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Abstract

We show that a field X (m,n) is strongly periodically correlated with period (M, N) if and
only if there exist commuting unitary operators, U, and U, that shift the field unitarily by M
and N along the respective coordinates. This is equivalent to a field whose shifts on a subgroup
are unitary. We also define weakly PC fields in terms of other subgroups of the index set over
which the field shifts unitarily. We show that every strongly PC field can be represented as
X (m,n) = U U3 P(m,n) where U; and U, are unitary and P(m, n) is a doubly periodic vector-
valued sequence. This leads to the Gladyshev representations of the field and to strong
harmonizability. The 2- and 4-fold Wold decompositions are expressed for weakly commuting
strongly PC fields. When the field is strongly commuting, a one-point innovation can be
defined. For this case, we give necessary and sufficient conditions for a strongly commuting
field to be PC and strongly regular, although possibly of deficient rank, in terms of periodicity
and summability of the southwest moving average coefficients.
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1. Introduction

Periodically correlated (PC) random processes are nonstationary processes for
which the nonstationarity occurs in a manner that makes possible a spectral theory
that is understandable and manageable. These processes occur, for example, when
physical systems that generate random processes are perturbed or influenced
periodically with respect to time. Physical examples are provided by meteorological
processes, noise processes produced by rotating machinery, communications signals
where randomness appears as the message or as additive noise, and periodicity
comes through the communication format. In the communications context,
periodically correlated processes are also called cyclostationary [7]. For a survey
of univariate PC and almost PC processes, see Dehay and Hurd [4].

In this paper, we say that a collection of L,(Q) random variables X (m, n), indexed
on 72 is a strongly' PC field with period (M, N) if its mean and covariance functions
satisfy

u(m,n) = p(m+kM,n+ IN) (1)

R(m,n,m’;n') = Rim+ kM ,n+IN,m’ + kM ,n' + IN) (2)

for all integers m,n,m’,n’ and k,[l in Z, and M and N are each the smallest positive
integers for which (1) and (2) are both true. It is clear that these preceding conditions
also imply that the correlation function will satisfy (2) but we will throughout
express the PC property as a condition on the covariance, and without loss in
generality will take u(m,n) = 0. For a field to be strongly PC we also require M >0
and N >0. The condition M =1 and N >1 means that for every m the field is PC
with period N in the variable n and for every n is stationary with respect to m. As we
will later see, it is equivalent to say that X shifts unitarily along its coordinates. We
shall return to this topic below, but first we give some examples of some more general
PC random fields that help motivate the investigation of this most elementary case
where the index set is Z2.

® the acoustic pressure field in R? produced by the propagation of a radiated PC
acoustic source,

e the electromagnetic field in R? produced by the propagation of communication
signals (most of which possess a PC structure),

® the solutions to the three-dimensional Shrédinger equation in the presence of
periodic potentials; this problem arose in the study of crystal structures and
solutions in this context exhibiting a PC structure are often attributed to Bloch
although the general ideas seem to have originated with Floquet. See Eastham [5,
Chapters 1 and 6] and Kuchment [16, Chapter 3],

® texture fields such as fabric patterns (see [6]), crop photographs or object
placement on a periodic grid with placement jitter [10],

'"We will subsequently introduce fields with a weak PC property. The strong property given here is that
studied by Alekseev [2].
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® the product f(m,n) Y (m,n) of scalar periodic function f(m,n) with a stationary
random field Y(m,n).

One of our principal goals is to show how the basic one-dimensional results of
Gladyshev [8] extend to fields. In doing this we find there is more than one way to
define a PC structure on fields, and it is the strong PC fields to which the one-
dimensional results nicely extend. In doing this we make use of the natural unitary
operators whose existence are simple consequences of the periodicity of the
covariance (2). These operators provide representations of the fields and help to
show they are strongly harmonizable. The use of the spectral theorem for unitary
operators clarifies the spectral representations and the characteristic nature of the
random spectral measure produced by the harmonizability of strongly PC fields.

Our other principal goal is to establish some basic facts concerning the prediction
of strongly PC fields. In particular, we present a 2-fold and a 4-fold Wold
decomposition for such fields and determine the periodicity conditions imposed on
the dimension of certain innovation subspaces. The aforementioned unitary
operators play a key role in these results. In the case of strongly commuting fields
we give necessary and sufficient conditions for a field to be PC and strongly regular
in terms of the coefficients of a southwest moving average representation (among
other things, the coefficients must satisfy a periodicity condition).

We begin with a review of a few facts about stationary random fields (indexed

on Z?).

2. Stationary random fields indexed on Z°

A second-order random field X indexed on Z? is a family of random variables
X(m,n) that are of second order on some probability space (Q,F,P) for each
(m,n)eZ?. Since Ly(Q,F,P) is a Hilbert space, we have the usual inner product
{-,+> produced by the expectation (or integral)

ey = B} = [ a(w)slo) dP.

Q
In our considerations we can focus attention on the Hilbert subspace H(X) =
SpM(X) where M(X) is the (linear) space of finite linear combinations of elements
from X; we write M(X) = sp{X (m,n), (m,n) e Z*} and the closure is with respect to
the L, norm. But since the L, inner product induces an inner product on H(X), we
can take the view that H(X) has its own inner product <-,->y,y) and likewise its

own norm. In our subsequent references to inner products and norms, this view is to
be taken.

For QeZ*', a O-dimensional second-order random field indexed on Z is just a
finite collection {X;((m,n)), X>((m,n)), ..., Xo((m,n))} of second-order random

fields indexed on Z2. For any Q-dimensional second-order random field, denote
M(X) = sp{X;((m.n)),(m,n)eZ?, je[l,q]},
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and H(X)= M(X). Following the procedure outlined above we define the
correlation

Rj (m7n7m/an/) = <‘X}(m7n)7Xvk(m,an,)>H(X) (3)

Although we are primarily interested in finite dimensional second order

stationary random fields indexed on Z?, we address a more general issue in the
following:

Proposition 1. A necessary and sufficient condition for some matrix of functions
{Rjk(m7 n, mlv n’),je [17 Q]7 ke [17 Q]}

to be the covariance matrix of a Q-dimensional vector random field indexed on 2> is
that for any integer v, complex sequence {ay, oz, ..., 0}, any sequence {ki,ka, ..., k,}
in [1,Q], and any sequence {(my,n1),(my,m), ..., (m,,n)} in Z?, the following
inequality holds:

v v
Z Z %0y Ric (M, 1, 1y, 1) 2 0. 4)
p=1 p'=1

A Q-dimensional second-order random field indexed on Z? is called stationary if
(a) for every index j in [1, Q], the mean E{X;(m,n)} is constant with respect to (m, n)
and (b) for any j and k in [1,Q], and any two vectors (m,n) and (m',n’), the
correlation Ry (m,n,m',n') = (X;(m,n), X;(m',n’) ) is a function only of (m,n) —

de

(m',n')’=(m —m',n —n'). In Proposition 1, by setting
Rkpk,,/ (m,n, ', n,) = Rkpk,,/ ((m,n) — (Wl/, nl))7

we obtain necessary and sufficient conditions for a matrix of functions to be
the cross covariance matrix of some Q-dimensional stationary random field indexed
on 7.

Our approach to the spectral theory is through the family of unitary operators that
occur naturally with stationary processes. We note the following results combine the
theory for multivariate sequences indexed on Z, which is nicely presented by

Rozanov [19], and the case of univariate fields indexed on Z? presented by
Kallianpur and Mandrekar [13].

Proposition 2. Suppose {X\((m,n)), ..., Xo((m,n))} is a Q-dimensional stationary
random field indexed on Z* with covariance matrix Ry.((m,n) — (m',n')). Then there
exist a pair of commuting unitary operators, Uy and U,, operating in H(X) for which

Xj(m,n) = UY" U5 [X;(0,0)] (5)

Sor every (m,n)eZ and je[l, Q).
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The spectral representation of the unitary operators U; and U, leads to

2n 2n
uruy :/o exp(idim) dEl(/ll)/o exp(ifon) dEx(42)

_ /O i /0 " expl(i(m + Jam)] dE(ir, Ja), (6)

where the commuting of U; and U, implies that for 4;, A, intervals in [0,2n), the
operator valued set function

E(A1 X Az) = E1 (Al)Ez(A2> = Ez(Az)El (Al)
is a projection; this leads to the extension of E to the Borel sets l’)’[0727r)2 and the
notation dE(41, 42) = dE|(11)dE»(72).
Now using (5) and (6) gives, for all (m,n)eZ? and je|l, Q],
Xj(m,n) = U(m,n)[X;(0,0)]

2n 2n
= /0 /0 expli(Aim + Jon)| dZ;(41, A2), (7)

where dZ;(A, 2) = dE(L1,22)[X;(0,0)] and U(m,n) = U"U;.
This leads immediately to an expression for the cross covariances:

Ri((m,n) — (m',n"))

(X (m,n), X (m',n)>
= {U(m, n)[X;(0, )] U(m',n)[X,(0,0)] >
= {U((m,n) = (m', ")) [X;(0,0)], Xi(0,0)

/ / exp|(idi (m — m') +122(n — 0')|dFy (A1, A2),

(8)

where dF}'k(il, )»2) = <dE()u1 s 12) [X}(O, 0)], Xk(O, 0) > .
Now Proposition 1 may be transformed into an equivalent statement about the
matrix-valued distribution function F.

Proposition 3. A necessary and sufficient condition for some matrix-valued distribution
Sunction {Fy.(21,22),j€[l, 0], ke[l,Ql]} to be the matrix-valued distribution function
of an Q-dimensional random field is that for any integer v, any complex sequence
{100, ...,00}, any sequence {ki,k»,....k,} with k;e[l,Q] and any Borel set
A€0,2n]%, the following inequality holds:

v v
S 4y Fi, (4)=0. 9)
p=1 p'=1
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3. Periodically correlated random fields

A periodically correlated random field is a second-order random field whose
covariance has a periodic structure. From this point forward we will omit the
reference to second-order unless the emphasis is believed desirable. We shall see that
there are two main types of periodic structure, weak and strong, for random fields
indexed on Z>. In the last subsection of this section we discuss the connection
between these types and subgroups of Z?. This provides a way to extend the notions
of weak and strong periodic correlation to fields indexed on Z¢ for arbitrary d>2.

3.1. Strongly periodic fields

We say that X (m,n) is strongly periodic with period (M,N) if M,N are the
smallest positive integers for which X(m,n) is periodic in the two indices
independently:

X(m,n)=Xm+kM,n+IN) (10)

for all integers m,n and k,/ in Z where the equality is in the sense of Il - lly(y,)

If M = N =1, the field is constant. The condition M =1 and N >1 means the
field is periodic with period N in the second index and constant with respect to the
first. To see the necessity of having M >0, N >0, suppose, for example, that M =0
in (10). We observe that for every m, X (m,n) is periodic in the index »n with period N
while there is no constraint whatsoever on the dependence upon n. We will see
subsequently that this is a special case of a weakly periodic field.

We observe that the field X (m, n) is strongly periodic if and only if it has a discrete
Fourier series representation

M-1 N-1
X exp(i2njm/ M + i2nkn/N), (11)
j=0 k=0
where
‘ | M=l N-d
Xk = Vi X (m, n) exp(—i2mjm/ M — i2nkn/N) (12)

0 n

Il
=

n

for je[0, M — 1],ke[0, N — 1]. The proof, which holds for any periodic sequence
(function) indexed on Z? and taking values in a linear vector space over C, is a
straightforward extension of the familiar case and is omitted.

Since X € L,(Q,F, P) it’s mean u(m,n) = E{X(m,n)} will exist for all m,n and
u(m,n) = u(m+ M,n) = p(m,n+ N) for all m,neZ. Without loss of generality we
take u(m,n) = 0.

The following proposition shows that strong periodicity of a field is equivalent to a
strong periodicity of the covariance.
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Proposition 4. The random field X is strongly periodic if and only if
R(m,n,m',n') = E{X (m,n) X (m'.n')}
=Rm+kM,n+IN,m' +kK'M,n" +1'N). (13)

for every myn,m’, 0’ and k,1,k',I' in Z.

Proof. If (10) holds for every m,n and k, [, then (13) holds also. Conversely if (13) is
true for every m,n,m’,n’ and k, [, k',l', then

1X (m,n) — X (m + kM, n + IN)|[3)
= R(m,n,m,n) — Rim,n,m+ kM,n+IN) — Rm+ kM ,n+ IN,m,n)
+Rm+kM,n+IN m+kM,n+IN)=0 (14)

which proves the result. [

We note that if X (m, n) is strongly periodic with period (M, N), then it is PC with
period (M,N) but the converse is not true. The relationship between strongly
periodic fields and strongly PC fields is given in Proposition 9.

3.2. Weakly periodic random fields

We say that X (m,n) is weakly periodic with period (M, N) if
X(mn)=Xm+M,n+N) (15)

for every m,n in Z. Here we only require M >0 and N >0 but do not permit M =
N = 0 because, following our previous discussion, this puts no constraint whatsoever
on X. If (15) occurs for M = 0 and N >0 with N minimal, we obtain periodicity of
the field in the second index and no constraint on its behavior in the first index. That
is, for every m, we have X (m,n) = X(m,n+ N) for all n and this is all that can be
said; so this particular weakly periodic field may be viewed as a countable family of
periodic sequences, each with period N. For arbitrary M >0, N >0, we require
(M, N) be relatively prime, and then the result is essentially the same except the
periodic sequences lie along the straight lines of slope N /M because all of Z* can be
expressed as a countable union

7 = U D(m,n), (16)

(m;n)eB
where the sets
D(m,n) = {(m',n")eZ*: (m',0') = (m+kM,n+kN),keZ}

are disjoint provided the base set B is properly chosen; for example, if B =
{(m,n)eZ?:0<m<M}.

Since X € L,(Q,F, P) its mean u(m,n) = E{X (m,n)} will exist for all m,n and the
weak periodicity implies p(m,n) = u(m + M,n+ N) for all m,neZ. That is, u(m,n)
is also weakly periodic and so without loss of generality we may take u(m,n) = 0.
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There is a corresponding periodicity of the covariance, whose proof is omitted due
to the similarity with the strongly periodic case given in Proposition 4.

Proposition 5. The field X is weakly periodic if and only if
R(mn,m' ;') = Rm+ M,n+ N,m' + M,n' + N) (17)

for every m,n,m’,n' in Z.

These notions of strong and weak periodicity form the basis for the notions of
strongly and weakly PC random fields. Our approach is to first give the definitions of
strongly and weakly PC random fields in terms of the covariance functions, then to
address the representation of the covariance functions and Gladyshev’s theorem.
Then we derive the relationship to unitary operators and address the harmonizability
of PC fields.

3.3. Strongly periodically correlated fields

The random field X is called strongly PC with period m,n = (M, N), if and only if
there exists no smaller M >0 and N >0 for which the mean and covariance functions
satisfy

u(m,n) = u(m+kM,n+ IN), (18)

R(Wl, n, Wl/, n/) = E{[X(rmn) - :u(m7 n)}[X(m’, n/) - ﬂ(m/7”/)]
=R(m+kM,n+IN,m' +kM,n' + IN) (19)

for all integers m,n,m’',n’ and k,/ in Z.

This condition is equivalent to X (m, n) being PC in the two indices independently.
If M = N = 1, the field is stationary. The condition M = 1 and N > 1 means the field
is PC with period N in the second variable and stationary with respect to the first.

Since the PC random fields we are considering are of second order, the existence of
the mean and correlation are assured and the correlation of X is given by

E{X (m, m)X (0, 1)} = Rlm,m, i)+ a(m, )t ). (20)
Thus it may be seen that the correlation also satisfies the periodicity condition (19)
that defines the essential structure we wish to study. Hence, without any loss of
generality we again can take u(m,n) = 0.
The first result is that strongly PC fields are just finite collections of jointly
stationary fields. This was first noticed by Gladyshev [8] for the univariate case, and
we omit its straightforward proof.

Proposition 6. A necessary and sufficient condition for a random field X = {X (m,n) :
m,neZ*} to be strongly PC with period (M, N) is that the collection of fields

Yy (m,n) = X(j+mM,j +nN), (m,n)eZ? (21)
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for j=0,1,....M—1,7=0,1,....N—1 form a M - N-dimensional stationary
random field Y = {Y;(m,n), (m,n) e Z*}.

In view of this proposition, the existence of a collection of unitary operators
associated with a PC field is clear. We will return to the unitary operators
subsequently.

To obtain a Fourier series decomposition of the covariance as in the case for PC
sequences [8], we now define

B((m,n),(t1,72)) = Rm + 11,0+ 12,m, n) (22)
and so the property (19) becomes

B((m,n), (t1,72)) = B((m+ M,n), (t1,72)) = B((m,n+ N), (11, 72)) (23)
for every (m,n) and (tj,1;)eZ?. Thus, for every (t;,72), the function
B((m,n), (t1,72)) is a scalar-valued strongly periodic function of (m,n) in the sense

that it is periodic in the two indices independently with respective periods M and N.
Hence for every (11, 12), we have the discrete Fourier series representation

B((m,n),(t1,12)) = ] Z B (t1,72) exp(i2nkym/M +i2nkyn/N), (24)

k=(ki k)

or in more explicit form,

M-1 N-1
B((m,n), (t1,12)) = By, (11, 12) exp(i2nkym/ M + 2nkon/N),  (25)
k[ZO k2:0
and where
| M=l N-l
Bik, (11,72) = U B((m,n), (t1,12)) exp(—i2rnk;m/M — i2nkyn/N).
m=0 n=0

(26)

Hence the covariance of strongly PC random fields is completely determined by a
finite collection of coefficient functions {BE(rl,rz),lge [0,M — 1] x [0, N — 1]}. The
following gives conditions on the coefficient functions that ensure that
B((m,n), (t1,12)) arose from the covariance function of some strongly PC field.
The proof is a straightforward extension of a result due to Gladyshev [8] for the case
of univariate PC sequences, and so the proof is omitted.

Proposition 7. A sequence of coefficient functions {B(t1,12), kelo,M —1] x
[0, N — 1]} arises from some strongly PC random field having period (M, N) if and
only if for every v, every sequence of complex numbers {ci,c, ..., c,}, integer pairs
(71,0, ..., 53}, and {ky, ks, ...k} each in [0, M — 1] x [0, N — 1], it follows that

v v
Z Z CpCy i,k (&, — 1) >0, (27)
p=1 p'=1
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where, denoting j = (J1,J2) and k= (k1,k2),

Bie(t1,72) = Bp_3(t1,72) exp(i2mji /M + i2nj't,/N). (28)

We next turn to the connection between strongly PC fields and unitary operators.
The following proposition extends the result of Kallianpur and Mandrekar [13] for
the case of stationary fields indexed on Z? and extends the result of Hurd and
Kallianpur [11] for PC processes.

Proposition 8. The zero mean random field X = {X (m,n) : (m,n) e Z*} is strongly PC
with period (M, N) if and only if there exists a pair of commuting unitary operators, U;
and U, on H(X) for which

X(m+kM,n+IN) = UFU X (m, n) (29)
for every m,n and k,l in Z., and this occurs for no smaller M >0 and N >0.

We will give a sketch of the proof. If the field satisfies (29) for unitary U; and Us,
then (19) holds. Conversely, suppose (19) holds for every m,n,n’,n’ and k, /. Then
we define a collection of operators {V(k,[),ke€Z, [€Z} on the linear span M(X) =

sp{X (m,n), (m,n)eZ*} by the action on a typical element { = Z;:l op X (my, n,) by

vk, D[] = Z o X (my + kM., + IN). (30)

p=l1

It is then easy to show that V'(k,/) preserves inner products on M(X) for any (k, /).
Since V(k,l) is clearly surjective, then it is unitary and hence continuous on M (X)
and extends to H(X) = M(X).

Thus 77(1,0) and V(0,1) are unitary and we set U, = V(1,0), U, = V(0,1). By
definition, we have V'(1,1) = V(1,0)¥(0,1) = V(0,1)}(1,0) which shows that U,
and U, commute. Thus V(k,/) = UFUL. O

The general idea here is that shift invariance of the covariance corresponds exactly
to the existence of a shift mapping that is a unitary operator. This will also be the
main idea in the case of weakly PC sequences described in the next section.

Now we give a characterization for the strong PC property in terms of unitary
operators and strongly periodic fields. This result was observed for univariate
continuous time PC processes in [9] and was more thoroughly investigated in [11].
The proof can also be found in the survey paper [4]. The proof here is omitted due to
similarity with the univariate continuous time case.

Proposition 9. The zero mean random field {X (m,n), (m,n) e Z?} is strongly PC with
period (M, N) if and only if there exists a strongly periodic field P(m,n) taking values
in H(X) having the same period (M, N), and a pair of commuting unitary operators,
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U, and U, on H(X) for which
X(m,n) = UM U3 N[P(m, m) (31)

for every m,n and where UI"/M = (UII/M)'" and similarly for Us.

The preceeding result immediately yields a representation of strongly PC fields in
terms of a Fourier series having a finite collection of jointly stationary fields as
coefficients. It gives another way in which a collection of jointly stationary fields give
a representation of PC fields. For the case of PC sequences, the representation
originated with Gladyshev [§].

Proposition 10. The zero mean random field {X (m,n),m,ne Z*} is strongly PC with
period (M, N) if and only if there exists a collection

{pr,(m,n),pe[O,M - 1],[7/6[0,]\7 - 1]}’ (m,n)eZz}

of jointly stationary (in the sense of Section 2) random fields whose spectral support is
[0,27/ M) x [0,2n/N) and for which
M—1 N-1

X(m,n) = Z Z ZP (m,n) exp(i2npm/M + i2np'n/N). (32)
p=0 p'=0

Harmonizability: The following facts are straightforward extensions of the notion
of harmonizable strongly processes as presented by Loéve [17] and in a more general
context by Rao [3]. A two-dimensional random field {X (m, n), (m,n) e Z*} is called
strongly harmonizable if it can be represented by the quadratic mean integral

—

X(m,n) = /[02 ; expli(m, n) - 1)) Z(d), (33)

where Z(-):B[0,2n)* > H(X) is a random measure for which the set function
rz(Ay x Ay) = E{Z(4))Z(43)} for A; x A,eB(]0,2n)* x [0,27)?) satisfies

/ 12 (dd, df)| < o0 (34)
[0,27)*x[0,27)>

and consequently r, is a measure that is sometimes called the spectral covariance
measure, or just spectral measure, of X (m,n). It follows that the covariance of
X (m,n) has the representation

R(m,n,m',n') = / expli(m,n) - & — (m',n') - B)|rz(dd,df). (35)
[0,27)? x[0,27)?

Conversely, if the covariance of a process is expressed by (35) where rz(-, ) satisfies

(34), then there is a random measure Z(-) such that X (m, n) is represented by (33).

Following the one-dimensional case [§8], the next propositions (a) characterize the

spectral measure for harmonizable strongly PC random fields, (b) show that all

strongly PC random fields (on Z?) are harmonizable and (c) give the relationship
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between the multi-dimensional spectral distributions of Proposition 6 and of
Proposition 10.

Proposition 11. A zero mean strongly harmonizable random field X =
{X(m,n),(m,n)eZ*} is strongly PC with period (M,N) if and only if the support
of the spectral measure rz is contained in the set

Su.n :{(u11a27ﬁ17ﬁ2>€[072n)2 X [O,Zn)2 for which
By =o —2nk/M, ke[—(M — 1), (M —1)]
By =ar — 21k’ /N, K'e[-(N —1),(N —1)]}. (36)

Proposition 12. Every strongly PC random field X (m,n) is strongly harmonizable.
The next proposition extends to fields another result of Gladyshev [§]. It relates
the matrix-valued spectral distribution
F(Z) = {F( ) (e i) D)1 k1 €]0, M — 1], jo, ko €[0,N — 1]},
of the multi-dimensional stationary field
Y ={Y};,(m,n), (m,n)eZ? jiel0,M —1],j»e[0,N — 1]}
given in Proposition 6 to the matrix-valued spectral distribution
FO) = AF prmiaray Dsp1, 01 €[0,M 1], p2, g2€[0, N — 1]}.
of the multi-dimensional stationary field
Z =A{z""(m,n), (m,n)eZ? pyel0,M —1],p,€[0,N — 1]}
resulting from Proposition 10.

We note that the methods used by Gladyshev [8] to prove Proposition 12, when

—

applied here show that F(1) may be interpreted directly in terms of r.

Proposition 13. If X = {X (m,n), (m,n) e Z*} is strongly PC with period (M, N), then
dF (1) = MNV (1)dF (ﬂﬂ> v-1(2), (37)
M N
where V(1) is a unitary transformation from CM x CV to itself defined by
(VD) pgie = (V1)) (V2(22)) g (38)

where V(1) and V5(2,) are linear transformations (matrices) on CM and CV. The pjth
element of V(1) is

(Vi) = e (i2mpi/ M +i02j/ M) (39)
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and the gkth element of V,(1,) is
(Va(ia)) 4 = %exp(ﬁnqk/N +iak/N). (40)
3.4. Weakly periodically correlated random fields

The zero mean random field X = {X (m,n), (m,n)eZ?} is called weakly PC with
period (M, N) if

R(m,n,m’;n') = Rim+ M,n+ N,m' + M,n’ + N) (41)

for every m,n,m’,n’. As in the case of weakly periodic fields, we require M >0 and
N=0 but do not permit M = N =0 because this would put no constraint
whatsoever on the covariance structure of the field. If (41) occurs for M =0 and
N >0 with N minimal, we obtain a field that is PC in the second index and has no
constraint on its behavior in the first index. For arbitrary M >0, N >0, we require
(M, N) be relatively prime, and then the result is essentially the same except the field
is periodically correlated along the straight lines of slope N /M. Since all of Z? can be
expressed as a countable union as in (16), a weakly PC random field is essentially a
countable collection of PC sequences arranged along parallel lines of slope N/M in
Z?.1If X is of zero mean and strongly PC, then it is also weakly PC. The following
proposition connects (41) to unitary operators. The proof, which follows along the
same lines as the proof of Proposition 8, is omitted.

Proposition 14. The zero mean random field {X (m,n), (m,n) e Z*} is weakly PC with
period (M, N) if and only if there exists a unitary operator, U operating in H(X) for
which

X(m+ M,n+ N) = U[X(m,n)] (42)

for every (m,n)eZ?’.

Again, as in Proposition 8, the shift invariance of the covariance corresponds
exactly to the existence of a shift mapping that is a unitary operator. Except for the
following paragraphs, we defer any further analysis of weakly PC fields to
subsequent efforts.

3.5. The role of subgroups

The set Z°, taken as a group under the usual addition (a,b) + (c,d) = (a +¢,b +
d) has non-trivial subgroups of only two types. The first type we shall call a strong
subgroup and for a given pair (M, N) with M >0 and N >0, it is the set

Sun = {(mn):m=kM,n=IN, (k,1)eZ*}. (43)
Given again a pair (M,N) with M >0 and N>0 but not M =N =0, a weak
subgroup is a set

Wyny ={(mn):m=~kM,n=kN, keZ}. (44)
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Now we can see that a random field X = {X (m, n), (m,n) e Z*} is strongly periodic
with period (M, N) if and only if X(m,n) is invariant under translation by any
element of Sy y. Similarly, X is weakly periodic with period (M, N) if and only if
X (m,n) is invariant under translation by any element of Wy, y.

Further, a field X is strongly PC with period (M, N) if and only if X(m,n) is
unitarily related via (29) to its translation by any element of Sy, n. Finally, X is
weakly PC with period (M, N) if and only if X (m, n) is unitarily related via (42) to its
translation by any element of Wy, y. We note that the preceeding may be seen as an
L,(Q) version of the following idea, the roots of which may be found in Jain and
Kallianpur [12, p. 24, definition 4.1]. Suppose {X (s, ), s€S, weQ} is a random
process defined on the index set S and let I' be a collection of bijections from S to S.
Then {X (s, w),seS} is called (X, I') stationary if the probability distributions of X
are invariant under any ye . In our case, S = Z” and the bijections Yk, are shifts by
(kM,IN); that is y;,(m,n) = (m+kM,n+IN) for every (m,n) and each pair
(k,I)eZ? produces one such bijection. And finally, in our case it is only the
covariance structure that is invariant.

4. The Wold decomposition

Here we shall present a few elementary results concerning Wold decompositions
for zero mean strongly PC random fields. The main purpose of this section is to
illustrate that the commuting of the operators U; and U, (Proposition 8) and their
relationship to the various subspaces that are of interest provide for the
straightforward extension of many results that have been obtained for stationary
fields. See Kallianpur and Mandrekar [13] for a general discussion of the role of
commuting isometries in the prediction context. The results we have chosen to
present are essentially extensions of the 2- and 4-fold decompositions of Kallianpur,
Miamee and Niemi [14,15], where for the latter case, weak commutativity is
assumed.

For a second-order random field X = {X(m,n),(m,n)eZ?} we define H =
sp{X(j, k), (j,k)eZ?} to be the Hilbert space of X. If the context requires a symbol
for the field we will use subscripts, such as H/L(m) or H}',ﬁw, to refer to the field y.
The absence of the subscript means we are referring to the field X. Further,

1. H(m,n) =35p{X(j,k),j<m,k<n} is the subspace of the lower left or south-west
(SW) quarter plane at (m,n), and H'2_ =(,,, H(m,n) is the subspace of the SW
(southwest) remote past. The field is called southwest purely non-deterministic (or
regular) if H]fw = {0} and southwest deterministic (or singular) if H(X;m,n) =
Hl_zoo for all m,n in Z.

2. H'(m) =sp{X(j,k),j<m,keZ} is the subspace of the left half plane at m, or the
left-horizontal past at m, and H' =0, H'(m) is the subspace of the horizontal
remote past. The field is called horizontally purely non-deterministic or horizontally
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regular if Hl_m = {0}; it is called horizontally deterministic or horizontally singular
if HL;@ = H, or equivalently, if H'(m;) = Hl(mz) for all my,m; in Z;

3. H*(n) = sp{X(j, k),jeZ,k<n} is the subspace of the lower half plane at n, or the
bottom-vertical past at n, and H> =), H*(n) is the subspace of the vertical
remote past. The field is called vertically purely non-deterministic it H* ,, = {0}; it
is called vertically deterministic or vertically singular if HZ_OO = H or equivalently,
if H%(ny) = H*(ny) for all ny,ny in Z;

4. the field is called strongly purely non-deterministic (or regular) if Hl_% =H* o =
{0} and weakly deterministic (or singular) if HL% = Hz,oo = H, or equivalently,
H' (m) \H2(n) = H for all (m,n)eZ.

Wold decompositions follow, in essence, from the fact that certain subspaces
are invariant under the unitary operators that describe the evolution of the
process. In our current case, we summarize the pertinent results in the following
proposition.

Proposition 15. If' X (m,n) is strongly PC with period (M,N) and with associated
unitary operators Uy and Uy, then

. H(m+kM,n+ IN) = UXUH(m,n) for arbitrary m,n,k,l in Z,
. HY(m 4 kM) = UFUYH! (m) for arbitrary m,k,l in Z,

. HX(n+IM) = UFUSH?(n) for arbitrary n,k,l in Z,

H' = UFULH'  for arbitrary k1 in Z,

H> . = UFULH? | for arbitrary k1 in Z,

H'2 = UFULH' for arbitrary k1 in Z.

o]

v R~

Proof. To prove (1), define M(m,n) = sp{X(j,k),j<m,k<n} then it is easy to see
that M(m + kM,n + IN) = Uf U, M(m,n) for arbitrary m,n,k,l and the relation-
ship extends to the closure H(m + kM ,n + IN) by the unitarity of the operators U,
and U,. Items (2) and (3) are similar. Statements (4)—(6) follow from the first three.
Taking statement (6) for example, if er]fw then xeH(m,n) for every m,n; but
then by statement (1) the element z = U;*Us'xeH(m — kM ,n — IN) for every m,n
and k,/in Z, so that also ze H'?_, and hence x = UfUjze UFUSH!? . Conversely, if
xe UFUSH!? | then x = UfUSz for ze M2 ; hence zeH(m,n) for every m,n and so
by (1) the same is true for x and thus erl_ZCD. O

Remark. From standard results in the theory of Hilbert space (see Akheizer and
Glazman [1, Sections 40-42]), we can conclude that any of the spaces

H' ,H>,H'? together with their orthogonal complements reduce the unitary
operator UFU! for every k,I. That is, taking Hl_zoo to be specific, item 6. in

Proposition 15 shows that the subspace H'?, is invariant under both UfUj and its
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inverse U %U;!. This implies (see [1, Section 42]) that UFU} commutes with the
orthogonal projection onto Hlfw and that

U{‘Ué = U{(Ué|H'fm + U{(U£|(HL27;)L,

meaning the operator U U} can be split into it’s restriction to H'2_ and (H'2 )*.
An elementary result is the 2-fold horizontal Wold decomposition; the vertical
decomposition follows similarly.

Proposition 16 (Horizontal 2-fold decomposition). If X(m,n) is a strongly PC
random field with period (M, N), then

X (m,n) = Xy(m,n) + X.(m,n), (45)
where

1. X; is horizontally deterministic (singular),
2. X, is horizontally purely non-deterministic (regular);

Further, these two components are mutually orthogonal, are strongly PC with the same
period (M, N) and

H' (m) = Hy(m) @H, (m). (40)

Furthermore, the two subspaces H! » and (Hl_w)L reduce the operator UkU) for
every k,leZ.

Proof. The result follows primarily from the fact that H'  is invariant under Uf U}
for every k,/ in Z; see Proposition 15, item 4. Then defining X;(m,n) = P, X (m,n)
and X,(m,n) = X (m,n) — X,(m,n), it follows that the X, and X, are singular and
regular, respectively, and orthogonal: X (m,n) L X,(m' n') for every m,n,m' n';
expression (46) follows from the fact that projections are continuous operators. The
argument in the remark following Proposition 15 implies that U U} commutes with
Py hence (1) Xy and X, are strongly PC with period (M, N) and (2) the two

subspaces H'  and H'  * reduce the operator UFU} for every k,leZ. [

We begin our discussion of 4-fold decompositions with the notion of weak
commutativity.

Definition 1. A second-order random field X(m,n) is said to have the weak
commutation property if

Pyt 6y Priny = Pre iy P (m) = Pt my a1z () (47)

for every m,neZ.
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Given any second-order random field X (m,n), let us consider the two following
decompositions of H = sp{X (}, k), (j,k)eZ*}

H=H @M )"

H=H, &M )" (48)
and define

Hy=H' M,

Mo =M, n(H2)",

Hy = (H ) nHE

Ho = (HL) "0 (H2,)" (49)

— 0

Lemma 1. The subspaces Hg, Hg, Hys and H,, are all invariant under U{" Ué for
arbitrary integers k, 1.

Proof. The subspaces in question are all intersection of subspaces whose
invariance under Ulk Ué has already been determined. Then apply the following. If
subspace A is invariant under unitary operators U and U~!, then A and A" reduce
U and thus A" is also invariant under U and U~! (see [1, Section 42]). It follows
easily that if 4 and B are invariant under U, then also is AnB. For if xe An B, then
Uxe A and UxeB so Uxe U(AnDB). Conversely if xe U(AnB) then there exists
ze AnB with x = Uz; but then since A and B are invariant under U, we have
xeAnB. O

It is clear that the subspaces Hs, Hy, Hys and H,, are mutually orthogonal and
HDHSS @ HSV @HVS @Hrr-

The opposite inclusion requires something additional. The following result shows
that weak commutativity of a strongly PC random field is sufficient (since we already
have commutativity of U; and U, and Proposition 15).

Proposition 17 (Four-fold decomposition). If the random field X (m,n) is weakly
commuting and strongly PC with period (M, N), then

X (m,n) = Xi(m,n) + Xy (m,n) + Xis(m, n) + X (m, n) (50)
where

s 18 horizontally and vertically singular (weakly deterministic),

18 horizontally singular and vertically regular (2-purely non-deterministic),
s 18 horizontally regular and vertically singular (1-purely non-deterministic),
» 18 horizontally and vertically regular (strongly purely non-deterministic).

B =
ety
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Further, each of these four components has the weak commutation property,
they are mutually orthogonal, strongly PC with period (M,N) and for

all (m,n)eZ?,

H(m,n) = Hs(m, n) ®Hg(m,n) ®H,s(m,n) ® H,(m, n), (51)
where

Hys(m,n) = 5p{Xss(j, k),j<m,k<n}
and similarly for Hg(m,n), H.s(m,n) and H,(m,n).

Proof. Since the field is weakly commutative, (47) holds, and since, for example,
Hloo can be considered a monotone limit of subspaces, it follows by a limiting
argument (see [l, Section 33]) that as m,n— — oo, the projections
Pyt Preny = Prgp P - Applying the same technique to the other three cases

we conclude
H= Hss @ Hsr @ Hrs @ Hrr

and the Wold decomposition is just the projection onto these four subspaces.
Expression (51) naturally follows. The weak commutativity of the four components
follows in exactly the same manner as part (c), Theorem 1.7 of [14], a cornerstone of
which is Lemma 2.1 of [13]. O

The commuting of the projections Py, } and Pp B also yields, via the Wold-
Halmos decomposition (see [13,14]), the following.

Corollary 1. If the random field X (m,n) is weakly commuting and strongly PC with
period (M, N), then for all m,n

Hs(m,n) = le mHzﬂo, (52)
Hes(m,n) =Y @M (HOH'(j— DInH (53)
j<m
Ho(mn) =M, 0> @M (k)OH (k- 1)] (54)
k<n
He(mn) =Y @H'(HOH'(j—1)]n > @M (oH (k- 1) (55)
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5. Innovations

Let us now denote
I = [H'm)oH (m - 1) nH:_,
I =[HneH n-1)]nH.,,
Lin = [H'(m) ©H' (m — 1)] A [H*(n) O H*(n — 1)] (56)
and
M (m) = dim(I,),
M (n) = dim(Iy),
My(m,n) = dim(L,). (57)
We can interpret ! as the innovation space of a vertical strip intersected with the
vertical remote past and similarly /> is the innovation space of a horizontal strip

intersected with the horizontal remote past. We interpret I, as the subspace of the
intersection of a vertical strip at m with a horizontal strip at n.

Lemma 2. [f the random field X (m,n) is strongly PC with period (M, N), then

I} o = UFUSILL  for every k,l,meZ,

15+1N = U{‘ Ué[n2 for every k,lnel,

LM prin = Uf‘Uélmn for every k,lmneZ (58)
and

M (m) = Mi(m+ M) for every meZ,

M>(n) = My(n+ N) for every nel,

Moy(m,n) = My(m + kM,n+IN) for every k,l,mnelZ. (59)

1

The results all follow from the invariance of the subspaces H'(m), H2(n), H_,,

H? _ under UFU! for arbitrary (k,/)eZ>.

Generally we cannot say too much about these dimensions without adding some
other conditions. The following is a direct extension of a result due to Kallianpur,
Miamee and Niemi [14,15] for the stationary case.

Proposition 18. If the random field X (m,n) is strongly PC with period (M,N) and
weakly commuting, then there exists mg such that M, (mg)#0 if and only if there is an
m', 1’ for which

for m=m+jM, jel,

Py X 0
[1Pre, X (m,m)|| 20 n=n+kN, kelZ.

(60)
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Proof. Note that M (my)#0 iff M,(mg +jM)+#0,jeZ. From the decomposition

Hyy = ZOO: Irln (61)

m=—aoo

we can conclude that || Py, X (m,n)||#0 for some m, n if and only if H,,# {0} which
occurs if and only if 1) #{0} for some n. [

The following example shows why || Py, X (m,n)||#0 for some m, n does not imply
M, (m)#0 but only that M| (mg)#0 for some my. Suppose Y (m,n) is a stationary
random field (PC with period (1, 1)) whose unitary shift operators are U; and U,.
Consider the following diagram of Y (m,n) near Y(0,0):

..Y(0,2) Y(i,z) Y(2,2)...
L Y(0,1) Y(1,1) Y(2,1)
... Y(0,0) Y(1,0) Y(2,0)

and we now construct a new field, call it X (m,n), by replacing Y (m,n) with
Y(m,n) Y(m,n) thus producing the diagram

That is, let X (m,n) = Y([m/2],n). It is evident that X (m,n) is PC with period (2,1)
and the corresponding shift operators are Uj, U, inherited from Y (m,n). It follows
from the construction that HY (m) = H}l([m/2]), H (n) = Hi(n),Hky_w = Hlyﬂ_%
and Hf‘,’7% = sz_fm. It is also readily seen that

My ([m/2]) ©Hy ([(m — 1)/2])  m even,

Hy (m) O Hy(m — 1) = { {0} otherwise

and that
Hy(n)OHy(n—1) = Hy () OHY(n— 1)

for all m and n.

Now if dim{[H},(m) — H}y(m — 1)]nH3 _, }#0 for some m then it is true for
every m from stationarity. Then
#0 m even,

My (m) = dim{[H} (m) = Hy(m — DKL, (X)} = { 0 m odd.
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Suppose now that || Py, X (m,n)||#0 for some even integer m so that M, (m)#0. But
also ||Py, X (m+ 1,n)||#0 and yet My(m+ 1) =0.

5.1. Innovations under strong commutativity

Definition 2. A random field is said to have the strong commutativity property if
Py Preny = Praimn) (62)

for all m,neZ.

Proposition 19. If the random field X (m,n) is strongly commuting, then
H(m,n) = Ly ®@H_(m,n), (63)
where

H-(m,n) =sp{X(j,k), j<m, k<n, (j,k)#(m,n)}. (64)

Proof. It is equivalent to show that
Ly = H(m,n) O H_(m,n).

First by strong commutativity (and since strong implies weak)
P, = [Py ) © Pyt 1)) [Py () © Pr (1)

= Prp i Pren) = Prt om-1)Prew)

= Loy Pren-1y + Lot m-1y Pr a1y (65)
so that
Ly =H(m,n)Hm—1,n)S[Hmn—-1)H(m-—1,n-1)],
=H(m,n)OH(m,n—-1)0Hm—-1,n)8H(m—1,n—1)]. (66)

Now if xeH(m,n)©H_(m,n), then xeH'(m) and xeH*(n). Furthermore,
x L H_(m,n) implies x L H(m — 1,n) and x L H(m,n — 1). Thus by (66), xe L.

Conversely, if x € I, then by (66) xe H(m,n), x LH(m — 1,n) and x LH(m,n — 1)
so that x is orthogonal to all the random variables {X(j, k),j<m,
k<n,(j,k)#(m,n)} that generate H_(m,n). Thus xe H(m,n) O H_(m,n). O

When X(m,n) is strongly commuting we can say something useful about
Mo(m,n).

Corollary 2. If the random field X (m,n) is strongly commuting, then My(m,n) = 1 if
and only if X (m,n)¢H_(m,n) and otherwise My(m,n) = 0.
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We finish this work with some remarks and a proposition about one-sided moving
average representations of strongly PC fields. First, if X (m,n) is PC with period
M, N, is weakly commutative and strongly regular (H = H,,), then from (55)

Hyp(m,n) = Z Z Ly (67)

ps<m q<n

and since it is readily seen that I,, L I,, unless (p,q) = (p',4q’), then every X (m,n)
has the decomposition

X(m,n) = Z Z My (m, 1), (68)

ps<m g<n

where r]pq(m, n)el,,. Hence we already have a one-sided representation in terms of
the “past”. Under the assumption of strong commutativity, the vectors npq(m, n) are
zero or in a subspace of dimension 1 because dim(I,,) is either 0 or 1, but still not a
moving average. Adding the PC structure then gives the moving average with respect
to orthogonal vectors in one-dimensional subspaces. But we first need the following.

Definition 3. If the random field X (m,n) is strongly commuting and strongly PC
with period (M, N), then its rank is

rank(X) = card({(m,n) : Mo(m,n)#0,m=0,1,..., M — 1,
n=0,1,....N —1}). (69)

Thus the largest rank possible for such a process is M - N, and a PC field with
period (M, N) is said to be of full rank if rank(X) = M - N. Following Miamee and
Salehi [18], it is clear that the rank of a PC field is closely related to the rank of a
stationary vector-valued field having M - N components and satisfying some
appropriate strong commutativity property. We will not pursue this idea further
in this paper but will use the rank as we have defined it.

In order to treat the case where rank(X)<M - N we define

D = {(m,n) : My(m,n)>0} (70)

to be the set of indices where the field has positive innovation dimension according to
Moy(m,n). We note that DT is a periodic set in the sense that if (m,n)e D" then also
(m+kM,n+IN)eD*' for every k,leZ. We define MxN=1[0,1,....M — 1] x
[0,1,..., N — 1] as the principal rectangle having sides M, N.

Proposition 20. If the random field X (m,n) is strongly commuting, then it is strongly
PC with period (M, N), and strongly regular (H = H,,) and of rank Q if and only if
there exists a periodic set D" of period (M, N) having Q = card(D* nM x N), and a
sequence of orthonormal innovation vectors

I={{y (p.g)eD"} (71)
such that for every m,n
X(I’}’l, n) = Z ar.,x(ma n)émfr,nfsa (72)

r=0,5s=0:(m—r.n—s)e D+
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Z lars(m, m)|* < oo, (73)

r=0,s=0:(m—r.n—s)e Dt

and
ars(m—+kM,n+IN) = a,(m,n) (74)

for every r,s,k,l,m,n such that (m —r,n — s)eD*.

Remark. To clarify the notation, we first observe that if (m —r,n —s)¢ D", then
Enrns does not exist nor does &, xpr—rpiiv—s for (k, Z)eZ2 (there do not exist
vectors with these indices).

Proof. The orthonormality of the ¢,, and the square summability (73) together
ensure that X,,, is a L, random variable for every m,n. It also follows from the
orthogonality that

R(m,n,m’,n') = Z ay s(M, )i —ms i —n (', 10') (75)

r=0,5>0:(m—rn—s)e D*

and hence (19) is satisfied. The orthogonality of the &, , imply that [H (m)eH (m —
D] L[H' (m")©H (m' —1)] for m#m' and hence H' | = {0}; similarly H*> = {0}
and therefore H = H,,, or in other words, X (m,n) is strongly regular. To see that
X (m,n) is of rank Q we note from (72) that if we consider X (m, n) for (m,n)eM x
N, then by the definition of DT there are only Q values of (m,n) for which X (m, n)
depends on ¢&,,,; for the others, X(m,n) depends only on the past innovations
(r=0,5=0 but r =5 =0 not permitted). Said another way, X (m,n) has exactly Q
non zero innovations for (m,n)eM x N and therefore My(m,n) = dim(I,,,) = 1 for
exactly these Q values of m, n and this implies rank(X) = Q.

Conversely if the strongly PC field X (m,n) is strongly regular and strongly
commuting then the innovation spaces /,, appearing in (67) are of dimension at most
one and thus in (68) we may write 1, ,(m,n) = &, ,(m,n), ,, where &, , is given below
by (77), but, to emphasize the point, , ,€1,, and hence ¢, , are defined only when
(p,q)eD". To amplify this, the assumption rank(X) = Q means there are only Q
values of (m,n)eM x N for which there is a nontrivial innovation, meaning that (68)
may be replaced with

X(m,n) = > %pq(myn)E, . (76)
p<myg<n:(pq)eD*
Since X (p,q) — Py (p.9X (P, q) is a non-zero vector (in I,,) only when (p,q)e D* we
then define

_ X9~ PupoXpa) _,
||X(p,(]) _PHf(]I.,q)X(qu)H r

which satisfies &, xpr v = UFULE,, for every k,leZ and (p,q)eD" and the
collection {&, ,, (p,q) e D*} is clearly orthonormal. Now setting

gp‘q

(77)

Ap.q(Mmy 1) = typ p—g(m, n)
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we may now rewrite (76) as (72) where (73) must apply for every p, q,k, [, m,n such
that (m — p,n— q)e D*.
To obtain the periodicity of the coefficients we consider

X(m+ M,n) = U X(m,n) = Z ays(m,n) Ui &y s

r=0,5=0:(m—rn—s)e D+t

= Z ar,s(m> n)ém-ﬁ—M—iﬁ,n—s

r=0,s=>0:(m—r.n—s)e Dt
but also
X(m + M, ”l) = Z ar+M.s(ma n)éerMfr,nfs

r=0,5=0:(m—rn—s)e Dt
which shows that
ars(m~+ M,n) = a,(m,n)

for every r,s,k,I,m,n such that (m — r,n —s)e D*. Repeating the exercise for the
variable n leads to

ar,s(mvn + N) = ar,s(m7n)

for every r, s, k,I,m,n such that (m — r,n — s) e D™ and hence the claimed result. 0O
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