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National Ambient Air Quality Standard (NAAQS), whih is the basis for air pollutionregulation in the United States.The purpose of the present paper is to propose a systemati approah to the regressionanalyses that are entral to this kind of researh. We argue that the results may dependon a number of ad ho features of the analysis, inluding whih meteorologial variablesto adjust for, and the manner in whih di�erent lagged values of partiulate matter areombined into a single \exposure measure". We also examine the question of whether thee�ets are linear or nonlinear, with partiular attention to the possibility of a \thresholde�et", i.e. that signi�ant e�ets our only above some threshold.These points are illustrated with a data set from Birmingham, Alabama, �rst itedby Shwartz (1993) and sine extensively re-analyzed. For this data set, we �nd that theresults are sensitive to whether humidity is inluded along with temperature as a meteo-rologial variable, and to the de�nition of the exposure measure. We also �nd evidene ofa threshold e�et, with the greatest inrease in mortality ouring above 50 �g/m3, whihis the long-term average level permitted by the urrent NAAQS. Thus, on the basis of thisdata set, the need for a tighter NAAQS is not established.Although this partiular analysis is foussed just on one data set, the issues it raisesare typial in this area of researh. We do not dispute that there is a reasonable level ofevidene linking atmospheri partiulate matter with adverse health outomes even withinthe levels permitted by urrent regulations. However, the impression has been reatedby some of the published literature that suh assoiations are overwhelmingly supportedby epidemiologial researh. Our viewpoint is that the statistial analyses allow di�erentinterpretations, and that the ase for tighter regulations annot be based solely on studiesof this nature.Keywords. Generalized additive modeling, linear regression, model seletion,PM10, Poisson regression, threshold e�ets, ubi splines.1 BACKGROUNDA major fous of air pollution researh in reent years has been the health e�ets ofsmall partiles in the atmosphere, PM10 or PM2:5. The epidemiologial evidene omesfrom two kinds of studies: time series studies and prospetive studies. Prospetive studies,the best known of whih are the Harvard six-ities study (Dokery et al. 1993), the Amer-ian Caner Soiety study (Pope et al. 1995b) and the Adventist Health Study (Abbeyet al. 1999), follow a �xed group of individuals over a long time span, monitoring healthindiators (primarily, date of death) as a funtion of lifestyle fators suh as smoking, andexposure to air pollution as derived from ambient monitoring stations in eah of the itiesovered by the study. Time series studies, in ontrast, are usually onentrated withina single ity, fous on a partiular health outome (e.g. daily deaths from nonaidentalauses among the population aged 65 and over), and are based on identifying assoiations2



between short-term utuations in the health outome with orresponding short-term u-tuations in the pollutant of interest. Beause the data are typially derived from publidata soures, there have been many more studies of the time series type than of theprospetive type, and an impression has been built up in some of the literature that theweight of evidene is overwhelmingly in favor of ausal relationships. For example, Popeet al. (1995a) reviewed around 80 published papers, most published within the deade1985{1995, most onerned with levels of pollution whih are ommon in modern itiesin developed ountries, and whih showed an assoiation between partiulate air pollutionand a very wide range of health outomes. For the present paper, we onsider only timeseries studies; the prospetive studies whih have been published raise numerous questionsof their own, but these are quite di�erent from the questions onsidered here.The statistial methods used in time series studies typially involve linear or Poissonregression, with ovariates based on long-term trend and seasonality, meteorology, andpartiulate and other ambient air pollutants. The methods are desribed in more detail insetion 3. The overall avor of most of the results is that after allowing for possible on-founders as represented by the trend, seasonal and meteorologial variables, there remainsa lear statistially signi�ant signal based on partiulate air pollution. Nevertheless, someauthors, inluding Styer et al. (1995), have drawn attention to possible inonsistenies inthese results.The purpose of the present paper is to examine these kinds of methods in relation toone partiular data set, from Birmingham, Alabama. This ity was studied for mortality byShwartz (1993) and for hospital admissions by Shwartz (1994). These studies were basedon Poisson regression models with ovariates allowing for seasonal trends, meteorologyand PM10, and found a statistially signi�ant e�et due to PM10. The mortality studywas repeated by Samet et al. (1995), who developed new estimators and omputationalalgorithms for �tting the models, but who adopted the same data and models as Shwartz.They essentially on�rmed the numerial orretness of Shwartz's results, but they didnot onsider the e�et of alternative modeling strategies.Another study of Birmingham data, over a largely di�erent time period, was by Rothand Li (1996). They olleted data on mortality and morbidity, PM10 and other pollutants(O3, SO2, CO). They �tted a wide variety of models based on di�erent ways of handlingthe trend/seasonal and meteorologial fators, di�erent exposure measures for PM10 (e.g.one-day readings over various lags, three-day averages, et.) and di�erent ombinations ofpollutants. With mortality as response, they �tted 2,400 di�erent models of whih onlyseven showed statistially signi�ant PM10 oeÆients, and three of these were negative.It is not lear exatly what this kind of omparison means sine many of the models beingompared are very similar, so the results will be highly orrelated. Moreover, Roth and Lidid not make any attempt to identify a \best" model in any sense. Nevertheless, the resultunderlines the sensitivity of laims of statistial signi�ane to model seletion. Theyalso found substantial variation of the PM10 oeÆients from year to year. Putting alltheir results together, Roth and Li laimed that there was no evidene of any relationshipbetween partiulates and mortality in Birmingham.3



The paper by Roth and Li helped draw our attention to the importane of di�erentexposure measures of PM10, a theme whih is developed at some length later in setions3 and 5. Apart from that, the results of the present paper have been derived entirelyindependently of Roth and Li.We should also draw attention to the very reent study by Clyde (2000), whih usedBayesian model averaging tehniques to form an independent view of some of the issuesdisussed in the present paper.For the present study, we have reonstruted the data from their original soures,and have developed independent methods of analysis. We fous partiularly on the e�etsof model seletion, di�erent exposure measures, and on possible nonlinear relationshipsbetween partiulates and mortality.2 BIRMINGHAM DATATo onstrut a data set for this problem, three soures have to be ombined: mortality,meteorology and PM10. The limitations of the present data set are mainly ditated by theavailability of PM10 data.2.1. PM10 dataThe sampling period is January 1, 1985 through Deember 31, 1988, the same as inShwartz (1993). During this period, PM10 data are available from the USEPA's aero-metri data base for 13 monitors in or near the ity of Birmingham. The 13 monitors donot neessarily represent di�erent loations: when the type of monitor or the method ofmeasurement hanges, this is treated as if it were a di�erent monitor.For the �rst seven months of 1985, data from three monitors are available, but theyare only olleted every six days (the same sampling days for eah monitor). Data of thisnature are of limited use for studying daily mortality e�ets. However, from August 1985onwards, there was usually at least one monitor olleting daily data, though not withoutsome missing values.A number of exposure measures have been used in previous studies. By an exposuremeasure we mean some funtion of present and previous days' pollution levels whih istaken as an independent variable in the regression analyses. For example Shwartz andDokery (1992a) used the average of urrent day's and previous day's TSP (total suspe-nded partiulates, the older measure of partiles before PM10 beame standard); Shwartzand Dokery (1992b) used just the previous day's TSP; Pope et al. (1992) used �ve-dayaverages of PM10, and Styer et al. (1995) used three-day averages inluding the urrentday. For Birmingham, Shwartz (1993) used three-day averages of PM10 exluding theurrent day, i.e. today's exposure measure onsists of the average PM10 for yesterday,the day before yesterday, and the day before that. As will be seen, the results are highly4



sensitive to the hoie of exposure measure, and in setion 3 we onsider the impliationsof this for our overall sienti� assessment of the results.One point, that ame to light well after our initial work on the Birmingham data setwas ompleted, is that not all of the PM10 monitors are equally relevant to the study ofmortality in Birmingham. Clyde (2000) drew attention to this feature and onentratedmost of her analysis on data based on the monitor in the ity of Birmingham, ignoringother nearby monitors whih had been inluded in earlier studies. The present study uses,as alternatives, the average over all available monitors or the data from Birmingham alone,but it appears that the strongest assoiations are obtained using the monitoring data fromBirmingham alone, so the main results are expressed in terms of that monitor.2.2. Mortality dataDaily mortality data were available from the National Center for Health Statistisfor 1985{1988. The data were lassi�ed in four ways: by gender (male/female), by rae(blak/non-blak), by age (under 65/65+) and by ause of death (respiratory/aner/irulatory/other disease/aidental). Although some of our work has been onerned withdi�erent age groups or with di�erent auses of deaths, we have found that the strongestevidene of a PM10-mortality assoiation exists within the 65 and over age group, when allnonaidental soures of mortality are ombined into a single overall death ount. Fromnow on, therefore, we onsider only that outome variable.2.3. Meteorologial dataThe Birmingham meteorologial data for this study ame from the U.S. NationalClimati Data Center in Asheville, North Carolina. The data are publily available throughthe ftp address ftp.nd.noaa.gov/pub/data/fsod/fsod asii.13876. This lists daily data atthe BIRMINGHAM MUNI AP site, for whih the WBAN number is 13876, and it isloated at 33.57 oN and 86.75 oW at an elevation of 191m.Although many meteorologial variables are available on a daily basis, those atuallyadopted are those listed in Table 2.1. Further rationale will be provided in setion 3 forthe hoie of these partiular variables.tmax: daily maximum temperature (oC)tmin: daily minimum temperature (oC)mntp: mean of tmin and tmaxdptp: average daily dew point temperature (oC)mnsh: average daily spei� humidity (g/kg)tg30: larger of (tmax{30) and 0mnshsq: square of mnshTable 2.1: List of meteorologial variables 5



2.4. Data summariesSummary statistis for some of the main variables are in Table 2.2. Here \mort" ismortality in the 65+ age group exluding aidental auses. The variable \pm10" refersto daily readings and \pmmean" to three-day averages. Daily values were obtained eitherfrom the Birmingham monitor alone (these are denoted pm10B or pmmeanB in the table)or from averages over all available monitors. Three-day averages were obtain by averagingthe orresponding one-day values | if one or two of the one-day values was missing in anythree-day period, the three-day average was based on the two days or one day remaining.Variable mean SD min 10% 25% 50% 75% 90% maxtmax 23.39 8.61 {3.3 11.1 17.2 24.4 31.1 33.3 38.3tmin 10.65 8.91 {12.2 {2.2 3.3 11.1 19.4 21.1 25.6mnsh 9.31 4.89 0.8 3.1 4.9 8.7 14.0 16.2 18.3pm10 47.23 23.77 8.0 21.0 29.0 44.0 59.3 79.0 163.0pmmean 46.89 18.96 13.0 24.2 33.0 44.7 57.8 72.0 137.1pm10B 50.56 26.42 8.0 21.0 30.0 46.0 66.0 87.0 163.0pmmeanB 50.08 21.22 11.0 25.3 33.7 48.0 62.3 78.3 146.7dptp 10.54 9.32 {19.1 {2.9 3.3 11.8 19.1 21.5 23.5mort 15.06 4.25 3.0 10.0 12.0 15.0 18.0 21.0 32.0Table 2.2: Seleted summary statistisTable 2.2 may be ompared with Table 1 of Shwartz (1993), who gave a similar tablefor the data he used in his study. Apart from obvious transformations suh as Fahrenheitand Celsius temperature sales, the meteorologial data appear to be the same. The meandeaths reported in Shwartz's study are a little lower than ours (e.g. Shwartz obtained17.1 for mean daily nonaidental deaths over all age groups; we obtained 19.8) whih mayhave been due to his taking a slightly smaller geographial area. The deaths data used inthe urrent study are for Franklin County, whih inludes Birmingham, whereas it appearsthat Shwartz used only data from the ity of Birmingham. In the ase of PM10, there is astrange disrepany in the number of days' data: Shwartz reported 139, 332, 262 and 354days' data for respetive years 1985, 1986, 1987, 1988, whereas our ounts are 139, 332,319 and 341 for the Birmingham monitor. We have no explanation for the extra 60 days'data in 1987. So far as we an tell, Shwartz's data set inluded other monitors besidesBirmingham, though personal enquiries with Dr. Shwartz have failed to establish thisde�nitively.Despite these disrepanies in data soures, we do not believe that they are responsiblefor disrepanies in the results. For the most part, when models similar to those of Shwartzare also �tted to the present data, the results are very similar to those of Shwartz. Thereal points of di�erene are in the models being �tted, not in the data.6



Plots of the data (see setion 3) show that the largest part of the variability in thedata is due to systemati seasonal and time trends, whih do not appear to be diretlyrelated to either partiles or meteorology. Shwartz onluded that these trends appearto follow a two-year yle (based on four years' data), and modeled the ylial trend byinluding 24 sine and 24 osine terms in the regression equation, together with a lineartrend term and an indiator variable for year. His prinipal �tting method was Poissonregression, using the generalized estimating equations approah developed by Liang andZeger (1986). Numerous variants on this tehnique, inluding orretions for overdispersionand autoorrelation, robust estimation, least squares regression and nonlinear regressionfor the temperature and PM10 omponents of the model, were used but apparently withoutgreatly a�eting the onlusions. The results onsistently showed a statistially signi�antPM10 e�et. In Shwartz's papers this has often been haraterized in terms of the relativerisk assoiated with an inrease in PM10 levels of 100 �g.m�3. A typial result for this is1.11, with 95% on�dene interval of (1.02,1.20). Samet et al. (1995) obtained an exatlyequivalent result based on re�tting the same model as Shwartz to the same data, butwithout further onsideration of model seletion.3 LINEAR REGRESSION ANALYSIS3.1. BakgroundAll analyses of the relationship between atmospheri pollution and human healthoutomes rely on regression analysis in some form, but there are many variations in thepreise methodology adopted. Sine one of the purposes of this paper is to highlight howdi�erent approahes to the analysis may lead to very di�erent onlusions, we begin witha brief overview of the main \issues" whih arise in this kind of analysis, and how theyhave been resolved by earlier authors, before desribing our own approah.One of the �rst papers to disuss methodologial issues in depth was the analysis byShwartz and Marus (1990) of London data from the 1960s. They highlighted suh issuesas � orreting for long-term trends and seasonal variation,� orreting for meteorologial onfounding,� orreting for onfounding by other atmospheri pollutants (in the ase of partiulatematter, the omparative e�et of SO2 is of partiular interest),� whether there is evidene of a nonlinear or \threshold" e�et in the pollution-mortality relationship,� the e�et of autoorrelation in the residuals.As interest in the subjet developed, so did the methods beome better �xed. Sametet al. (1995) onsidered a general struture of the formlog�t =X�jxjt; (3:1)7



where �t is the mean level of deaths on day t and the ovariates fxjtg inlude termsrepresenting trend and seasonality, meteorology and air pollution. Some of the modelsinluded nonlinear terms in the meteorologial and air pollution variables. The obviousprobabilisti model assoiated with (3.1) is a Poisson model in whih the death ount onday t is Poisson with mean �t, but Samet et al. (1995) rejeted that beause the dataexhibit both overdispersion and autoorrelation. Instead, they proposed an \iterativelyweighted and �ltered least squares" (IWFLS) approah. In spite of their aution on thispoint, however, subsequent authors have often used Poisson maximum likelihood without�nding overdispersion or autoorrelation to be of major onern.Subsequently Samet et al. (1997) presented a more detailed analysis of one partiulardata set from Philadelphia, whih inluded the use of smoothing splines to represent thelong-term trend and seasonal omponents. In some analyses they also applied smoothingsplines to nonlinear e�ets of meteorology and air pollution. In this analysis, they didnot �nd any evidene of autoorrelation, whih may have been beause the smoothingsplines approah is more sensitive to the true shape of the long-term trend than someof the approahes adopted in earlier papers. They onsidered synopti approahes to themeteorologial modeling, in whih the weather variables were used to de�ne a �nite numberof states representing typial weather senarios, these states being then used as ovariatesin the analysis. However, their onlusion was that the synopti approah is inferior tothe more usual regression approah based on temperature and dewpoint as ontinuousovariates. Finally, they onsidered the joint e�ets of partiulate matter and four otheratmospheri pollutants (SO2, NO2, O3 and CO), without �nding strong evidene thatpartiulate matter was the sole ausative fator, as some other authors had laimed.In a di�erent and more exploratory spirit, Styer et al. (1995) also onsidered models ofthe form (3.1) as well as alternative linear regression models in whih some of the nonlinearterms were represented nonparametrially as sample paths from stohasti proesses. Apartiular feature of their approah was to examine the onsisteny of regression models�tted on either a seasonal or a monthly basis. For example, in analysis of data fromCook County, Illinois (in e�et, the ity of Chiago), they found a signi�ant PM10 e�etwhen modeled as a single linear term, but when interations between PM10 and seasonwere onsidered, they found strong interation, with the PM10 e�et strong only in thefall. Suh an odd onlusion is hard to reonile with a strit ausal interpretation. Theyalso found no PM10 e�et at all in an analysis of data from Salt Lake County, Utah.On the other hand, Smith et al. (1999), re-analyzing the Chiago data using smoothingsplines for the long-term trend, did not �nd the same strength of evidene for a seasonalinteration, whih serves to highlight again the sensitivity of the results to di�erent methodsof analysis. There is also a question left open by the Styer et al. analysis, of whether �ttingentirely separate regressions on a seasonal or even monthly basis is simply over�tting, withinevitable diÆulties for interpretation of the results.For the present analyses, we onsider both Poisson maximum likelihood analyses basedon (3.1), and a simpler approah based on ordinary linear regressions of the formyt =X�jxjt + �t; (3:2)8



where yt is some transformation (e.g. log or square root) of daily death ount on dayt, and f�tg are independent normal random errors with mean 0 and ommon variane�2. Experiene with both Birmingham and other data sets has shown that models basedon (3.2) lead to virtually equivalent results to (3.1) after due allowane is made for thetransformation. The square root transformation is natural in view of the well-known resultthat for Poisson random variables, this is variane stabilizing | if zt is Poisson with mean�t then yt = pzt has mean �t � p�t and variane approximately 14 regardless of the truevalue of �t.We now turn to detailed spei�ation of individual omponents of the model, usingthe Birmingham data to illustrate how the model is onstruted in pratie.3.2. Trend and seasonality
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Figure 3.1. Weekly means of the daily nonaidental death ounts among the 65+ pop-ulation in Birmingham (top plot) and weekly PM10 means (bottom plot), together with asatterplot smoother for eah.Fig. 3.1 shows weekly deaths and weekly PM10 averages plotted throughout the four-year period, with a smoothed urve to represent the long-term trend (�tted by lowessin S-PLUS). The plots show learly that there are seasonal e�ets, but also that they areirregular from year to year. For example, eah year the deaths peak in the winter, but in1985{6 and 1987{8, the peak ourred in February, whereas in 1986{7 the peak ourredat the beginning of January. These fats, whih are almost ertainly due to epidemis9



rather than the e�ets of either meteorology or air pollution, highlight the need for arefulmodeling of the trend. Another feature of Fig. 3.1 is that PM10 appears to peak in thesummer, so a na��ve regression of mortality on PM10 might well lead to a negative e�et(in fat, the orrelation between the two series of weekly totals in Fig. 3.1 is {0.1) butof ourse this is also highly misleading given the number of other fators likely to explainseasonal variability.To model the seasonal e�et, Shwartz (1993) ited the well-known tendeny of epi-demis to follow a two-year yle, and modeled the trend as suh, using 24 sine and 24osine basis funtions. The B-spline approah of the present paper is based on represen-tations of the form f(t) = �0 + KXk=1�kB�KT (t� �k)� ; 0 � t � T; (3:3)where f(t) is the trend at time t, �k = TK �k � 12� is the k'th \knot", and B(�) is theB-spline basis funtion, see e.g. Green and Silverman (1994).The key deision in (3.3) is the number of knots K, whih ontrols the smoothness ofthe urve | the smaller K is, the smoother the urve. General onsiderations are that Kshould be large enough to pik up the kind of irregular seasonal behavior whih we sawin Fig. 3.1, but not so large that the seasonal e�et ould be onfounded with the PM10e�et. Sine air pollution episodes frequently last for several days and possibly as longas two or three weeks, the latter onsideration suggests that the frequeny of knots f�kgshould be no greater than about one per month.3.3. Meteorologial variablesOn the seletion of meteorologial variables, there is again a diversity of views in theliterature. Most authors agree on the need to inlude temperature and some measure ofhumidity and many also inlude pressure. For example, Styer et al. (1995) used tempera-ture, spei� humidity and station pressure, together with their one- and two-day laggedvalues, while Samet et al. (1995, 1997) based their analyses on temperature and dewpoint,the latter being another way to measure the e�ets of humidity. For Birmingham, Shwartz(1993) onsidered temperature and dewpoint as andidate meteorologial variables, thoughthe main model he �tted did not use dewpoint. Our own investigations suggest that it ishighly desirable to inlude at least one of spei� humidity and dewpoint in the model,along with temperature.The main variables examined in the urrent study are daily maximum and minimumtemperature, and one measure of humidity (either dewpoint or spei� humidity). Onemight expet that the mortality vs. temperature relationship would be nonlinear (dereas-ing at low temperatures, inreasing at high). This ould be modeled using a quadrati orhigher-order polynomial, or alternatively through a pieewise linear model of the formf(x) = �1x+ �2xI(x > x0); (3:4)10



where x is temperature, I is the indiator funtion and x0 is some threshold. Preliminaryanalysis suggested that an e�etive way to deal with nonlinearity was through a model ofthe form (3.4) for x = tmax, with x0 = 30 oC. This motivated the de�nition of the variabletg30 in Table 2.1.The question also arises whether the e�et of spei� humidity should be nonlinearand for this we �nd that a quadrati �t is good. Further details are given below.Finally, all the meteorologial variables were lagged up to 4 days to allow for e�etsthat may persist over several days. The lag is indiated with a suÆx; for example, tmax2means tmax lagged two days, and mnshsq0 means the lag 0 (in other words, today's) valueof mnshsq.3.4. Seleting the meteorologial and trend modelThe �rst step of the analysis is to �nd the best �t to the data using just the trend andmeteorologial variables: later, we add terms involving PM10 individually to asertain thesigni�ane of those terms.For trend and seasonality, the approah taken here is �rst to �x K, the numberof spline basis funtion for the trend, and then to selet meteorologial variables. Themethod of seletion is bakward seletion using tests at signi�ane level 0.1 to determinewhih variables to omit from the model. The results are repeated for several values ofK, and using three transformations of daily death ount (square root, logarithmi and notransformation) to determine yt in (3.2). A sale orretion was applied to ensure thatthe mean squared error results are diretly omparable (Atkinson 1985, p. 86). Modelsare then ompared by AIC. Results are in Table 3.1. Also inluded in this table are theorresponding results based on Shwartz's (1993) sine-osine representation of the trend.The results of Table 3.1 show onviningly that the square root transformation per-forms best among the three transformations onsidered, and also that K = 12 is bestamong the values of K onsidered. Although AIC is just one of several model seletionriteria we ould have onsidered, others lead to essentially the same onlusion. Theresults for K = 0 are inluded following a suggestion of the referee, who asked whetherthe whole of the seasonal variation ould be modeled as a funtion of meteorology. Theanswer is no, though surprisingly, K = 0 performs seond best (after K = 12) of thevarious values in Table 3.1. As a further hek on this onlusion, signi�ane tests for thealternative hypothesis K = 12 have been performed against the null hypothesis K = 0,using ommon sets of meteorologial ovariates to make the models nested. In every asetested, the result is signi�ant with a p-value of the order of .01{.03. Thus we onludethat K = 12 is the best.
11



K Square root trans. Log trans. No trans.p AIC p AIC p AIC48 55 4037.87 55 4106.26 54 4066.8740 47 4028.72 47 4096.27 46 4058.2432 39 4022.41 39 4088.49 39 4054.0824 30 4017.93 36 4083.99 28 4049.4720 34 4018.03 34 4084.02 27 4048.9816 23 4013.49 23 4079.76 23 4044.9912 19 4007.64 19 4074.14 19 4038.978 15 4014.29 16 4078.89 19 4048.390 9 4013.46 9 4076.05 9 4048.11SC 55 4053.96 55 4120.69 55 4084.60Table 3.1: Number of parameters p and AIC values for trend+meteorology models inwhih trend is modeled by a B-spline representation with K knots and meteorologialvariables are seleted by bakward variable seletion. Three transformations (square root,logarithmi and none) are onsidered. Also tabulated are the results for Shwartz's sine-osine representation (SC).
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Figure 3.2. Modeling the trend in daily mean deaths (without meteorologial omponent)using di�erent values of K: K = 12 (solid urve), K = 24 (dashed urve), K = 48 (dottedurve). The urve for K = 12 shows a lear seasonal pattern with a well-de�ned peak ineah year, whereas the others show loal utuations whih seem likely to be spurious.12



In previous analyses of Birmingham, Smith et al. (1998, 1999) have used larger valuesof K so the present analysis represents a departure from that. As a further assessment,Fig. 3.2 shows the �tted smoothed trends by the B-spline method for three values ofK = 48; 24 and 12, in this ase �tted without meteorologial omponents (otherwisethese urves are diÆult to ompare visually). The urves for K = 24 and K = 48 shownumerous loal utuations whih seem likely to be spurious. This therefore provides somevisual on�rmation of the AIC-based results.So far, although we have seleted meteorologial variables by bakward seletion, thelass of meteorologial variables onsidered for variable seletion has remained �xed. How-ever, other issues whih arise in these analyses inlude whether humidity is best representedby spei� humidity or dewpoint, or whether humidity variables should be inluded at all.To test this, Table 3.2 shows AIC values for the best model in four lasses, (a) using tem-perature variables only, (b) using temperature plus linear terms in spei� humidity, ()using temperature variables plus dewpoint temperature, (d) using temperature variablesplus linear and quadrati terms in spei� humidity. All the models were obtained bybakward variable seletion of meteorologial variables, with a �xed K = 12 knots for theB-spline representation of trend. As judged by AIC, model (d) is learly the best of these.This highlights the need to inlude humidity as well as temperature.Model AIC df(a) tmax1, tmin3, tg301 4022.46 15(b) tmin0, tmin3, tg301, mnsh0, mnsh2, mnsh3 4016.67 18() tmin3, tg301, dptp2, dptp3 4016.59 16(d) tmin3, mnsh0, mnsh1, mnsh2, mnsh3, mnshsq0, mnshsq1 4007.64 19Table 3.2: Best meteorologial models in four lasses3.5. Adding partiulate matter to the modelAs remarked already, previous authors have used a variety of exposure measures forPM10. For example Styer et al. (1995) used three day averages inluding the urrent day,while Shwartz (1993) used three day averages exluding the urrent day. In the followingdisussion, we attempt to be systemati in searhing for a suitable variable or variablesto represent PM10. We de�ne variables pm0, pm1,..., pm4 to represent the one-day PM10reading lagged up to 4 days, and we used pmmean with appropriate lags to represent three-day means. Thus pmmean0 denotes the average of pm0, pm1 and pm2, while pmmean1denotes the average of pm1, pm2 and pm3. The �ve-day average was also onsidered but isnot reported sine in no model was it found to be statistially signi�ant. The analyses inthis subsetion are based on the same meteorologial variables and B-spline basis funtionsas previously, but the analysis is restrited to the period August 3 1985 { Deember 311988 for whih there is an almost ontinuous series of monitoring data.13



Variable Estimate Standard error t statisti(i) pmmean0 .00136 .00082 1.65(ii) pmmean1 .00192 .00082 2.34(iii) pm0,...,pm4 .00108 .00130 0.83(iv) pm0, pm1, pm3 .00117 .00106 1.10(v) Poisson version of (ii) .00098 .00040 2.44(vi) Poisson version if (iv) .00057 .00052 1.10Table 3.3: Parameter estimates and standard errors due to PM10 in the model based ontemperature plus linear and quadrati terms in spei� humidity.Table 3.3 shows the oeÆient, standard error and t statisti for several di�erentways of introduing PM10 into the model of Table 3.2(d). These are based on one-day orthree-day averages omputed using the Birmingham monitor alone, as disussed earlier.It should be pointed out that a number of other ombinations of the PM10 variable wereonsidered | single-day values, two-day averages and three-day averages at various lags |but no single variable produed as strong an assoiation as pmmean1 here, for whih the tstatisti is 2.34, a signi�ant result if the model seletion aspet of the analysis is ignored.Row (iii) shows the e�et of putting in eah of the �ve single-day variables pm0,...,pm4and using the sum of the �ve oeÆients along with the standard error of that sum as ameasure of the overall PM e�et. Measured this way, the overall e�et is weaker than inrow (ii), and not statistially signi�ant. However within this analysis, pm2 and pm4 werenot signi�ant, the remaining statistially signi�ant oeÆients being pm0 with a negativeoeÆient, and pm1 and pm3 with positive oeÆients. Therefore, row (iv) repeats theanalysis of row (iii) but based just on pm0, pm1 and pm3. Again it does not show astatistially signi�ant result. Finally, rows (v) and (vi) repeat the analysis of rows (ii)and (iv) but based on the Poisson regression model (3.1). The oeÆients in this ase arenot diretly omparable with those based on model (3.2) beause the transformation of yis di�erent (yt in (3.2) is taken as square root of elderly nonaidental deaths) but the twosets of results may be ompared by translating them into relative risks.To alulate relative risks assoiated with the parameters in rows (i){(iv), the simplestway to illustrate is by example. The mean deaths per day are 15.055. Suppose the modelof row (ii) holds and onsider the e�et of a 10 �g/m3 rise in PM10. Aording to theoeÆient, this should lead to an inrease of 10 � :00192 in mean square root of deaths.Thus the estimated relative risk is (p15:055 + :0192)2=15:055 = 1:010 and an assoiatedapproximate 95% on�dene interval is (1.001, 1.018) after applying the same alulation toboth endpoints of a 95% on�dene interval for the oeÆient. In ontrast, the estimatedrelative risk based on model (v) is e:0098 = 1:010 with 95% on�dene interval (1.002,1.018), virtually the same. Similarly, the estimated risk for model (iv) is 1.006 with 95%on�dene interval (.995, 1.017) and these are idential to the estimates based on model(vi). 14



Table 3.4 shows the results omparable to Table 3.3 in whih the meteorologial mod-eling is based on Table 3.2(a), i.e. temperature alone. This table was alulated beauseone of the onlusions from Shwartz's (1993) analysis was that it does not make any dif-ferene whether humidity is inluded or not in the model (though Shwartz used dewpointrather than spei� humidity in making the assertion). Whether the di�erenes betweenTables 3.3 and 3.4 are of any pratial signi�ane is a matter for debate, but it an beseen that the oeÆients in Table 3.4 are uniformly higher than in Table 3.3. In otherwords, omitting humidity may have had the e�et of inating Shwartz's estimates.Variable Estimate Standard error t statisti(i) pmmean0 .00158 .00085 1.87(ii) pmmean1 .00217 .00088 2.46(iii) pm0,...,pm4 .00163 .00132 1.23(iv) pm0, pm1, pm3 .00139 .00108 1.29(v) Poisson version of (ii) .00111 .00043 2.61(vi) Poisson version if (iv) .00070 .00053 1.32Table 3.4: Parameter estimates and standard errors due to PM10 in the model based ontemperature alone.If these analyses are repeated using average PM10 values from all the monitors ratherthan just the values from the Birmingham monitor, the PM oeÆients are uniformlysmaller. For example, the Poisson oeÆients from rows (v) and (vi) of Table 3.3 beome.00088 and .00049 (instead of .00098 and .00057), while those from Table 3.4 beome .00100and .00058 (instead of .00111 and .00070). Thus, the deision to use just the Birminghammonitor has had the e�et of inreasing the estimated e�ets ompared with earlier analysesbased on this data set.Variable CoeÆient S.E. t statistitmin3 {.00270 .00330 {0.82mnsh0 {.03309 .01315 {2.52mnsh1 .00748 .01422 0.53mnsh2 {.00807 .00682 {1.18mnsh3 .00792 .00698 1.13mnshsq0 .00184 .00070 2.61mnshsq1 {.00068 .00072 {0.94pm0 {.00070 .00039 {1.77pm1 .00074 .00039 1.89pm3 .00053 .00034 1.55Table 3.5: Individual oeÆients and standard error, Poisson model with individual o-eÆients for single-day PM10 e�ets 15



Tables 3.5 and 3.6 give detailed regression results under the Poisson model for rows(vi) and (v) of Table 3.3. In Table 3.5, the oeÆients of pm0, pm1 and pm3 are all nearstatistial signi�ane, the oeÆient of pm0 being negative and the other two positive.When the three oeÆients are added, the ombined result is positive but not statistiallysigni�ant, as is reeted in the RR results in rows (iv) and (vi) of Tables 3.3 and 3.4. Itwould appear that the reason why the analysis with pmmean1 is the only one to give astatistially signi�ant result is beause this hoie of exposure measure exludes the e�etof day 0 whih is negative.An inidental omment about Tables 3.5 and 3.6 is that several of the meteorologialvariables do not appear signi�ant here. However, the original meteorologial variableseletion was done without any PM terms present; we have not hosen to drop parameterswhih beame insigni�ant at this stage of the analysis.Variable CoeÆient S.E. t statistitmin3 {.00351 .00281 {1.25mnsh0 {.03815 .01116 {3.42mnsh1 .01947 .01195 1.63mnsh2 {.01047 .00578 {1.81mnsh3 .01089 .00595 1.83mnshsq0 .00249 .00060 4.15mnshsq1 {.00148 .00061 {2.41pmmean1 .00098 .00040 2.44Table 3.6: Individual oeÆients and standard error, Poisson model based on three-dayaverages of PM10The di�erenes among the estimates from the di�erent models do not appear to resultfrom whether we use normal or Poisson regression, whih lead to very similar estimatesfor the relative risk, but on whih variables are inluded in the regression. The mostsubstantial soure of disrepany arises from whether we hoose to use pmmean1 as thesingle most signi�ant measure of the pollution e�et, or estimate separate one-day valuesas in Table 3.5. There is no lear-ut judgement about whih is the right model, but itis important to understand that the onlusion is sensitive to this judgement. The lattermodel may be thought of as a rude form of \distributed lag" model, in whih the time-dependent shape of the response urve is assumed a priori unknown, and ultimately wefeel that models of this form are likely to be the way forward with this kind of analysis.Our �nding about pm0 should not be interpreted as meaning that the urrent day'sPM10 has a protetive e�et. It seems muh more plausible that it is an artifat aused bylinear orrelations among the di�erent variables. Nevertheless it seems to be a persistentphenomenon. For example Roth and Li (1996) notied the same thing, omputing the pm0oeÆient separately for eah year of data from 1988 to 1993, and in only one of the six16



years was it positive. However this has only a one-year overlap (1988) with the presentdata set.One diÆulty with inluding multiple PM10 e�ets in the analysis is that they magnifythe problems of missing data. Out of 1,247 days overed by the data, 147 had missingsingle-day values, but a total of 300 are missing at least one of pm0, pm1 or pm3 and weretherefore omitted from the analyses just reported. There is no evidene that this has anye�et on the parameter estimates but it does mean that the degrees of freedom for errorare smaller, and it makes other kinds of alulations more diÆult, e.g. serial orrelationsamong the residuals. For this reason and for better omparison with previously publishedresults, muh of the subsequent disussion is still based on the model using pmmean1 asthe exposure variable. The variable pmmean1 is onsidered missing only if all three daysin a row are missing, whih ourred only four times.3.6. DiagnostisFor the normal linear regression model (3.2), the residual for day t is de�ned in theusual way, as et = yt �Xj �̂jxjt (3:5)where the �̂j are estimated oeÆients. For the Poisson model (3.1), if �̂t is the estimatedPoisson mean for day t and if yt is the observed value, then we an de�ne the transformationut = yt�1Xy=0 p̂t(y) + 12 p̂t(yt) (3:6)where p̂t(y) = �̂yt e��̂t=y!, the �tted Poisson probability distribution for day t. The formula(3.6) is intended as an approximation to the probability integral transformation, so thatut are approximately uniformly distributed on [0,1℄. By further transformation, we alsoobtain approximately normal residuals, analogous to (3.5). For the following disussion,we onentrate on the normal and Poisson models based on pmmean1, as in rows (ii) and(v) of Table 3.3.One issue that arises is overdispersion. If yt has a Poisson distribution, then the vari-ane of pyt is approximately 14 . This should also apply approximately to the residuals in(3.4) if the linear regression is a reasonable representation of reality. In the regression ofTable 3.3(ii), whih we believe to be representative of all the regressions we have onsid-ered, the standard unbiased estimator of �2 is s2 = 0:269 with 1,222 degrees of freedom.This represents an approximately 7.5% overdispersion, and is not statistially signi�antlydi�erent from 0.25 based on the �2 distribution of s2. Based on this, we onlude thatoverdispersion is not a serious problem.A seond issue whih sometimes arises in these kinds of analyses is the possibility thatresiduals may be serially orrelated. In the present ase, the �rst few serial orrelation17



oeÆients of the residuals are {.016, {.017, {.017,.. These should be ompared with thestandard referene point for orrelation oeÆients, 2=pN = :057. We onlude that thereis no evidene of serial orrelation. For the normal-transformed residuals from the Poissonmodel, the serial orrelations are {.014, {.015, {.015,... whih leads to the same onlusion.Roth and Li (1996) did �nd signi�ant serial orrelation in their residuals and a-ommodated this with autoregressive models of order up to 4. However their modeling ofseasonal trend was less detailed than ours. In general, our experiene with this and similardata sets has been that if the model for trend is inadequate to pik up all the utuations inthe underlying death rate, then this leads to signi�ant serial orrelations. One advantageof the B-splines approah is that it seems to model trend suÆiently aurately to makeautoregressive models unneessary.A third diagnosti issue is whether the assumed distribution (normal or Poisson)adequately �ts the data. There is no ontradition in testing both distributions beausethe Poisson distribution for large enough mean would be hard to distinguish from a normaldistribution, a diret onsequene of the Central Limit Theorem. However, so far we havenot presented any evidene that either distribution �ts the data.
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Figure 3.3. Probability plot for standardized residuals under (a) normal model, (b)Poisson model.A standard method of deiding whether residuals follow a normal distribution is as aprobability plot of the order statistis against their expeted values. This is done in Fig.18



3.3(a) for the OLS regression model and Fig. 3.3(b) for the Poisson regression model. InFig. 3.3(a), the residuals are �rst standardized to have variane 1, while Fig. 3.3(b) isbased on the normal-transformed version of the residuals from the Poisson model. In bothplots the data are lose to the solid line whih is evidene that the model is indeed a good�t. The �nal \diagnosti" issue we onsider is whether the estimated PM10 oeÆientvaries from year to year or from season to season. Roth and Li (1996) found signi�antvariations from year to year in the ase of Birmingham. The possibility of seasonal variationwas not investigated by them, but other studies of similar data sets have shown that itan be important, e.g. Styer et al (1995).We on�ne our disussion here to the model based on pmmean1, sine in this asethere is only one parameter to vary. Suppose the model of Table 3.6 is �tted, but withseparate pmmean1 oeÆients for eah year or for eah season. Table 3.7 shows the results.There is some slight suggestion of a variation in the PM oeÆient both from year to yearand from season to season, but in neither ase is the variability statistially signi�antwhen measured by a deviane test (deviane statistis 0.8 and 1.9 respetively for yearlyand seasonal interations, eah with 3 d.f.). The one possibly interesting onlusion isthat the PM10 e�et does appear to be substantially weaker in the summer than in theother seasons, and it would be interesting to see whether this onlusion is sustained overa longer time span in Birmingham or in other ities with a similar limate.CoeÆient S.E. t value(a) Variation by year1985 0.00037 0.00108 0.351986 0.00074 0.00057 1.281987 0.00126 0.00062 2.031988 0.00115 0.00074 1.54(b) Variation by seasonSpring 0.00110 0.00057 1.92Summer 0.00050 0.00058 0.86Fall 0.00111 0.00053 2.11Winter 0.00106 0.00058 1.84Table 3.7: Variation of the pmmean1 oeÆient by year or by season, for the model ofTable 3.10In summary, we have examined the �t of the linear regression models for four possibledepartures from the underlying assumptions: overdispersion, serial orrelation, lak of �tof the distribution and seasonal or annual variation in the oeÆients. In no ase do we�nd any reason to rejet the original assumptions.19



4 THRESHOLD EFFECTSA ritial question for the whole partiulates-mortality debate is whether there existsa threshold below whih there is no e�et. This question an only be addressed throughsome form of nonlinear modeling. Shwartz (1993, Fig. 6) estimated a smooth nonlinearurve for the PM10-mortality relationship but did not alulate any on�dene band. Here,we re-visit this question from three alternative points of view.The �rst new analysis is based on a simple pieewise linear regression funtion for thedependene on partiulates. An early example of suh analysis was that of Ostro (1984),who used it to examine the possibility of a threshold in data from London.We use the same idea, but for a sequene of thresholds. Consider the funtions,f1(x) = �x� u if x < u0 if x � u ;f2(x) = � 0 if x < ux� u if x � u ; (4:1)and onsider a funtion of response variable y (typially, square root of daily deaths)against PM10 level x of the form �1f1(x) + �2f2(x) plus other terms depending on otherovariates. Thus, the PM10 relationship is pieewise linear with a disontinuity in theslope (though not the funtion itself) at a threshold u. For this analysis, the PM10 wasrepresented by pmmean1 and the other ovariates were as in Table 3.6. Thus �1 and �2represent slopes of the regression below and above the threshold.Fig. 4.1 shows the resulting estimates of the PM10 e�et, with pointwise 95% on�-dene bands, for four possible hoies of the threshold u. At u = 40, the results show noevidene of a hange of slope either side of the threshold. At u = 60 and u = 80, the esti-mated slope is learly higher above the threshold than below. The e�et has disappearedagain by u = 100, but for this high threshold, the standard error of the slope above thethreshold is very large. Of the four threshold plots, only at u = 100 do the results belowthe threshold provide nearly signi�ant evidene of an inreasing slope in that region.Fig. 4.2 shows an alternative treatment based on B-splines for the estimation of anonlinear e�et. The results are expressed as relative risks, relative to the long-term meanof PM10, whih is 50.5. In other words, the relative risk for the level 50.5 is de�ned to be1, and everything else is de�ned from that. To ahieve this, we represent the PM10 e�etin the form f(x) = K0Xk=1�k fBk(x)� Bk(�x)g ; (4:2)in whih x denotes the measured variable (here pmmean1), �x is the sample mean of all xvalues (here 50.5), K 0 is the number of knots in the B-spline representation for f(x), and20



B1; :::; BK0 are entered and normalized B-spline basis funtions, analogous to (3.3). Thisis then translated to relative risk viaRR = (p15:055 + f(x))215:055 ; (4:3)analogous to the alulation following Table 3.3. Pointwise on�dene bands are alulatedby alulating a 95% on�dene interval on eah f(x) from (4.2), and translating to relativerisks via (4.3). This leads to the plots in Fig. 4.2. Two plots are alulated, one using �vebasis funtions with knots at 20, 50, 80, 110, 140, the other using seven basis funtionswith knots are 20, 40, 60, 80, 100, 120, 140.
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Figure 4.1. Pieewise linear e�ets for mortality on three-day-averaged PM10, relative tofour di�erent thresholds, with pointwise 95% on�dene bands.The on�dene bands alulated by this method are inevitably very wide, but they dogive a rough indiation of the statistial signi�ane of the utuations in the funtion. Inpartiular, the utuations in the observed funtion below the mean �x do not seem at allsigni�ant, whereas the inrease in RR observed above the level of 60 �g/m3 seems strongenough not to be entirely aidental.
21
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(b): 7-knot spline
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Figure 4.2. Smooth nonlinear urve for the relative risk of mortality on three-day-averaged PM10, omputed using either a 5-knot or a 7-knot ubi spline, with pointwise95% on�dene bands.A third possible approah is a semi-Bayesian approah to \detetion" of a threshold.Suppose we re-�t the model based on pieewise linear funtions (4.1), but with f1 havingoeÆient 0 | in other words, we are now assuming that there is no PM e�et below thethreshold u. Suppose, in (3.2), the vetor of regression parameters onditional on a givenvalue of u is denoted �(u), and the residual error variane is �2(u). If we assume a jointprior density for u; �(u); �2(u) of the form�(u; �(u); �2(u)) / 1�2(u) ; 0 � u � umax; �2(u) > 0; (4:4)with umax some presribed upper limit on the values of u, then it may easily be veri�edthat the marginal posterior density for u is of the form�(u j data) / G(u)n�p; (4:5)where n is the number of data points, p the number of regressors in the model (3.2), andG2(u) is the usual residual sum of squares after performing the regression for �xed u. Thisapproah begs the question of what is really an appropriate prior distribution for u (thatis why we all it only semi-Bayesian), but the posterior distribution based on (4.5) mayprovide a useful indiation of the information available in the data to support di�erentvalues of u. 22



Fig. 4.3 shows the posterior density for u alulated under this approah. This isbased on assessing (4.5) at disrete values u = 20; 22; 24; :::; 120 and normalizing so thatthe integral of the posterior density is 1. The result shows a peak in the posterior densitynear u = 65, but it is also notiable that the posterior density does not tend to 0 as uapproahes its lower endpoint (taken here to be u = 20 beause of the very small numberof data points for whih pmmean1 is below 20). In other words, the analysis providessupport for a threshold in the region 55{75 �g/m3, but it also shows that the possibilityof a threshold near 0 annot be dismissed.
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Figure 4.3. Bayesian alulation of the posterior probability for the loation of a thresh-old. In onlusion, the results of this setion support the existene of a nonlinear e�etor a threshold above the urrent annual mean NAAQS of 50 �g/m3. None of the resultsprovide statistially signi�ant \proof" either that the e�et is nonlinear or that thereis a threshold e�et, if the question is formulated from the point of view of testing thesigni�ane of a nonlinear vs. a linear e�et. However, we question whether that is theright formulation. Muh of the urrent ontroversy onerns whether there is signi�antevidene of an adverse health e�et within the levels permitted by the urrent NAAQS, andon the evidene presented here, for Birmingham, our onlusion is that there is not, evenwithout taking aount of the seletion e�ets assoiated with the hoie of pmmean1 asthe variable of interest.
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5 GAM MODELINGAs an alternative to the whole approah to regression taken in setions 3 and 4, thedata were also analyzed using the generalized additive model (GAM) approah of Hastieand Tibshirani (1990). There were a number of reasons for pursuing this as an alternativeapproah, among them, that GAMs form a exible lass of models whih automatiallyinorporate nonlinear e�ets, and that the methodology of GAMs is di�erent from thespline basis funtion approah taken in the earlier setions of the paper and thereforeprovides an independent hek on the results obtained through that approah.The GAM is de�ned by the equationyt =Xj fj(xjt) + �j (5:1)where xjt is the value of the j'th ovariate on the t'th day. As in ordinary least squares,Ef�jg = 0 and Varf�jg = �2, but the fj terms are arbitrary funtions with an fj modeledfor eah ovariate. We follow the proedure used in S-PLUS in whih the nonparametri fjfuntions are modeled using the loess proedure (Cleveland and Devlin, 1988). A ritialparameter is the span, the fration of the data set used for �tting eah funtion value.In ontrast with earlier analyses, where days with missing values of ovariates wereomitted from the analysis, we interpolated the PM10 series (by linear interpolation betweennearest available days) in order to have a omplete set of data. Meteorologial variableswere tmax, mntp (mean daily temperature, average of tmax and tmin) and mnsh. Laggedvalues were inluded as in earlier analyses and the default span provided by S-PLUS(0.5) was used for all variables exept the time trend, after visual inspetion of the plotssuggested that it provided satisfatory results. For the time trend, we also used a loess �twith span 0.05, a somewhat subjetive hoie based primarily again on visual inspetion ofplots. This leads to somewhat more irregular trends than in the earlier B-splines approah,but doing this provides a further hek on the robustness of the results. The trend e�et isa onommitant variable, and ideally, estimates of partiulate e�ets should not be heavilydependent on preise modelling of the trend as long as there is little bias in the trendmodel. Experiments with span 0.10 produed almost no hange in the results below andno hange in the onlusions we draw. The response variable was the same as before, i.e.square root of elderly nonaidental deaths.The GAM stepwise algorithm identi�ed the following variables as signi�ant for thebasi model: lo(tmax1), tmax3, lo(tmax4), mntp2, mntp3, lo(mnsh), lo(mnsh1), mnsh2,mnsh3, and a trend term, lo(time). Here lo(...) indiates that a loess nonlinear funtionwas �tted, while the remaining variables were all treated linearly. The dispersion parameterfor the Gaussian family was estimated to be 0.271, i.e. an 8% inrease ompared with thevalue 0.25 that would be expeted if the Poisson model were exat. This is onsistent withestimates of overdispersion found in setion 3. The �tted trend e�et is displayed in thetop left hand box of Fig. 5.1. Sine this plot shows the trend e�et after adjusting for allother meteorology variables in the model, it does not exatly math the urves in Fig. 3.2.24
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Figure 5.1. Estimated e�ets and 95% on�dene bands for 11 variables under the gen-eralized additive model of setion 5. 25



When pm0, : : : ,pm4 are added to the basi model, the analysis of deviane table showsa drop in deviane of 2.05 (F=1.51) with �ve degrees of freedom and an approximate p-value of 0.18. Sine this is not signi�ant, it suggests that subset seletion is a potentialproblem in identifying the proper ombination of partiulate variables to plae in themodel. Similarly, when pmmean0 was entered in the basi meteorology model, the dropin deviane was 0.89 (F =3.29) with a p-value of 0.07. This agrees with the result fromsetion 3. Only for pmmean1 (deviane 1.65, F=6.08, p-value .014) do we get a signi�antresult.A further analysis was performed using pm0, pm1 and pm3 as partiulate mattervariables, to give results omparable with those in Table 3.5. An initial �t again showed anegative oeÆient for pm0 and positive oeÆients for pm1 and pm3, with t values �1:09,2.48 and 1.10 respetively. (Here the approximate t values were omputed using standarderrors derived from the S-PLUS GAM plot funtion.) In further analysis, �rst pm3 andthen pm0 were dropped from the model, leaving pm1 as the only signi�ant variable, forwhih the oeÆient was .00164, standard error .00069, t value 2.37. The deviane was1.39 with approximate F = 5.11 and p-value .024. (Beause the F and t statistis arebased on di�erent approximations, the t value is not exatly the square root of F .) Thusthe results di�er somewhat from Table 3.5 in that with this version of the analysis, thenegative oeÆient for pm0 is not statistially signi�ant. The onlusion from the analysisbased on one-day values is that only pm1 is signi�ant, and then only just so. The fatthat the negative oeÆient for pm0 is no longer signi�ant supports the interpretationthat the relation is spurious and due to multiollinearity. With the riher GAM model,the e�et of pm0 is partially explained by the meteorology variables.One again the unertainties assoiated with variable seletion ast doubt on whetherany of the PM10-based variables are really signi�ant. The �nal �t for a model basedon pmmean1 is presented in Fig. 5.1, where the 11 �tted fj(xj) funtions are plottedalong with their approximate pointwise 95% on�dene interval bounds. In this model,we �t the PM10 e�et with a loess term for pmmean1 in order to examine the question ofwhether or not a threshold e�et exists. The �tted response for mnsh learly shows theurvilinear relationship modeled by a quadrati term in Table 3.6. The other variablesshowing evidene of nonlinearity are tmax1, tmax4 and mnsh1. The last panel in Fig.5.1 shows the nonparametri �t for pmmean1 with the basi meteorologial model. Theon�dene band seems to on�rm the onlusion that a linear �t is adequate. On the otherhand, the on�dene band is also apparently onsistent with a hypothesized threshold ofaround 60{70 sine below this threshold the on�dene bands are onsistent with theunderlying relationship being onstant.
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6. CONCLUSIONSThe purpose of this paper has been neither to verify nor to disprove the notion thatthere is a strong assoiation between deaths and partiulate matter, but rather, to showthat there are many possible interpretations of the data and no single onlusion is de�ni-tive. We have given partiular attention to the paper by Shwartz (1993) sine this is theone whih has been most widely ited in the literature, though it should be pointed outthat by now there have been a number of re-analyses of data from Birmingham, inludingthose by Samet et al. (1995), Roth and Li (1996) and Clyde (2000), whih have led to awide range of onlusions. The main ones from our own study are:1. The models are highly sensitive to the de�nition of an \exposure measure" forlagged PM10 values. Shwartz used pmmean1 as an exposure measure and our analysis hason�rmed that the PM10 e�et is signi�ant using this variable, but under other measures,it is not signi�ant. In partiular, when a ombination of lags 0{4 was taken, the result wasnot statistially signi�ant. It may well be that the apparently negative oeÆient for lag0 is spurious in some way, but the fat that its inlusion hanges an apparently signi�antresult into one whih is not signi�ant shows that its inuene annot be negleted.2. On the question of whether the meteorology e�ets should inlude both temperatureand humidity or only temperature, our �nding is that humidity should be inluded, andthat in that ase, the resulting PM10 oeÆients are somewhat smaller than if humidity isnot inluded.3. Even if we allow for pmmean1 to be taken as the exposure measure of interest,there is little evidene that this has an e�et at low levels; a threshold analysis suggeststhat the main e�et is above 80 �g/m3.4. Further analysis of nonlinear e�ets through generalized additive models reinforesthe onlusion that the prinipal e�et of pmmean1 is at the upper end of the range.The broader impliation for partiulate matter and health is that in a typial data set,there are many issues that need to be taken into aount before a onlusion of a ausale�et an be drawn. Crude analyses that do not take into aount possible alternativeinterpretations of the data are of limited value in the ontext of a publi debate overpollution regulations. REFERENCESAbbey, D.E., Nishino, N., MDonnell, W.F., Burhette, R.J., Knutsen, S.F., Beeson,W.L. amd Yang, J.X. (1999), Long-term inhalable partiles and other air pollutants relatedto mortality in nonsmokers. Amerial Journal of Respiratory and Critial Care Mediine159, 373{382. 27
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