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Aim: We investigate the role of ethnicity and admixture in drug response across a 
broad group of chemotherapeutic drugs. Also, we generate hypotheses on the 
genetic variants driving differential drug response through multivariate genome-
wide association studies. Methods: Immortalized lymphoblastoid cell lines from 
589 individuals (Hispanic or non-Hispanic/Caucasian) were used to investigate dose-
response for 28 chemotherapeutic compounds. Univariate and multivariate statistical 
models were used to elucidate associations between genetic variants and differential 
drug response as well as the role of ethnicity in drug potency and efficacy. Results 
& Conclusion: For many drugs, the variability in drug response appears to correlate 
with self-reported race and estimates of genetic ancestry. Additionally, multivariate 
genome-wide association analyses offered interesting hypotheses governing these 
differential responses.

Keywords:  admixture • cancer • Caucasian • cytotoxicity • drug • genome-wide association 
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Pharmacogenomics research has increased 
the understanding of genetic variabil-
ity and its relationship to individual drug 
response [1]. It is well established that the 
majority of drugs/doses to combat diseases 
and disorders do not exhibit uniform effects 
for individuals. In particular, chemothera-
peutic agents often have a narrow therapeutic 
range, which blurs the line between treatment 
and inefficacy or drug-related toxicity [2,3]. 
While the interindividual variation in drug 
response is undeniable, the proportion of this 
variation that is due to genetic variation is 
an open question. With family-based design 
cohorts available, it is unusual to be able to 
formally assess the heritability of differential 
drug response [4]. Pharmacogenomics inves-
tigation often relies on indirect evidence of a 
genetic etiology, such as differential response 
in animal models, and racial differences in 
clinical o utcomes.

For antineoplastic therapies, there is clear 
evidence of racial disparities in outcome. 
While a portion of this variation is undoubt-

edly due to socioeconomic factors, studies 
with consistent and high access to therapy 
and adherence across racial and ethnic sub-
groups have also demonstrated disparate out-
comes [5]. Most pharmacogenomics studies 
of genetic determinants of cancer disparities 
have focused on racial differences – between 
subjects of African versus European ancestry. 
Genetic determinants of disparities between 
ethnicities (e.g., Hispanic versus non-His-
panic Caucasian) are less well investigated. 
One reason for this paucity is that ethnic 
groups are typically defined by common 
geography and culture rather than ancestry. 
Such groups are typically highly admixed, 
featuring recent ancestry from multiple 
continental populations. However, with the 
refinement of high-throughput genomic 
methods, the potential to understand the 
relationships between complex diseases and 
admixed populations is becoming possible.

For example, admixture mapping in Afri-
can–Americans successfully identified the 
genetic locus responsible for a form of neu-
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tropenia [6]. It has also been implicated in finding 
important variations linked to prostate cancer [7,8], 
hypertension [9] and renal disease [10]. However, highly 
admixed ethnic groups such as the Hispanic popu-
lation have offered greater challenges, despite well-
described disparities in outcome. To this point, the 
well-described [11] higher rates of relapse and poorer 
survival of Hispanic children with acute lymphoblas-
tic leukemia (ALL) have recently been linked to per-
centage of Native American ancestry using principal 
component analysis (PCA) [12]. Furthermore, genome-
wide association studies (GWASs) have linked poly-
morphisms in the ARID5B gene to both elevated risk 
of developing ALL and risk of relapse after multia-
gent chemotherapy in this population [13,14]. Despite 
these advances, whether these genetic associations are 
responsible for variations in response to particular 
antineoplastic agents remains unclear. As ALL che-
motherapy regimens typically contain seven or more 
chemotherapeutic agents, the contribution of any indi-
vidual drug to genetically determined disparities is 
unlikely to be determined in analyses of clinical trials. 
For this reason, preclinical models of genetically deter-
mined drug susceptibility are critical to inform clinical 
i nvestigations of these disparities.

While there are a number of approaches for gene 
mapping in pharmacogenomics, cell line models have 
emerged as a promising model system. As recently 
reviewed in [4], Epstein–Barr virus (EBV) immortal-
ized lymphoblastoid cell lines (LCLs) have been used 
to demonstrate the heritability of dose response [15] and 
performing association mapping for pharmacogenom-
ics [16,17] and toxicogenomics [18]. Additionally, the 
association mapping results can be functionally tested 
using knock-down experiments [19,20] or candidate gene 
analyses in clinical outcomes [21,22].

In the current study, we use cytotoxicity dose-
response data on 28 anticancer therapeutic agents 
with samples from two distinct cohorts (Hispanic and 
non-Hispanic Caucasian) to enable understanding of 
two questions: are there global differences in cytotoxic 
response between the two ethnically-different cohorts 
at a high level? Are these ethnic differences robust at 
finer levels of stratification? Additionally, we used 
genome-wide association mapping to look for genetic 
variants that are associated with dose response – both in 
the Hispanic cohort and in a joint analysis c ombining 
the Hispanic and non-Hispanic Caucasian cohorts.

Materials & methods
Study subjects
Genotype data and drug response phenotypes were col-
lected from two sources: (i) non-Hispanic Caucasian 
patients from the Pharmacogenomics and Risk of Car-

diovascular Disease clinical trial study at the Children’s 
Hospital of Oakland Research Institute (CHORI) 
at Oak Ridge [17] and (ii) Hispanic Mexican–Ameri-
can individuals from the Human Variation Panel 
(HVP) of the International HapMap consortium [23]. 
For (i), genotype data were collected for each of the 
500 patients using one of two technologies – 314,621 
or 620,901 markers using HumanHap300 BeadChip 
or HumanQuad610 BeadChip platforms, respectively, 
as previously described in detail in [17]. The phenotypic 
data on dose-dependent, drug-induced cytotoxicity 
was measured in LCLs derived from each subject. For 
(ii), genotype data was collected on 909,623 SNPs 
from 400 individuals (167 males, 233 females) across 
four self-reported populations: African–Americans 
in North America (n = 100), Caucasians in North 
America (n = 100), Han Chinese in Los Angeles (n 
= 100) and Mexicans in Los Angeles (n = 100). Of 
the 100 Mexican individuals, phenotypic data on dose-
dependent, drug-induced cytotoxicity was measured in 
LCLs derived from 93 of those individuals.

Genotyping & quality controls
Genotyping data collection and quality control (QC) 
from the CHORI dataset was described previously 
elsewhere [17]. Identical QC methods were applied to 
the HVP in order to facilitate comparison of the two 
distinct cohorts as well as subsequent combined analy-
ses for association mapping. These data were processed 
using the PLINK software package v1.07 [24]. Markers 
were excluded for the following conditions: significant 
deviation from Hardy–Weinberg equilibrium (HWE) 
via exact tests (α <10-5), small minor allele frequen-
cies (MAF <5%), missing data per individual (>5%) 
or missing data per SNP (>5%). Subsequently, for 
HVP, 32,697 markers were excluded by the HWE 
filter, 151,925 markers were excluded for low MAF, 
28,658 markers were excluded from SNP missing-
ness and 0 individuals were excluded for missingness. 
Additionally, mitochondrial, X, Y and unknown chro-
mosome markers were dropped from analysis. After 
pruning, there were 167 males and 233 females with 
genotype information for 677,966 SNPs for the HVP 
dataset.

Next, we removed all samples from HVP except 
those with phenotypic data. The remaining 93 indi-
viduals all reported Hispanic (Mexican) ethnicity. To 
evaluate cryptic relatedness, identity by state/identity 
by descent (IBS/IBD) and inbreeding coefficients esti-
mates were calculated with PLINK. To assess popula-
tion stratification, PCA was performed with Eigenstrat 
via smartpca v8000 [25]. Four individuals were iden-
tified as potentially related, and were removed from 
the dataset to prevent confounding. Two samples were 
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Figure 1. Evaluation of genetic ancestry. Unsupervised analysis performed with ADMIXTURE across the entire set 
of individuals for 202 Ancestral Informative Markers. The results are split up into one plot per self-reported group. 
Red indicates African ancestry, blue indicates Asian ancestry, green indicates Caucasian ancestry and yellow 
indicates Native American ancestry.
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identified as outliers in PC3, and they were flagged and 
removed due to high P(IBD = 1) = 0.2759. An addi-
tional sample was flagged and removed as an outlier in 
PC2. Finally, another sample was flagged and removed 
for having both a high inbreeding coefficient and a 
high P (IBD = 1). Ultimately, 89 samples from HVP/
Hispanic ethnicity and 500 samples from CHORI/
non-Hispanic Caucasian ethnicity passed genotypic 
QC.

Phenotyping & QC
Epstein–Barr virus immortalized LCLs were obtained 
from two sources: 93 HVP commercially available cell 
lines from Coriell Cell Repositories (NJ, USA) and 
500 CHORI cell lines were the generous gift from 
the lab of Ronald Krauss at CHORI. Dose-dependent 
cytotoxicity data were collected across 28 drugs for 
each cell line. The study design and QC pipeline for 
the CHORI phenotypic data were described elsewhere 
in detail [17]. We will summarize the phenotyping and 
QC methods for the 93 HVP samples, and refer the 
reader to [17] for specific details on CHORI.

All LCLs were cultured in RPMI medium 1640 
containing 2 mM L-glutamine (Gibco, Life Technolo-
gies, NY, USA) and 15% fetal bovine serum (Sigma-

Aldrich Corp, MO, USA) at 37°C, 5% CO
2
. There 

were no media antibiotics used. Using 384 well plates, 
individual cell lines were seeded with approximately 
4000 cells/well. Moreover, each 384 well plate con-
tained LCLs from a single individual cell line. Two 
plate formats were used to capture six concentrations 
for each of the 28 drugs with replication; 14 drugs on 
the first plate format and 14 drugs on the second plate 
format. The list of drugs and concentrations is summa-
rized in Supplementary Table 1. In order to assess the 
interplate reproducibility and variability, each sample 
was assayed on the first and second plate formats twice 
with each replicate plate corresponding to a different 
laboratory day.

Each plate includes controls for background noise 
and drug solvation effects. Background noise was 
estimated from viability measurements for the LCLs 
treated with a lethal dose of 10% DMSO. The drug 
solvation effects were determined by the reduction in 
cell viability due to the treatment with drug solvent 
(DMSO, in low dosage). A series of viability readings 
were used for LCLs exposed (only) to DMSO at dif-
ferent concentrations: 0% (H

2
0), 0.01, 0.1, 1 and 2% 

DMSO. Every exposure scenario (for all controls and 
drug concentrations) for each plate were performed 
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Figure 2. Manhattan plots of 28 chemotherapeutics for hispanic analysis. Manhattan plots are provided for each drug showing the 
-log10(p) for every SNP. The different chromosomes are represented by alternating colors. Any SNPs with -log10 (p-value) >6 are 
indicated with red vertical lines. For these analyses, the Human Variation Panel dataset was used. Each plot corresponds to a drug in 
the following way: (A) arsenic trioxide, (B) azacitidine, (C) carboplatin, (D) cladribine, (E) cytarabine, (F) dasatinib, (G) daunorubicin, 
(H) docetaxel, (I) doxorubicin, (J) epirubicin, (K) etoposide, (L) 5-fluorouracil, (M) floxuridine, (N) fludarabine, (O) gemcitabine, 
(P) hydroxyurea, (Q) idarubicin, (R) mitomycin, (S) mitoxantrone, (T) oxaliplatin, (U) paclitaxel, (V) sunitinib, (W) temozolomide, 
(X) teniposide, (Y) topotecan, (Z) vinblastine, (AA) vincristine, (AB) vinorelbine. For plots V–AB, see facing page.
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in 2 × 2 quadruplicates. These quadruplicates were 
used to assess intraplate variability and reproducibility. 
Handling of the resulting 71,424 wells was automated 
using a Tecan Freedom EVO150 (Tecan Group Ltd, 
Seestrasse, Switzerland) with a 96 head MCA. Each 
plate was incubated for 72 h before the addition of 
Alamar Blue (Biosource International, Camarillo Cali-
fornia) and incubated another 18 h after exposure to 
Alamar Blue. After the incubation phase, plates were 
read on an Infinite F200 microplate reader with Con-
nect Stacker (Tecan Group Ltd) and iControl soft-
ware (Version 1.6) was used to measure fluorescence 
intensity at EX535nm and EM595nm. The result-
ing relative fluorescence units are proportional to the 
c oncentration of living cells in each well.

Statistical analysis
Associating ancestry/ethnicity with drug response
Univariate and multivariate methods were used to 
investigate the relationship between reported ethnic-
ity or estimated genetic ancestry and drug response. 
In univariate approaches, multivariate dose response 
data are typically fit to a nonlinear model (e.g., a 
hill function) and a summary metric is used to sum-
marize the behavior of the curve – for example, the 
potency (AC50: concentration at which 50% of the 
overall response occurs) or efficacy (Emax: maximum 
response recorded). This has been a commonly used 
approach in LCL studies in pharmacogenomics [26–29].

Prior to the univariate analysis, the concentration 
response data for each individual were fit to a four 
parameter hill model using nonlinear least squares 
in the R statistical language. For each individual and 
drug combination, we used the mean across replicates 
at each concentration and fit the model across all six 
concentrations. Then, summary metrics for each indi-

vidual and drug combination was extracted from the 
curve fit, the AC50, which provided a measure to test 
for univariate associations.

An analysis of covariance (ANCOVA) model was 
used to determine the relationship between self-reported 
race and drug potency (AC50 values for each individual 
per drug). Next, a multivariate analysis of covariance 
(MANCOVA) model was used to determine the rela-
tionship between self-reported race and the full matrix 
of drug concentration-response profiles. The model 
covariates for both modeling implementations included 
cellular growth rate, experimental date and time. These 
covariates were selected after extensive covariate analy-
sis [17]. Hence, the same covariates were used in the cur-
rent paper and the original CHORI cohort analysis.

Next, admixture refinement was performed on 
the dataset in an attempt to tease apart the amount 
of Native American ancestry per individual. Prior to 
this analysis, HapMap data were added for two global 
populations, YRI (African) and JPT (Asian) in order 
to increase the power to differentiate between Native 
American ancestry and Asian or African ancestry. 
Using a set of 446 Ancestral Informative Markers 
(AIMs) [30] (See Supplementary Table 2) which were 
effective in differentiating the amount of Native Amer-
ican ancestry in the populations, we filtered the four 
genotypic datasets (CHORI, HVP, CHB, YRI) down 
to the intersection of directly genotyped data avail-
able. The result was 205 AIMs across all populations. 
Admixture refinement was performed on this subset 
of genetic markers using the structure-based method 
in ADMIXTURE [31]. We used cross-validation on 
1 ≤ K ≤ 5 to determine the best choice for clustering 
these groups by genetic ancestry. The results indicated 
that cross-validation error was least pronounced by a 
selection of K = 4, which corroborates the expectation 
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of ancestral estimates featuring three global and one 
admixture clusters from these four datasets. An unsu-
pervised analysis was performed with K = 4 groups 
to distinguish the three global populations from the 
admixture ancestry. Last, univariate and multivariate 
models were implemented as described above, replac-
ing self-reported ethnicity with the estimates of Native 
American ancestry per individual. The analyses were 
performed on the entire, combined dataset as well as 
stratified analyses of each each cohort individually.

Genome-wide association mapping
Genome-wide association analyses were performed for 
each of the 28 drugs for the HVP Mexican samples 
using the MAGWAS package [32]. Briefly, the approach 
uses a MANCOVA design to find associations. The 
rationale for this statistical approach is that modeling 
the vector of normalized responses jointly captures the 
concentration response relationship better than the 
univariate association methods relying on summary 
metrics like potency or efficacy obtained via fitted hill 
function parameters [32].

Joint multivariate GWASs were performed on the 
combined datasets of CHORI and HVP for each of 
the 28 drugs with MAGWAS. The genotypic data 
were combined using PLINK. After filtering for minor 
allele frequency and missingness by SNP(s), there were 
519,094 genetic markers for analysis. Imputation was 
considered for combining across the two datasets, 
however, confounding from imputation with multiple 
genotyping platforms (with differential coverage) and 
from different racial subpopulations limited the valid-
ity of this approach. Confounding from imputation 
across different genotyping platforms was prevented 
by using only directly genotyped variants. The phe-
notypic data across all concentrations as well as covari-
ates (cellular growth rate, experimental date and time) 
were merged. PCA via Eigenstrat was recalculated on 

the combined set of genotype data and the first three 
PCs were selected for covariates to account for popula-
tion stratification between Caucasians and Hispanics 
as well as capturing batch effects as described in [17].

Results
Associating race/ethnicity with drug response
The results of the univariate and multivariate 
models showed there are significant variations in 
drug response across the vast majority of drugs 
tested (Supplementary Table 3) in relation to self-reported 
race. For the interested reader, we provide some descrip-
tive statistics on the AC50s (Supplementary Table 4) 
for each self-reported race. The results of the ADMIX-
TURE model estimates for the four populations are 
illustrated in Figure 1. While the data was pooled across 
all samples/populations for admixture refinement, the 
results are presented in four distinct stacked bar plots 
(per self-reported race) in order to easily verify the dif-
ferences in genetic ancestry per group. Each individ-
ual is represented (along the x-axis) by a stacked bar 
of the percentage genetic ancestry to each of the four 
clusters. The yellow cluster, Q2, indicates the amount 
of Native American ancestry, since it is not present in 
the African population, and minimally represented in 
the Caucasian and Asian populations. Using the val-
ues from the Q2 group, these admixture results were 
modeled with ANCOVA and MANCOVA across all 
individual drug responses. The results strongly indicate 
(Supplementary Table 5) that variation in drug response 
correlates with Native American ancestry – so admix-
ture at an individual level is strongly associated with 
differential dose response. Notably, for stratified analy-
ses (HVP only or CHORI only), the multivariate and 
univariate analysis of covariance models showed only 
a small subset of drugs correlating variation in drug 
response with Native American ancestry estimates 
(S upplementary Table 6). 

Table 1. Peak associations by SNP and gene for Human Variation Panel-only analysis.

Drug name RSID Chromosome Gene -log10(p)

Arsenic trioxide rs6544994 2 KCNK12 6.7

Dasatinib rs831612 11 C11orf91 6.4

Doxorubicin rs2072167 7 ETV1 6.94

Etoposide rs9657904 3 CBLB 6.04

Fludarabine rs7827050 8 None 6.15

Hydoxyurea rs6696562 1 FRRS1†/AGL† 6.11

Temozolomide rs503660 10 MGMT 7.02

Teniposide rs11128244 3 LINC00877 6.5

Vincristine rs12749135 1 WNT4† 6.26
†Within 100 kbp upstream of a gene encoding region.
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Genome-wide association mapping
While the overall impact of ancestral differences may 
illustrate differences in drug disposition across broad 
populations, these associations do not elucidate the 
genes that are associated with differential response. 
The results of 28 HVP GWAS (one for each drug) are 
represented in Figure 2. We further investigated SNPs 
with suggestive associations (p < 10-6) or genome-
wide significance (p < 10-8), and we report on the top 
associated SNPs for those regions. In all, there were 
nine peak SNP associations across nine drugs which 
are summarized in Table 1. Of these associated SNPs, 
six are located within a gene encoding region, and two 
additional SNPs are located within 100 kbp of a gene 
encoding region. The multivariate GWAS results of 
the stratified analyses, performed on the merged data 
(589 samples), are summarized in Table 2, where we 
report the peak associations for each drug. There were 
16 peak associations across 11 drugs. Of these SNPs, 
11 are located within a gene encoding region and three 
more SNPs were located within 100 kbp of a gene 
encoding region. Additionally, the results of the 28 
combined data analyses are illustrated as manhattan 
plots in Figure 3.

In Figure 4, we show the combined analyses across all 
84 GWAS – 56 performed in the current study along 
with the results from the CHORI only analysis [17]. 
The plot was generated using Synthesis-View [33]. N.B., 

in the Figure 4, a few SNPs are labeled as suggestive 
in CHORI and/or combined but missing in the HVP 
study. Those SNPs were dropped in a post hoc filter-
ing; we do not report on association results where the 
SNP has ≤0.04% rate for any one genotype (aa, Aa, 
AA), since this study was not powered for rare variant 
analysis.

Discussion
For this work, we explored the genetic underpinnings 
of cytotoxic responses for 28 chemotherapeutic drugs 
in 589 individual LCLs representing two distinct sub-
populations: Hispanic (Mexican) and non-Hispanic/
Caucasian. We performed multiple analyses to deter-
mine the role of self-reported race and genetic ancestry 
estimates in relation to variations in drug responses. 
Furthermore, we performed 56 GWASs: 28 analyses 
involving HVP only samples and 28 analyses spanning 
HVP/Hispanic and CHORI/non-Hispanic Caucasian 
samples.

Disease progression and response to medication is 
believed to be at least partially determined by genetic 
factors such as race or ancestry. Indeed, we have shown 
significant variations in drug responses and self-
reported race as well as significant variability between 
drug responses and genetic ancestry estimates. We 
employed two statistical methodologies to identify this 
connection for 28 chemotherapeutic agents. Interest-

Table 2. Peak associations by SNP and gene for Human Variation Panel and Children’s Hospital of 
Oakland Research Institute combined analysis.

Drug name RSID Chromosome Gene -log10(p)

Azacitidine rs795118 4 None 6.13

Carboplatin rs9819958 3 LOC646168‡/GOLIM4‡ 6.52

Carboplatin rs522134 11 VPS26B 6.38

Daunorubicin rs4793487 17 SLC39A11 6.21

Docetaxel rs237617 9 OR1L1 6.31

Doxorubicin rs17364596 2 FSTL4† 6.18

Doxorubicin rs6596147 5 NOL10†/ATP6V1C2† 6.03

5-Fluorouracil rs8039721 15 MEGF11 6.87

Idarubicin rs7582313 2 None 7.02

Mitomycin rs10500551 16 NFAT5 7.43

Mitomycin rs1800566 16 NQO1 6.55

Mitomycin rs12596679 16 WWP2 7.03

Oxaliplatin rs10092265 8 CSMD1 6.22

Oxaliplatin rs10821910 10 C10orf107 6.08

Paclitaxel rs2663711 4 SPATA5 7.26

Temozolomide rs4751099 10 MGMT 15.95
†Within 100 kbp upstream of a gene encoding region.
‡Within 100 kbp down-steam of a gene encoding region.
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Figure 3. Manhattan plots of 28 chemotherapeutics for combined data analysis (see facing page). Manhattan 
plots are provided for each drug showing the -log10(p) for every SNP. The different chromosomes are represented 
by alternating colors. Any SNPs with -log10 (p-value) >6 are indicated with red vertical lines. For these analyses, 
the combined data (CHORI and HVP) were used. Each plot corresponds to a drug in the following way: (A) arsenic 
trioxide, (B) azacitidine, (C) carboplatin, (D) cladribine, (E) cytarabine, (F) dasatinib, (G) daunorubicin, 
(H) docetaxel, (I) doxorubicin, (J) epirubicin, (K) etoposide, (L) 5-fluorouracil, (M) floxuridine, (N) fludarabine, 
(O) gemcitabine, (P) hydroxyurea, (Q) idarubicin, (R) mitomycin, (S) mitoxantrone, (T) oxaliplatin, (U) paclitaxel, 
(V) sunitinib, (W) temozolomide, (X) teniposide, (Y) topotecan, (Z) vinblastine, (AA) vincristine, (AB) vinorelbine. 
HVP: Human variation panel.
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ingly, there were several antineoplastic agents which 
failed to produce significant results in the ANCOVA 
model testing self-reported race (cytarabine, dasatinib, 
fludarabine, oxaliplatin, sunitinub and temozolomide) 
or genetic admixture (same group sans cytarabine) for 
variations in drug response. Yet, every drug exhibited 
significant results rejecting the null hypothesis in the 
multivariate analyses for self-reported race and genetic 
admixture. Additionally, when we ran MANCOVA 
and ANCOVA models of admixture and drug response 
on HVP or CHORI cohorts alone, we saw only a hand-
ful of drugs correlating variation with ancestry. More-
over, while self-reported race and estimated ancestry 
correlate with variations in drug response on the com-
bined data across most of the drugs, these results are not 
reproduced exactly on the stratified datasets. This could 
be due to the fact that the number of samples is signifi-
cantly reduced when testing the admixed population 
on its own. Additionally, the dynamic range of ances-
try is significantly reduced when testing the H ispanic 
p opulation and non-Hispanic populations alone.

In the multivariate models, the entire concentration 
response is utilized (using the same samples and covari-
ates as the univariate models), whereas the univariate 
model carries the intrinsic assumption that concentra-
tion response relationships are sufficiently captured 
with a single value summarizing the individual curves 
(in this case, the IC50 value). However, the variability 
in concentration response might be better identified 
using a different metric for certain drugs (e.g., efficacy/
Emax values). Also, the choice of curve fitting param-
eterization methods can have a significant impact on 
univariate models. Given the assumptions that genetic 
ancestry inherently plays a role in variations in com-
plex phenotypes/diseases and IC50/potency will not 
always sufficiently elucidate important variability in 
drug response across different individuals, our results 
from the multivariate analyses show that, across these 
28 drugs, variation in cytoxicity from treatment 
appears to be related to the genetic ancestry and self-
reported race of Caucasian and Hispanic individuals.

Leveraging the data from CHORI [17], we were 
able to perform 56 independent GWAS representing 
analyses of the HVP group of individuals across 28 
chemotherapeutic agents and combined analyses of 
the HVP and CHORI cohorts. There were a number 

of interesting association results. Although the HVP 
cohort was not very large by GWAS standards, nine 
of the 28 drugs had at least one suggestive associa-
tion (-log(p-value) >6). Six of nine of the suggestive 
associations were for SNPs identified in gene encoding 
regions (Table 1). For the three remaining SNPs, two 
were within 100 kbp of a gene encoding region.

For the drug arsenic trioxide, the HVP-only GWAS 
found a suggestive association for the SNP, rs6544994. 
This particular SNP was not present on the genotyp-
ing platforms for CHORI. As such, there was no way 
to test for suggestive at this location for the CHORI 
or combined analyses. The SNP is located in the gene 
encoding region for KCNK12. The protein encoded 
by KCNK12 is involved in pore formation for potas-
sium channels. It has been shown to be relevant to 
neurological disorder predisposition in Hispanic and 
other populations. It is unclear or even unlikely that 
KCNK12 plays a direct role in arsenic trioxide induced 
cytotoxicity in LCLs. However, at least one SNP from 
KCNK12 is highly associated with the MSH2 gene 
in LCLs (in particular with HapMap MEX popula-
tions) [34]. MSH2, an important gene in DNA mis-
match repair, modulates apoptosis – which is one of 
the pathways implicated in the mechanism of action 
for arsenic trioxides [35].

Three suggestive associations were discovered for the 
drug doxorubicin: two from the combined analysis and 
one from the HVP analysis. For the HVP analysis, the 
SNP rs2072167 was suggestively associated. The SNP 
is located within the gene encoding region for ETV1. 
This gene is part of the ETS family of transcription 
regulators, which activate or repress genes in a vari-
ety of processes – including cell proliferation, differ-
entiation and apoptosis – and might be important for 
some tumorigenesis [36]. In the combined analysis, the 
two SNPs most suggestive association results were for 
rs17364596 and rs6596147. These SNPs failed to reach 
suggestive level significance in the CHORI analysis 
alone, and they were dropped from the HVP analy-
sis due to insufficient genotypes for the homozygous 
dominant alleles. The SNP rs17364596 is upstream 
from ATP6V1C2 and NOL10 while rs6596147 is 
upstream from FSTL4.

Another intriguing finding occurred in the HVP 
analysis for the drug etoposide. The peak suggestive 
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Figure 4. Strongest associations by SNP and cohort. All significant (-log10(p)>6) associations across 84 genome-wide association 
analyses (i.e., 28 HVP only, 28 CHORI only, and 28 combined analyses). The SNPs are colored by the association drug family. The human 
genome build hg19 was used for SNP location information.
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association for SNP rs9657904 was unavailable for 
the CHORI or combined analysis, since it was not 
genotyped with the technology available to CHORI. 
The SNP is located on chromosome 3 in the region 
encoding for CBLB. This protein affects a wide variety 
of signaling pathways, as it is generally an important 
component for signal transduction. Furthermore, the 
protein encoded by CBLB is a negative regulator of 
the PI3K/Akt pathways, a survival pathway linked to 
c hemotherapy resistance [37].

Notably, for the drug temozolomide, there were 
highly significant associations (p < 10-15) across all 
three analyses (HVP, CHORI and combined) occur-
ring in the gene encoding region for MGMT, a gene 
whose expression is well known to be inversely asso-
ciated with clinical response to temozolomide [38]. 
This particular association result has been followed 
up, and differential gene expression correlated sig-
nificantly with the primary SNP in this region [39]. 
The fact that the current study was able to indepen-
dently confirm and recapitulate this association result 
in both the HVP only and combined analyses is an 
important finding, furthering the credibility of the 
LCL model system and MAGWAS package for find-
ing clinically relevant genetic variants across different 
ethnicities.

A surprising result occurred with the drug mitomy-
cin. Both the HVP and CHORI analyses alone did 
not produce any suggestive associations. However, the 
combined analysis showed a peak significant associa-
tion at rs10500551 (p < 10-8). The SNP are found in 

the region encoding the NFAT5 gene. NFAT5 depen-
dent gene regulation has a profound role in osmotic 
stress response [40]. Osmotic pressure has been shown to 
play a role in the uptake of chemotherapeutic agents in 
vitro [41]. This is a potentially interesting finding which 
warrants further investigation. Additionally, two more 
peak associations for SNPs were shown to be suggestive, 
one found in the region encoding for NQ01 (relevant 
in oxidative stress) and the other found in the region 
encoding for WWP2 (relevant in the TGF-B pathway). 
The NQ01 association is particularly interesting given 
the clinical significance of this gene for mitomycin 
treatment outcomes [42].

While these results are promising, they should be 
viewed as hypothesis generation. The exception is temo-
zolomide; the strong association result on temozolomide 
from CHORI was followed through with an analysis of 
gene expression correlations with genetic variation on 
MGMT markers [39]. To understand the implications of 
the other results reported herein, additional follow up 
experiments are required. Additionally, it is important to 
note that while LCLs have proven to be a useful model 
system, they are not without limitations. For example, 
LCLs do not express certain proteins implicated in drug 
metabolism – for example, cytochrome P450s – as such, 
they cannot predict cytotoxicity profiles from reactive 
metabolites of many drugs. Furthermore, the nature 
and conditions for in vitro assays (e.g., number of pas-
sages) can potentially lead to genotypic and phenotypic 
changes that modify the model’s response to drugs or 
other stimuli [43].
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Conclusion
There is considerable interest in understanding the 
relationship between ethnicity and drug response 
outcomes. We generated data and analyses that 
address this complex relationship. Using self-reported 
race and estimations of admixture, we have shown 
strong associations between ethnic differences and 
drug response. Additionally, we have used the LCL 
model to performed 56 multivariate GWASs, which 
offers hypotheses on the genetic differences under-
lying changes in concentration response seen across 
Hispanic and non-Hispanic samples. These findings 
warrant further investigation to ascertain the poten-

tial clinical relevance of the genes implicated in our 
results.
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Executive summary

•	 High-throughput data capturing cell viability measurements in vitro for 28 chemotherapeutic drugs at six 
different concentrations per drug using lymphoblastoid cell lines from 589 individuals.

•	 Genetic ancestry estimated for each sample to gauge the level of admixture across these individuals from two 
distinct racial groups (Hispanic and Caucasian).

•	 Analysis of variance and multivariate analysis of variance models suggest significant differences across 
28 chemotherapeutic agents by self-reported ethnicity.

•	 Significant variation in drug response exists across individuals from different subpopulations based on 
estimates of Native American ancestry.

•	 In total, 56 multivariate genome-wide association analyses were performed which includes 28 Hispanic only 
analyses and 28 stratified (Hispanic and non-Hispanic Caucasian).

•	 Hispanic and non-Hispanic Caucasian samples exhibit unique association results indicating complex 
relationship between genome and drug response and treatment outcomes.

•	 Recapitulation of known variants strongly associated with drug response of temozolomide in two distinct 
populations of very different genetic ancestry.

•	 Significant associations between polymorphisms and drug response in a lymphoblastoid cell line model from 
multivariate genome-wide association study were found for nine of 28 chemotherapeutic agents among the 
Hispanic cohort.

•	 Significant associations between polymorphisms and drug response in a lymphoblastoid cell line model from 
multivariate GWAS were found for 11 of 28 chemotherapeutic agents for the combined Hispanic and non-
Hispanic dataset.

•	 Combined association analysis spanning Hispanic and non-Hispanic Caucasian cohorts suggests significant 
genetic variants of interest for certain chemotherapeutic drugs where independent stratified analyses lacked 
strong associations.
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