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Abstract

Background: Little is known about the influence of antiretroviral therapy with or without micronutrient supplementation

on the micronutrient concentrations of HIV-infected lactating women in resource-constrained settings.

Objective: We examined associations of highly active antiretroviral therapy (HAART) and lipid-based nutrient supplements (LNS)

with concentrations of selected micronutrients in HIV-infected Malawian women at 24 wk postpartum.

Methods: Plasmamicronutrient concentrations weremeasured in a subsample (n = 690) of Breastfeeding, Antiretrovirals,

and Nutrition (BAN) study participants who were randomly assigned at delivery to receive HAART, LNS, HAART+LNS, or

no HAART/no LNS (control). HAART consisted of protease inhibitor–based triple therapy. LNS (140 g/d) met energy and

micronutrient requirements of lactation. Multivariable linear regression tested the association of HAART and LNS, plus

their interaction, with micronutrient concentrations, controlling for season, baseline viral load, and baseline CD4 count.

Results: We found significant HAART by LNS interactions for folate (P = 0.051), vitamin B-12 (P < 0.001), and transferrin

receptors (TfRs) (P = 0.085). HAART was associated with lower folate (with LNS:227%, P < 0.001; without LNS:212%,

P = 0.040) and higher TfR concentrations (with LNS: +14%, P = 0.004; without LNS: +28%, P < 0.001), indicating iron

deficiency. LNS increased folate (with HAART: +17%, P = 0.037; without HAART: +39%, P < 0.001) and decreased TfR

concentrations (with HAART only:212%, P = 0.023). HAART was associated with lower vitamin B-12 concentrations only

when LNS was present (218%, P = 0.001), whereas LNS increased vitamin B-12 only when no HAART was present

(+27%, P < 0.001). HAART, but not LNS, was associated with higher retinol-binding protein (RBP; +10%, P = 0.007). We

detected no association of HAART or LNS with selenium, ferritin, or hemoglobin.

Conclusion: The association of HAART with lower folate, iron deficiency, and higher RBP plus the attenuation of LNS

effects on folate and vitamin B-12 when combined with HAART has implications for the health of lactating HIV-infected

women taking HAART in prevention of mother-to-child transmission programs. This trial was registered at clinicaltrials.gov

as NCT00164736. J Nutr 2015;145:1950–7.
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Introduction

The WHO�s latest update on the use of antiretrovirals for the
prevention of mother-to-child transmission (PMTCT)12 has
precipitated a shift toward the provision of antiretrovirals to

mothers rather than to infants in African countries with high
HIV prevalence (1, 2). More than 1.5 million women are now
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eligible to receive highly active antiretroviral therapy (HAART),
containing a combination of 3 drugs, either during pregnancy
and breastfeeding (Option B) or starting in pregnancy and
continuing for life (Option B+) (3). Although these strategies
have clear benefits for preventing vertical transmission, the long-
term effects of HAART on the micronutrient status of women
participating in PMTCT programs are not well characterized.

Marginal micronutrient status and deficiencies are common
among HIV-infected women in resource-limited countries (4–7).
In patients with low CD4 counts, HAART has a beneficial
impact onmicronutrient status through reductions in anemia (8–
10) and vitamin A (11) and selenium deficiency (12). It is not
known if these positive effects of HAART on the status of some
micronutrients occur in individuals with higher CD4 and/or
minimal HIV disease progression, like many mothers in PMTCT
programs. Some negative effects of antiretrovirals on micro-
nutrient concentrations have been reported, particularly for
vitamins D (13, 14) and B-12 (15, 16). Negative associations of
antiretrovirals used for PMTCT with maternal micronutrient
concentrations have implications for the health of the mother
and her child, through micronutrient stores obtained in utero
and micronutrients available in breast milk. In the pre-HAART
era, micronutrient supplementation provided to people living
with HIV improved their hematologic status (17–25). However,
the association of micronutrient supplementation with plasma
micronutrient concentrations in lactating women receiving
HAART is unknown.

This article presents data from a selected subsample of
women who participated in the Breastfeeding, Antiretrovirals,
and Nutrition (BAN) study in Malawi. We examine the
association of micronutrient-fortified lipid-based nutrient sup-
plements (LNS) and protease inhibitor–based HAART regimens
on maternal micronutrient concentrations. We focus on associ-
ations at 24 wk, the time at which participants had their longest
exposure to study interventions.

Methods

Subjects and procedures. From 2004 to 2009, HIV-1–infected,

pregnant women were recruited into the BAN study at antenatal clinics

in Lilongwe, Malawi. They received the standard of care during

pregnancy from local health facilities. Mother-infant pairs were eligible
for enrollment at delivery if infants had a birth weight $2 kg and

mothers had a CD4 count $250 cells/mm3 ($200 cells/mm3 until July

2006), hemoglobin $ 70 g/L, and no previous antiretroviral use (26).

At delivery, womenwere randomly assigned to the following maternal
interventions: HAART, LNS, HAART+LNS, and no HAART/no LNS

(control). Micronutrient biomarkers were analyzed in a subsample of

stored plasma from BAN participants. We used all 24-wk specimens with

a matched infant sample and available anthropometric and dietary data.

Mothers were excluded if they had multiple births or their infants became
HIV-positive, because we also planned to use the subsample to analyze the

relation between maternal supplementation and infant growth. Multiples

and HIV-positive infants have different rates of growth than do singletons

and HIV-negative infants.
Nutrition and antiretroviral interventions were provided from

delivery through 28 wk postpartum. Mothers were counseled to

exclusively breastfeed from 0 to 24 wk and to wean their infants

between 24 and 28 wk. LNS (Nutriset), containing peanut paste, nonfat
milk powder, sugar, vegetable oil, and micronutrient mix, was used for

the nutrition intervention. The daily LNS dose (140 g) was designed to

supply the additional energy, protein, and micronutrient needs of
lactation. It provided 3120 kJ (746 kcal) of energy, 20.8 g protein, and

16 vitamins and minerals. The complete nutrient content of the LNS is

described elsewhere (27). Briefly, it contained 300mg folic acid (0.6 times

the RDA for lactating women), 2.6 mg cyanocobalamin (0.9 times the
RDA), 75 mg sodium selenite (1.3 times the RDA), and 15 mg ferrous

sulfate (1.7 times the RDA) (28–30). The LNS did not contain vitamin A

due to evidence available before the start of the study that it could

increase HIV transmission through breast milk (31).
The maternal antiretroviral intervention was a HAART regimen

containing 3 drugs (32). All women assigned to the antiretroviral arms

received lamivudine/zidovudine as a single pill (Combivir; Glaxo-
SmithKline) throughout the intervention period (0–28 wk). In addition,

the first 39 BAN participants randomly assigned to antiretrovirals

received nevirapine as their study drug. The study switched to the

second-line drug, nelfinavir (Viracept; Roche), which was given to the
next 146 women, after the FDA issued a black box warning concerning

the use of nevirapine in women with a CD4 count >250 cells/mm3. A

further change was made to lopinavir/ritonavir (LPVr; Kaletra; Abbott)

for reasons of availability, safety, and potency. Nelfinavir and LPVr are
protease inhibitors, which have side effects including nausea, diarrhea,

increased lipids, and lipodystrophy (33). In our micronutrient subsam-

ple, 3 women switched from nevirapine to nelfinavir, one switched from

nelfinavir to LPVr, and one switched from LPVr to nelfinavir (due to
reactions to LPVr). We coded these women as taking the drug used at the

24-wk visit.

Venous blood samples were collected at 24 wk postpartum. Plasma
was separated from RBCs within 60 min, separated into aliquots in

polypropylene storage tubes, and kept at270�C. Mothers were asked to

report their adherence to the LNS at 1, 4, 8, 12, and 21 wk. Adherence to

HAART was based on pill counts at 4, 12, and 18 wk. This was
calculated by using the following formula: (number of pills distributed at

previous visit – number of pills returned at current visit)/(days between

visits 3 pills prescribed per day). Adherence to the LNS regimen was

obtained by questionnaire during regular study visits. Mothers were
asked how much of the supplement they ate yesterday in half-packet

increments, ranging from none to 2 packets (the full daily dose). A

questionnaire on socioeconomic characteristics was administered to
mothers during screening.

At the time when this study began, there was not yet evidence that

antiretrovirals were effective at preventing HIV transmission through

breast milk and it was acceptable to have study groups without drugs. In
2008, the study�s data safety and monitoring board stopped enrollment

in the control arm when it became clear that use of antiretrovirals

prevented transmission. Ethical approval for the study was obtained

from the Malawi National Health Science Research Committee and the
institutional review boards at the University of North Carolina at Chapel

Hill, the US CDC, and the University of California, Davis. The trial was

registered at clinicaltrials.gov (NCT00164736).

Laboratory analysis. Plasma concentrations of most micronutrient

biomarkers were measured at the USDA–Agricultural Research Service

Western Human Nutrition Research Center. Vitamin B-12 and folate

were analyzed by using the SimulTRAC-SNB Radioassay Kit [vitamin B-
12 (57Co)/folate (12585 I); MP Biomedicals]. The analysis of retinol-

binding protein (RBP) was performed with the Human Retinol BP

ELISA, an immunoperoxidase assay for the determination of RBP in
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human sera (Immunology Consultants Laboratory). Transferrin recep-

tors (TfRs) and inflammatory markers [C-reactive protein (CRP) and a-1-

acid glycoprotein (AGP)] were measured by using a Cobas Integra 400+

analyzer (Roche Diagnostics). Ferritin concentrations were determined
with the IRMA Ferritin Coat-a-Count radioimmunoassay (Siemens

Health Care Diagnostics).

Selenium concentrations were analyzed at the USDA–Agricultural

Research Service Grand Forks Human Nutrition Research Center by
automated electrothermal atomic absorption spectrophotometry. He-

moglobin was measured in whole blood in Lilongwe by using a Beckman

Coulter AcT 5-part Differential Analyzer (Beckman Coulter).

Statistical analysis. Differences in background characteristics of

participants and adherence to LNS and HAART by study group were

examined by using ANOVA for continuous variables and chi-square tests

for categorical variables. Natural-log transformations were used for all

micronutrient outcome variables because they followed non-Gaussian

distributions; outcomes were modeled as continuous variables. Multi-

variable linear regression was used to test associations between the LNS
and HAART interventions and maternal plasma micronutrient concen-

trations. Adjusted geometric means for each intervention group and

ratios for pairs of interventions (e.g., HAART vs. no HAART) and their

95%CIs were calculated from the models. A HAART3 LNS interaction
term was included in all initial models and retained if P < 0.10. For

micronutrients with significant HAART 3 LNS interactions, explor-

atory analyses were conducted to examine possible differential effects of
regimens containing LPVr + Combivir or nelfinavir + Combivir. In

exploratory models, we estimated ratios of geometric means for pairs of

groups (e.g., LPVr vs. no HAART among women receiving LNS). All

models controlled for baseline CD4 count and log10 viral load as

TABLE 1 Characteristics of mothers in the micronutrient analysis subsample of the BAN study1

No LNS/no HAART
(n = 237)

LNS
(n = 238)

HAART
(n = 104)

LNS+HAART
(n = 111) P

Age, y 26.6 6 5.0 26.6 6 5.1 27.3 6 4.9 26.0 6 5.2 0.36

More than primary education, % 34 39 37 35 0.64

Number of pregnancies 3.4 6 1.7 3.3 6 1.6 3.4 6 1.4 3.4 6 1.8 0.96

BMI

At 24 wk, kg/m2 22.7 6 2.8 22.8 6 3.4 22.3 6 3.3 22.3 6 2.6 0.29

,18.5 kg/m2 at 24 wk, % 4 4 7 6 0.62

Viral load at baseline,2 log10 copies 4.1 6 0.9 4.1 6 0.9 4.2 6 0.9 4.2 6 0.9 0.93

CD4

At baseline,2 cells/μL 428 (327, 577) 444 (323, 600) 460 (304, 571) 449 (336, 580) 0.90

At 24 wk,3 cells/μL 474 (326, 655) 462 (337, 698) 634 (470, 774) 628 (434, 796) ,0.001

,250 cells/mm3 at 24 wk, % 9 10 2 4 0.03

Hemoglobin at baseline,2 g/L 109 6 1.2 107 6 1.2 107 6 1.2 108 6 1.1 0.33

Anemia

Hemoglobin ,120 g/L at baseline,2 % 54 58 55 52 0.76

Hemoglobin ,120 g/L at 24 wk, % 36 32 38 35 0.75

CRP .5 mg/L at 24 wk, % 19 16 18 14 0.69

AGP .1 g/L at 24 wk, % 36 35 34 31 0.82

1 Values are means 6 SDs or medians (IQRs) unless otherwise indicated; n = 690. AGP, a-1-acid glycoprotein; BAN, Breastfeeding,

Antiretrovirals, and Nutrition; CRP, C-reactive protein; HAART, highly active antiretroviral therapy; LNS, lipid-based nutrient supplements.
2 Baseline viral load, CD4, hemoglobin, and anemia were measured during pregnancy when participants were screened.
3 CD4 at 24 wk: no LNS/no HAART, n = 211; LNS, n = 213; HAART, n = 92; LNS + HAART, n = 105.

TABLE 2 Folate, vitamin B-12, and TfR concentrations at 24 wk postpartum in a sample of BAN study
mothers who were untreated or given HAART with or without LNS1

HAART No HAART Ratio of HAART to no HAART (95% CI)

Folate, nmol/L

LNS 19.1 (17.1, 21.1) 26.0 (24.2, 27.8) 0.73*** (0.65, 0.83)

No LNS 16.3 (14.6, 18.0) 18.7 (17.4, 20.0) 0.88* (0.77, 0.99)

Ratio of LNS to no LNS 1.17* (1.01, 1.35) 1.39*** (1.26, 1.54)

Vitamin B-12, pmol/L

LNS 286 (257.4, 313.7) 349 (325.7, 372.2) 0.82** (0.73, 0.92)

No LNS 310 (278.4, 341.1) 276 (257.4, 294.1) 1.12 (0.99, 1.27)

Ratio of LNS to no LNS 0.92 (0.80, 1.06) 1.27*** (1.15, 1.39)

TfR, mg/L

LNS 5.0 (4.6, 5.3) 4.3 (4.1, 4.6) 1.14** (1.04, 1.25)

No LNS 5.6 (5.2, 6.0) 4.4 (4.2, 4.6) 1.28*** (1.17, 1.40)

Ratio of LNS to no LNS 0.88* (0.79, 0.98) 0.98 (0.92, 1.06)

1 Values are adjusted geometric means (95% CIs) or ratios (95% CIs). Folate and vitamin B-12: no HAART, no LNS, n = 237; no HAART,

LNS, n = 238; HAART, no LNS, n = 103; HAART, LNS, n = 110. TfR: no HAART, no LNS, n = 237; no HAART, LNS, n = 238; HAART, no

LNS, n = 104; HAART, LNS, n = 111. Models controlled for season, baseline CD4 count, baseline viral load, and use of folate inhibitors (for

folate only) and included significant HAART 3 LNS interactions (folate: P = 0.051; vitamin B-12: P , 0.001; TfR: P = 0.085).

*,**,***Significant ratio: *P , 0.05, **P , 0.01, ***P , 0.001. BAN, Breastfeeding, Antiretrovirals, and Nutrition; HAART, highly active

antiretroviral therapy; LNS, lipid-based nutrient supplements; TfR, transferrin receptor.
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continuous variables. Season at the time of the 24-wk visit was also

included in the models to control for potential differences in dietary

intake and to account for the possibility that calendar time was related to
the outcomes. Season was included as a binary variable denoting the

presence or absence of the food-insecure period of the year (during the

rainy season) based on the month and date of the woman�s study visit.

Approximately 10% of the analysis sample received either sulfadoxine-
pyrimethimine or cotrimoxazole (drugs with folate-inhibiting proper-

ties) during the 3 wk preceding the study visit when blood was collected.

Consequently, the presence or absence of folate-inhibiting drugs was

included in the folate model. To better understand the role of
inflammation on the association of antiretrovirals with micronutrients,

we compared multivariable linear regression models with and without

markers of inflammation (measured as log CRP and log AGP and
modeled as continuous variables) for biomarkers that are known to be

influenced by the acute phase response (selenium, RBP, ferritin, TfR, and

hemoglobin) (34).

Results

Of 709 women selected for the micronutrient subsample at 24
wk, 18 were dropped from the analysis. Nine of these stopped
taking their drugs before 24 wk and 9 were taking nevirapine, a
sample that was too small to produce stable estimates in
regression models. There were no significant differences by study
group in age, level of education, number of pregnancies, BMI,
baseline viral load or CD4 count, anemia, high CRP, or high
AGP (Table 1). As expected, we found significantly lower
median CD4 counts and percentage of CD4 <250 cells/mm3

among women in the groups that received no HAART at 24 wk
compared with those who received HAART. Characteristics of
mothers in the micronutrient subsample compared with those of
other BAN participants are shown in Supplemental Table 1.

Adherence to LNS and HAART was high and generally
increased over time. The percentages of mothers who reported
consuming the full dose (2 packets) of LNS the previous day
were as follows: 1 wk, 87%; 4 wk, 89%; 8 wk, 94%; 12 wk,
94%; and 21 wk, 96%. On the basis of pill counts, mean drug
adherence was 86% at 4 wk, 87% at 12 wk, and 90% at 18 wk.
LNS adherence did not differ significantly between the LNS and
HAART+LNS groups at any visit. Similarly, there were no
differences in drug adherence by type of HAARTor between the
groups receiving HAARTwith or without LNS.

We found significant interactions of HAART and LNS for
folate (P = 0.051), vitamin B-12 (P < 0.001), and TfR (P = 0.085)
but not for selenium, RBP, ferritin, or hemoglobin. Folate
concentrations were higher among women receiving LNS with
HAART (+17%; P = 0.037) or without HAART (+39%; P <
0.001) (Table 2). HAART was associated with lower folate
concentrations in women receiving LNS (227%; P < 0.001) or
no LNS (212%; P = 0.040). Vitamin B-12 concentrations were
higher among women who received LNS and noHAART than in
those receiving no LNS and no HAART (+27%; P < 0.001).
HAARTwas associated with lower vitamin B-12 concentrations
in women who received LNS (218%; P = 0.001) but not in those
with no LNS. Compared with women not receiving HAART,
TfR concentrations were higher in women receiving HAART
with (+14%; P = 0.004) or without (+28%; P < 0.001) LNS.
Among women receiving HAART, TfR concentrations were
lower in women receiving LNS (212%; P = 0.023).

In exploratory analyses by type of drug regimen, the ratio of
the geometricmeans indicated that women taking LPVr had lower
folate concentrations if they received LNS (235%; P < 0.001) or
no LNS (217%; P = 0.031), whereas women taking nelfinavir
had lower folate only if they received LNS (225%; P = 0.006)

(Figure 1A). Women taking LPVr had lower vitamin B-12
concentrations if they received LNS (224%; P = 0.001) but not
if they did not receive LNS (Figure 1B). In contrast, women
taking nelfinavir had higher vitamin B-12 concentrations if
they received no LNS (+20%; P < 0.022) but not in those who
received LNS. LNS increased folate and vitamin B-12 concen-
trations in women receiving no drugs (folate: +33%, P < 0.001;
vitamin B-12: +24%, P < 0.001) but not in women receiving
either LPVr or nelfinavir. Women taking LPVr had higher TfR

FIGURE 1 Adjusted geometric mean plasma folate (A), vitamin

B-12 (B), and TfR (C) concentrations at 24 wk postpartum in a sample

of BAN study mothers who were untreated or given HAART with or

without LNS. Values are geometric means and 95% CIs. (A and B) No

HAART, no LNS: n = 237; no HAART, LNS: n = 238; NLF, no LNS:

n = 43; NLF, LNS: n = 43; LPVr, no LNS: n = 60; LPVr, LNS: n = 67. (C)

No HAART, no LNS: n = 237; no HAART, LNS: n = 238; NLF, no LNS:

n = 44; NLF, LNS: n = 44; LPVr, no LNS: n = 60; LPVr, LNS: n = 67.

Comparisons were made between no LNS and LNS within each drug

category (no HAART, NLF, and LPVr) and between NLF or LPVr and no

HAART within each LNS category. *,**,***Difference between

adjusted means at either end of the bar: *P , 0.05, **P , 0.01,

***P , 0.001. BAN, Breastfeeding, Antiretrovirals, and Nutrition;

HAART, highly active antiretroviral therapy; LNS, lipid-based nutrient

supplements; LPVr, lopinavir/ritonavir; NLF, nelfinavir; TfR, transferrin

receptor.
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only if they received no LNS (+20%; P < 0.001) (Figure 1C).
Women taking nelfinavir had higher TfR if they received LNS
(+25%; P < 0.001) or no LNS (+31%; P < 0.001). LNS was
associated with lower TfR only in women receiving LPVr
(215%; P = 0.031); a similar association was not detected
among women receiving nelfinavir.

We found no significant interactions of HAARTand LNS for
RBP, selenium, ferritin, or hemoglobin (Table 3). RBP concen-
trations were higher among women taking HAART than among
those with no HAART (RBP: +10%; P = 0.007), but no
associations with LNS were detected. There were no associa-
tions of either intervention with concentrations of selenium,
ferritin, or hemoglobin.

CRP, an acute phase protein, was negatively associated with
RBP (P < 0.001) and hemoglobin (P < 0.001) and positively
associated with ferritin (P < 0.001). AGP, a marker of chronic
infection, was negatively associated with selenium (P < 0.001)
and hemoglobin (P < 0.001). Including CRP and AGP in the
models did not appreciably change the coefficients for selenium,
RBP, ferritin, TfR, or hemoglobin (data not shown).

Discussion

This study examined the association of protease inhibitor–based
HAART and LNS with maternal micronutrient concentrations
after 24 wk of use. Women in this subsample had high mean
CD4 counts and were assigned to HAART to test whether it
prevented HIV transmission to their infants. Micronutrient
concentrations and supplementation interventions have not been
studied previously in women taking HAART for PMTCT. Yet,
such women represent an important and growing population of
HAART users due to the recent changes in recommendations to
provide lifelong antiretrovirals to mothers in Option B+ PMTCT
programs and to initiate HAART for all HIV-infected individ-
uals with a CD4 count <500 cells/mm3 (1, 2).

We found that maternal folate concentrations were higher in
women receiving LNS and lower in women receiving HAART.
Furthermore, HAART modified the effect of LNS on folate.
Intermediate folate values for the combined interventions
suggest that HAART diminished the benefits of supplementa-
tion, whereas a daily dose of 0.6 times the RDA of folic acid
mitigated the negative influence of the drugs. Our finding that
protease inhibitor–based therapy was associated with lower
folate concentrations confirms results from small cross-sectional
studies in children and adults (35, 36). Lower folate concentra-
tions among participants receiving HAART could be related to

poor absorption due to drug-related changes in gut epithelial
integrity (37) or drug-related diarrhea, which commonly occurs
with initiation of protease inhibitors and some other antire-
troviral drugs (38, 39). It is possible that HAART is related to
intracellular folate metabolism. Some classes of antiretrovirals
inhibit multidrug resistance–related proteins (MRPs), including
MRP3, which is involved in folic acid transport out of the gut
(40). Folate and homocysteine have an inverse relation in HIV-
infected individuals. Several studies found an association of
antiretroviral therapy or duration of therapy with hyper-
homocysteinemia and low folate concentrations (35, 36, 41,
42), whereas others detected no association (43–45). Additional
research is needed to confirm the relation between folate and
different types and combinations of antiretrovirals and to clarify
the biological mechanisms.

In our sample, LNS supplementation was associated with
higher vitamin B-12 concentrations only in women not taking
HAART and HAART was associated with lower vitamin B-12
concentrations only in women receiving LNS, indicating that
HAART eliminated the association of LNS with vitamin B-12.
This was driven by the negative association of LPVr with vitamin
B-12 in women receiving LNS. Other studies also showed that
vitamin B-12 concentrations can be increased through vitamin
B-12 supplementation in HIV-infected children and adults,
especially if they are initially deficient (16, 46, 47). Evidence
from previous research on the effects of antiretrovirals on vitamin
B-12 concentrations or status is mixed. One study found that
zidovudine treatment was associated with lower plasma vitamin
B-12 concentrations (15). A second study showed that vitamin
B-12 intake was related to larger increases in serum vitamin B-12
concentrations in individuals not taking protease inhibitors than
in those taking protease inhibitors (16). However, a third study
found that patients receiving HAART (type not described) had
higher vitamin B-12 concentrations and were less likely to be
vitamin B-12 deficient than a historical cohort of patients who
were not taking HAART (48). The mixed evidence for the effects
of antiretrovirals on vitamin B-12 concentrations indicates a need
for further research in larger samples and with adequate infor-
mation on the type of drugs and adherence.

The literature on the association of HAART and vitamin A
concentrations is also mixed. Participants in this study had
higher RBP concentrations when they received HAART, even
when controlling for concurrent markers of inflammation and
baseline CD4 and viral load. Because RBP has a 1:1 relation with
serum retinol (49), this finding suggests that protease inhibitor–
based HAART could contribute to improved vitamin A status in
populations similar to that in the BAN study, with high baseline

TABLE 3 Selenium, RBP, ferritin, and hemoglobin concentrations at 24 wk postpartum in a sample of
BAN study mothers who were untreated or given HAART with or without LNS1

HAART No HAART
Ratio of HAART
to no HAART LNS No LNS

Ratio of LNS
to no LNS

Selenium, μg/L 82.0 (79.5, 84.6) 81.7 (80.0, 83.4) 1.00 (0.97, 1.04) 82.9 (80.8, 84.9) 80.7 (78.8, 82.7) 1.03 (0.99, 1.06)

RBP, μmol/L 0.98 (0.92, 1.03) 0.89 (0.86, 0.93) 1.10** (1.03, 1.17) 0.92 (0.88, 0.96) 0.92 (0.88, 0.96) 1.00 (0.94, 1.07)

Ferritin, μg/L 22.4 (19.8, 24.9) 24.5 (22.6, 26.4) 0.91 (0.79, 1.05) 24.7 (22.5, 27.0) 23.0 (20.9, 25.0) 1.08 (0.95, 1.22)

Hemoglobin, g/L 123 (121.8, 125.1) 123 (121.5, 123.7) 1.00 (0.99, 1.02) 123 (121.8, 124.4) 123 (121.2, 123.9) 1.00 (0.99, 1.02)

1 Values are adjusted geometric means (95% CIs) or ratios (95% CIs). Selenium and hemoglobin: HAART, n = 214; no HAART, n = 474;

LNS, n = 348; no LNS, n = 340. RBP: HAART, n = 214; no HAART, n = 473; LNS, n = 348; no LNS, n = 339. Ferritin: HAART, n = 215; no

HAART, n = 475; LNS, n = 349; no LNS, n = 341. Models controlled for season, baseline CD4 count, and baseline viral load. HAART 3 LNS

interactions were not significant (selenium: P = 0.45; RBP: P = 0.39; ferritin: P = 0.55; hemoglobin: P = 0.66). **Significant ratio, P , 0.01.

BAN, Breastfeeding, Antiretrovirals, and Nutrition; HAART, highly active antiretroviral therapy; LNS, lipid-based nutrient supplements; RBP,

retinol-binding protein.
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CD4 and prevalent vitamin A deficiency. Our results agree with
studies that showed that protease inhibitor–based HAART was
related to higher RBP or b-carotene compared with individuals
not receiving HAART (50, 51), whereas other studies found no
differences in vitamin A concentrations by HAART status or
type of HAART (12, 52). The variability in the literature points
to the need to examine how baseline vitamin A status, initial
CD4, and levels of inflammation influence changes in vitamin A
concentrations before and after HAART initiation.

LNS alone was not associated with ferritin, TfR, or hemo-
globin in this study. HAARTwas not associated with ferritin or
hemoglobin but was associated with higher TfR concentrations,
which indicates greater functional tissue iron deficiency in
women taking these drugs. TfR can be elevated when there is
iron-deficient erythropoiesis or tissue iron deficiency without
anemia (53), which may be more common in people with
chronic diseases and inflammation (54). The results on ferritin,
TfR, and hemoglobin reported here confirm our earlier findings
from a smaller, matched mother-infant subsample of BAN study
participants (55).

Women in the BAN study received standard iron-folic acid
tablets during pregnancy, as per Malawian guidelines, and their
hemoglobin concentrations were ;120 g/L on average both
after delivery and at 24 wk postpartum. This may explain the
lack of LNS effect on hemoglobin in our sample, whereas
increases in hemoglobin concentrations have been documented
in HIV-infected pregnant and lactating women with low initial
hemoglobin concentratons who were supplemented with mul-
tiple micronutrients (17). Our findings also differ from those of
several studies that showed increases in hemoglobin concentra-
tions in HIV patients after HAART initiation (8, 9, 56–58).
Some possible reasons for these differences include the short
duration of HAART therapy and inclusion of zidovudine in the
HAART regimen in our study. HAART has a more pronounced
effect on increasing hemoglobin in patients who have taken it for
>6 mo (56), whereas the use of zidovudine-containing HAART
causes lower hemoglobin concentrations in some individuals
(56, 58, 59).

This study had 3 main limitations. First, participants were
not randomly assigned to the different drugs. They took either
nelfinavir+Combivir or LPVr+Combivir on the basis of the
timing of their enrollment in the study. Although calendar time
could be related to our outcomes, we tried to limit possible
confounding by including season in the models. Second, this
analysis used a purposively selected subsample of mothers
enrolled in the BAN study. We initially planned to examine
effects in women with or without LNS. This resulted in a
subsample with relatively small numbers of participants in the
drug groups, which could limit our ability to detect differences.
Choosing a subsample can result in differences in characteristics
from the randomized cohort. Women in the micronutrient
subsample were slightly older and the proportion with low
CD4 counts or anemia was larger than in the rest of the BAN
participants. However, the actual differences between the
subsample and other study participants for these indicators
were so small as to be clinically insignificant. In addition, we
controlled for baseline CD4 count and viral load to address the
possibility of selection bias. Third, with the exception of
hemoglobin, we did not measure baseline micronutrient con-
centrations. We made this choice because micronutrient values
are typically lower in pregnancy, when screening occurred, and
would not allow us to look at changes related to the interven-
tions, which were implemented postpartum. Furthermore, we
would not expect to find differences in participants� preinter-

vention micronutrient concentrations in a randomized trial. We
detected no differences between study arms in the proportion
who were anemic at baseline, mean baseline hemoglobin, or any
other baseline characteristic, suggesting that the groups were
well balanced before initiating the study interventions.

The HAART regimens provided in this study were first-line
treatment combinations at the time of study implementation and
are now used as second-line regimens in PMTCT programs. On
the basis of estimates of the proportion of patients who switch
regimens due to treatment failure, the results of this study are
applicable to ;100,000 women in sub-Saharan Africa who are
receiving second-line drugs in PMTCT programs (3, 60).
Anemia, iron deficiency, and inadequate folate status are
common in HIV-infected pregnant and lactating women in
Africa (61–63). If confirmed in larger studies, our findings on the
association of HAARTwith folate and TfR concentrations have
implications for the health of mothers and their infants and may
require supplementation or other types of interventions. Given
the recent rapid expansion of PMTCT programs, further
research is urgently needed to quantify the effects of second-
line HAART regimens and to study the association of first-line
regimens with micronutrient concentrations of women in
PMTCT.
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