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Abstract

We show that a field X ðm; nÞ is strongly periodically correlated with period ðM;NÞ if and
only if there exist commuting unitary operators, U1 and U2 that shift the field unitarily by M

and N along the respective coordinates. This is equivalent to a field whose shifts on a subgroup

are unitary. We also define weakly PC fields in terms of other subgroups of the index set over

which the field shifts unitarily. We show that every strongly PC field can be represented as

X ðm; nÞ ¼ Ũm
1 Ũn

2Pðm; nÞ where Ũ1 and Ũ2 are unitary and Pðm; nÞ is a doubly periodic vector-
valued sequence. This leads to the Gladyshev representations of the field and to strong

harmonizability. The 2- and 4-fold Wold decompositions are expressed for weakly commuting

strongly PC fields. When the field is strongly commuting, a one-point innovation can be

defined. For this case, we give necessary and sufficient conditions for a strongly commuting

field to be PC and strongly regular, although possibly of deficient rank, in terms of periodicity

and summability of the southwest moving average coefficients.
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1. Introduction

Periodically correlated (PC) random processes are nonstationary processes for
which the nonstationarity occurs in a manner that makes possible a spectral theory
that is understandable and manageable. These processes occur, for example, when
physical systems that generate random processes are perturbed or influenced
periodically with respect to time. Physical examples are provided by meteorological
processes, noise processes produced by rotating machinery, communications signals
where randomness appears as the message or as additive noise, and periodicity
comes through the communication format. In the communications context,
periodically correlated processes are also called cyclostationary [7]. For a survey
of univariate PC and almost PC processes, see Dehay and Hurd [4].
In this paper, we say that a collection of L2ðOÞ random variables X ðm; nÞ; indexed

on Z2 is a strongly1 PC field with period ðM;NÞ if its mean and covariance functions
satisfy

mðm; nÞ ¼ mðm þ kM; n þ lNÞ ð1Þ

Rðm; n;m0; n0Þ ¼ Rðm þ kM; n þ lN;m0 þ kM; n0 þ lNÞ ð2Þ

for all integers m; n;m0; n0 and k; l in Z; and M and N are each the smallest positive
integers for which (1) and (2) are both true. It is clear that these preceding conditions
also imply that the correlation function will satisfy (2) but we will throughout
express the PC property as a condition on the covariance, and without loss in
generality will take mðm; nÞ � 0: For a field to be strongly PC we also require M40
and N40: The condition M ¼ 1 and N41 means that for every m the field is PC
with period N in the variable n and for every n is stationary with respect to m: As we
will later see, it is equivalent to say that X shifts unitarily along its coordinates. We
shall return to this topic below, but first we give some examples of some more general
PC random fields that help motivate the investigation of this most elementary case

where the index set is Z2:

* the acoustic pressure field in R3 produced by the propagation of a radiated PC
acoustic source,

* the electromagnetic field in R3 produced by the propagation of communication
signals (most of which possess a PC structure),

* the solutions to the three-dimensional Shrödinger equation in the presence of
periodic potentials; this problem arose in the study of crystal structures and
solutions in this context exhibiting a PC structure are often attributed to Bloch
although the general ideas seem to have originated with Floquet. See Eastham [5,
Chapters 1 and 6] and Kuchment [16, Chapter 3],

* texture fields such as fabric patterns (see [6]), crop photographs or object
placement on a periodic grid with placement jitter [10],
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studied by Alekseev [2].
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* the product f ðm; nÞY ðm; nÞ of scalar periodic function f ðm; nÞ with a stationary
random field Y ðm; nÞ:

One of our principal goals is to show how the basic one-dimensional results of
Gladyshev [8] extend to fields. In doing this we find there is more than one way to
define a PC structure on fields, and it is the strong PC fields to which the one-
dimensional results nicely extend. In doing this we make use of the natural unitary
operators whose existence are simple consequences of the periodicity of the
covariance (2). These operators provide representations of the fields and help to
show they are strongly harmonizable. The use of the spectral theorem for unitary
operators clarifies the spectral representations and the characteristic nature of the
random spectral measure produced by the harmonizability of strongly PC fields.
Our other principal goal is to establish some basic facts concerning the prediction

of strongly PC fields. In particular, we present a 2-fold and a 4-fold Wold
decomposition for such fields and determine the periodicity conditions imposed on
the dimension of certain innovation subspaces. The aforementioned unitary
operators play a key role in these results. In the case of strongly commuting fields
we give necessary and sufficient conditions for a field to be PC and strongly regular
in terms of the coefficients of a southwest moving average representation (among
other things, the coefficients must satisfy a periodicity condition).
We begin with a review of a few facts about stationary random fields (indexed

on Z2).

2. Stationary random fields indexed on Z2

A second-order random field X indexed on Z2 is a family of random variables
Xðm; nÞ that are of second order on some probability space ðO;F;PÞ for each
ðm; nÞAZ2: Since L2ðO;F;PÞ is a Hilbert space, we have the usual inner product
/�; �S produced by the expectation (or integral)

/x; yS :¼ Efx %yg ¼
Z
O

xðoÞ %yðoÞ dP:

In our considerations we can focus attention on the Hilbert subspace HðX Þ ¼
spMðX Þ where MðXÞ is the (linear) space of finite linear combinations of elements
from X ; we writeMðXÞ ¼ spfXðm; nÞ; ðm; nÞAZ2g and the closure is with respect to
the L2 norm. But since the L2 inner product induces an inner product on HðXÞ; we
can take the view that HðX Þ has its own inner product /�; �SHðXÞ and likewise its

own norm. In our subsequent references to inner products and norms, this view is to
be taken.

For QAZþ; a Q-dimensional second-order random field indexed on Z2 is just a
finite collection fX1ððm; nÞÞ;X2ððm; nÞÞ;y;XQððm; nÞÞg of second-order random
fields indexed on Z2: For any Q-dimensional second-order random field, denote

MðXÞ ¼ spfXjððm; nÞÞ; ðm; nÞAZ2; jA½1; q�g;
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and HðXÞ ¼ MðXÞ: Following the procedure outlined above we define the
correlation

Rjkðm; n;m0; n0Þ ¼ /Xjðm; nÞ;Xkðm0; n0ÞSHðX Þ ð3Þ

Although we are primarily interested in finite dimensional second order

stationary random fields indexed on Z2; we address a more general issue in the
following:

Proposition 1. A necessary and sufficient condition for some matrix of functions

fRjkðm; n;m0; n0Þ; jA½1;Q�; kA½1;Q�g

to be the covariance matrix of a Q-dimensional vector random field indexed on Z2 is

that for any integer n; complex sequence fa1; a2;y; ang; any sequence fk1; k2;y; kng
in ½1;Q�; and any sequence fðm1; n1Þ; ðm2; n2Þ;y; ðmn; nnÞg in Z2; the following

inequality holds:

Xn

p¼1

Xn

p0¼1
apap0Rkpkp0 ðmp; np;mp0 ; np0 ÞX0: ð4Þ

A Q-dimensional second-order random field indexed on Z2 is called stationary if
(a) for every index j in ½1;Q�; the mean EfXjðm; nÞg is constant with respect to ðm; nÞ
and (b) for any j and k in ½1;Q�; and any two vectors ðm; nÞ and ðm0; n0Þ; the
correlation Rjkðm; n;m0; n0Þ ¼ /Xjðm; nÞ;Xkðm0; n0ÞS is a function only of ðm; nÞ �

ðm0; n0Þ ¼def ðm � m0; n � n0Þ: In Proposition 1, by setting

Rkpkp0 ðm; n;m0; n0Þ ¼ Rkpkp0 ððm; nÞ � ðm0; n0ÞÞ;

we obtain necessary and sufficient conditions for a matrix of functions to be
the cross covariance matrix of some Q-dimensional stationary random field indexed

on Z2:
Our approach to the spectral theory is through the family of unitary operators that

occur naturally with stationary processes. We note the following results combine the
theory for multivariate sequences indexed on Z; which is nicely presented by

Rozanov [19], and the case of univariate fields indexed on Z2 presented by
Kallianpur and Mandrekar [13].

Proposition 2. Suppose fX1ððm; nÞÞ;y;XQððm; nÞÞg is a Q-dimensional stationary

random field indexed on Z2 with covariance matrix Rjkððm; nÞ � ðm0; n0ÞÞ: Then there

exist a pair of commuting unitary operators, U1 and U2; operating in HðXÞ for which

Xjðm; nÞ ¼ Um
1 Un

2 ½Xjð0; 0Þ� ð5Þ

for every ðm; nÞAZ and jA½1;Q�:
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The spectral representation of the unitary operators U1 and U2 leads to

Um
1 Un

2 ¼
Z 2p

0

expðil1mÞ dE1ðl1Þ
Z 2p

0

expðil2nÞ dE2ðl2Þ

¼
Z 2p

0

Z 2p

0

exp½ðiðl1m þ l2nÞ� dEðl1; l2Þ; ð6Þ

where the commuting of U1 and U2 implies that for A1;A2 intervals in ½0; 2pÞ; the
operator valued set function

EðA1 � A2Þ ¼ E1ðA1ÞE2ðA2Þ ¼ E2ðA2ÞE1ðA1Þ

is a projection; this leads to the extension of E to the Borel sets B½0; 2pÞ2 and the
notation dEðl1; l2Þ ¼ dE1ðl1ÞdE2ðl2Þ:
Now using (5) and (6) gives, for all ðm; nÞAZ2 and jA½1;Q�;

Xjðm; nÞ ¼Uðm; nÞ½Xjð0; 0Þ�

¼
Z 2p

0

Z 2p

0

exp½iðl1m þ l2nÞ� dZjðl1; l2Þ; ð7Þ

where dZjðl1; l2Þ ¼ dEðl1; l2Þ½Xjð0; 0Þ� and Uðm; nÞ ¼ Um
1 Un

2 :

This leads immediately to an expression for the cross covariances:

Rjkððm; nÞ � ðm0; n0ÞÞ ¼/X ðm; nÞ;Xðm0; n0ÞS

¼/Uðm; nÞ½Xjð0; 0Þ�;Uðm0; n0Þ½Xkð0; 0Þ�S

¼/Uððm; nÞ � ðm0; n0ÞÞ½Xjð0; 0Þ�;Xkð0; 0ÞS

¼
Z 2p

0

Z 2p

0

exp½ðil1ðm � m0Þ þ il2ðn � n0Þ�dFjkðl1; l2Þ;

ð8Þ

where dFjkðl1; l2Þ ¼ /dEðl1; l2Þ½Xjð0; 0Þ�;Xkð0; 0ÞS:

Now Proposition 1 may be transformed into an equivalent statement about the
matrix-valued distribution function F :

Proposition 3. A necessary and sufficient condition for some matrix-valued distribution

function fFjkðl1; l2Þ; jA½1;Q�; kA½1;Q�g to be the matrix-valued distribution function

of an Q-dimensional random field is that for any integer n; any complex sequence

fa1; a2;y; ang; any sequence fk1; k2;y; kng with kjA½1;Q� and any Borel set

DA½0; 2p�2; the following inequality holds:

Xn

p¼1

Xn

p0¼1
apap0Fkpkp0 ðDÞX0: ð9Þ
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3. Periodically correlated random fields

A periodically correlated random field is a second-order random field whose
covariance has a periodic structure. From this point forward we will omit the
reference to second-order unless the emphasis is believed desirable. We shall see that
there are two main types of periodic structure, weak and strong, for random fields

indexed on Z2: In the last subsection of this section we discuss the connection

between these types and subgroups of Z2: This provides a way to extend the notions

of weak and strong periodic correlation to fields indexed on Zd for arbitrary dX2:

3.1. Strongly periodic fields

We say that X ðm; nÞ is strongly periodic with period ðM;NÞ if M;N are the
smallest positive integers for which X ðm; nÞ is periodic in the two indices
independently:

X ðm; nÞ ¼ Xðm þ kM; n þ lNÞ ð10Þ

for all integers m; n and k; l in Z where the equality is in the sense of J � JHðX Þ:

If M ¼ N ¼ 1; the field is constant. The condition M ¼ 1 and N41 means the
field is periodic with period N in the second index and constant with respect to the
first. To see the necessity of having M40;N40; suppose, for example, that M ¼ 0
in (10). We observe that for every m; Xðm; nÞ is periodic in the index n with period N

while there is no constraint whatsoever on the dependence upon n: We will see
subsequently that this is a special case of a weakly periodic field.
We observe that the field Xðm; nÞ is strongly periodic if and only if it has a discrete

Fourier series representation

X ðm; nÞ ¼
XM�1

j¼0

XN�1

k¼0
X jk expði2pjm=M þ i2pkn=NÞ; ð11Þ

where

X jk ¼ 1

MN

XM�1

m¼0

XN�1

n¼0
Xðm; nÞ expð�i2pjm=M � i2pkn=NÞ ð12Þ

for jA½0;M � 1�; kA½0;N � 1�: The proof, which holds for any periodic sequence
(function) indexed on Z2 and taking values in a linear vector space over C; is a
straightforward extension of the familiar case and is omitted.
Since XAL2ðO;F;PÞ it’s mean mðm; nÞ ¼ EfXðm; nÞg will exist for all m; n and

mðm; nÞ ¼ mðm þ M; nÞ ¼ mðm; n þ NÞ for all m; nAZ: Without loss of generality we
take mðm; nÞ � 0:
The following proposition shows that strong periodicity of a field is equivalent to a

strong periodicity of the covariance.
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Proposition 4. The random field X is strongly periodic if and only if

Rðm; n;m0; n0Þ ¼EfX ðm; nÞX ðm0; n0Þg

¼Rðm þ kM; n þ lN;m0 þ k0M; n0 þ l0NÞ: ð13Þ
for every m; n;m0; n0 and k; l; k0; l0 in Z:

Proof. If (10) holds for every m; n and k; l; then (13) holds also. Conversely if (13) is
true for every m; n;m0; n0 and k; l; k0; l0; then

jjXðm; nÞ � Xðm þ kM; n þ lNÞjj2HðX Þ

¼ Rðm; n;m; nÞ � Rðm; n;m þ kM; n þ lNÞ � Rðm þ kM; n þ lN;m; nÞ

þ Rðm þ kM; n þ lN;m þ kM; n þ lNÞ ¼ 0 ð14Þ
which proves the result. &

We note that if X ðm; nÞ is strongly periodic with period ðM;NÞ; then it is PC with
period ðM;NÞ but the converse is not true. The relationship between strongly
periodic fields and strongly PC fields is given in Proposition 9.

3.2. Weakly periodic random fields

We say that Xðm; nÞ is weakly periodic with period ðM;NÞ if
X ðm; nÞ ¼ Xðm þ M; n þ NÞ ð15Þ

for every m; n in Z: Here we only require MX0 and NX0 but do not permit M ¼
N ¼ 0 because, following our previous discussion, this puts no constraint whatsoever
on X : If (15) occurs for M ¼ 0 and N40 with N minimal, we obtain periodicity of
the field in the second index and no constraint on its behavior in the first index. That
is, for every m; we have Xðm; nÞ ¼ Xðm; n þ NÞ for all n and this is all that can be
said; so this particular weakly periodic field may be viewed as a countable family of
periodic sequences, each with period N: For arbitrary M40; N40; we require
ðM;NÞ be relatively prime, and then the result is essentially the same except the
periodic sequences lie along the straight lines of slope N=M because all of Z2 can be
expressed as a countable union

Z2 ¼
[

ðm;nÞAB

Dðm; nÞ; ð16Þ

where the sets

Dðm; nÞ ¼ fðm0; n0ÞAZ2 : ðm0; n0Þ ¼ ðm þ kM; n þ kNÞ; kAZg

are disjoint provided the base set B is properly chosen; for example, if B ¼
fðm; nÞAZ2 : 0pmoMg:
Since XAL2ðO;F;PÞ its mean mðm; nÞ ¼ EfX ðm; nÞg will exist for all m; n and the

weak periodicity implies mðm; nÞ ¼ mðm þ M; n þ NÞ for all m; nAZ: That is, mðm; nÞ
is also weakly periodic and so without loss of generality we may take mðm; nÞ � 0:
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There is a corresponding periodicity of the covariance, whose proof is omitted due
to the similarity with the strongly periodic case given in Proposition 4.

Proposition 5. The field X is weakly periodic if and only if

Rðm; n;m0; n0Þ ¼ Rðm þ M; n þ N;m0 þ M; n0 þ NÞ ð17Þ

for every m; n;m0; n0 in Z:

These notions of strong and weak periodicity form the basis for the notions of
strongly and weakly PC random fields. Our approach is to first give the definitions of
strongly and weakly PC random fields in terms of the covariance functions, then to
address the representation of the covariance functions and Gladyshev’s theorem.
Then we derive the relationship to unitary operators and address the harmonizability
of PC fields.

3.3. Strongly periodically correlated fields

The random field X is called strongly PC with period m; n ¼ ðM;NÞ; if and only if
there exists no smallerM40 and N40 for which the mean and covariance functions
satisfy

mðm; nÞ ¼ mðm þ kM; n þ lNÞ; ð18Þ

Rðm; n;m0; n0Þ ¼Ef½X ðm; nÞ � mðm; nÞ�½Xðm0; n0Þ � mðm0; n0Þ�

¼Rðm þ kM; n þ lN;m0 þ kM; n0 þ lNÞ ð19Þ

for all integers m; n;m0; n0 and k; l in Z:
This condition is equivalent to X ðm; nÞ being PC in the two indices independently.

IfM ¼ N ¼ 1; the field is stationary. The conditionM ¼ 1 and N41 means the field
is PC with period N in the second variable and stationary with respect to the first.
Since the PC random fields we are considering are of second order, the existence of

the mean and correlation are assured and the correlation of X is given by

EfXðm; nÞX ðm0; n0Þg ¼ Rðm; n;m0; n0Þ þ mðm; nÞmðm0; n0Þ: ð20Þ

Thus it may be seen that the correlation also satisfies the periodicity condition (19)
that defines the essential structure we wish to study. Hence, without any loss of
generality we again can take mðm; nÞ � 0:
The first result is that strongly PC fields are just finite collections of jointly

stationary fields. This was first noticed by Gladyshev [8] for the univariate case, and
we omit its straightforward proof.

Proposition 6. A necessary and sufficient condition for a random field X ¼ fXðm; nÞ :
m; nAZ2g to be strongly PC with period ðM;NÞ is that the collection of fields

Yjj0 ðm; nÞ ¼ Xð j þ mM; j0 þ nNÞ; ðm; nÞAZ2 ð21Þ
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for j ¼ 0; 1;y;M � 1; j0 ¼ 0; 1;y;N � 1 form a M � N-dimensional stationary

random field Y ¼ fYjj0 ðm; nÞ; ðm; nÞAZ2g:

In view of this proposition, the existence of a collection of unitary operators
associated with a PC field is clear. We will return to the unitary operators
subsequently.
To obtain a Fourier series decomposition of the covariance as in the case for PC

sequences [8], we now define

Bððm; nÞ; ðt1; t2ÞÞ ¼ Rðm þ t1; n þ t2;m; nÞ ð22Þ

and so the property (19) becomes

Bððm; nÞ; ðt1; t2ÞÞ ¼ Bððm þ M; nÞ; ðt1; t2ÞÞ ¼ Bððm; n þ NÞ; ðt1; t2ÞÞ ð23Þ

for every ðm; nÞ and ðt1; t2ÞAZ2: Thus, for every ðt1; t2Þ; the function
Bððm; nÞ; ðt1; t2ÞÞ is a scalar-valued strongly periodic function of ðm; nÞ in the sense
that it is periodic in the two indices independently with respective periods M and N:
Hence for every ðt1; t2Þ; we have the discrete Fourier series representation

Bððm; nÞ; ðt1; t2ÞÞ ¼
X

~kk¼ðk1;k2Þ

B~kk
ðt1; t2Þ expði2pk1m=M þ i2pk2n=NÞ; ð24Þ

or in more explicit form,

Bððm; nÞ; ðt1; t2ÞÞ ¼
XM�1

k1¼0

XN�1

k2¼0
Bk1k2ðt1; t2Þ expði2pk1m=M þ i2pk2n=NÞ; ð25Þ

and where

Bk1k2ðt1; t2Þ ¼
1

MN

XM�1

m¼0

XN�1

n¼0
Bððm; nÞ; ðt1; t2ÞÞ expð�i2pk1m=M � i2pk2n=NÞ:

ð26Þ

Hence the covariance of strongly PC random fields is completely determined by a

finite collection of coefficient functions fB~kk
ðt1; t2Þ; ~kkA½0;M � 1� � ½0;N � 1�g: The

following gives conditions on the coefficient functions that ensure that
Bððm; nÞ; ðt1; t2ÞÞ arose from the covariance function of some strongly PC field.
The proof is a straightforward extension of a result due to Gladyshev [8] for the case
of univariate PC sequences, and so the proof is omitted.

Proposition 7. A sequence of coefficient functions fB~kk
ðt1; t2Þ; ~kkA½0;M � 1� �

½0;N � 1�g arises from some strongly PC random field having period ðM;NÞ if and

only if for every n; every sequence of complex numbers fc1; c2;y; cng; integer pairs

f~tt1 ;~tt2 ;y; ~tntng; and f~kk1 ; ~kk2 ;y; ~knkng each in ½0;M � 1� � ½0;N � 1�; it follows thatXn

p¼1

Xn

p0¼1
cp %cp0b~kkp

~kkp0
ð~ttp �~ttp0 ÞX0; ð27Þ
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where, denoting ~jj ¼ ð j1; j2Þ and ~kk ¼ ðk1; k2Þ;

b~jj~kkðt1; t2Þ ¼ B~kk�~jj ðt1; t2Þ expði2pjt1=M þ i2pj0t2=NÞ: ð28Þ

We next turn to the connection between strongly PC fields and unitary operators.
The following proposition extends the result of Kallianpur and Mandrekar [13] for

the case of stationary fields indexed on Z2 and extends the result of Hurd and
Kallianpur [11] for PC processes.

Proposition 8. The zero mean random field X ¼ fX ðm; nÞ : ðm; nÞAZ2g is strongly PC

with period ðM;NÞ if and only if there exists a pair of commuting unitary operators, U1
and U2 on HðX Þ for which

X ðm þ kM; n þ lNÞ ¼ Uk
1Ul

2Xðm; nÞ ð29Þ

for every m; n and k; l in Z; and this occurs for no smaller M40 and N40:

We will give a sketch of the proof. If the field satisfies (29) for unitary U1 and U2;
then (19) holds. Conversely, suppose (19) holds for every m; n;m0; n0 and k; l: Then

we define a collection of operators fVðk; lÞ; kAZ; lAZg on the linear spanMðX Þ ¼
spfXðm; nÞ; ðm; nÞAZ2g by the action on a typical element z ¼

Pn
p¼1 apX ðmp; npÞ by

Vðk; lÞ½z� ¼
Xn

p¼1
apX ðmp þ kM; np þ lNÞ: ð30Þ

It is then easy to show that Vðk; lÞ preserves inner products onMðXÞ for any ðk; lÞ:
Since Vðk; lÞ is clearly surjective, then it is unitary and hence continuous onMðXÞ
and extends to HðX Þ ¼ MðX Þ:
Thus Vð1; 0Þ and Vð0; 1Þ are unitary and we set U1 ¼ Vð1; 0Þ; U2 ¼ Vð0; 1Þ: By

definition, we have Vð1; 1Þ ¼ Vð1; 0ÞVð0; 1Þ ¼ Vð0; 1ÞVð1; 0Þ which shows that U1
and U2 commute. Thus Vðk; lÞ ¼ Uk

1Ul
2: &

The general idea here is that shift invariance of the covariance corresponds exactly
to the existence of a shift mapping that is a unitary operator. This will also be the
main idea in the case of weakly PC sequences described in the next section.
Now we give a characterization for the strong PC property in terms of unitary

operators and strongly periodic fields. This result was observed for univariate
continuous time PC processes in [9] and was more thoroughly investigated in [11].
The proof can also be found in the survey paper [4]. The proof here is omitted due to
similarity with the univariate continuous time case.

Proposition 9. The zero mean random field fX ðm; nÞ; ðm; nÞAZ2g is strongly PC with

period ðM;NÞ if and only if there exists a strongly periodic field Pðm; nÞ taking values

in HðXÞ having the same period ðM;NÞ; and a pair of commuting unitary operators,
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U1 and U2 on HðXÞ for which

X ðm; nÞ ¼ U
m=M
1 U

n=N
2 ½Pðm; nÞ� ð31Þ

for every m; n and where U
m=M
1 � ðU1=M

1 Þm
and similarly for U2:

The preceeding result immediately yields a representation of strongly PC fields in
terms of a Fourier series having a finite collection of jointly stationary fields as
coefficients. It gives another way in which a collection of jointly stationary fields give
a representation of PC fields. For the case of PC sequences, the representation
originated with Gladyshev [8].

Proposition 10. The zero mean random field fXðm; nÞ;m; nAZ2g is strongly PC with

period ðM;NÞ if and only if there exists a collection

fZpp0 ðm; nÞ; pA½0;M � 1�; p0A½0;N � 1�g; ðm; nÞAZ2g

of jointly stationary (in the sense of Section 2) random fields whose spectral support is

½0; 2p=MÞ � ½0; 2p=NÞ and for which

X ðm; nÞ ¼
XM�1

p¼0

XN�1

p0¼0
Zpp0 ðm; nÞ expði2ppm=M þ i2pp0n=NÞ: ð32Þ

Harmonizability: The following facts are straightforward extensions of the notion
of harmonizable strongly processes as presented by Loève [17] and in a more general

context by Rao [3]. A two-dimensional random field fXðm; nÞ; ðm; nÞAZ2g is called
strongly harmonizable if it can be represented by the quadratic mean integral

X ðm; nÞ ¼
Z
½0;2pÞ2

exp½iðm; nÞ �~llÞ�Zðd~llÞ; ð33Þ

where Zð�Þ : B½0; 2pÞ2-HðX Þ is a random measure for which the set function

rZðD1 � D2Þ ¼ EfZðD1ÞZðD2Þg for D1 � D2ABð½0; 2pÞ2 � ½0; 2pÞ2Þ satisfiesZ
½0;2pÞ2�½0;2pÞ2

jrZðd~aa; d~bbÞjoN ð34Þ

and consequently rZ is a measure that is sometimes called the spectral covariance
measure, or just spectral measure, of X ðm; nÞ: It follows that the covariance of
Xðm; nÞ has the representation

Rðm; n;m0; n0Þ ¼
Z
½0;2pÞ2�½0;2pÞ2

exp½iðm; nÞ �~aa � ðm0; n0Þ �~bbÞ�rZðd~aa; d~bbÞ: ð35Þ

Conversely, if the covariance of a process is expressed by (35) where rZð�; �Þ satisfies
(34), then there is a random measure Zð�Þ such that Xðm; nÞ is represented by (33).
Following the one-dimensional case [8], the next propositions (a) characterize the

spectral measure for harmonizable strongly PC random fields, (b) show that all

strongly PC random fields (on Z2) are harmonizable and (c) give the relationship
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between the multi-dimensional spectral distributions of Proposition 6 and of
Proposition 10.

Proposition 11. A zero mean strongly harmonizable random field X ¼
fXðm; nÞ; ðm; nÞAZ2g is strongly PC with period ðM;NÞ if and only if the support

of the spectral measure rZ is contained in the set

SM;N ¼fða1; a2; b1; b2ÞA½0; 2pÞ2 � ½0; 2pÞ2 for which

b1 ¼ a1 � 2pk=M; kA½�ðM � 1Þ; ðM � 1Þ�

b2 ¼ a2 � 2pk0=N; k0A½�ðN � 1Þ; ðN � 1Þ�g: ð36Þ

Proposition 12. Every strongly PC random field Xðm; nÞ is strongly harmonizable.

The next proposition extends to fields another result of Gladyshev [8]. It relates
the matrix-valued spectral distribution

Fð~llÞ ¼ fFð j1;j2Þ;ðk1;k2Þð~llÞ; j1; k1A½0;M � 1�; j2; k2A½0;N � 1�g;

of the multi-dimensional stationary field

Y ¼ fYj1j2ðm; nÞ; ðm; nÞAZ2; j1A½0;M � 1�; j2A½0;N � 1�g

given in Proposition 6 to the matrix-valued spectral distribution

Fð~llÞ ¼ fFðp1;p2Þ;ðq1;q2Þð~llÞ; p1; q1A½0;M � 1�; p2; q2A½0;N � 1�g:

of the multi-dimensional stationary field

Z ¼ fZp1p2ðm; nÞ; ðm; nÞAZ2; p1A½0;M � 1�; p2A½0;N � 1�g

resulting from Proposition 10.
We note that the methods used by Gladyshev [8] to prove Proposition 12, when

applied here show that Fð~llÞ may be interpreted directly in terms of rZ:

Proposition 13. If X ¼ fX ðm; nÞ; ðm; nÞAZ2g is strongly PC with period ðM;NÞ; then

dFð~llÞ ¼ MNVð~llÞdF l1
M

;
l2
N

� �
V�1ð~llÞ; ð37Þ

where Vð~llÞ is a unitary transformation from CM � CN to itself defined by

ðVð~llÞÞpqjk ¼ ðV1ðl1ÞÞpjðV2ðl2ÞÞqk; ð38Þ

where V1ðl1Þ and V2ðl2Þ are linear transformations (matrices) on CM and CN : The pjth

element of V1ðl1Þ is

ðV1ðl1ÞÞpj ¼
1ffiffiffiffiffiffi
M

p expði2ppj=M þ il1j=MÞ ð39Þ
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and the qkth element of V2ðl2Þ is

ðV2ðl2ÞÞqk ¼ 1ffiffiffiffiffi
N

p expði2pqk=N þ il2k=NÞ: ð40Þ

3.4. Weakly periodically correlated random fields

The zero mean random field X ¼ fXðm; nÞ; ðm; nÞAZ2g is called weakly PC with
period ðM;NÞ if

Rðm; n;m0; n0Þ ¼ Rðm þ M; n þ N;m0 þ M; n0 þ NÞ ð41Þ
for every m; n;m0; n0: As in the case of weakly periodic fields, we require MX0 and
NX0 but do not permit M ¼ N ¼ 0 because this would put no constraint
whatsoever on the covariance structure of the field. If (41) occurs for M ¼ 0 and
N40 with N minimal, we obtain a field that is PC in the second index and has no
constraint on its behavior in the first index. For arbitrary M40; N40; we require
ðM;NÞ be relatively prime, and then the result is essentially the same except the field
is periodically correlated along the straight lines of slope N=M: Since all of Z2 can be
expressed as a countable union as in (16), a weakly PC random field is essentially a
countable collection of PC sequences arranged along parallel lines of slope N=M in

Z2: If X is of zero mean and strongly PC, then it is also weakly PC. The following
proposition connects (41) to unitary operators. The proof, which follows along the
same lines as the proof of Proposition 8, is omitted.

Proposition 14. The zero mean random field fX ðm; nÞ; ðm; nÞAZ2g is weakly PC with

period ðM;NÞ if and only if there exists a unitary operator, U operating in HðX Þ for

which
X ðm þ M; n þ NÞ ¼ U ½Xðm; nÞ� ð42Þ

for every ðm; nÞAZ2:

Again, as in Proposition 8, the shift invariance of the covariance corresponds
exactly to the existence of a shift mapping that is a unitary operator. Except for the
following paragraphs, we defer any further analysis of weakly PC fields to
subsequent efforts.

3.5. The role of subgroups

The set Z2; taken as a group under the usual addition ða; bÞ þ ðc; dÞ ¼ ða þ c; b þ
dÞ has non-trivial subgroups of only two types. The first type we shall call a strong

subgroup and for a given pair ðM;NÞ with M40 and N40; it is the set

SM;N ¼ fðm; nÞ : m ¼ kM; n ¼ lN; ðk; lÞAZ2g: ð43Þ
Given again a pair ðM;NÞ with MX0 and NX0 but not M ¼ N ¼ 0; a weak

subgroup is a set

WM;N ¼ fðm; nÞ : m ¼ kM; n ¼ kN; kAZg: ð44Þ
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Now we can see that a random field X ¼ fXðm; nÞ; ðm; nÞAZ2g is strongly periodic

with period ðM;NÞ if and only if Xðm; nÞ is invariant under translation by any
element of SM;N : Similarly, X is weakly periodic with period ðM;NÞ if and only if
Xðm; nÞ is invariant under translation by any element of WM;N :
Further, a field X is strongly PC with period ðM;NÞ if and only if Xðm; nÞ is

unitarily related via (29) to its translation by any element of SM;N : Finally, X is

weakly PC with period ðM;NÞ if and only if Xðm; nÞ is unitarily related via (42) to its
translation by any element of WM;N :We note that the preceeding may be seen as an
L2ðOÞ version of the following idea, the roots of which may be found in Jain and
Kallianpur [12, p. 24, definition 4.1]. Suppose fXðs;oÞ; sAS; oAOg is a random
process defined on the index set S and let G be a collection of bijections from S to S:
Then fX ðs;oÞ; sASg is called ðX ;GÞ stationary if the probability distributions of X

are invariant under any gAG: In our case, S ¼ Z2 and the bijections gk;l are shifts by

ðkM; lNÞ; that is gk;lðm; nÞ ¼ ðm þ kM; n þ lNÞ for every ðm; nÞ and each pair
ðk; lÞAZ2 produces one such bijection. And finally, in our case it is only the
covariance structure that is invariant.

4. The Wold decomposition

Here we shall present a few elementary results concerning Wold decompositions
for zero mean strongly PC random fields. The main purpose of this section is to
illustrate that the commuting of the operators U1 and U2 (Proposition 8) and their
relationship to the various subspaces that are of interest provide for the
straightforward extension of many results that have been obtained for stationary
fields. See Kallianpur and Mandrekar [13] for a general discussion of the role of
commuting isometries in the prediction context. The results we have chosen to
present are essentially extensions of the 2- and 4-fold decompositions of Kallianpur,
Miamee and Niemi [14,15], where for the latter case, weak commutativity is
assumed.

For a second-order random field X ¼ fXðm; nÞ; ðm; nÞAZ2g we define H ¼
spfXð j; kÞ; ð j; kÞAZ2g to be the Hilbert space of X : If the context requires a symbol

for the field we will use subscripts, such as H1yðmÞ or H1y;�N
; to refer to the field y:

The absence of the subscript means we are referring to the field X : Further,

1. Hðm; nÞ ¼ spfX ð j; kÞ; jpm; kpng is the subspace of the lower left or south-west

ðSWÞ quarter plane at ðm; nÞ; and H12�N
¼

T
m;n Hðm; nÞ is the subspace of the SW

(southwest) remote past. The field is called southwest purely non-deterministic (or

regular) if H12�N
¼ f0g and southwest deterministic (or singular) if HðX ;m; nÞ ¼

H12�N
for all m; n in Z:

2. H1ðmÞ ¼ spfXð j; kÞ; jpm; kAZg is the subspace of the left half plane at m; or the

left-horizontal past at m; and H1
�N

¼
T

m H1ðmÞ is the subspace of the horizontal
remote past. The field is called horizontally purely non-deterministic or horizontally
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regular if H1�N
¼ f0g; it is called horizontally deterministic or horizontally singular

if H1�N
¼ H; or equivalently, if H1ðm1Þ ¼ H1ðm2Þ for all m1;m2 in Z;

3. H2ðnÞ ¼ spfXð j; kÞ; jAZ; kpng is the subspace of the lower half plane at n; or the

bottom-vertical past at n; and H2�N
¼

T
n H2ðnÞ is the subspace of the vertical

remote past. The field is called vertically purely non-deterministic if H2
�N

¼ f0g; it
is called vertically deterministic or vertically singular if H2

�N
¼ H or equivalently,

if H2ðn1Þ ¼ H2ðn2Þ for all n1; n2 in Z;

4. the field is called strongly purely non-deterministic (or regular) if H1
�N

¼ H2
�N

¼
f0g and weakly deterministic (or singular) if H1

�N
¼ H2

�N
¼ H; or equivalently,

H1ðmÞ
T
H2ðnÞ ¼ H for all ðm; nÞAZ:

Wold decompositions follow, in essence, from the fact that certain subspaces
are invariant under the unitary operators that describe the evolution of the
process. In our current case, we summarize the pertinent results in the following
proposition.

Proposition 15. If Xðm; nÞ is strongly PC with period ðM;NÞ and with associated

unitary operators U1 and U2; then

1. Hðm þ kM; n þ lNÞ ¼ Uk
1Ul

2Hðm; nÞ for arbitrary m; n; k; l in Z;

2. H1ðm þ kMÞ ¼ Uk
1Ul

2H1ðmÞ for arbitrary m; k; l in Z;

3. H2ðn þ lMÞ ¼ Uk
1Ul

2H2ðnÞ for arbitrary n; k; l in Z;

4. H1�N
¼ Uk

1Ul
2H1�N

for arbitrary k; l in Z;

5. H2�N
¼ Uk

1Ul
2H2�N

for arbitrary k; l in Z;

6. H12�N
¼ Uk

1Ul
2H12�N

for arbitrary k; l in Z:

Proof. To prove (1), defineMðm; nÞ ¼ spfXð j; kÞ; jpm; kpng then it is easy to see
that Mðm þ kM; n þ lNÞ ¼ Uk

1Ul
2Mðm; nÞ for arbitrary m; n; k; l and the relation-

ship extends to the closure Hðm þ kM; n þ lNÞ by the unitarity of the operators U1
and U2: Items (2) and (3) are similar. Statements (4)–(6) follow from the first three.

Taking statement (6) for example, if xAH12�N
then xAHðm; nÞ for every m; n; but

then by statement (1) the element z ¼ U�k
1 U�l

2 xAHðm � kM; n � lNÞ for every m; n

and k; l in Z; so that also zAH12
�N

; and hence x ¼ Uk
1Ul

2zAUk
1Ul

2H12�N
: Conversely, if

xAUk
1Ul

2H12
�N

then x ¼ Uk
1Ul

2z for zAH12�N
; hence zAHðm; nÞ for every m; n and so

by (1) the same is true for x and thus xAH12
�N

: &

Remark. From standard results in the theory of Hilbert space (see Akheizer and
Glazman [1, Sections 40–42]), we can conclude that any of the spaces

H1
�N

;H2�N
;H12

�N
together with their orthogonal complements reduce the unitary

operator Uk
1Ul

2 for every k; l: That is, taking H12
�N

to be specific, item 6. in

Proposition 15 shows that the subspace H12
�N

is invariant under both Uk
1Ul

2 and its
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inverse U�k
1 U�l

2 : This implies (see [1, Section 42]) that Uk
1Ul

2 commutes with the

orthogonal projection onto H12
�N

and that

Uk
1Ul

2 ¼ Uk
1Ul

2jH12�N

þ Uk
1Ul

2jðH12�N
Þ> ;

meaning the operator Uk
1Ul

2 can be split into it’s restriction to H12
�N

and ðH12
�N

Þ>:
An elementary result is the 2-fold horizontal Wold decomposition; the vertical

decomposition follows similarly.

Proposition 16 (Horizontal 2-fold decomposition). If Xðm; nÞ is a strongly PC

random field with period ðM;NÞ; then

X ðm; nÞ ¼ Xsðm; nÞ þ Xrðm; nÞ; ð45Þ

where

1. Xs is horizontally deterministic (singular);
2. Xr is horizontally purely non-deterministic (regular);

Further, these two components are mutually orthogonal, are strongly PC with the same

period ðM;NÞ and

H1ðmÞ ¼ H1
s ðmÞ"H1

r ðmÞ: ð46Þ

Furthermore, the two subspaces H1
�N

and ðH1
�N

Þ> reduce the operator Uk
1Ul

2 for

every k; lAZ:

Proof. The result follows primarily from the fact that H1�N
is invariant under Uk

1Ul
2

for every k; l in Z; see Proposition 15, item 4. Then defining Xsðm; nÞ ¼ PH1�N

X ðm; nÞ
and Xrðm; nÞ ¼ Xðm; nÞ � Xsðm; nÞ; it follows that the Xs and Xr are singular and
regular, respectively, and orthogonal: Xsðm; nÞ>Xrðm0; n0Þ for every m; n;m0; n0;
expression (46) follows from the fact that projections are continuous operators. The

argument in the remark following Proposition 15 implies that Uk
1Ul

2 commutes with

PH1�N

; hence (1) Xs and Xr are strongly PC with period ðM;NÞ and (2) the two
subspaces H1�N

and H1
�N

> reduce the operator Uk
1Ul

2 for every k; lAZ: &

We begin our discussion of 4-fold decompositions with the notion of weak
commutativity.

Definition 1. A second-order random field X ðm; nÞ is said to have the weak
commutation property if

PH1ðmÞPH2ðnÞ ¼ PH2ðnÞPH1ðmÞ ¼ PH1ðmÞ-H2ðnÞ ð47Þ

for every m; nAZ:
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Given any second-order random field X ðm; nÞ; let us consider the two following
decompositions of H ¼ spfXð j; kÞ; ð j; kÞAZ2g

H ¼ H1�N
"ðH1�N

Þ>

H ¼ H2�N
"ðH2�N

Þ> ð48Þ

and define

Hss ¼ H1
�N

-H2
�N

;

Hsr ¼ H1
�N

-ðH2
�N

Þ>;

Hrs ¼ ðH1
�N

Þ>-H2�N
;

Hrr ¼ ðH1
�N

Þ>-ðH2�N
Þ>: ð49Þ

Lemma 1. The subspaces Hss;Hsr;Hrs and Hrr are all invariant under Uk
1Ul

2 for

arbitrary integers k; l:

Proof. The subspaces in question are all intersection of subspaces whose

invariance under Uk
1Ul

2 has already been determined. Then apply the following. If

subspace A is invariant under unitary operators U and U�1; then A and A> reduce

U and thus A> is also invariant under U and U�1 (see [1, Section 42]). It follows
easily that if A and B are invariant under U ; then also is A-B: For if xAA-B; then
UxAA and UxAB so UxAUðA-BÞ: Conversely if xAUðA-BÞ then there exists
zAA-B with x ¼ Uz; but then since A and B are invariant under U ; we have
xAA-B: &

It is clear that the subspaces Hss;Hsr;Hrs and Hrr are mutually orthogonal and

H*Hss"Hsr"Hrs"Hrr:

The opposite inclusion requires something additional. The following result shows
that weak commutativity of a strongly PC random field is sufficient (since we already
have commutativity of U1 and U2 and Proposition 15).

Proposition 17 (Four-fold decomposition). If the random field Xðm; nÞ is weakly

commuting and strongly PC with period ðM;NÞ; then

X ðm; nÞ ¼ Xssðm; nÞ þ Xsrðm; nÞ þ Xrsðm; nÞ þ Xrrðm; nÞ ð50Þ

where

1. Xss is horizontally and vertically singular (weakly deterministic),
2. Xsr is horizontally singular and vertically regular (2-purely non-deterministic),
3. Xrs is horizontally regular and vertically singular (1-purely non-deterministic),
4. Xrr is horizontally and vertically regular (strongly purely non-deterministic).
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Further, each of these four components has the weak commutation property;
they are mutually orthogonal, strongly PC with period ðM;NÞ and for

all ðm; nÞAZ2;

Hðm; nÞ ¼ Hssðm; nÞ"Hsrðm; nÞ"Hrsðm; nÞ"Hrrðm; nÞ; ð51Þ

where

Hssðm; nÞ ¼ spfXssð j; kÞ; jpm; kpng

and similarly for Hsrðm; nÞ;Hrsðm; nÞ and Hrrðm; nÞ:

Proof. Since the field is weakly commutative, (47) holds, and since, for example,

H1
�N

can be considered a monotone limit of subspaces, it follows by a limiting

argument (see [1, Section 33]) that as m; n-�N; the projections
PH1ðmÞPH2ðnÞ-PH1�N

PH2�N

: Applying the same technique to the other three cases

we conclude

H ¼ Hss"Hsr"Hrs"Hrr

and the Wold decomposition is just the projection onto these four subspaces.
Expression (51) naturally follows. The weak commutativity of the four components
follows in exactly the same manner as part (c), Theorem I.7 of [14], a cornerstone of
which is Lemma 2.1 of [13]. &

The commuting of the projections PH1�N

and PH2�N

also yields, via the Wold-

Halmos decomposition (see [13,14]), the following.

Corollary 1. If the random field X ðm; nÞ is weakly commuting and strongly PC with

period ðM;NÞ; then for all m; n

Hssðm; nÞ ¼ H1
�N

-H2�N
; ð52Þ

Hrsðm; nÞ ¼
X
jpm

"½H1ð jÞ~H1ð j � 1Þ�-H2
�N

; ð53Þ

Hsrðm; nÞ ¼ H1
�N

-
X
kpn

"½H1ðkÞ~H1ðk � 1Þ�; ð54Þ

Hrrðm; nÞ ¼
X
jpm

"½H1ð jÞ~H1ð j � 1Þ�-
X
kpn

"½H1ðkÞ~H1ðk � 1Þ�: ð55Þ
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5. Innovations

Let us now denote

I1m ¼ ½H1ðmÞ~H1ðm � 1Þ�-H2�N
;

I2n ¼ ½H2ðnÞ~H2ðn � 1Þ�-H1
�N

;

Imn ¼ ½H1ðmÞ~H1ðm � 1Þ�-½H2ðnÞ~H2ðn � 1Þ� ð56Þ

and

M1ðmÞ ¼ dimðI1mÞ;

M2ðnÞ ¼ dimðI2n Þ;

M0ðm; nÞ ¼ dimðImnÞ: ð57Þ

We can interpret I1m as the innovation space of a vertical strip intersected with the

vertical remote past and similarly I2n is the innovation space of a horizontal strip

intersected with the horizontal remote past. We interpret Imn as the subspace of the
intersection of a vertical strip at m with a horizontal strip at n:

Lemma 2. If the random field X ðm; nÞ is strongly PC with period ðM;NÞ; then

I1mþkM ¼ Uk
1Ul

2I
1
m for every k; l;mAZ;

I2nþlN ¼ Uk
1Ul

2I
2
n for every k; l; nAZ;

ImþkM ;nþlN ¼ Uk
1Ul

2Imn for every k; l;m; nAZ ð58Þ

and

M1ðmÞ ¼ M1ðm þ MÞ for every mAZ;

M2ðnÞ ¼ M2ðn þ NÞ for every nAZ;

M0ðm; nÞ ¼ M0ðm þ kM; n þ lNÞ for every k; l;m; nAZ: ð59Þ

The results all follow from the invariance of the subspaces H1ðmÞ; H2ðnÞ; H1�N
;

H2
�N

under Uk
1Ul

2 for arbitrary ðk; lÞAZ2:
Generally we cannot say too much about these dimensions without adding some

other conditions. The following is a direct extension of a result due to Kallianpur,
Miamee and Niemi [14,15] for the stationary case.

Proposition 18. If the random field Xðm; nÞ is strongly PC with period ðM;NÞ and

weakly commuting, then there exists m0 such that M1ðm0Þa0 if and only if there is an

m0; n0 for which

jjPHrs
X ðm; nÞjja0

for m ¼ m0 þ jM; jAZ;

and n ¼ n0 þ kN; kAZ:
ð60Þ
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Proof. Note that M1ðm0Þa0 iff M1ðm0 þ jMÞa0; jAZ: From the decomposition

Hrs ¼
XN

m¼�N

I1m ð61Þ

we can conclude that jjPHrs
Xðm; nÞjja0 for some m; n if and only if Hrsaf0g which

occurs if and only if I1m0af0g for some m0: &

The following example shows why jjPHrs
Xðm; nÞjja0 for some m; n does not imply

M1ðmÞa0 but only that M1ðm0Þa0 for some m0: Suppose Yðm; nÞ is a stationary
random field (PC with period ð1; 1Þ) whose unitary shift operators are U1 and U2:
Consider the following diagram of Yðm; nÞ near Yð0; 0Þ:

^

yYð0; 2Þ Y ð1; 2Þ Yð2; 2Þy
yYð0; 1Þ Y ð1; 1Þ Yð2; 1Þy
yYð0; 0Þ Y ð1; 0Þ Yð2; 0Þy

^

and we now construct a new field, call it X ðm; nÞ; by replacing Yðm; nÞ with
Yðm; nÞ Yðm; nÞ thus producing the diagram

^

yYð0; 2Þ Y ð0; 2Þ Yð1; 2Þ Yð1; 2Þ Y ð2; 2Þ Yð2; 2Þy
yYð0; 1Þ Y ð0; 1Þ Yð1; 1Þ Yð1; 1Þ Y ð2; 1Þ Yð2; 1Þy
yYð0; 0Þ Y ð0; 0Þ Yð1; 0Þ Yð1; 0Þ Y ð2; 0Þ Yð2; 0Þy

^

That is, let X ðm; nÞ ¼ Yð½m=2�; nÞ: It is evident that X ðm; nÞ is PC with period (2,1)
and the corresponding shift operators are U1;U2 inherited from Y ðm; nÞ: It follows
from the construction that H1

X ðmÞ ¼ H1
yð½m=2�Þ; H2

X ðnÞ ¼ H2
yðnÞ;H1X ;�N

¼ H1Y ;�N

and H2
X ;�N

¼ H2Y ;�N
: It is also readily seen that

H1
X ðmÞ~H1

X ðm � 1Þ ¼ H1
Y ð½m=2�Þ~H1Y ð½ðm � 1Þ=2�Þ m even;

f0g otherwise

(

and that

H2
X ðnÞ~H2X ðn � 1Þ ¼ H2

Y ðnÞ~H2Y ðn � 1Þ

for all m and n:

Now if dimf½H1
Y ðmÞ � H1Y ðm � 1Þ�-H2Y ;�N

ga0 for some m then it is true for

every m from stationarity. Then

M1ðmÞ ¼ dimf½H1
X ðmÞ � H1

X ðm � 1Þ�-H2
�N

ðXÞg ¼
a0 m even;

0 m odd:
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Suppose now that jjPHrs
X ðm; nÞjja0 for some even integer m so that M1ðmÞa0: But

also jjPHrs
X ðm þ 1; nÞjja0 and yet M1ðm þ 1Þ ¼ 0:

5.1. Innovations under strong commutativity

Definition 2. A random field is said to have the strong commutativity property if

PH1ðmÞPH2ðnÞ ¼ PHðm;nÞ ð62Þ

for all m; nAZ:

Proposition 19. If the random field Xðm; nÞ is strongly commuting, then

Hðm; nÞ ¼ Imn"H�ðm; nÞ; ð63Þ

where

H�ðm; nÞ ¼ spfX ð j; kÞ; jpm; kpn; ð j; kÞaðm; nÞg: ð64Þ

Proof. It is equivalent to show that

Imn ¼ Hðm; nÞ~H�ðm; nÞ:

First by strong commutativity (and since strong implies weak)

PImn
¼ ½PH1ðmÞ~PH1ðm�1Þ�½PH2ðnÞ~PH2ðn�1Þ�

¼PH1ðmÞPH2ðnÞ � PH1ðm�1ÞPH2ðnÞ

� PH1ðmÞPH2ðn�1Þ þ PH1ðm�1ÞPH2ðn�1Þ ð65Þ

so that

Imn ¼Hðm; nÞ~Hðm � 1; nÞ~½Hðm; n � 1Þ~Hðm � 1; n � 1Þ�;

¼Hðm; nÞ~Hðm; n � 1Þ~½Hðm � 1; nÞ~Hðm � 1; n � 1Þ�: ð66Þ

Now if xAHðm; nÞ~H�ðm; nÞ; then xAH1ðmÞ and xAH2ðnÞ: Furthermore,
x>H�ðm; nÞ implies x>Hðm � 1; nÞ and x>Hðm; n � 1Þ: Thus by (66), xAImn:
Conversely, if xAImn then by (66) xAHðm; nÞ; x>Hðm � 1; nÞ and x>Hðm; n � 1Þ

so that x is orthogonal to all the random variables fX ð j; kÞ; jpm;
kpn; ð j; kÞaðm; nÞg that generate H�ðm; nÞ: Thus xAHðm; nÞ~H�ðm; nÞ: &

When Xðm; nÞ is strongly commuting we can say something useful about
M0ðm; nÞ:

Corollary 2. If the random field X ðm; nÞ is strongly commuting, then M0ðm; nÞ ¼ 1 if

and only if Xðm; nÞeH�ðm; nÞ and otherwise M0ðm; nÞ ¼ 0:
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We finish this work with some remarks and a proposition about one-sided moving
average representations of strongly PC fields. First, if X ðm; nÞ is PC with period
M;N; is weakly commutative and strongly regular (H ¼ Hrr), then from (55)

Hrrðm; nÞ ¼
X
ppm

X
qpn

Ipq; ð67Þ

and since it is readily seen that Ipq>Ip0q0 unless ðp; qÞ ¼ ðp0; q0Þ; then every X ðm; nÞ
has the decomposition

X ðm; nÞ ¼
X
ppm

X
qpn

Zpqðm; nÞ; ð68Þ

where Zpqðm; nÞAIpq: Hence we already have a one-sided representation in terms of

the ‘‘past’’. Under the assumption of strong commutativity, the vectors Zpqðm; nÞ are
zero or in a subspace of dimension 1 because dimðIpqÞ is either 0 or 1, but still not a
moving average. Adding the PC structure then gives the moving average with respect
to orthogonal vectors in one-dimensional subspaces. But we first need the following.

Definition 3. If the random field Xðm; nÞ is strongly commuting and strongly PC
with period ðM;NÞ; then its rank is

rankðXÞ ¼ cardðfðm; nÞ : M0ðm; nÞa0;m ¼ 0; 1;y;M � 1;

n ¼ 0; 1;y;N � 1gÞ: ð69Þ
Thus the largest rank possible for such a process is M � N; and a PC field with

period ðM;NÞ is said to be of full rank if rankðXÞ ¼ M � N: Following Miamee and
Salehi [18], it is clear that the rank of a PC field is closely related to the rank of a
stationary vector-valued field having M � N components and satisfying some
appropriate strong commutativity property. We will not pursue this idea further
in this paper but will use the rank as we have defined it.
In order to treat the case where rankðXÞoM � N we define

Dþ ¼ fðm; nÞ : M0ðm; nÞ40g ð70Þ
to be the set of indices where the field has positive innovation dimension according to

M0ðm; nÞ: We note that Dþ is a periodic set in the sense that if ðm; nÞADþ then also
ðm þ kM; n þ lNÞADþ for every k; lAZ: We define M � N ¼ ½0; 1;y;M � 1� �
½0; 1;y;N � 1� as the principal rectangle having sides M;N:

Proposition 20. If the random field Xðm; nÞ is strongly commuting, then it is strongly

PC with period ðM;NÞ; and strongly regular ðH ¼ HrrÞ and of rank Q if and only if

there exists a periodic set Dþ of period ðM;NÞ having Q ¼ cardðDþ-M � NÞ; and a

sequence of orthonormal innovation vectors

I ¼ fxp;q; ðp; qÞADþg ð71Þ
such that for every m; n

X ðm; nÞ ¼
X

rX0;sX0:ðm�r;n�sÞADþ

ar;sðm; nÞxm�r;n�s; ð72Þ
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X
rX0;sX0:ðm�r;n�sÞADþ

jar;sðm; nÞj2oN; ð73Þ

and
ar;sðm þ kM; n þ lNÞ ¼ ar;sðm; nÞ ð74Þ

for every r; s; k; l;m; n such that ðm � r; n � sÞADþ:

Remark. To clarify the notation, we first observe that if ðm � r; n � sÞeDþ; then

xm�r;n�s does not exist nor does xmþkM�r;nþlN�s for ðk; lÞAZ2 (there do not exist

vectors with these indices).

Proof. The orthonormality of the xp;q and the square summability (73) together

ensure that Xm;n is a L2 random variable for every m; n: It also follows from the

orthogonality that

Rðm; n;m0; n0Þ ¼
X

rX0;sX0:ðm�r;n�sÞADþ

ar;sðm; nÞarþm0�m;sþn0�nðm0; n0Þ ð75Þ

and hence (19) is satisfied. The orthogonality of the xp;q imply that ½H1ðmÞ~H1ðm �
1Þ�>½H1ðm0Þ~H1ðm0 � 1Þ� for mam0 and hence H1

�N
¼ f0g; similarly H2

�N
¼ f0g

and therefore H ¼ Hrr; or in other words, X ðm; nÞ is strongly regular. To see that
Xðm; nÞ is of rank Q we note from (72) that if we consider Xðm; nÞ for ðm; nÞAM �
N; then by the definition of Dþ there are only Q values of ðm; nÞ for which X ðm; nÞ
depends on xm;n; for the others, Xðm; nÞ depends only on the past innovations
(rX0; sX0 but r ¼ s ¼ 0 not permitted). Said another way, Xðm; nÞ has exactly Q

non zero innovations for ðm; nÞAM � N and therefore M0ðm; nÞ ¼ dimðImnÞ ¼ 1 for
exactly these Q values of m; n and this implies rankðX Þ ¼ Q:
Conversely if the strongly PC field X ðm; nÞ is strongly regular and strongly

commuting then the innovation spaces Ipq appearing in (67) are of dimension at most

one and thus in (68) we may write Zp;qðm; nÞ ¼ ap;qðm; nÞxp;q; where xp;q is given below

by (77), but, to emphasize the point, Zp;qAIpq and hence xp;q are defined only when

ðp; qÞADþ: To amplify this, the assumption rankðXÞ ¼ Q means there are only Q

values of ðm; nÞAM � N for which there is a nontrivial innovation, meaning that (68)
may be replaced with

X ðm; nÞ ¼
X

ppm;qpn:ðp;qÞADþ

ap;qðm; nÞxp;q: ð76Þ

Since X ðp; qÞ � PH�ðp;qÞXðp; qÞ is a non-zero vector (in Ipq) only when ðp; qÞADþ we

then define

xp;q ¼
X ðp; qÞ � PH�ðp;qÞXðp; qÞ

jjX ðp; qÞ � PH�ðp;qÞXðp; qÞjjAIpq ð77Þ

which satisfies xpþkM;qþlN ¼ Uk
1Ul

2xp;q for every k; lAZ and ðp; qÞADþ and the

collection fxp;q; ðp; qÞADþg is clearly orthonormal. Now setting
ap;qðm; nÞ ¼ am�p;n�qðm; nÞ
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we may now rewrite (76) as (72) where (73) must apply for every p; q; k; l;m; n such

that ðm � p; n � qÞADþ:
To obtain the periodicity of the coefficients we consider

X ðm þ M; nÞ ¼ U1X ðm; nÞ ¼
X

rX0;sX0:ðm�r;n�sÞADþ

ar;sðm; nÞU1xm�r;n�s

¼
X

rX0;sX0:ðm�r;n�sÞADþ

ar;sðm; nÞxmþM�r;n�s

but also

X ðm þ M; nÞ ¼
X

rX0;sX0:ðm�r;n�sÞADþ

arþM;sðm; nÞxmþM�r;n�s

which shows that

ar;sðm þ M; nÞ ¼ ar;sðm; nÞ

for every r; s; k; l;m; n such that ðm � r; n � sÞADþ: Repeating the exercise for the
variable n leads to

ar;sðm; n þ NÞ ¼ ar;sðm; nÞ
for every r; s; k; l;m; n such that ðm � r; n � sÞADþ and hence the claimed result. &
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