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tIn re
ent years, a very large literature has built up on the human health e�e
ts ofair pollution. Many studies have been based on time series analyses in whi
h daily mor-tality 
ounts, or some other measure su
h as hospital admissions, have been de
omposedthrough regression analysis into 
ontributions based on long-term trend and seasonality,meteorologi
al e�e
ts, and air pollution. There has been a parti
ular fo
us on parti
ulateair pollution represented by PM10 (parti
ulate matter of aerodynami
 diameter 10 �mor less), though in re
ent years more attention has been given to very small parti
les ofdiameter 2.5�m or less. Most of the existing data studies, however, are based on PM10be
ause of the wide availability of monitoring data for this variable. The persisten
e ofthe resulting e�e
ts a
ross many di�erent studies is widely 
ited as eviden
e that this isnot mere statisti
al asso
iation but indeed establishes a 
ausal relationship. These stud-ies have been 
ited by the United States Environmental Prote
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National Ambient Air Quality Standard (NAAQS), whi
h is the basis for air pollutionregulation in the United States.The purpose of the present paper is to propose a systemati
 approa
h to the regressionanalyses that are 
entral to this kind of resear
h. We argue that the results may dependon a number of ad ho
 features of the analysis, in
luding whi
h meteorologi
al variablesto adjust for, and the manner in whi
h di�erent lagged values of parti
ulate matter are
ombined into a single \exposure measure". We also examine the question of whether thee�e
ts are linear or nonlinear, with parti
ular attention to the possibility of a \thresholde�e
t", i.e. that signi�
ant e�e
ts o

ur only above some threshold.These points are illustrated with a data set from Birmingham, Alabama, �rst 
itedby S
hwartz (1993) and sin
e extensively re-analyzed. For this data set, we �nd that theresults are sensitive to whether humidity is in
luded along with temperature as a meteo-rologi
al variable, and to the de�nition of the exposure measure. We also �nd eviden
e ofa threshold e�e
t, with the greatest in
rease in mortality o

uring above 50 �g/m3, whi
his the long-term average level permitted by the 
urrent NAAQS. Thus, on the basis of thisdata set, the need for a tighter NAAQS is not established.Although this parti
ular analysis is fo
ussed just on one data set, the issues it raisesare typi
al in this area of resear
h. We do not dispute that there is a reasonable level ofeviden
e linking atmospheri
 parti
ulate matter with adverse health out
omes even withinthe levels permitted by 
urrent regulations. However, the impression has been 
reatedby some of the published literature that su
h asso
iations are overwhelmingly supportedby epidemiologi
al resear
h. Our viewpoint is that the statisti
al analyses allow di�erentinterpretations, and that the 
ase for tighter regulations 
annot be based solely on studiesof this nature.Keywords. Generalized additive modeling, linear regression, model sele
tion,PM10, Poisson regression, threshold e�e
ts, 
ubi
 splines.1 BACKGROUNDA major fo
us of air pollution resear
h in re
ent years has been the health e�e
ts ofsmall parti
les in the atmosphere, PM10 or PM2:5. The epidemiologi
al eviden
e 
omesfrom two kinds of studies: time series studies and prospe
tive studies. Prospe
tive studies,the best known of whi
h are the Harvard six-
ities study (Do
kery et al. 1993), the Amer-i
an Can
er So
iety study (Pope et al. 1995b) and the Adventist Health Study (Abbeyet al. 1999), follow a �xed group of individuals over a long time span, monitoring healthindi
ators (primarily, date of death) as a fun
tion of lifestyle fa
tors su
h as smoking, andexposure to air pollution as derived from ambient monitoring stations in ea
h of the 
ities
overed by the study. Time series studies, in 
ontrast, are usually 
on
entrated withina single 
ity, fo
us on a parti
ular health out
ome (e.g. daily deaths from nona

idental
auses among the population aged 65 and over), and are based on identifying asso
iations2



between short-term 
u
tuations in the health out
ome with 
orresponding short-term 
u
-tuations in the pollutant of interest. Be
ause the data are typi
ally derived from publi
data sour
es, there have been many more studies of the time series type than of theprospe
tive type, and an impression has been built up in some of the literature that theweight of eviden
e is overwhelmingly in favor of 
ausal relationships. For example, Popeet al. (1995a) reviewed around 80 published papers, most published within the de
ade1985{1995, most 
on
erned with levels of pollution whi
h are 
ommon in modern 
itiesin developed 
ountries, and whi
h showed an asso
iation between parti
ulate air pollutionand a very wide range of health out
omes. For the present paper, we 
onsider only timeseries studies; the prospe
tive studies whi
h have been published raise numerous questionsof their own, but these are quite di�erent from the questions 
onsidered here.The statisti
al methods used in time series studies typi
ally involve linear or Poissonregression, with 
ovariates based on long-term trend and seasonality, meteorology, andparti
ulate and other ambient air pollutants. The methods are des
ribed in more detail inse
tion 3. The overall 
avor of most of the results is that after allowing for possible 
on-founders as represented by the trend, seasonal and meteorologi
al variables, there remainsa 
lear statisti
ally signi�
ant signal based on parti
ulate air pollution. Nevertheless, someauthors, in
luding Styer et al. (1995), have drawn attention to possible in
onsisten
ies inthese results.The purpose of the present paper is to examine these kinds of methods in relation toone parti
ular data set, from Birmingham, Alabama. This 
ity was studied for mortality byS
hwartz (1993) and for hospital admissions by S
hwartz (1994). These studies were basedon Poisson regression models with 
ovariates allowing for seasonal trends, meteorologyand PM10, and found a statisti
ally signi�
ant e�e
t due to PM10. The mortality studywas repeated by Samet et al. (1995), who developed new estimators and 
omputationalalgorithms for �tting the models, but who adopted the same data and models as S
hwartz.They essentially 
on�rmed the numeri
al 
orre
tness of S
hwartz's results, but they didnot 
onsider the e�e
t of alternative modeling strategies.Another study of Birmingham data, over a largely di�erent time period, was by Rothand Li (1996). They 
olle
ted data on mortality and morbidity, PM10 and other pollutants(O3, SO2, CO). They �tted a wide variety of models based on di�erent ways of handlingthe trend/seasonal and meteorologi
al fa
tors, di�erent exposure measures for PM10 (e.g.one-day readings over various lags, three-day averages, et
.) and di�erent 
ombinations ofpollutants. With mortality as response, they �tted 2,400 di�erent models of whi
h onlyseven showed statisti
ally signi�
ant PM10 
oeÆ
ients, and three of these were negative.It is not 
lear exa
tly what this kind of 
omparison means sin
e many of the models being
ompared are very similar, so the results will be highly 
orrelated. Moreover, Roth and Lidid not make any attempt to identify a \best" model in any sense. Nevertheless, the resultunderlines the sensitivity of 
laims of statisti
al signi�
an
e to model sele
tion. Theyalso found substantial variation of the PM10 
oeÆ
ients from year to year. Putting alltheir results together, Roth and Li 
laimed that there was no eviden
e of any relationshipbetween parti
ulates and mortality in Birmingham.3



The paper by Roth and Li helped draw our attention to the importan
e of di�erentexposure measures of PM10, a theme whi
h is developed at some length later in se
tions3 and 5. Apart from that, the results of the present paper have been derived entirelyindependently of Roth and Li.We should also draw attention to the very re
ent study by Clyde (2000), whi
h usedBayesian model averaging te
hniques to form an independent view of some of the issuesdis
ussed in the present paper.For the present study, we have re
onstru
ted the data from their original sour
es,and have developed independent methods of analysis. We fo
us parti
ularly on the e�e
tsof model sele
tion, di�erent exposure measures, and on possible nonlinear relationshipsbetween parti
ulates and mortality.2 BIRMINGHAM DATATo 
onstru
t a data set for this problem, three sour
es have to be 
ombined: mortality,meteorology and PM10. The limitations of the present data set are mainly di
tated by theavailability of PM10 data.2.1. PM10 dataThe sampling period is January 1, 1985 through De
ember 31, 1988, the same as inS
hwartz (1993). During this period, PM10 data are available from the USEPA's aero-metri
 data base for 13 monitors in or near the 
ity of Birmingham. The 13 monitors donot ne
essarily represent di�erent lo
ations: when the type of monitor or the method ofmeasurement 
hanges, this is treated as if it were a di�erent monitor.For the �rst seven months of 1985, data from three monitors are available, but theyare only 
olle
ted every six days (the same sampling days for ea
h monitor). Data of thisnature are of limited use for studying daily mortality e�e
ts. However, from August 1985onwards, there was usually at least one monitor 
olle
ting daily data, though not withoutsome missing values.A number of exposure measures have been used in previous studies. By an exposuremeasure we mean some fun
tion of present and previous days' pollution levels whi
h istaken as an independent variable in the regression analyses. For example S
hwartz andDo
kery (1992a) used the average of 
urrent day's and previous day's TSP (total suspe
-nded parti
ulates, the older measure of parti
les before PM10 be
ame standard); S
hwartzand Do
kery (1992b) used just the previous day's TSP; Pope et al. (1992) used �ve-dayaverages of PM10, and Styer et al. (1995) used three-day averages in
luding the 
urrentday. For Birmingham, S
hwartz (1993) used three-day averages of PM10 ex
luding the
urrent day, i.e. today's exposure measure 
onsists of the average PM10 for yesterday,the day before yesterday, and the day before that. As will be seen, the results are highly4



sensitive to the 
hoi
e of exposure measure, and in se
tion 3 we 
onsider the impli
ationsof this for our overall s
ienti�
 assessment of the results.One point, that 
ame to light well after our initial work on the Birmingham data setwas 
ompleted, is that not all of the PM10 monitors are equally relevant to the study ofmortality in Birmingham. Clyde (2000) drew attention to this feature and 
on
entratedmost of her analysis on data based on the monitor in the 
ity of Birmingham, ignoringother nearby monitors whi
h had been in
luded in earlier studies. The present study uses,as alternatives, the average over all available monitors or the data from Birmingham alone,but it appears that the strongest asso
iations are obtained using the monitoring data fromBirmingham alone, so the main results are expressed in terms of that monitor.2.2. Mortality dataDaily mortality data were available from the National Center for Health Statisti
sfor 1985{1988. The data were 
lassi�ed in four ways: by gender (male/female), by ra
e(bla
k/non-bla
k), by age (under 65/65+) and by 
ause of death (respiratory/
an
er/
ir
ulatory/other disease/a

idental). Although some of our work has been 
on
erned withdi�erent age groups or with di�erent 
auses of deaths, we have found that the strongesteviden
e of a PM10-mortality asso
iation exists within the 65 and over age group, when allnona

idental sour
es of mortality are 
ombined into a single overall death 
ount. Fromnow on, therefore, we 
onsider only that out
ome variable.2.3. Meteorologi
al dataThe Birmingham meteorologi
al data for this study 
ame from the U.S. NationalClimati
 Data Center in Asheville, North Carolina. The data are publi
ly available throughthe ftp address ftp.n
d
.noaa.gov/pub/data/fsod/fsod as
ii.13876. This lists daily data atthe BIRMINGHAM MUNI AP site, for whi
h the WBAN number is 13876, and it islo
ated at 33.57 oN and 86.75 oW at an elevation of 191m.Although many meteorologi
al variables are available on a daily basis, those a
tuallyadopted are those listed in Table 2.1. Further rationale will be provided in se
tion 3 forthe 
hoi
e of these parti
ular variables.tmax: daily maximum temperature (oC)tmin: daily minimum temperature (oC)mntp: mean of tmin and tmaxdptp: average daily dew point temperature (oC)mnsh: average daily spe
i�
 humidity (g/kg)tg30: larger of (tmax{30) and 0mnshsq: square of mnshTable 2.1: List of meteorologi
al variables 5



2.4. Data summariesSummary statisti
s for some of the main variables are in Table 2.2. Here \mort" ismortality in the 65+ age group ex
luding a

idental 
auses. The variable \pm10" refersto daily readings and \pmmean" to three-day averages. Daily values were obtained eitherfrom the Birmingham monitor alone (these are denoted pm10B or pmmeanB in the table)or from averages over all available monitors. Three-day averages were obtain by averagingthe 
orresponding one-day values | if one or two of the one-day values was missing in anythree-day period, the three-day average was based on the two days or one day remaining.Variable mean SD min 10% 25% 50% 75% 90% maxtmax 23.39 8.61 {3.3 11.1 17.2 24.4 31.1 33.3 38.3tmin 10.65 8.91 {12.2 {2.2 3.3 11.1 19.4 21.1 25.6mnsh 9.31 4.89 0.8 3.1 4.9 8.7 14.0 16.2 18.3pm10 47.23 23.77 8.0 21.0 29.0 44.0 59.3 79.0 163.0pmmean 46.89 18.96 13.0 24.2 33.0 44.7 57.8 72.0 137.1pm10B 50.56 26.42 8.0 21.0 30.0 46.0 66.0 87.0 163.0pmmeanB 50.08 21.22 11.0 25.3 33.7 48.0 62.3 78.3 146.7dptp 10.54 9.32 {19.1 {2.9 3.3 11.8 19.1 21.5 23.5mort 15.06 4.25 3.0 10.0 12.0 15.0 18.0 21.0 32.0Table 2.2: Sele
ted summary statisti
sTable 2.2 may be 
ompared with Table 1 of S
hwartz (1993), who gave a similar tablefor the data he used in his study. Apart from obvious transformations su
h as Fahrenheitand Celsius temperature s
ales, the meteorologi
al data appear to be the same. The meandeaths reported in S
hwartz's study are a little lower than ours (e.g. S
hwartz obtained17.1 for mean daily nona

idental deaths over all age groups; we obtained 19.8) whi
h mayhave been due to his taking a slightly smaller geographi
al area. The deaths data used inthe 
urrent study are for Franklin County, whi
h in
ludes Birmingham, whereas it appearsthat S
hwartz used only data from the 
ity of Birmingham. In the 
ase of PM10, there is astrange dis
repan
y in the number of days' data: S
hwartz reported 139, 332, 262 and 354days' data for respe
tive years 1985, 1986, 1987, 1988, whereas our 
ounts are 139, 332,319 and 341 for the Birmingham monitor. We have no explanation for the extra 60 days'data in 1987. So far as we 
an tell, S
hwartz's data set in
luded other monitors besidesBirmingham, though personal enquiries with Dr. S
hwartz have failed to establish thisde�nitively.Despite these dis
repan
ies in data sour
es, we do not believe that they are responsiblefor dis
repan
ies in the results. For the most part, when models similar to those of S
hwartzare also �tted to the present data, the results are very similar to those of S
hwartz. Thereal points of di�eren
e are in the models being �tted, not in the data.6



Plots of the data (see se
tion 3) show that the largest part of the variability in thedata is due to systemati
 seasonal and time trends, whi
h do not appear to be dire
tlyrelated to either parti
les or meteorology. S
hwartz 
on
luded that these trends appearto follow a two-year 
y
le (based on four years' data), and modeled the 
y
li
al trend byin
luding 24 sine and 24 
osine terms in the regression equation, together with a lineartrend term and an indi
ator variable for year. His prin
ipal �tting method was Poissonregression, using the generalized estimating equations approa
h developed by Liang andZeger (1986). Numerous variants on this te
hnique, in
luding 
orre
tions for overdispersionand auto
orrelation, robust estimation, least squares regression and nonlinear regressionfor the temperature and PM10 
omponents of the model, were used but apparently withoutgreatly a�e
ting the 
on
lusions. The results 
onsistently showed a statisti
ally signi�
antPM10 e�e
t. In S
hwartz's papers this has often been 
hara
terized in terms of the relativerisk asso
iated with an in
rease in PM10 levels of 100 �g.m�3. A typi
al result for this is1.11, with 95% 
on�den
e interval of (1.02,1.20). Samet et al. (1995) obtained an exa
tlyequivalent result based on re�tting the same model as S
hwartz to the same data, butwithout further 
onsideration of model sele
tion.3 LINEAR REGRESSION ANALYSIS3.1. Ba
kgroundAll analyses of the relationship between atmospheri
 pollution and human healthout
omes rely on regression analysis in some form, but there are many variations in thepre
ise methodology adopted. Sin
e one of the purposes of this paper is to highlight howdi�erent approa
hes to the analysis may lead to very di�erent 
on
lusions, we begin witha brief overview of the main \issues" whi
h arise in this kind of analysis, and how theyhave been resolved by earlier authors, before des
ribing our own approa
h.One of the �rst papers to dis
uss methodologi
al issues in depth was the analysis byS
hwartz and Mar
us (1990) of London data from the 1960s. They highlighted su
h issuesas � 
orre
ting for long-term trends and seasonal variation,� 
orre
ting for meteorologi
al 
onfounding,� 
orre
ting for 
onfounding by other atmospheri
 pollutants (in the 
ase of parti
ulatematter, the 
omparative e�e
t of SO2 is of parti
ular interest),� whether there is eviden
e of a nonlinear or \threshold" e�e
t in the pollution-mortality relationship,� the e�e
t of auto
orrelation in the residuals.As interest in the subje
t developed, so did the methods be
ome better �xed. Sametet al. (1995) 
onsidered a general stru
ture of the formlog�t =X�jxjt; (3:1)7



where �t is the mean level of deaths on day t and the 
ovariates fxjtg in
lude termsrepresenting trend and seasonality, meteorology and air pollution. Some of the modelsin
luded nonlinear terms in the meteorologi
al and air pollution variables. The obviousprobabilisti
 model asso
iated with (3.1) is a Poisson model in whi
h the death 
ount onday t is Poisson with mean �t, but Samet et al. (1995) reje
ted that be
ause the dataexhibit both overdispersion and auto
orrelation. Instead, they proposed an \iterativelyweighted and �ltered least squares" (IWFLS) approa
h. In spite of their 
aution on thispoint, however, subsequent authors have often used Poisson maximum likelihood without�nding overdispersion or auto
orrelation to be of major 
on
ern.Subsequently Samet et al. (1997) presented a more detailed analysis of one parti
ulardata set from Philadelphia, whi
h in
luded the use of smoothing splines to represent thelong-term trend and seasonal 
omponents. In some analyses they also applied smoothingsplines to nonlinear e�e
ts of meteorology and air pollution. In this analysis, they didnot �nd any eviden
e of auto
orrelation, whi
h may have been be
ause the smoothingsplines approa
h is more sensitive to the true shape of the long-term trend than someof the approa
hes adopted in earlier papers. They 
onsidered synopti
 approa
hes to themeteorologi
al modeling, in whi
h the weather variables were used to de�ne a �nite numberof states representing typi
al weather s
enarios, these states being then used as 
ovariatesin the analysis. However, their 
on
lusion was that the synopti
 approa
h is inferior tothe more usual regression approa
h based on temperature and dewpoint as 
ontinuous
ovariates. Finally, they 
onsidered the joint e�e
ts of parti
ulate matter and four otheratmospheri
 pollutants (SO2, NO2, O3 and CO), without �nding strong eviden
e thatparti
ulate matter was the sole 
ausative fa
tor, as some other authors had 
laimed.In a di�erent and more exploratory spirit, Styer et al. (1995) also 
onsidered models ofthe form (3.1) as well as alternative linear regression models in whi
h some of the nonlinearterms were represented nonparametri
ally as sample paths from sto
hasti
 pro
esses. Aparti
ular feature of their approa
h was to examine the 
onsisten
y of regression models�tted on either a seasonal or a monthly basis. For example, in analysis of data fromCook County, Illinois (in e�e
t, the 
ity of Chi
ago), they found a signi�
ant PM10 e�e
twhen modeled as a single linear term, but when intera
tions between PM10 and seasonwere 
onsidered, they found strong intera
tion, with the PM10 e�e
t strong only in thefall. Su
h an odd 
on
lusion is hard to re
on
ile with a stri
t 
ausal interpretation. Theyalso found no PM10 e�e
t at all in an analysis of data from Salt Lake County, Utah.On the other hand, Smith et al. (1999), re-analyzing the Chi
ago data using smoothingsplines for the long-term trend, did not �nd the same strength of eviden
e for a seasonalintera
tion, whi
h serves to highlight again the sensitivity of the results to di�erent methodsof analysis. There is also a question left open by the Styer et al. analysis, of whether �ttingentirely separate regressions on a seasonal or even monthly basis is simply over�tting, withinevitable diÆ
ulties for interpretation of the results.For the present analyses, we 
onsider both Poisson maximum likelihood analyses basedon (3.1), and a simpler approa
h based on ordinary linear regressions of the formyt =X�jxjt + �t; (3:2)8



where yt is some transformation (e.g. log or square root) of daily death 
ount on dayt, and f�tg are independent normal random errors with mean 0 and 
ommon varian
e�2. Experien
e with both Birmingham and other data sets has shown that models basedon (3.2) lead to virtually equivalent results to (3.1) after due allowan
e is made for thetransformation. The square root transformation is natural in view of the well-known resultthat for Poisson random variables, this is varian
e stabilizing | if zt is Poisson with mean�t then yt = pzt has mean �t � p�t and varian
e approximately 14 regardless of the truevalue of �t.We now turn to detailed spe
i�
ation of individual 
omponents of the model, usingthe Birmingham data to illustrate how the model is 
onstru
ted in pra
ti
e.3.2. Trend and seasonality
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Figure 3.1. Weekly means of the daily nona

idental death 
ounts among the 65+ pop-ulation in Birmingham (top plot) and weekly PM10 means (bottom plot), together with as
atterplot smoother for ea
h.Fig. 3.1 shows weekly deaths and weekly PM10 averages plotted throughout the four-year period, with a smoothed 
urve to represent the long-term trend (�tted by lowessin S-PLUS). The plots show 
learly that there are seasonal e�e
ts, but also that they areirregular from year to year. For example, ea
h year the deaths peak in the winter, but in1985{6 and 1987{8, the peak o

urred in February, whereas in 1986{7 the peak o

urredat the beginning of January. These fa
ts, whi
h are almost 
ertainly due to epidemi
s9



rather than the e�e
ts of either meteorology or air pollution, highlight the need for 
arefulmodeling of the trend. Another feature of Fig. 3.1 is that PM10 appears to peak in thesummer, so a na��ve regression of mortality on PM10 might well lead to a negative e�e
t(in fa
t, the 
orrelation between the two series of weekly totals in Fig. 3.1 is {0.1) butof 
ourse this is also highly misleading given the number of other fa
tors likely to explainseasonal variability.To model the seasonal e�e
t, S
hwartz (1993) 
ited the well-known tenden
y of epi-demi
s to follow a two-year 
y
le, and modeled the trend as su
h, using 24 sine and 24
osine basis fun
tions. The B-spline approa
h of the present paper is based on represen-tations of the form f(t) = �0 + KXk=1�kB�KT (t� �k)� ; 0 � t � T; (3:3)where f(t) is the trend at time t, �k = TK �k � 12� is the k'th \knot", and B(�) is theB-spline basis fun
tion, see e.g. Green and Silverman (1994).The key de
ision in (3.3) is the number of knots K, whi
h 
ontrols the smoothness ofthe 
urve | the smaller K is, the smoother the 
urve. General 
onsiderations are that Kshould be large enough to pi
k up the kind of irregular seasonal behavior whi
h we sawin Fig. 3.1, but not so large that the seasonal e�e
t 
ould be 
onfounded with the PM10e�e
t. Sin
e air pollution episodes frequently last for several days and possibly as longas two or three weeks, the latter 
onsideration suggests that the frequen
y of knots f�kgshould be no greater than about one per month.3.3. Meteorologi
al variablesOn the sele
tion of meteorologi
al variables, there is again a diversity of views in theliterature. Most authors agree on the need to in
lude temperature and some measure ofhumidity and many also in
lude pressure. For example, Styer et al. (1995) used tempera-ture, spe
i�
 humidity and station pressure, together with their one- and two-day laggedvalues, while Samet et al. (1995, 1997) based their analyses on temperature and dewpoint,the latter being another way to measure the e�e
ts of humidity. For Birmingham, S
hwartz(1993) 
onsidered temperature and dewpoint as 
andidate meteorologi
al variables, thoughthe main model he �tted did not use dewpoint. Our own investigations suggest that it ishighly desirable to in
lude at least one of spe
i�
 humidity and dewpoint in the model,along with temperature.The main variables examined in the 
urrent study are daily maximum and minimumtemperature, and one measure of humidity (either dewpoint or spe
i�
 humidity). Onemight expe
t that the mortality vs. temperature relationship would be nonlinear (de
reas-ing at low temperatures, in
reasing at high). This 
ould be modeled using a quadrati
 orhigher-order polynomial, or alternatively through a pie
ewise linear model of the formf(x) = �1x+ �2xI(x > x0); (3:4)10



where x is temperature, I is the indi
ator fun
tion and x0 is some threshold. Preliminaryanalysis suggested that an e�e
tive way to deal with nonlinearity was through a model ofthe form (3.4) for x = tmax, with x0 = 30 oC. This motivated the de�nition of the variabletg30 in Table 2.1.The question also arises whether the e�e
t of spe
i�
 humidity should be nonlinearand for this we �nd that a quadrati
 �t is good. Further details are given below.Finally, all the meteorologi
al variables were lagged up to 4 days to allow for e�e
tsthat may persist over several days. The lag is indi
ated with a suÆx; for example, tmax2means tmax lagged two days, and mnshsq0 means the lag 0 (in other words, today's) valueof mnshsq.3.4. Sele
ting the meteorologi
al and trend modelThe �rst step of the analysis is to �nd the best �t to the data using just the trend andmeteorologi
al variables: later, we add terms involving PM10 individually to as
ertain thesigni�
an
e of those terms.For trend and seasonality, the approa
h taken here is �rst to �x K, the numberof spline basis fun
tion for the trend, and then to sele
t meteorologi
al variables. Themethod of sele
tion is ba
kward sele
tion using tests at signi�
an
e level 0.1 to determinewhi
h variables to omit from the model. The results are repeated for several values ofK, and using three transformations of daily death 
ount (square root, logarithmi
 and notransformation) to determine yt in (3.2). A s
ale 
orre
tion was applied to ensure thatthe mean squared error results are dire
tly 
omparable (Atkinson 1985, p. 86). Modelsare then 
ompared by AIC. Results are in Table 3.1. Also in
luded in this table are the
orresponding results based on S
hwartz's (1993) sine-
osine representation of the trend.The results of Table 3.1 show 
onvin
ingly that the square root transformation per-forms best among the three transformations 
onsidered, and also that K = 12 is bestamong the values of K 
onsidered. Although AIC is just one of several model sele
tion
riteria we 
ould have 
onsidered, others lead to essentially the same 
on
lusion. Theresults for K = 0 are in
luded following a suggestion of the referee, who asked whetherthe whole of the seasonal variation 
ould be modeled as a fun
tion of meteorology. Theanswer is no, though surprisingly, K = 0 performs se
ond best (after K = 12) of thevarious values in Table 3.1. As a further 
he
k on this 
on
lusion, signi�
an
e tests for thealternative hypothesis K = 12 have been performed against the null hypothesis K = 0,using 
ommon sets of meteorologi
al 
ovariates to make the models nested. In every 
asetested, the result is signi�
ant with a p-value of the order of .01{.03. Thus we 
on
ludethat K = 12 is the best.
11



K Square root trans. Log trans. No trans.p AIC p AIC p AIC48 55 4037.87 55 4106.26 54 4066.8740 47 4028.72 47 4096.27 46 4058.2432 39 4022.41 39 4088.49 39 4054.0824 30 4017.93 36 4083.99 28 4049.4720 34 4018.03 34 4084.02 27 4048.9816 23 4013.49 23 4079.76 23 4044.9912 19 4007.64 19 4074.14 19 4038.978 15 4014.29 16 4078.89 19 4048.390 9 4013.46 9 4076.05 9 4048.11SC 55 4053.96 55 4120.69 55 4084.60Table 3.1: Number of parameters p and AIC values for trend+meteorology models inwhi
h trend is modeled by a B-spline representation with K knots and meteorologi
alvariables are sele
ted by ba
kward variable sele
tion. Three transformations (square root,logarithmi
 and none) are 
onsidered. Also tabulated are the results for S
hwartz's sine-
osine representation (SC).

Date

F
itt

ed
 D

ai
ly

 M
ea

n 
E

ld
er

ly
 D

ea
th

s

1985 1986 1987 1988 1989

14

16

18

Figure 3.2. Modeling the trend in daily mean deaths (without meteorologi
al 
omponent)using di�erent values of K: K = 12 (solid 
urve), K = 24 (dashed 
urve), K = 48 (dotted
urve). The 
urve for K = 12 shows a 
lear seasonal pattern with a well-de�ned peak inea
h year, whereas the others show lo
al 
u
tuations whi
h seem likely to be spurious.12



In previous analyses of Birmingham, Smith et al. (1998, 1999) have used larger valuesof K so the present analysis represents a departure from that. As a further assessment,Fig. 3.2 shows the �tted smoothed trends by the B-spline method for three values ofK = 48; 24 and 12, in this 
ase �tted without meteorologi
al 
omponents (otherwisethese 
urves are diÆ
ult to 
ompare visually). The 
urves for K = 24 and K = 48 shownumerous lo
al 
u
tuations whi
h seem likely to be spurious. This therefore provides somevisual 
on�rmation of the AIC-based results.So far, although we have sele
ted meteorologi
al variables by ba
kward sele
tion, the
lass of meteorologi
al variables 
onsidered for variable sele
tion has remained �xed. How-ever, other issues whi
h arise in these analyses in
lude whether humidity is best representedby spe
i�
 humidity or dewpoint, or whether humidity variables should be in
luded at all.To test this, Table 3.2 shows AIC values for the best model in four 
lasses, (a) using tem-perature variables only, (b) using temperature plus linear terms in spe
i�
 humidity, (
)using temperature variables plus dewpoint temperature, (d) using temperature variablesplus linear and quadrati
 terms in spe
i�
 humidity. All the models were obtained byba
kward variable sele
tion of meteorologi
al variables, with a �xed K = 12 knots for theB-spline representation of trend. As judged by AIC, model (d) is 
learly the best of these.This highlights the need to in
lude humidity as well as temperature.Model AIC df(a) tmax1, tmin3, tg301 4022.46 15(b) tmin0, tmin3, tg301, mnsh0, mnsh2, mnsh3 4016.67 18(
) tmin3, tg301, dptp2, dptp3 4016.59 16(d) tmin3, mnsh0, mnsh1, mnsh2, mnsh3, mnshsq0, mnshsq1 4007.64 19Table 3.2: Best meteorologi
al models in four 
lasses3.5. Adding parti
ulate matter to the modelAs remarked already, previous authors have used a variety of exposure measures forPM10. For example Styer et al. (1995) used three day averages in
luding the 
urrent day,while S
hwartz (1993) used three day averages ex
luding the 
urrent day. In the followingdis
ussion, we attempt to be systemati
 in sear
hing for a suitable variable or variablesto represent PM10. We de�ne variables pm0, pm1,..., pm4 to represent the one-day PM10reading lagged up to 4 days, and we used pmmean with appropriate lags to represent three-day means. Thus pmmean0 denotes the average of pm0, pm1 and pm2, while pmmean1denotes the average of pm1, pm2 and pm3. The �ve-day average was also 
onsidered but isnot reported sin
e in no model was it found to be statisti
ally signi�
ant. The analyses inthis subse
tion are based on the same meteorologi
al variables and B-spline basis fun
tionsas previously, but the analysis is restri
ted to the period August 3 1985 { De
ember 311988 for whi
h there is an almost 
ontinuous series of monitoring data.13



Variable Estimate Standard error t statisti
(i) pmmean0 .00136 .00082 1.65(ii) pmmean1 .00192 .00082 2.34(iii) pm0,...,pm4 .00108 .00130 0.83(iv) pm0, pm1, pm3 .00117 .00106 1.10(v) Poisson version of (ii) .00098 .00040 2.44(vi) Poisson version if (iv) .00057 .00052 1.10Table 3.3: Parameter estimates and standard errors due to PM10 in the model based ontemperature plus linear and quadrati
 terms in spe
i�
 humidity.Table 3.3 shows the 
oeÆ
ient, standard error and t statisti
 for several di�erentways of introdu
ing PM10 into the model of Table 3.2(d). These are based on one-day orthree-day averages 
omputed using the Birmingham monitor alone, as dis
ussed earlier.It should be pointed out that a number of other 
ombinations of the PM10 variable were
onsidered | single-day values, two-day averages and three-day averages at various lags |but no single variable produ
ed as strong an asso
iation as pmmean1 here, for whi
h the tstatisti
 is 2.34, a signi�
ant result if the model sele
tion aspe
t of the analysis is ignored.Row (iii) shows the e�e
t of putting in ea
h of the �ve single-day variables pm0,...,pm4and using the sum of the �ve 
oeÆ
ients along with the standard error of that sum as ameasure of the overall PM e�e
t. Measured this way, the overall e�e
t is weaker than inrow (ii), and not statisti
ally signi�
ant. However within this analysis, pm2 and pm4 werenot signi�
ant, the remaining statisti
ally signi�
ant 
oeÆ
ients being pm0 with a negative
oeÆ
ient, and pm1 and pm3 with positive 
oeÆ
ients. Therefore, row (iv) repeats theanalysis of row (iii) but based just on pm0, pm1 and pm3. Again it does not show astatisti
ally signi�
ant result. Finally, rows (v) and (vi) repeat the analysis of rows (ii)and (iv) but based on the Poisson regression model (3.1). The 
oeÆ
ients in this 
ase arenot dire
tly 
omparable with those based on model (3.2) be
ause the transformation of yis di�erent (yt in (3.2) is taken as square root of elderly nona

idental deaths) but the twosets of results may be 
ompared by translating them into relative risks.To 
al
ulate relative risks asso
iated with the parameters in rows (i){(iv), the simplestway to illustrate is by example. The mean deaths per day are 15.055. Suppose the modelof row (ii) holds and 
onsider the e�e
t of a 10 �g/m3 rise in PM10. A

ording to the
oeÆ
ient, this should lead to an in
rease of 10 � :00192 in mean square root of deaths.Thus the estimated relative risk is (p15:055 + :0192)2=15:055 = 1:010 and an asso
iatedapproximate 95% 
on�den
e interval is (1.001, 1.018) after applying the same 
al
ulation toboth endpoints of a 95% 
on�den
e interval for the 
oeÆ
ient. In 
ontrast, the estimatedrelative risk based on model (v) is e:0098 = 1:010 with 95% 
on�den
e interval (1.002,1.018), virtually the same. Similarly, the estimated risk for model (iv) is 1.006 with 95%
on�den
e interval (.995, 1.017) and these are identi
al to the estimates based on model(vi). 14



Table 3.4 shows the results 
omparable to Table 3.3 in whi
h the meteorologi
al mod-eling is based on Table 3.2(a), i.e. temperature alone. This table was 
al
ulated be
auseone of the 
on
lusions from S
hwartz's (1993) analysis was that it does not make any dif-feren
e whether humidity is in
luded or not in the model (though S
hwartz used dewpointrather than spe
i�
 humidity in making the assertion). Whether the di�eren
es betweenTables 3.3 and 3.4 are of any pra
ti
al signi�
an
e is a matter for debate, but it 
an beseen that the 
oeÆ
ients in Table 3.4 are uniformly higher than in Table 3.3. In otherwords, omitting humidity may have had the e�e
t of in
ating S
hwartz's estimates.Variable Estimate Standard error t statisti
(i) pmmean0 .00158 .00085 1.87(ii) pmmean1 .00217 .00088 2.46(iii) pm0,...,pm4 .00163 .00132 1.23(iv) pm0, pm1, pm3 .00139 .00108 1.29(v) Poisson version of (ii) .00111 .00043 2.61(vi) Poisson version if (iv) .00070 .00053 1.32Table 3.4: Parameter estimates and standard errors due to PM10 in the model based ontemperature alone.If these analyses are repeated using average PM10 values from all the monitors ratherthan just the values from the Birmingham monitor, the PM 
oeÆ
ients are uniformlysmaller. For example, the Poisson 
oeÆ
ients from rows (v) and (vi) of Table 3.3 be
ome.00088 and .00049 (instead of .00098 and .00057), while those from Table 3.4 be
ome .00100and .00058 (instead of .00111 and .00070). Thus, the de
ision to use just the Birminghammonitor has had the e�e
t of in
reasing the estimated e�e
ts 
ompared with earlier analysesbased on this data set.Variable CoeÆ
ient S.E. t statisti
tmin3 {.00270 .00330 {0.82mnsh0 {.03309 .01315 {2.52mnsh1 .00748 .01422 0.53mnsh2 {.00807 .00682 {1.18mnsh3 .00792 .00698 1.13mnshsq0 .00184 .00070 2.61mnshsq1 {.00068 .00072 {0.94pm0 {.00070 .00039 {1.77pm1 .00074 .00039 1.89pm3 .00053 .00034 1.55Table 3.5: Individual 
oeÆ
ients and standard error, Poisson model with individual 
o-eÆ
ients for single-day PM10 e�e
ts 15



Tables 3.5 and 3.6 give detailed regression results under the Poisson model for rows(vi) and (v) of Table 3.3. In Table 3.5, the 
oeÆ
ients of pm0, pm1 and pm3 are all nearstatisti
al signi�
an
e, the 
oeÆ
ient of pm0 being negative and the other two positive.When the three 
oeÆ
ients are added, the 
ombined result is positive but not statisti
allysigni�
ant, as is re
e
ted in the RR results in rows (iv) and (vi) of Tables 3.3 and 3.4. Itwould appear that the reason why the analysis with pmmean1 is the only one to give astatisti
ally signi�
ant result is be
ause this 
hoi
e of exposure measure ex
ludes the e�e
tof day 0 whi
h is negative.An in
idental 
omment about Tables 3.5 and 3.6 is that several of the meteorologi
alvariables do not appear signi�
ant here. However, the original meteorologi
al variablesele
tion was done without any PM terms present; we have not 
hosen to drop parameterswhi
h be
ame insigni�
ant at this stage of the analysis.Variable CoeÆ
ient S.E. t statisti
tmin3 {.00351 .00281 {1.25mnsh0 {.03815 .01116 {3.42mnsh1 .01947 .01195 1.63mnsh2 {.01047 .00578 {1.81mnsh3 .01089 .00595 1.83mnshsq0 .00249 .00060 4.15mnshsq1 {.00148 .00061 {2.41pmmean1 .00098 .00040 2.44Table 3.6: Individual 
oeÆ
ients and standard error, Poisson model based on three-dayaverages of PM10The di�eren
es among the estimates from the di�erent models do not appear to resultfrom whether we use normal or Poisson regression, whi
h lead to very similar estimatesfor the relative risk, but on whi
h variables are in
luded in the regression. The mostsubstantial sour
e of dis
repan
y arises from whether we 
hoose to use pmmean1 as thesingle most signi�
ant measure of the pollution e�e
t, or estimate separate one-day valuesas in Table 3.5. There is no 
lear-
ut judgement about whi
h is the right model, but itis important to understand that the 
on
lusion is sensitive to this judgement. The lattermodel may be thought of as a 
rude form of \distributed lag" model, in whi
h the time-dependent shape of the response 
urve is assumed a priori unknown, and ultimately wefeel that models of this form are likely to be the way forward with this kind of analysis.Our �nding about pm0 should not be interpreted as meaning that the 
urrent day'sPM10 has a prote
tive e�e
t. It seems mu
h more plausible that it is an artifa
t 
aused bylinear 
orrelations among the di�erent variables. Nevertheless it seems to be a persistentphenomenon. For example Roth and Li (1996) noti
ed the same thing, 
omputing the pm0
oeÆ
ient separately for ea
h year of data from 1988 to 1993, and in only one of the six16



years was it positive. However this has only a one-year overlap (1988) with the presentdata set.One diÆ
ulty with in
luding multiple PM10 e�e
ts in the analysis is that they magnifythe problems of missing data. Out of 1,247 days 
overed by the data, 147 had missingsingle-day values, but a total of 300 are missing at least one of pm0, pm1 or pm3 and weretherefore omitted from the analyses just reported. There is no eviden
e that this has anye�e
t on the parameter estimates but it does mean that the degrees of freedom for errorare smaller, and it makes other kinds of 
al
ulations more diÆ
ult, e.g. serial 
orrelationsamong the residuals. For this reason and for better 
omparison with previously publishedresults, mu
h of the subsequent dis
ussion is still based on the model using pmmean1 asthe exposure variable. The variable pmmean1 is 
onsidered missing only if all three daysin a row are missing, whi
h o

urred only four times.3.6. Diagnosti
sFor the normal linear regression model (3.2), the residual for day t is de�ned in theusual way, as et = yt �Xj �̂jxjt (3:5)where the �̂j are estimated 
oeÆ
ients. For the Poisson model (3.1), if �̂t is the estimatedPoisson mean for day t and if yt is the observed value, then we 
an de�ne the transformationut = yt�1Xy=0 p̂t(y) + 12 p̂t(yt) (3:6)where p̂t(y) = �̂yt e��̂t=y!, the �tted Poisson probability distribution for day t. The formula(3.6) is intended as an approximation to the probability integral transformation, so thatut are approximately uniformly distributed on [0,1℄. By further transformation, we alsoobtain approximately normal residuals, analogous to (3.5). For the following dis
ussion,we 
on
entrate on the normal and Poisson models based on pmmean1, as in rows (ii) and(v) of Table 3.3.One issue that arises is overdispersion. If yt has a Poisson distribution, then the vari-an
e of pyt is approximately 14 . This should also apply approximately to the residuals in(3.4) if the linear regression is a reasonable representation of reality. In the regression ofTable 3.3(ii), whi
h we believe to be representative of all the regressions we have 
onsid-ered, the standard unbiased estimator of �2 is s2 = 0:269 with 1,222 degrees of freedom.This represents an approximately 7.5% overdispersion, and is not statisti
ally signi�
antlydi�erent from 0.25 based on the �2 distribution of s2. Based on this, we 
on
lude thatoverdispersion is not a serious problem.A se
ond issue whi
h sometimes arises in these kinds of analyses is the possibility thatresiduals may be serially 
orrelated. In the present 
ase, the �rst few serial 
orrelation17




oeÆ
ients of the residuals are {.016, {.017, {.017,.. These should be 
ompared with thestandard referen
e point for 
orrelation 
oeÆ
ients, 2=pN = :057. We 
on
lude that thereis no eviden
e of serial 
orrelation. For the normal-transformed residuals from the Poissonmodel, the serial 
orrelations are {.014, {.015, {.015,... whi
h leads to the same 
on
lusion.Roth and Li (1996) did �nd signi�
ant serial 
orrelation in their residuals and a
-
ommodated this with autoregressive models of order up to 4. However their modeling ofseasonal trend was less detailed than ours. In general, our experien
e with this and similardata sets has been that if the model for trend is inadequate to pi
k up all the 
u
tuations inthe underlying death rate, then this leads to signi�
ant serial 
orrelations. One advantageof the B-splines approa
h is that it seems to model trend suÆ
iently a

urately to makeautoregressive models unne
essary.A third diagnosti
 issue is whether the assumed distribution (normal or Poisson)adequately �ts the data. There is no 
ontradi
tion in testing both distributions be
ausethe Poisson distribution for large enough mean would be hard to distinguish from a normaldistribution, a dire
t 
onsequen
e of the Central Limit Theorem. However, so far we havenot presented any eviden
e that either distribution �ts the data.
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Figure 3.3. Probability plot for standardized residuals under (a) normal model, (b)Poisson model.A standard method of de
iding whether residuals follow a normal distribution is as aprobability plot of the order statisti
s against their expe
ted values. This is done in Fig.18



3.3(a) for the OLS regression model and Fig. 3.3(b) for the Poisson regression model. InFig. 3.3(a), the residuals are �rst standardized to have varian
e 1, while Fig. 3.3(b) isbased on the normal-transformed version of the residuals from the Poisson model. In bothplots the data are 
lose to the solid line whi
h is eviden
e that the model is indeed a good�t. The �nal \diagnosti
" issue we 
onsider is whether the estimated PM10 
oeÆ
ientvaries from year to year or from season to season. Roth and Li (1996) found signi�
antvariations from year to year in the 
ase of Birmingham. The possibility of seasonal variationwas not investigated by them, but other studies of similar data sets have shown that it
an be important, e.g. Styer et al (1995).We 
on�ne our dis
ussion here to the model based on pmmean1, sin
e in this 
asethere is only one parameter to vary. Suppose the model of Table 3.6 is �tted, but withseparate pmmean1 
oeÆ
ients for ea
h year or for ea
h season. Table 3.7 shows the results.There is some slight suggestion of a variation in the PM 
oeÆ
ient both from year to yearand from season to season, but in neither 
ase is the variability statisti
ally signi�
antwhen measured by a devian
e test (devian
e statisti
s 0.8 and 1.9 respe
tively for yearlyand seasonal intera
tions, ea
h with 3 d.f.). The one possibly interesting 
on
lusion isthat the PM10 e�e
t does appear to be substantially weaker in the summer than in theother seasons, and it would be interesting to see whether this 
on
lusion is sustained overa longer time span in Birmingham or in other 
ities with a similar 
limate.CoeÆ
ient S.E. t value(a) Variation by year1985 0.00037 0.00108 0.351986 0.00074 0.00057 1.281987 0.00126 0.00062 2.031988 0.00115 0.00074 1.54(b) Variation by seasonSpring 0.00110 0.00057 1.92Summer 0.00050 0.00058 0.86Fall 0.00111 0.00053 2.11Winter 0.00106 0.00058 1.84Table 3.7: Variation of the pmmean1 
oeÆ
ient by year or by season, for the model ofTable 3.10In summary, we have examined the �t of the linear regression models for four possibledepartures from the underlying assumptions: overdispersion, serial 
orrelation, la
k of �tof the distribution and seasonal or annual variation in the 
oeÆ
ients. In no 
ase do we�nd any reason to reje
t the original assumptions.19



4 THRESHOLD EFFECTSA 
riti
al question for the whole parti
ulates-mortality debate is whether there existsa threshold below whi
h there is no e�e
t. This question 
an only be addressed throughsome form of nonlinear modeling. S
hwartz (1993, Fig. 6) estimated a smooth nonlinear
urve for the PM10-mortality relationship but did not 
al
ulate any 
on�den
e band. Here,we re-visit this question from three alternative points of view.The �rst new analysis is based on a simple pie
ewise linear regression fun
tion for thedependen
e on parti
ulates. An early example of su
h analysis was that of Ostro (1984),who used it to examine the possibility of a threshold in data from London.We use the same idea, but for a sequen
e of thresholds. Consider the fun
tions,f1(x) = �x� u if x < u0 if x � u ;f2(x) = � 0 if x < ux� u if x � u ; (4:1)and 
onsider a fun
tion of response variable y (typi
ally, square root of daily deaths)against PM10 level x of the form �1f1(x) + �2f2(x) plus other terms depending on other
ovariates. Thus, the PM10 relationship is pie
ewise linear with a dis
ontinuity in theslope (though not the fun
tion itself) at a threshold u. For this analysis, the PM10 wasrepresented by pmmean1 and the other 
ovariates were as in Table 3.6. Thus �1 and �2represent slopes of the regression below and above the threshold.Fig. 4.1 shows the resulting estimates of the PM10 e�e
t, with pointwise 95% 
on�-den
e bands, for four possible 
hoi
es of the threshold u. At u = 40, the results show noeviden
e of a 
hange of slope either side of the threshold. At u = 60 and u = 80, the esti-mated slope is 
learly higher above the threshold than below. The e�e
t has disappearedagain by u = 100, but for this high threshold, the standard error of the slope above thethreshold is very large. Of the four threshold plots, only at u = 100 do the results belowthe threshold provide nearly signi�
ant eviden
e of an in
reasing slope in that region.Fig. 4.2 shows an alternative treatment based on B-splines for the estimation of anonlinear e�e
t. The results are expressed as relative risks, relative to the long-term meanof PM10, whi
h is 50.5. In other words, the relative risk for the level 50.5 is de�ned to be1, and everything else is de�ned from that. To a
hieve this, we represent the PM10 e�e
tin the form f(x) = K0Xk=1�k fBk(x)� Bk(�x)g ; (4:2)in whi
h x denotes the measured variable (here pmmean1), �x is the sample mean of all xvalues (here 50.5), K 0 is the number of knots in the B-spline representation for f(x), and20



B1; :::; BK0 are 
entered and normalized B-spline basis fun
tions, analogous to (3.3). Thisis then translated to relative risk viaRR = (p15:055 + f(x))215:055 ; (4:3)analogous to the 
al
ulation following Table 3.3. Pointwise 
on�den
e bands are 
al
ulatedby 
al
ulating a 95% 
on�den
e interval on ea
h f(x) from (4.2), and translating to relativerisks via (4.3). This leads to the plots in Fig. 4.2. Two plots are 
al
ulated, one using �vebasis fun
tions with knots at 20, 50, 80, 110, 140, the other using seven basis fun
tionswith knots are 20, 40, 60, 80, 100, 120, 140.
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Figure 4.1. Pie
ewise linear e�e
ts for mortality on three-day-averaged PM10, relative tofour di�erent thresholds, with pointwise 95% 
on�den
e bands.The 
on�den
e bands 
al
ulated by this method are inevitably very wide, but they dogive a rough indi
ation of the statisti
al signi�
an
e of the 
u
tuations in the fun
tion. Inparti
ular, the 
u
tuations in the observed fun
tion below the mean �x do not seem at allsigni�
ant, whereas the in
rease in RR observed above the level of 60 �g/m3 seems strongenough not to be entirely a

idental.
21



(a): 5-knot spline
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(b): 7-knot spline
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Figure 4.2. Smooth nonlinear 
urve for the relative risk of mortality on three-day-averaged PM10, 
omputed using either a 5-knot or a 7-knot 
ubi
 spline, with pointwise95% 
on�den
e bands.A third possible approa
h is a semi-Bayesian approa
h to \dete
tion" of a threshold.Suppose we re-�t the model based on pie
ewise linear fun
tions (4.1), but with f1 having
oeÆ
ient 0 | in other words, we are now assuming that there is no PM e�e
t below thethreshold u. Suppose, in (3.2), the ve
tor of regression parameters 
onditional on a givenvalue of u is denoted �(u), and the residual error varian
e is �2(u). If we assume a jointprior density for u; �(u); �2(u) of the form�(u; �(u); �2(u)) / 1�2(u) ; 0 � u � umax; �2(u) > 0; (4:4)with umax some pres
ribed upper limit on the values of u, then it may easily be veri�edthat the marginal posterior density for u is of the form�(u j data) / G(u)n�p; (4:5)where n is the number of data points, p the number of regressors in the model (3.2), andG2(u) is the usual residual sum of squares after performing the regression for �xed u. Thisapproa
h begs the question of what is really an appropriate prior distribution for u (thatis why we 
all it only semi-Bayesian), but the posterior distribution based on (4.5) mayprovide a useful indi
ation of the information available in the data to support di�erentvalues of u. 22



Fig. 4.3 shows the posterior density for u 
al
ulated under this approa
h. This isbased on assessing (4.5) at dis
rete values u = 20; 22; 24; :::; 120 and normalizing so thatthe integral of the posterior density is 1. The result shows a peak in the posterior densitynear u = 65, but it is also noti
able that the posterior density does not tend to 0 as uapproa
hes its lower endpoint (taken here to be u = 20 be
ause of the very small numberof data points for whi
h pmmean1 is below 20). In other words, the analysis providessupport for a threshold in the region 55{75 �g/m3, but it also shows that the possibilityof a threshold near 0 
annot be dismissed.
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Figure 4.3. Bayesian 
al
ulation of the posterior probability for the lo
ation of a thresh-old. In 
on
lusion, the results of this se
tion support the existen
e of a nonlinear e�e
tor a threshold above the 
urrent annual mean NAAQS of 50 �g/m3. None of the resultsprovide statisti
ally signi�
ant \proof" either that the e�e
t is nonlinear or that thereis a threshold e�e
t, if the question is formulated from the point of view of testing thesigni�
an
e of a nonlinear vs. a linear e�e
t. However, we question whether that is theright formulation. Mu
h of the 
urrent 
ontroversy 
on
erns whether there is signi�
anteviden
e of an adverse health e�e
t within the levels permitted by the 
urrent NAAQS, andon the eviden
e presented here, for Birmingham, our 
on
lusion is that there is not, evenwithout taking a

ount of the sele
tion e�e
ts asso
iated with the 
hoi
e of pmmean1 asthe variable of interest.
23



5 GAM MODELINGAs an alternative to the whole approa
h to regression taken in se
tions 3 and 4, thedata were also analyzed using the generalized additive model (GAM) approa
h of Hastieand Tibshirani (1990). There were a number of reasons for pursuing this as an alternativeapproa
h, among them, that GAMs form a 
exible 
lass of models whi
h automati
allyin
orporate nonlinear e�e
ts, and that the methodology of GAMs is di�erent from thespline basis fun
tion approa
h taken in the earlier se
tions of the paper and thereforeprovides an independent 
he
k on the results obtained through that approa
h.The GAM is de�ned by the equationyt =Xj fj(xjt) + �j (5:1)where xjt is the value of the j'th 
ovariate on the t'th day. As in ordinary least squares,Ef�jg = 0 and Varf�jg = �2, but the fj terms are arbitrary fun
tions with an fj modeledfor ea
h 
ovariate. We follow the pro
edure used in S-PLUS in whi
h the nonparametri
 fjfun
tions are modeled using the loess pro
edure (Cleveland and Devlin, 1988). A 
riti
alparameter is the span, the fra
tion of the data set used for �tting ea
h fun
tion value.In 
ontrast with earlier analyses, where days with missing values of 
ovariates wereomitted from the analysis, we interpolated the PM10 series (by linear interpolation betweennearest available days) in order to have a 
omplete set of data. Meteorologi
al variableswere tmax, mntp (mean daily temperature, average of tmax and tmin) and mnsh. Laggedvalues were in
luded as in earlier analyses and the default span provided by S-PLUS(0.5) was used for all variables ex
ept the time trend, after visual inspe
tion of the plotssuggested that it provided satisfa
tory results. For the time trend, we also used a loess �twith span 0.05, a somewhat subje
tive 
hoi
e based primarily again on visual inspe
tion ofplots. This leads to somewhat more irregular trends than in the earlier B-splines approa
h,but doing this provides a further 
he
k on the robustness of the results. The trend e�e
t isa 
on
ommitant variable, and ideally, estimates of parti
ulate e�e
ts should not be heavilydependent on pre
ise modelling of the trend as long as there is little bias in the trendmodel. Experiments with span 0.10 produ
ed almost no 
hange in the results below andno 
hange in the 
on
lusions we draw. The response variable was the same as before, i.e.square root of elderly nona

idental deaths.The GAM stepwise algorithm identi�ed the following variables as signi�
ant for thebasi
 model: lo(tmax1), tmax3, lo(tmax4), mntp2, mntp3, lo(mnsh), lo(mnsh1), mnsh2,mnsh3, and a trend term, lo(time). Here lo(...) indi
ates that a loess nonlinear fun
tionwas �tted, while the remaining variables were all treated linearly. The dispersion parameterfor the Gaussian family was estimated to be 0.271, i.e. an 8% in
rease 
ompared with thevalue 0.25 that would be expe
ted if the Poisson model were exa
t. This is 
onsistent withestimates of overdispersion found in se
tion 3. The �tted trend e�e
t is displayed in thetop left hand box of Fig. 5.1. Sin
e this plot shows the trend e�e
t after adjusting for allother meteorology variables in the model, it does not exa
tly mat
h the 
urves in Fig. 3.2.24
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Figure 5.1. Estimated e�e
ts and 95% 
on�den
e bands for 11 variables under the gen-eralized additive model of se
tion 5. 25



When pm0, : : : ,pm4 are added to the basi
 model, the analysis of devian
e table showsa drop in devian
e of 2.05 (F=1.51) with �ve degrees of freedom and an approximate p-value of 0.18. Sin
e this is not signi�
ant, it suggests that subset sele
tion is a potentialproblem in identifying the proper 
ombination of parti
ulate variables to pla
e in themodel. Similarly, when pmmean0 was entered in the basi
 meteorology model, the dropin devian
e was 0.89 (F =3.29) with a p-value of 0.07. This agrees with the result fromse
tion 3. Only for pmmean1 (devian
e 1.65, F=6.08, p-value .014) do we get a signi�
antresult.A further analysis was performed using pm0, pm1 and pm3 as parti
ulate mattervariables, to give results 
omparable with those in Table 3.5. An initial �t again showed anegative 
oeÆ
ient for pm0 and positive 
oeÆ
ients for pm1 and pm3, with t values �1:09,2.48 and 1.10 respe
tively. (Here the approximate t values were 
omputed using standarderrors derived from the S-PLUS GAM plot fun
tion.) In further analysis, �rst pm3 andthen pm0 were dropped from the model, leaving pm1 as the only signi�
ant variable, forwhi
h the 
oeÆ
ient was .00164, standard error .00069, t value 2.37. The devian
e was1.39 with approximate F = 5.11 and p-value .024. (Be
ause the F and t statisti
s arebased on di�erent approximations, the t value is not exa
tly the square root of F .) Thusthe results di�er somewhat from Table 3.5 in that with this version of the analysis, thenegative 
oeÆ
ient for pm0 is not statisti
ally signi�
ant. The 
on
lusion from the analysisbased on one-day values is that only pm1 is signi�
ant, and then only just so. The fa
tthat the negative 
oeÆ
ient for pm0 is no longer signi�
ant supports the interpretationthat the relation is spurious and due to multi
ollinearity. With the ri
her GAM model,the e�e
t of pm0 is partially explained by the meteorology variables.On
e again the un
ertainties asso
iated with variable sele
tion 
ast doubt on whetherany of the PM10-based variables are really signi�
ant. The �nal �t for a model basedon pmmean1 is presented in Fig. 5.1, where the 11 �tted fj(xj) fun
tions are plottedalong with their approximate pointwise 95% 
on�den
e interval bounds. In this model,we �t the PM10 e�e
t with a loess term for pmmean1 in order to examine the question ofwhether or not a threshold e�e
t exists. The �tted response for mnsh 
learly shows the
urvilinear relationship modeled by a quadrati
 term in Table 3.6. The other variablesshowing eviden
e of nonlinearity are tmax1, tmax4 and mnsh1. The last panel in Fig.5.1 shows the nonparametri
 �t for pmmean1 with the basi
 meteorologi
al model. The
on�den
e band seems to 
on�rm the 
on
lusion that a linear �t is adequate. On the otherhand, the 
on�den
e band is also apparently 
onsistent with a hypothesized threshold ofaround 60{70 sin
e below this threshold the 
on�den
e bands are 
onsistent with theunderlying relationship being 
onstant.
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6. CONCLUSIONSThe purpose of this paper has been neither to verify nor to disprove the notion thatthere is a strong asso
iation between deaths and parti
ulate matter, but rather, to showthat there are many possible interpretations of the data and no single 
on
lusion is de�ni-tive. We have given parti
ular attention to the paper by S
hwartz (1993) sin
e this is theone whi
h has been most widely 
ited in the literature, though it should be pointed outthat by now there have been a number of re-analyses of data from Birmingham, in
ludingthose by Samet et al. (1995), Roth and Li (1996) and Clyde (2000), whi
h have led to awide range of 
on
lusions. The main ones from our own study are:1. The models are highly sensitive to the de�nition of an \exposure measure" forlagged PM10 values. S
hwartz used pmmean1 as an exposure measure and our analysis has
on�rmed that the PM10 e�e
t is signi�
ant using this variable, but under other measures,it is not signi�
ant. In parti
ular, when a 
ombination of lags 0{4 was taken, the result wasnot statisti
ally signi�
ant. It may well be that the apparently negative 
oeÆ
ient for lag0 is spurious in some way, but the fa
t that its in
lusion 
hanges an apparently signi�
antresult into one whi
h is not signi�
ant shows that its in
uen
e 
annot be negle
ted.2. On the question of whether the meteorology e�e
ts should in
lude both temperatureand humidity or only temperature, our �nding is that humidity should be in
luded, andthat in that 
ase, the resulting PM10 
oeÆ
ients are somewhat smaller than if humidity isnot in
luded.3. Even if we allow for pmmean1 to be taken as the exposure measure of interest,there is little eviden
e that this has an e�e
t at low levels; a threshold analysis suggeststhat the main e�e
t is above 80 �g/m3.4. Further analysis of nonlinear e�e
ts through generalized additive models reinfor
esthe 
on
lusion that the prin
ipal e�e
t of pmmean1 is at the upper end of the range.The broader impli
ation for parti
ulate matter and health is that in a typi
al data set,there are many issues that need to be taken into a

ount before a 
on
lusion of a 
ausale�e
t 
an be drawn. Crude analyses that do not take into a

ount possible alternativeinterpretations of the data are of limited value in the 
ontext of a publi
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