does not fare as well, particularly at the extreme cases, at the short horizon h

=2. At the longer horizon the differences between the two MIDAS specifications in Table 4

appear minor, however.

4 Empirical Study

As an illustration of the theoretical results in sections 2 and 3, we present an empirical

application to forecasting of U.S. GDP growth. In a first subsection we describe the data.

18



The results are discussed in a second subsection.

4.1 The Data

We use a dataset with mixed frequencies, monthly and quarterly. The variable to be predicted

is the growth rate of real GDP from 1959Q1 to 2009Q1. The explanatory variables include

nine monthly indicators until May 2009. In particular, we consider the term spread (TERM),

stock market returns (SP500), industrial production (IP), employment (Emply), consumer

expectations (Exptn), personal income (PI), the leading index (LEI), manufacturing (Manu),

and oil prices (Oil). They are transformed to induce stationarity and to insure that the

transformed variables correspond to the real GDP growth observed at the end of the quarter.

See Table 5 for more details on the definition and data transformations.2 It should also be

noted that we focus exclusively on one-factor state space models.

Each model uses just one out of nine monthly indicators. The forecasts are in all cases

made using monthly data up to and including the second month of the quarter. We evaluate

the state space and MIDAS forecasts in a standard recursive prediction exercise. The first

estimation window is from 1959:Q1 to 1978:Q4, and is recursively expanded over time. For

example, for MIDAS, a one-step-ahead forecast of 1979:Q1 is generated from regressing GDP

growth up to 1978:Q4 on its own lags and the monthly predictor up to 1978:11 (November).

Then the values of GDP growth through 1978:Q4 and of the monthly predictor up to 1979:02

(February) are used with the estimated coefficients to predict the 1979:Q1 GDP growth rate.

We also do two– to eight-quarter-ahead forecasting in a similar fashion. The evaluation

sample is from 1979:Q1 to 2009Q1. Some monthly predictors are available only for more

recent subsamples (e.g. crude oil price and manufacturing). In these cases, we use the first 40

quarters as the estimation sample and the remaining period until 2009Q1 as the evaluation

sample. We should also note that - as usually is done in the context of state space models,

all series are normalized by the (full sample) mean and variance.

In line with Kuzin, Marcellino, and Schumacher (2009), we specify the lag order in the

mixed-frequency state space model by applying the Bayesian information criterion (BIC)

with a maximum lag order of p = 4 months. We also find that the chosen lag lengths are

2Note that, because real-time vintages for all the series in the panel are not available, we did not perform
a pure real-time forecasting exercise. Authors such as Bernanke and Boivin (2003) and Schumacher and
Breitung (2008) find that data revisions have limited impact on forecasting accuracy for economic activity.
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usually small with only one or two lags in most cases. In both the regular and multiplicative

MIDAS model, we set the maximum number of lags as Ky = 1 and Kx = 6 quarters and

choose the lag length by the minimum in-sample fitting error criterion. Finally, we use the

root mean squared forecasting error (RMSE) to evaluate each model’s forecasting accuracy:

RMSE(h) =

√√√√ 1

T1 − T2 − h + 1

T2−h∑

t=T1

(Ŷt+h − Yt+h)2,

where the model is estimated for the period of t = [1, T1], and the forecasting period is given

by t = [T1 + h, T2].

4.2 Forecasting Results

Table 6 compares the forecasting performance between the regular MIDAS, multiplicative

MIDAS and state space models. We consider horizons from one quarter up to two years.

Recall that all the series are normalized by the (full sample) mean and variance, including

real GDP growth. So the root mean squared forecasting errors reported in Table 6 are in

standard deviation units. We report the level of root mean squared forecasting errors for

state space models (denoted m0), and for regular MIDAS (denoted m1) and multiplicative

MIDAS (denoted m2). In addition, we also report the ratios (m0/m1) and (m0/m2). When

we see entries for ratios of say 0.80, we can interpret this as gains equivalent to 20% of the

full sample standard deviation of GDP growth. The ratios above one imply that MIDAS

regressions produce better forecasts. Conversely, ratios below one imply that the Kalman

filter produces better forecasts.

When we consider the various series reported in Table 6, we see that MIDAS gives better

forecasts when the term spread and consumer expectations are used as predictors. On the

other hand, for the personal income and manufacturing series, the Kalman filter dominates

at all horizons. For the other series the results are mixed, with ratios generally slightly

above or below one. The results also differ across horizons, without a clear pattern. At the

longest horizon (h = 8), except for term spread and consumer expectations, we note a slight

preference for the Kalman filter - although the ratios are typically within a 5 to 10% range.

Overall, the results support the theoretical deduction obtained in the previous section. In

some cases MIDAS clearly outperforms the state space approach, perhaps because the model
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is mis-specified. In other cases, the Kalman filter performs well, but the MIDAS model does

too, and there is often little difference between them.

To conclude it is worth summarizing the Table 6 across all series - and by doing so, we

observe the best predictor with the regular/multiplicative MIDAS and state space models is

the crude oil price, except at the longest horizons.

h (Quarter) 1 2 3 4 5 6 7 8

Best State Space Oil Oil Oil Oil Oil Oil LEI LEI

Predictor Regular MIDAS Oil Oil Oil Oil Oil LEI Emply Emply

Multiplicative MIDAS Oil Oil Oil Oil Oil Term Emply IP

State Space 0.69 0.65 0.68 0.67 0.70 0.70 0.74 0.76

RMSE Regular MIDAS 0.65 0.76 0.70 0.74 0.72 0.78 0.80 0.79

Multiplicative MIDAS 0.65 0.77 0.72 0.76 0.70 0.78 0.80 0.79

When we look at the best performance series in the above table we find evidence similar

to Kuzin, Marcellino, and Schumacher (2009) - they find gains at short horizons from

using MIDAS and the reverse for longer horizons (two years, as in our application). For

intermediate horizons we find the Kalman filter to be best. Overall, however the differences

are often small.

5 Conclusion

We examined the relationship between MIDAS regressions and Kalman filter state space

models applied to mixed frequency data. State space models consist of a system of two

equations, a measurement equation which links observed series to a latent state process,

and a state equation which describes the state process dynamics. The system of equations

therefore typically requires a lot of parameters, for the measurement equation, the state

dynamics and their error processes. In contrast, recent work by Ghysels, Santa-Clara, and

Valkanov (2002), Ghysels, Santa-Clara, and Valkanov (2006) and Andreou, Ghysels, and

Kourtellos (2008a) using MIDAS regressions handles mixed sample frequencies in a simple
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single equation setting that is easy to estimate. We showed that MIDAS regressions and the

Kalman steady state linear filter can be identical - and if they are not - the former is very

close in terms of prediction behavior. One advantage of MIDAS regressions is that they are

less prone to specifications errors. In fact, we show that the latter can impair Kalman filter

predictions.

Finally, it is important to note that estimating Kalman filter specifications is numerically

much more involved. In contrast, all MIDAS estimations are in comparison computationally

simple. This is relevant as the computational complexity limits the applicability of the

Kalman filter to a small set of series. For example Aruoba, Diebold, and Scotti (2009)

construct a very useful Business Conditions Index published in real time by the Federal

Reserve Bank of Philadelphia. The index is based on a small set of series sampled at

mixed frequencies (weekly initial jobless claims; monthly payroll employment, industrial

production, personal income less transfer payments, manufacturing and trade sales; and

quarterly real GDP). In contrast, Andreou, Ghysels, and Kourtellos (2008b) compute macro

economic forecasts with MIDAS regressions using close to a hundred daily financial series

which they combine via Bayesian model averaging. This is a fairly straightforward exercise

with MIDAS regressions, but would be computationally very difficult with a fully specified

state space model.
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Technical Appendices

A One-Factor State Space Model with Correlated Measurement Errors

We start from the state space model appearing in subsection 3.1 repeated here for convenience:

ft+j/m = ρft+(j−1)/m + ηt+j/m ∀t j = 0, . . . , m − 1

y∗t+j/m = γ1ft+j/m + u1,t+j/m ∀t j = 0, . . . , m − 1

xt+j/m = γ2ft+j/m + u2,t+j/m ∀t j = 0, . . . , m − 1

where

ui,t+j/m − diui,t+(j−1)/m = ǫi,t+j/m i = 1, 2.

with periodic Kalman gain matrices:

K1|0 =




κ1

1

κ1
2

κ1
3



 , K2|1 =




κ2

1

κ2
2

κ2
3



 and K3|2 =




κ3

1,1 κ3
1,2

κ3
2,1 κ3

2,2

κ3
3,1 κ3

3,2



 .

As noted in section 3.1, the state vector is αt+j/m = (ft+j/m, u1,t+j/m, u2,t+j/m)′ and we have

F =




ρ 0 0

0 d1 0

0 0 d2



 ,

Zj =
(

γ2 0 1
)

for 0 < j ≤ m − 1 and Z0 =

(
γ1 1 0

γ2 0 1

)
.

Using the formula Aj|j−1 = F − Kj|j−1ZjF , we can write

A1|0 =




ρ − ργ2κ

1
1 0 −κ1

1d2

−ργ2κ
1
2 d1 −κ1

2d2

−ργ2κ
1
3 0 d2 − κ1

3d2



 (A.1)
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A2|1 =




ρ − ργ2κ

2
1 0 −κ2

1d2

−ργ2κ
2
2 d1 −κ2

2d2

−ργ2κ
2
3 0 d2 − κ2

3d2



 (A.2)

and

A3|2 =




ρ − ρ(γ1κ

3
1,1 + γ2κ

3
1,2) −κ3

1,1d1 −κ3
1,2d2

−ρ(γ1κ
3
2,1 + γ2κ

3
2,2) d1 − κ3

2,1d1 −κ3
2,2d2

−ρ(γ1κ
3
3,1 + γ2κ

3
3,2) −κ3

3,1d1 d2 − κ3
3,2d2



 (A.3)

Letting Ãm
3 = A3|2, Ãm

2 = A3|2A2|1 and Ãm
1 = A3|2A2|1A1|0 as before, and adopting the notation

that [A]ij refers to the ijth element of the matrix A, from equation (2.13), the Kalman filter implies

the following equation for h-quarter-ahead prediction:

EKF [yt+h|I
M
t ] = E(γ1ft+h + u1,t+h|I

M
t ) = γ1ρ

3hE(ft|I
M
t ) + d3h

1 E(u1,t|I
M
t )

= γ1ρ
3h

∞∑

j=0

{[(Ãm
1 )j ]11κ

3
1,1 + [(Ãm

1 )j ]12κ
3
2,1 + [(Ãm

1 )j ]13κ
3
3,1}yt−j

+γ1ρ
3h

∞∑

j=0

{[(Ãm
1 )j ]11κ

3
1,2 + [(Ãm

1 )j ]12κ
3
2,2 + [(Ãm

1 )j ]13κ
3
3,2}xt−j

+γ1ρ
3h

∞∑

j=0

{[(Ãm
1 )jÃm

2 ]11κ
2
1 + [(Ãm

1 )jÃm
2 ]12κ

2
2 + [(Ãm

1 )jÃm
2 ]13κ

2
3}xt−j−1/3

+γ1ρ
3h

∞∑

j=0

{[(Ãm
1 )jÃm

3 ]11κ
1
1 + [(Ãm

1 )jÃm
3 ]12κ

1
2 + [(Ãm

1 )jÃm
3 ]13κ

1
3}xt−j−2/3

+d3h
1

∞∑

j=0

{[(Ãm
1 )j ]21κ

3
1,1 + [(Ãm

1 )j ]22κ
3
2,1 + [(Ãm

1 )j ]23κ
3
3,1}yt−j

+d3h
1

∞∑

j=0

{[(Ãm
1 )j ]21κ

3
1,2 + [(Ãm

1 )j ]22κ
3
2,2 + [(Ãm

1 )j ]23κ
3
3,2}xt−j

+d3h
1

∞∑

j=0

{[(Ãm
1 )jÃm

2 ]21κ
2
1 + [(Ãm

1 )jÃm
2 ]22κ

2
2 + [(Ãm

1 )jÃm
2 ]23κ

2
3}xt−j−1/3

+d3h
1

∞∑

j=0

{[(Ãm
1 )jÃm

3 ]21κ
1
1 + [(Ãm

1 )jÃm
3 ]22κ

1
2 + [(Ãm

1 )jÃm
3 ]23κ

1
3}xt−j−2/3(A.4)

As noted in section 3.1, the variance of the h-quarter-ahead Kalman Filter forecast errors is
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w′
KF ΣxywKF where

wKF = (1, 0mh−1×1,−wKF
x,1 ,−wKF

y,1 ,−wKF
x,2 , 0,−wKF

x,3 , 0,

−wKF
x,4 ,−wKF

y,2 ,−wKF
x,5 , 0,−wKF

x,6 , 0, .... − wKF
x,3K̄−2,−wKF

y,K̄ ,−wKF
x,3K̄−1, 0,−wKF

x,3K̄ , 0)′

Similarly, the variance of the corresponding MIDAS forecast errors is w′
MdsΣxywMds where

wMds = (1, 0mh−1×1,−wMds
x,1 ,−wMds

y,1 ,−wMds
x,2 , 0,−wMds

x,3 , 0,

−wMds
x,4 ,−wMds

y,2 ,−wMds
x,5 , 0,−wMds

x,6 , 0, .... − wMds
x,3K̄−2,−wMds

y,K̄ ,−wMds
x,3K̄−1, 0,−wMds

x,3K̄ , 0)′

B Two-Factor State Space Model with Correlated Measurement Errors

We consider a two-factor state space model appearing in section 3.2 repeated here for convenience:

Ft+j/m =

(
f1,t+j/m

f2,t+j/m

)
=

(
ρ1 0

0 ρ2

)(
f1,t+(j−1)/m

f2,t+(j−1)/m

)
+

(
η1,t+j/m

η2,t+j/m

)
j = 0, . . . , m − 1

y∗t+j/m = γ′
1Ft+j/m + u1,t+j/m ∀t j = 0, . . . , m − 1

x2,t+j/m = γ′
2Ft+j/m + u2,t+j/m ∀t j = 0, . . . , m − 1

where

ui,t+j/m − diui,t+(j−1)/m = ǫi,t+j/m i = 1, 2.

Then the periodic Kalman gain matrices are:

K1|0 =





κ1
1

κ1
2

κ1
3

κ1
4




, K2|1 =





κ2
1

κ2
2

κ2
3

κ2
4




and K3|1 =





κ3
1,1 κ3

1,2

κ3
2,1 κ3

2,2

κ3
3,1 κ3

3,2

κ3
4,1 κ3

4,2




,

The state vector is αt+j/m = (f1,t+j/m, f2,t+j/m,u1,t+j/m, u2,t+j/m)′ and we have F =
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ρ1 0 0 0

0 ρ2 0 0

0 0 d1 0

0 0 0 d2




, Zj =

(
γ2,1 γ2,2 0 1

)
and Z0 =

(
γ1,1 γ1,2 1 0

γ2,1 γ2,2 0 1

)
. Hence, since

Aj|j−1 = F − Kj|j−1ZjF , we can write

A1|0 =





ρ1 − ρ1γ2,1κ
1
1 −ρ2γ2,2κ

1
1 0 −κ1

1d2

−ρ1γ2,1κ
1
2 ρ2 − ρ2γ2,2κ

1
2 0 −κ1

2d2

−ρ1γ2,1κ
1
3 −ρ2γ2,2κ

1
3 d1 −κ1

3d2

−ρ1γ2,1κ
1
4 −ρ2γ2,2κ

1
4 0 d2 − κ1

4d2




(B.1)

A2|1 =





ρ1 − ρ1γ2,1κ
1
1 −ρ2γ2,2κ

1
1 0 −κ1

1d2

−ρ1γ2,1κ
1
2 ρ2 − ρ2γ2,2κ

1
2 0 −κ1

2d2

−ρ1γ2,1κ
1
3 −ρ2γ2,2κ

1
3 d1 −κ1

3d2

−ρ1γ2,1κ
1
4 −ρ2γ2,2κ

1
4 0 d2 − κ1

4d2




(B.2)

and

A3|2 =





ρ1 − ρ1(γ1,1κ
3
1,1 + γ2,1κ

3
1,2) −ρ2(γ1,2κ

3
1,1 + γ2,2κ

3
1,2) −κ3

1,1d1 −κ3
1,1d2

−ρ1(γ1,1κ
3
2,1 + γ2,1κ

3
2,2) ρ2 − ρ2(γ1,2κ

3
2,1 + γ2,2κ

3
2,2) −κ3

2,1d1 −κ3
2,1d2

−ρ1(γ1,1κ
3
3,1 + γ2,1κ

3
3,2) −ρ2(γ1,2κ

3
3,1 + γ2,2κ

3
3,2) d1 − κ3

3,1d1 −κ3
3,1d2

−ρ1(γ1,1κ
3
4,1 + γ2,1κ

3
4,2) −ρ2(γ1,2κ

3
4,1 + γ2,2κ

3
4,2) −κ3

4,1d1 d2 − κ3
4,1d2





(B.3)
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Table 1: Approximation Results between MIDAS and One-Factor State Space Model

Entries in Panel A pertain to the values of the L2 measure appearing in equation (3.8) comparing Kalman Filter for the one-factor model
appearing in equations (3.1) and (3.2). In Panel B the entries pertain to the values of the L2 when the MIDAS weights are optimized in terms
of minimal prediction error - as appearing in equation (3.6). Entries cover both regular and multiplicative MIDAS regressions, with d = d1

= d2, γ1 = γ2 = 1 and σ2

eta = σ2

y = σ2

x = 1. The multiplicative MIDAS scheme refers to the ADL-MIDAS regression appearing in equation
(2.23), whereas the regular one refers to equation (3.5).

Panel A: L
2 distance

Regular MIDAS Multiplicative MIDAS

Forecasting Horizon: Two Quarters Ahead (h=2)
d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.00 0.00 0.01 0.01 0.03 0.04 0.05 0.00 0.04 0.45 0.01 0.03 0.04 0.05
-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00
0.9 0.32 0.07 0.02 0.00 0.00 0.00 0.00 0.31 0.09 0.45 0.04 0.00 0.00 0.00

0.95 0.41 0.10 0.04 0.01 0.00 0.00 0.00 0.40 0.10 0.65 0.05 0.00 0.00 0.00
0.99 0.51 0.14 0.05 0.01 0.00 0.00 0.00 0.49 0.14 0.86 0.06 0.00 0.00 0.00

Forecasting Horizon: Four Quarters Ahead (h=4)
d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.00 0.00 0.01 0.01 0.04 0.04 0.05 0.00 0.04 0.45 0.01 0.04 0.04 0.05
-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00
0.9 0.32 0.07 0.02 0.00 0.00 0.00 0.00 0.32 0.07 0.45 0.04 0.00 0.00 0.00

0.95 0.42 0.10 0.04 0.01 0.00 0.00 0.00 0.40 0.10 0.65 0.05 0.00 0.00 0.00
0.99 0.52 0.14 0.05 0.01 0.00 0.00 0.00 0.50 0.14 0.86 0.06 0.00 0.00 0.00

Table continued on next page ...
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Table 1 continued

Panel B: L
2 distance for minimized prediction error differences

Regular MIDAS Multiplicative MIDAS

Forecasting Horizon: Two Quarters Ahead (h=2)

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.90 0.86 0.89 0.91 0.98 1.01 1.05 0.31 1.04 0.45 0.51 1.01 0.92 0.83

-0.5 0.02 0.04 0.02 0.06 0.08 0.08 0.09 0.02 0.02 0.01 0.01 0.02 0.03 0.02

0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.09 0.00 0.01 0.00 0.01 0.03 0.10 0.10 0.01 0.01 0.02 0.01 0.01 0.01

0.9 0.64 0.42 0.40 0.31 0.44 0.49 0.53 0.98 0.74 0.45 0.42 0.27 0.36 0.28

0.95 0.58 0.74 0.71 0.56 0.61 0.64 0.67 1.35 1.05 0.65 0.64 0.40 0.39 0.42

0.99 0.81 1.12 1.06 0.86 0.80 0.81 0.83 1.74 1.05 0.86 0.88 0.60 0.60 0.53

Forecasting Horizon: Four Quarters Ahead (h=4)

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.91 0.87 0.88 0.92 0.98 1.01 1.06 0.28 1.05 0.45 0.52 0.87 0.86 0.67

-0.5 0.02 0.04 0.02 0.06 0.08 0.08 0.09 0.02 0.02 0.01 0.01 0.02 0.01 0.03

0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.08 0.00 0.01 0.00 0.01 0.02 0.05 0.09 0.01 0.01 0.02 0.01 0.01 0.01

0.9 0.66 0.42 0.41 0.31 0.44 0.49 0.52 0.98 0.74 0.45 0.43 0.35 0.30 0.28

0.95 0.91 0.74 0.71 0.56 0.61 0.64 0.66 1.36 1.06 0.65 0.65 0.40 0.52 0.40

0.99 0.82 1.12 1.07 0.87 0.80 0.81 0.81 1.78 1.05 0.86 0.89 0.60 0.58 0.56
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Table 2: Approximation Results between MIDAS and Two-Factor State Space Model

Entries in Panel A pertain to the values of the L2 measure appearing in equation (3.8) comparing Kalman Filter for the two-factor model
appearing in section 3.2. In Panel B the entries pertain to the values of the L2 when the MIDAS weights are optimized in terms of minimal
prediction error - as appearing in equation (3.6). Entries cover both regular and multiplicative MIDAS regressions, with d = d1 = d2, ρ = ρ1

= ρ2, γ1,1 = γ1,2 = γ2,1 = γ2,2 = 0.5 and σ2

η,1 = σ2

η,2 = σ2

y = σ2

x = 1. The multiplicative MIDAS scheme refers to the ADL-MIDAS regression
appearing in equation (2.23), whereas the regular one refers to equation (3.5).

Panel A: L
2 distance

Regular MIDAS Multiplicative MIDAS

Forecasting Horizon: Two Quarters Ahead (h=2)
d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00

0.95 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
0.99 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Forecasting Horizon: Four Quarters Ahead (h=4)

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
-0.5 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00

0.95 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
0.99 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

Table continued on next page ...
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Table 2 continued

Panel B: L
2 distance for minimized prediction error differences

Regular MIDAS Multiplicative MIDAS

Forecasting Horizon: Two Quarters Ahead (h=2)

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.04 0.19 0.17 0.15 0.12 0.14 0.06 0.46 0.22 0.19 0.16 0.03 0.05 0.15

-0.5 0.02 0.00 0.04 0.01 0.04 0.02 0.02 0.02 0.04 0.05 0.04 0.02 0.02 0.02

0 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.05 0.02 0.03 0.02 0.01 0.01 0.08 0.17 0.02 0.04 0.03 0.01 0.01 0.01

0.9 0.30 0.42 0.40 0.34 0.11 0.06 0.08 0.29 0.27 0.24 0.22 0.06 0.03 0.04

0.95 0.62 0.50 0.46 0.41 0.18 0.11 0.06 0.48 0.29 0.26 0.24 0.09 0.05 0.03

0.99 0.96 0.57 0.52 0.47 0.25 0.20 0.10 0.58 0.31 0.28 0.26 0.13 0.10 0.04

Forecasting Horizon: Four Quarters Ahead (h=4)

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.10 0.43 0.17 0.15 0.12 0.14 0.08 0.45 0.22 0.20 0.16 0.04 0.05 0.15

-0.5 0.02 0.00 0.04 0.01 0.02 0.01 0.02 0.02 0.03 0.05 0.02 0.01 0.01 0.01

0 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.5 0.05 0.02 0.03 0.02 0.01 0.01 0.01 0.17 0.01 0.04 0.04 0.01 0.01 0.01

0.9 0.29 0.42 0.40 0.34 0.11 0.06 0.03 0.30 0.27 0.24 0.22 0.06 0.03 0.02

0.95 0.62 0.50 0.46 0.41 0.19 0.10 0.04 0.47 0.28 0.26 0.23 0.09 0.05 0.03

0.99 0.96 0.58 0.52 0.48 0.28 0.21 0.10 0.56 0.30 0.28 0.26 0.13 0.10 0.04
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Table 3: Ratio of Prediction Errors: MIDAS/One-Factor State Space Model ρ1 = ρ2 = ρ, d1 = d2 = d

Entries pertain to the the minimized values of the prediction error objective function appearing in equation (3.6). The ratio is computed
for a one-factor Kalman Filter (denoted SS1) and regular MIDAS (see equation (3.5)). The data generating process is a two-factor model
appearing in section 3.2. Entries pertain to three prediction horizons h = 2 and 4.

Panel A Regular MIDAS Panel B Multiplicative MIDAS

Forecasting Horizon: Two Quarters Ahead (h=2)

PE-MIDAS / PE-SS1 PE-MIDAS / PE-SS1

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.92 0.66 0.64 0.66 0.73 0.81 0.94 0.92 0.66 0.64 0.70 0.73 0.81 0.94
-0.5 0.91 0.75 0.72 0.75 0.88 0.93 0.98 0.91 0.75 0.72 0.75 0.88 0.93 0.98

0 0.92 0.79 0.75 0.79 0.92 0.96 0.99 0.92 0.79 0.75 0.79 0.92 0.96 0.99
0.5 0.88 0.75 0.72 0.75 0.91 0.96 1.00 0.88 0.75 0.72 0.75 0.91 0.96 1.00
0.9 0.73 0.63 0.62 0.66 0.92 1.03 1.17 0.73 0.63 0.62 0.66 0.92 1.03 1.17

0.95 0.69 0.60 0.60 0.65 0.90 1.06 1.25 0.69 0.60 0.61 0.65 0.90 1.06 1.25
0.99 0.67 0.58 0.59 0.64 0.82 0.98 1.35 0.67 0.58 0.59 0.64 0.82 0.98 1.35

Forecasting Horizon: Four Quarters Ahead (h=4)

PE-MIDAS / PE-SS1 PE-MIDAS / PE-SS1

d \ ρ -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 1.09 0.66 0.64 0.66 0.72 0.80 0.94 0.92 0.66 0.64 0.72 0.72 0.80 0.94
-0.5 0.91 0.75 0.72 0.75 0.89 0.93 0.98 0.91 0.75 0.72 0.75 0.89 0.93 0.98

0 0.92 0.79 0.75 0.79 0.92 0.96 0.99 0.92 0.79 0.75 0.79 0.92 0.96 0.99
0.5 0.89 0.75 0.72 0.75 0.91 0.95 0.99 0.89 0.75 0.72 0.75 0.91 0.95 0.99
0.9 0.72 0.63 0.62 0.66 0.92 1.01 1.10 0.72 0.63 0.62 0.66 0.92 1.01 1.10

0.95 0.69 0.61 0.61 0.64 0.92 1.06 1.19 0.69 0.61 0.61 0.64 0.92 1.06 1.19
0.99 0.67 0.59 0.59 0.63 0.87 1.04 1.35 0.67 0.59 0.59 0.63 0.87 1.04 1.35
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Table 4: The Ratio of Prediction Error: MIDAS / One-Factor State Space Model ρ1 6= ρ2, d1 = d2 = 0

Entries pertain to the minimized values of the prediction error objective function appearing in equation (3.6). The ratio is computed for a
one-factor Kalman Filter (denoted SS1) and regular MIDAS (see equation (3.5)). The data generating process is a two-factor model appearing
in section 3.2. Entries pertain to three prediction horizons h = 2 and 4.

Panel A Regular MIDAS Panel B Multiplicative MIDAS

Forecasting Horizon: Two Quarters Ahead (h=2)

PE-MIDAS / PE-SS1 PE-MIDAS / PE-SS1

ρ2 \ ρ1 -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.65 0.57 0.56 0.59 0.78 0.77 0.89 1.02 0.95 0.94 0.98 1.00 1.00 1.00
-0.5 0.80 0.61 0.58 0.61 0.78 0.84 0.93 1.02 0.99 0.96 0.99 1.11 1.16 1.28

0 0.81 0.61 0.58 0.60 0.76 0.82 0.92 1.21 0.94 0.90 0.94 1.17 1.24 1.39
0.5 0.80 0.59 0.56 0.59 0.75 0.81 0.95 1.18 0.91 0.87 0.91 1.11 1.18 1.36
0.9 0.93 0.67 0.64 0.67 0.75 0.79 0.87 1.00 1.00 0.98 1.00 0.98 0.98 1.05

0.95 0.87 0.68 0.66 0.68 0.74 0.77 0.81 1.00 0.95 0.91 0.94 1.01 1.00 1.02
0.99 0.89 0.69 0.67 0.72 0.74 0.74 0.74 1.08 1.12 1.11 1.17 1.08 1.02 1.00

Forecasting Horizon: Four Quarters Ahead (h=4)

PE-MIDAS / PE-SS1 PE-MIDAS / PE-SS1

ρ2 \ ρ1 -0.9 -0.5 0 0.5 0.9 0.95 0.99 -0.9 -0.5 0 0.5 0.9 0.95 0.99

-0.9 0.78 0.69 0.68 0.72 0.97 0.94 1.00 1.01 0.95 0.93 0.96 1.03 1.05 1.08
-0.5 0.90 0.69 0.65 0.69 0.88 0.94 1.00 1.13 0.95 0.91 0.95 1.11 1.16 1.21

0 0.91 0.68 0.65 0.68 0.87 0.93 0.98 1.20 0.90 0.86 0.90 1.15 1.22 1.29
0.5 0.94 0.69 0.66 0.69 0.88 0.94 1.01 1.17 0.93 0.89 0.92 1.11 1.17 1.23
0.9 1.13 0.94 0.90 0.92 0.99 1.01 1.05 1.01 1.04 1.03 1.05 0.98 1.01 1.05

0.95 1.04 0.96 0.93 0.95 1.01 1.00 1.02 1.04 0.95 0.92 0.95 1.01 1.00 1.02
0.99 1.06 0.97 0.94 0.97 1.05 1.02 0.99 1.06 0.99 0.96 0.99 1.05 1.02 1.00
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Table 5: Definition of the Regressors

Name Description Period Transformation

TERM Term spread (10yr T-Bond - 1yr T-bond) 1959:01 - 2009:05 lv
SP500 Stock Price Index: Standard & Poor’s 500 Composite 1959:01 - 2009:05 ∆ ln
IP Industry Production Index (SA) 1959:01 - 2009:05 ∆ ln
Emply All Employees: Total Nonfarm Payroll(SA, Thous) 1959:01 - 2009:05 ∆ ln
Exptn Consumer Expectations (Q1-66=100) 1959:01 - 2009:05 ln
PI Personal Income less Transfer Payments (SAAR) 1959:02 - 2009:05 ∆ ln
LEI Leading index, percent change from previous month 1959:02 - 2009:05 lv
Manu Real Manufacturing & Trade Inventories: All Industries (SA) 1967:02 - 2009:05 ∆ ln
Oil Crude Oil Spot Price: WTI Cushing 1982:01 - 2009:05 ∆ ln

Data Source: Federal Reserve Board and Haver Analytics.
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Table 6: RMSE Forecasting Comparison for MIDAS and State Space Model

We use a dataset with mixed frequencies: monthly and quarterly. The forecasting variable is the growth rate of real GDP from 1959Q1 to
2009Q1. Each model consists of real GDP growth and one of the monthly indicators, with the latter as observed up to the second month
of each quarter. Table 5 contains the details on the definitions and data transformations. We use the root mean squared forecasting error
(RMSE) to evaluate each models forecasting accuracy. Section 4 contains the sample configurations.

h (Quarters) 1 2 3 4 5 6 7 8

Term Spread

State Space (m0) 1.06 0.97 1.06 1.02 0.99 1.00 0.97 1.00
Regular Midas (m1) 0.82 0.81 0.85 0.80 0.85 0.78 0.81 0.83
Multiple Midas (m2) 0.80 0.84 0.84 0.81 0.85 0.78 0.87 0.86
Ratio (m0/m1) 1.29 1.19 1.25 1.28 1.16 1.29 1.20 1.21
Ratio (m0/m2) 1.33 1.16 1.26 1.26 1.16 1.28 1.12 1.17

S&P 500

State Space (m0) 0.81 0.77 0.77 0.77 0.78 0.74 0.77 0.80
Regular Midas (m1) 0.79 0.82 0.82 0.84 0.84 0.82 0.84 0.84
Multiple Midas (m2) 0.80 0.87 0.81 0.85 0.85 0.81 0.82 0.82
Ratio (m0/m1) 1.02 0.94 0.94 0.92 0.93 0.90 0.91 0.95
Ratio (m0/m2) 1.01 0.88 0.96 0.91 0.92 0.91 0.93 0.97

Industrial Production

State Space (m0) 0.75 0.76 0.81 0.81 0.80 0.75 0.77 0.81
Regular Midas (m1) 0.78 0.86 0.83 0.86 0.84 0.79 0.81 0.81
Multiple Midas (m2) 0.79 0.86 0.85 0.87 0.84 0.80 0.82 0.79
Ratio (m0/m1) 0.96 0.88 0.98 0.94 0.95 0.95 0.95 1.00
Ratio (m0/m2) 0.96 0.88 0.96 0.93 0.95 0.94 0.93 1.03

Table continued on next page ...
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Table 6 (Cont’d) RMSE Forecasting Comparison for MIDAS and State Space Model

h (Quarters) 1 2 3 4 5 6 7 8

Employment

State Space (m0) 0.72 0.81 0.84 0.85 0.88 0.79 0.81 0.84

Regular Midas (m1) 0.78 0.83 0.82 0.84 0.81 0.80 0.80 0.79

Multiple Midas (m2) 0.78 0.84 0.83 0.85 0.82 0.81 0.80 0.79

Ratio (m0/m1) 0.93 0.97 1.02 1.01 1.09 1.00 1.01 1.07

Ratio (m0/m2) 0.93 0.96 1.01 1.00 1.07 0.98 1.01 1.08

Consumer Expectations

State Space (m0) 0.96 1.02 1.07 1.06 1.09 1.07 1.07 1.07

Regular Midas (m1) 0.74 0.82 0.79 0.84 0.84 0.81 0.83 0.83

Multiple Midas (m2) 0.74 0.82 0.80 0.84 0.84 0.79 0.83 0.83

Ratio (m0/m1) 1.30 1.24 1.34 1.26 1.31 1.33 1.28 1.30

Ratio (m0/m2) 1.30 1.24 1.34 1.26 1.31 1.34 1.29 1.30

Personal Income

State Space (m0) 0.73 0.78 0.81 0.79 0.76 0.74 0.77 0.80

Regular Midas (m1) 0.87 0.98 0.84 0.87 0.82 0.84 0.84 0.81

Multiple Midas (m2) 0.94 1.00 0.92 0.91 0.82 0.85 0.89 0.84

Ratio (m0/m1) 0.84 0.79 0.96 0.91 0.93 0.89 0.93 0.99

Ratio (m0/m2) 0.78 0.77 0.87 0.87 0.93 0.87 0.87 0.95
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Table 6 (Cont’d) RMSE Forecasting Comparison for MIDAS and State Space Model

h (Quarters) 1 2 3 4 5 6 7 8

Leading Index (LEI)

State Space (m0) 0.74 0.72 0.78 0.79 0.74 0.74 0.74 0.77

Regular Midas (m1) 0.66 0.81 0.81 0.79 0.76 0.78 0.83 0.84

Multiple Midas (m2) 0.68 0.82 0.79 0.78 0.77 0.80 0.84 0.81

Ratio (m0/m1) 1.11 0.89 0.96 1.00 0.96 0.94 0.90 0.92

Ratio (m0/m2) 1.09 0.88 1.00 1.01 0.95 0.93 0.88 0.95

Manufacturing

State Space (m0) 0.90 0.88 0.88 0.86 0.80 0.81 0.84 0.87

Regular Midas (m1) 1.03 1.02 0.96 0.89 0.86 0.87 0.94 0.93

Multiple Midas (m2) 1.08 1.02 0.97 0.94 0.84 0.88 0.96 0.97

Ratio (m0/m1) 0.87 0.87 0.91 0.97 0.92 0.92 0.89 0.94

Ratio (m0/m2) 0.83 0.87 0.90 0.92 0.96 0.91 0.87 0.90

Crude Oil Price

State Space (m0) 0.69 0.65 0.68 0.67 0.70 0.70 0.80 0.89

Regular Midas (m1) 0.65 0.76 0.70 0.74 0.72 0.80 0.90 0.95

Multiple Midas (m2) 0.65 0.77 0.72 0.76 0.70 0.81 0.92 0.97

Ratio (m0/m1) 1.06 0.86 0.97 0.91 0.97 0.87 0.89 0.94

Ratio (m0/m2) 1.06 0.85 0.95 0.88 0.99 0.86 0.88 0.92
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