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Abstract. We study collisions between nearly planar domain walls including the effects of
small initial nonplanar fluctuations. These perturbations represent the small fluctuations that
must exist in a quantum treatment of the problem. In a previous paper, we demonstrated
that at the linear level a subset of these fluctuations experience parametric amplification
as a result of their coupling to the planar symmetric background. Here we study the full
three-dimensional nonlinear dynamics using lattice simulations, including both the early time
regime when the fluctuations are well described by linear perturbation theory as well as the
subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have
a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations
begin to interact nonlinearly the split into a planar symmetric part of the field and the
nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve,
with the endpoint of this being the creation of a population of oscillons in the collision
region. The original (nearly) planar symmetry has been completely destroyed at this point
and an accurate study of the system requires the full three-dimensional simulation.
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1 Introduction

In this paper we extend the study begun in [1] of fluctuations around colliding parallel
planar domain walls. While the previous paper [1] considered linearized fluctuations, here we
examine the full nonlinear dynamics using lattice simulations. The results for nearly SO(2,1)
bubble collisions are presented in the companion paper [2].

Planar domain walls are a common ingredient in braneworld cosmology model build-
ing [3–7], where they appear either as topological defects in a scalar field theory or as fun-
damental objects such as D-branes [8, 9]. Similarly, D-branes appear in various stringy
inflation models and cyclic universe cosmologies [10]. Since the presence of at least one wall
(or brane) must be postulated in these setups, it is natural to also consider the case when
multiple walls are present. These walls then evolve according to some dynamics, which may
result in collisions. In the general case these collisions occur in a wide variety of orientations,
and the walls will have varying levels of bending and rippling. However, braneworld setups
often consider the case when collisions occur only between planar walls that are parallel to
each other. The planar approximation is also reasonable in other circumstances; for example
collisions between nucleated bubbles that expand to several times their original size before
colliding, or between approximately planar subsections of walls.

Since we study the full nonlinear dynamics between nearly planar extended objects, we
need the high energy completion rather than just the effective theory for small fluctuations
in the planar shape. We focus on domain walls formed by the condensate of some scalar
field, and thus we take the high energy completion of our theory to be a single field-scalar
theory with canonical kinetic terms and symmetry breaking potential. We refer to this field
φ as the symmetry breaking scalar.

– 1 –
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The case of interacting parallel planar walls in this class of theories has been considered
by many authors, usually under the assumption that the nonlinear dynamics can be treated
as exactly planar thus reducing the system to a single spatial dimension. This assumption
is tenable in a classical field theory. However, as we noted in [1], individual realizations
of the quantum fluctuations break the planar symmetry once the theory is quantized. The
fluctuations can experience instabilities when the domain walls are allowed to collide with
each other. These instabilities have important consequences for the full dynamics which we
investigate in the remainder of this paper.

Several authors have explored the amplification of additional fields coupled to the sym-
metry breaking scalar, including both the cases of additional fermionic fields [11–13] and
additional scalar fields [14]. However, these past studies assumed the background maintained
planar symmetry and did not investigate the onset of nonlinearities amongst the fluctuations.
We instead take a more minimal approach and study the amplification of fluctuations in the
symmetry breaking field φ. Since φ must exist to form the domain walls, these fluctuations
are present in a consistent quantum treatment of the problem. As anticipated in [1] we find
that accounting for these fluctuations can drastically change the collision dynamics between
the walls, in the process completely invalidating the original assumption of planar symmetry.
We refer to this situation as a breaking of the symmetry by fluctuations. The process of
symmetry breaking cannot be captured by (1+1)-dimensional simulations such as those used
in the exactly planar case.

The remainder of the paper is organized as follows. In section 2 we present our scalar
field models and review the domain wall solutions they support. We also briefly review how
these solutions interact in the limit of exact planar symmetry. Section 3 constitutes our main
results. We use lattice simulations to study the full collision dynamics between domain wall-
antiwall pairs for two different potentials and several choices of initial conditions. A generic
outcome of these collisions is the rapid amplification of nonplanar fluctuations, eventually
leading to an inhomogeneous dissolution of the wall and antiwall. While some of the energy
is released into the bulk as radiation during the dissolution, some of it remains trapped in the
collision region in the form of localized oscillating blobs of field called oscillons. Motivated
by the creation of oscillons from domain wall collisions, section 4 looks at some of their
properties. Finally, we provide a brief qualitative summary of the full collision dynamics in
section 5 and then conclude in section 6.

2 Review of (early time) linear fluctuation dynamics

As in our study of linear fluctuations [1], we consider two potentials that support kink
solutions in one-dimension: the sine-Gordon model

V (φ) = Λ

[
1− cos

(
φ

φ0

)]
(2.1)

and the double-well model

V (φ) =
λ

4

(
φ2 − φ2

0

)2 − δλφ3
0 (φ− φ0) + V0 . (2.2)

For the double-well, δ controls the difference between the false and true vacuum energies
∆ρ ≈ 2δλφ4

0 and V0 is a constant. We restrict to Minkowski space, so V0 will not play any
role in the dynamics. Unless explicitly indicated, we express the fields in units of φ0, spacetime
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coordinates in units of m−1
norm, and energy densities in units of m2

normφ
2
0 where mnorm refers to

the natural mass scale of the sine-Gordon or double well potential as appropriate (see (2.3)
and (2.4)). Both of these potentials have solutions (known as kinks and antikinks in one-
dimension) interpolating between neighbouring minima of the potential. For the sine-Gordon
model and degenerate double-well (δ = 0), they are given by

φSGkink = 4φ0 tan−1
(
emSG(x−x0)

)
mSG =

√
Λφ−1

0 (2.3)

and

φDWkink = φ0 tanh

(
m(x− x0)√

2

)
m =

√
λφ0 (2.4)

respectively. The antikinks are obtained via the replacement (x− x0)→ −(x− x0). For the
slightly asymmetric well (δ � 1) stationary kink solutions no longer exist as the pressure
differential between the false and true vacuum causes the kinks to accelerate. In this case,
we take the following approximate initial profile interpolating between the two minima

φDWkink =
φtrue − φfalse

2
tanh

(
m(x− x0)√

2

)
+
φtrue + φfalse

2
(2.5)

where φfalse and φtrue are the locations of the false and true vacua repectively. In one-
dimension the energy of the sine-Gordon and double well kinks are

ESGk = 8mSGφ
2
0 and EDWk =

2
√

2

3

√
λφ3

0 (2.6)

respectively. When the generalization of the kinks are embedded as domain walls in higher
spatial dimensions, these energies become the surface tension of the wall.

In this paper we focus on collisions between a single kink-antikink pair, which together
carry no net topological charge. Since we are interested in the three-dimensional problem,
we extend the kink and antikink in the additional transverse spatial dimensions. We refer to
this setup as a wall-antiwall pair to distinguish it from the one-dimensional case.

Under the approximation of exact planar symmetry, the field obeys

∂2φbg

∂t2
− ∂2φbg

∂x2
+ V ′(φbg) = 0 (2.7)

with the initial condition

φbg(t = 0) = φkink(x− x0) + φantikink(x+ x0) + φ∞ . (2.8)

We have aligned our axes so that the kink and antikink move along the x direction and collide
at x = 0. The constant φ∞ is chosen so that the field is sitting at the desired minimum of
the potential at infinity. For our purposes, the important aspect of these collisions is that
they tend to produce oscillatory behaviour in the motion of the fields. This oscillatory
motion comes in three forms: repeated collisions between the kink and antikink, formation
of localized pseudostable nearly periodic blobs of field, and for the double well the vibration
of internal excitation modes of the individual kink and antikink. When we consider the
extension of the one-dimensional kinks to planar walls in higher spatial dimensions, small
nonplanar fluctuations obey

∂ttδφ̃k⊥ − ∂xxδφ̃k⊥ +
[
k2
⊥ + V ′′(φbg(x, t))

]
δφ̃k⊥ = 0 (2.9)
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where δφ̃k⊥ is the 2D Fourier transform of the fluctuations in the additional orthogonal
directions and k⊥ is the transverse wavenumber. The time-dependence of the one-dimensional
kink-antikink solution induces a space- and time-dependent effective mass

m2
eff(x, t) = k2

⊥ + V ′′(φbg(x, t)) (2.10)

for each transverse Fourier mode. In [1] we performed a detailed analysis of the fluctuations
accounting for this time-dependent effective mass. We found that the oscillations in the back-
ground drive resonant instabilities in the fluctuations causing certain transverse wavenumbers
k⊥ to grow exponentially. Eventually these fluctuations become sufficiently large that the as-
sumption of linearity fails. At this stage we have to solve the full nonlinear three-dimensional
problem and waive any additional symmetry assumptions. This full problem is the focus of
the remainder of this paper.

3 Nonlinear dynamics of planar domain walls with non-planar fluctuations

In this section we present the results for the full three-dimensional nonlinear field dynamics.
We only consider choices of the couplings such that the fluctuations become highly excited
while still in the linear regime. Thus, the system transitions to the semiclassical wave limit
before interactions between the fluctuations become important. Invoking the standard as-
sumption that the system remains in the semiclassical limit after the onset of strong non-
linearities amongst the fluctuations, we can then use classical statistical simulations as an
approximation to the full quantum evolution. We use a high resolution numerical lattice
code with second-order accurate/fourth-order isotropic finite-differencing stencils [15, 16]
and sixth-order accurate Yoshida integrators for the time-evolution [17–19]. Since we are
interested in configurations that are spatially localized along the collision direction, we also
implement absorbing boundary conditions along the longitudinal direction[

∂tφ− ∂x‖φ
∣∣∣
x‖=0

= 0
[
∂tφ+ ∂x‖φ

∣∣∣
x‖=L‖

= 0 (3.1)

in order to remove energy released from the collision region [20]. We have chosen coordinates
along the collision axis to range from 0 to L‖ and denoted the coordinate along this axis x‖.
Quantum effects are incorporated through the initial conditions

φinit(x, t = 0) = φbg(x‖, t = 0) + δφ(x) (3.2)

φ̇init(x, t = 0) = φ̇bg(x‖, t = 0) + δφ̇(x)

where φbg is the initial profile of the desired classical background field (here a pair of walls
as in (2.8)) and δφ and δφ̇ are realizations of random fields. Although this approach cannot
capture the final thermalization of the modes to the Bose-Einstein distribution, it is capable of
describing all forms of nonlinear mode-mode coupling, including mean-field like backreaction
(as is included in the Hartree approximation), rescattering effects, and the development of
nongaussian field statistics. Since we focus on the dynamical regime well before the system
reaches equilibrium, the lack of proper quantum thermalization is not a limitation.

An important ingredient in this framework is the statistics of the initial fluctuations.
In principle, the correlation functions of our realizations should match those of the quantum
fluctuations they represent. Although we don’t engage in a full study of the initial fluctuations
here, as long as the exact initial state has a nonzero projection onto the linearly unstable
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Floquet modes the qualitative behaviour will be the same as in this paper. For simplicity,
we consider only two representative choices of initial fluctuations. The first is to take δφ and
δφ̇ as homogeneous Gaussian random fields with spectra

〈|δφ̃k|2〉 ∼
1

2
√
k2 + V ′′(φtrue)

〈|δ ˙̃
φk|2〉 ∼

√
k2 + V ′′(φtrue)

2
. (3.3)

These are the correct fluctuations if the background is homogeneous and sitting at its true
vacuum minimum. For the second choice we initialize each individual kink as

φinit(x, t = 0) = φkink(γ(x‖ + δx)) (3.4)

φ̇init(x, t = 0) = −γ(u+ δu)φ′kink(γ(x‖ + δx))

where δx(y, z) and δu(y, z) are two-dimensional Gaussian random fields with spectra

〈|δ̃xk⊥ |2〉 ∼
1

2k⊥σkink
and 〈|δ̃uk⊥ |2〉 ∼

k⊥
2σkink

. (3.5)

We have defined the transverse wavenumber squared k2
⊥ = k2

y + k2
z and the surface tension

of the stationary kink σkink =
∫
dx‖(∂x‖φ)2. The Lorentz contraction factor is given by

γ = (1−u2)−1/2. We only consider initial velocities with u� 1, so the inclusion of fluctuations
does not lead to any superluminal wall propagation speeds. In order to fix notation, we
introduce an amplitude parameter Ab and initialize the fluctuations as

δx(x⊥) =
Ab
L⊥

∑
k⊥

αk⊥√
2k⊥

eik⊥·x⊥ δu(x⊥) =
Ab
L⊥

∑
k⊥

βk⊥

√
k⊥
2
eik⊥·x⊥ . (3.6)

αk⊥ and βk⊥ are complex Gaussian random deviates with variance 〈|αk⊥ |2〉 = 1 = 〈|βk⊥ |2〉,
and L⊥ is the side length of the box in the directions orthogonal to the collision. The
fluctuations described by (3.4) are local translations of the kinks, which are a subset of the
full fluctuation content around the kink background. In this second case we do not include
the remaining bulk fluctuations (and transverse excitations of the shape mode in the case of
the double-well). From our linear analysis we know that for the case of well separated walls
this set of localized fluctuations are precisely the modes which are most strongly amplified
by the collision [1].1 As well, with absorbing boundary conditions, the use of these localized
initial conditions avoids an initial spurious loss of energy that occurs from absorption of bulk
fluctuations by the boundaries.

For each sample collision we provide several plots illustrating different aspects of the
evolution. First, we slice the field along two orthogonal planes. The first slice is parallel
to the collision axis, providing a view of the effective one-dimensional dynamics at early
times, the production of outgoing radiation, and the rippling of the walls as the transverse
fluctuations are amplified. The second slice is orthogonal to the collision axis and centered
at either the collision point or the instantaneous location of one of the planar walls. This
slice provides a full two-dimensional view of the development of the transverse instability. As

1Although all of the results we present here used one of these two choices, we also tested a variety of other
initial conditions and obtained similar results.
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illustrated in the examples below, the second slice is especially useful to study the nonlinear
evolution of the fluctuations. The next set of figures are contour plots of the energy density

ρ ≡ −T 0
0 = φ̇2

2 + (∇φ)2

2 +V (φ). At early times these clearly show the locations of the two walls
as well as the ripples that develop due to the linear fluctuations. During the nonlinear stages
the energy density plots provide a clear picture of how the system is evolving, including the
emergence of structures localized in all three spatial directions. Finally, to study the spectral
content of the transverse fluctuations we include pseudocolor plots of the two-dimensional
angle averaged power spectrum of ρ for the transverse wavenumbers k⊥ as a function of
position along the collision axis. Explicitly, we compute

P2d
ρ (k⊥, x‖) ≡

L2
⊥k

2
⊥

N2
⊥

〈
|ρ̃2d
k⊥

(x‖)|2
〉
⊥

(3.7)

where 〈·(x‖)〉⊥ is an average over the plane orthogonal to the collision axis at position x‖
along the collision axis. N⊥ = NyNz is the number of lattice sizes in each of these planes. Our
discrete Fourier transform convention is ρ̃2d

k⊥
(x‖) =

∑
i e
−ik⊥,n·x⊥,iρ(x⊥,i, x‖) with x⊥ = (y, z)

the coordinates in the directions orthogonal to the collision axis. This gives us a very clear
view of the spatial localization (along x‖) of the amplified fluctuations as well as their typical
transverse wavenumber. In addition to the pseudocolor plot, we also show a slice of the
spectrum at a fixed value of x‖. We pick this slice to either be through the center of one of
the kinks or else through the center of the collision region.

Before presenting the results of our simulations, we briefly summarize the outcome of
the collisions to orient the reader and unify the subsequent discussion. While the precise
evolution depends on the choice of potential and planar symmetric background φbg, the
qualitative details are essentially the same for every case we consider. Initially, the two
walls are well described by the planar ansatz. Due to our choice of initial setup, the walls
undergo multiple collisions or else capture each other to form an oscillating bound state.
In either case, the initially small planar symmetry breaking fluctuations experience rapid
growth as described by linear theory [1]. Once the fluctuations grow large enough they begin
to interact nonlinearly. In every case involving the dynamics of a wall-antiwall pair, we find
that the stage of nonlinear interactions leads to a complete breakdown of the original planar
symmetry. This occurs by an inhomogeneous annihilation between the wall and antiwall.
The annihilation eventually results in the production of a population of oscillating blobs
of field known as oscillons. These oscillons are distributed homogeneously in the transverse
directions to the collision, but are localized at the collision site along the collision axis. Details
and illustrations that clarify this picture are presented below.

3.1 Sine-Gordon potential

We first analyze the sine-Gordon model. We consider two distinct classes of background
solutions. The first class is the planar symmetric breathers indexed by the parameter v

φbreather = 4 tan−1

(
cos(γvvt)

v cosh(γvx)

)
γv ≡ (1 + v2)−1/2 . (3.8)

We restrict ourselves to v & 1 so the background field configuration is a localized oscillating
blob. For the second class, we instead set the background solution to be a kink-antikink pair
approaching each other with nonzero initial velocity. Since the 1D sine-Gordon kinks are true
solitons they preserve their shapes and velocities when they collide, acquiring only an overall
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phase shift due to the interaction. Energy conservation thus dictates that after the collision
the wall-antiwall pair again move off to infinity, at least in the absence of fluctuations. When
the system lives on the infinite interval we can use a Backlund-transformation to find a simple
analytic form for the field

φkk̄ = 4 tan−1

(
sinh(γut)

u cosh(γx)

)
γ ≡ (1− u2)−1/2 , (3.9)

which describes the passage of the kink and antikink through each other during the collision.
In this case the parameter u represents the speed of the kink and antikink at infinity. To allow
for multiple collisions we make the collision direction periodic with a linear size less than the
transverse directions. As a result the wall and antiwall alternately collide in the middle of
the simulation volume and at the boundaries. Since the collision results in the passage of the
wall and antiwall through each other, it is easy to see that each of these collisions will have
the same ordering of the wall and antiwall relative to the collision site. Either we always
have a kink approaching the collision from the right and an antikink approaching the collision
from the left, or vice-versa.

3.1.1 Planar breathers with v ≤ 1

The evolution of planar symmetric breathers with small fluctuations are shown in figure 1
and figure 2 for the case v = (

√
2 − 1)−1 and v = 1 respectively. At early times, the

field is an oscillating blob localized along the collision axis with near planar symmetry in the
transverse directions. However, transverse fluctuations in a narrow band of k⊥ are resonantly
amplified by this oscillating background. The fluctuations appear as ripples in the field
profile and energy density contours, and as a growing peak in the dimensionless transverse
power spectrum. Since the planar breather is an exact solution for the one-dimensional
sine-Gordon model, very little radiation is produced during this stage. Of course, the linear
growth of these fluctuations only continues until they begin to interact nonlinearly. At this
point the behaviour changes dramatically, and rescattering effects between the longitudinal
and transverse modes destroys the clean separation between the planar background and the
fluctuations. The ripples in the breather from the transverse fluctuations become very large
and pockets of field appear. Outside of the pockets the field is near the origin, while in the
interior it is displaced towards one of the two neighbouring vacua. These pockets quickly
condense into localized oscillating pseudostable blobs known as oscillons. The oscillons are
very long-lived, and they are held together by a competition between attractive forces from
the potential and the dispersion induced by the Laplacian. During this condensation a burst
of radiation is released into the bulk, with additional radiation emitted by the subsequent
slow decay of the oscillons. In these cases, the characteristic transverse scale of the amplifed
fluctuations is close the the final size of the oscillons, and the oscillons condense directly from
the pockets of field formed by the linear instability.

3.1.2 Kink-antikink collisions in a compactified extra dimension

Now let’s consider the case of a colliding kink-antikink pair as illustrated in figure 3. The
evolution is in many ways similar to the two breathers considered above. Initially the field is
well described by a colliding planar symmetric wall-antiwall pair. This time the transverse
fluctuations experience an inhomogeneous generalization of broad parametric resonance, with
the amplitude of fluctuations bound to the kink (and antikink) making a large jump at each
collision. The typical transverse wavelength of these fluctuations is closely related to the

– 7 –
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Figure 1. Evolution of a breather with v = (
√

2 − 1)−1 showing the development of the instability
in planar symmetry breaking fluctuations. Top row: the field sliced along a plane parallel to and
orthogonal to the collision direction. The orthogonal slice is taken through the center of the breather.
White shading corresponds to the field sitting at the origin and red and blue shading to the field

displaced away from the origin. Middle row: contours of the energy density ρ
Λ = φ̇2

2 + (∇φ)2

2 + V (φ).
Bottom row: the dimensionless 2d power spectrum P2d

ρ defined in (3.7). The top panel shows the
spectrum as a function of x‖ and k⊥, while the bottom panel plots the spectrum along the slice
through the center of the breather as indicated by the blue line in the top panel. Animations of the
field and energy density evolution can be found at www.cita.utoronto.ca/~jbraden/Movies/sg_

vsqrt2_field.avi and www.cita.utoronto.ca/~jbraden/Movies/sg_vsqrt2_rho.avi.
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Figure 2. Evolution of the sine-Gordon breather with v = 1 including small fluctuations around
the planar symmetric solution. The choice of plots are the same as figure 1, although we
have modified the color schemes slightly. Corresponding animations for the field, energy density
and power spectrum evolution may be found at www.cita.utoronto.ca/~jbraden/Movies/sg_v1_

field.avi, www.cita.utoronto.ca/~jbraden/Movies/sg_v1_rho.avi and www.cita.utoronto.

ca/~jbraden/Movies/sg_v1_spec.avi.

period of the background via k⊥ ∼ T−1
collision where Tcollision is the time between collisions of

the kinks. Eventually the fluctuations become large enough that the next collision between
the kink and antikink does not occur at the same time everywhere in space. For our sample
run, this inhomogeneous collision occurs in the middle of the domain. From this point, the
evolution deviates from the v ≥ 1 breathers considered in section 3.1.1. Instead of pockets
of field immediately condensing into oscillons, punctures form in the walls. These punctures
quickly turn into a collection of tubes threading the wall-antiwall pair. The tubes expand in
radius and eventually collide with each other, forming a planar network of fat filaments at
the collision site. When viewing a single (two-dimensional) orthogonal slice of the field taken
through the center of the collision, the process is very reminiscent of bubble nucleation and
expansion during a first-order phase transition. The filaments then fracture into oscillons.
In the particular run shown in this paper, an additional piece of interesting dynamics also
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occurs. During the final collision some segments of the walls are not captured at the origin
but instead pass through the center of the domain and collide one final time at the periodic
boundary. Thus, a similar fracturing process occurs at the periodic boundary as well, and
oscillons are produced in two distinct planes corresponding to the two collision sites of the
background motion. As with the v ≥ 1 breathers, the final outcome of the collisions is
completely different than for an exactly planar solution. In the exactly planar case, the
kink and antikink continue to collide with each other indefinitely (since they are solitons).
Therefore, given enough time the field can traverse an arbitrary distance in field space.
However, when nonplanar fluctuations are included the fields only traverse a finite distance
in field space before the amplification of the fluctuations leads to the dissolution of the walls.

For this study, we have taken the sine-Gordon model to provide the potential for a single-
field scalar model and have not imposed any additional identifications on the field. However,
one could imagine that φ is instead an angular degree of freedom in some two-field model with
the radial degree of freedom effectively trapped at the minimum. In this case, we may expect
the fracturing process to result in the excitation of the radial degree of freedom and possibly
the production of global strings. We do not explore this possibility here, although it could
provide interesting phenomenology in models based on small compactified extra dimensions.
As well, a similar setup involving multiple collisions between a brane and antibrane is used
in unwinding inflation [21–23]. Although the UV theory of a brane and a scalar domain wall
are different, we expect that similar dynamics will also play a role in unwinding inflation.

3.2 Double-well potential

Thus far we demonstrated in the sine-Gordon model that the inclusion of small initial non-
planar fluctuations around colliding planar domain walls can have a drastic effect on the field
evolution, ultimately leading to a complete breakdown of the initial near planar symmetry
of the fields. However, the sine-Gordon model in 1 + 1-dimensions (i.e. the planar limit) is
integrable and thus rather special. We now demonstrate that similar conclusions hold for the
double-well potential (2.2).

3.2.1 Low incident velocity collision in symmetric double well

As a first example in the symmetric double-well, consider the case of low incident speed u =
0.05 illustrated in figure 4. Initially, the fluctuations are small and the system is well described
by the background configuration of two planar walls. The walls then move towards each other
and first collide at mt ≈ 110. After this initial collision the walls never become well separated
and they appear as a localized oscillating blob that is similar to the v ≥ 1 sine-Gordon
breathers above. A small amount of planar radiation is released during these oscillations,
an effect which is properly captured by the symmetry reduced (1 + 1)-d dynamics as seen
in figure 5. Far more importantly, a range of transverse fluctuations grow exponentially
in the background of the oscillating planar symmetric “blob”. As these fluctuations grow,
they appear as bumps and ripples perturbing the planar symmetry, which are evident in the
energy density contours. Eventually, these bumps become large enough that several sections
of the planar blob pinch off, forming punctures of true vacuum. As a result, the region where
the field is displaced from the minimum is threaded by tubes where the field is near the true
vacuum. From this point on, the evolution is very similar to the sine-Gordon kink-antikink
collisions in a compactified extra dimension. These tubes expand and eventually coalesce,
leading to a network of fat filamets with the field near the false vacuum in the interior.
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Figure 3. Evolution of repeated wall-antiwall collisions in the sine-Gordon model with periodic
boundary conditions φ(x‖ + L‖) = φ(x‖) along the collision direction. Top Row: slices of the field
parallel to and orthogonal to the collision axis. Middle row: contours of the energy density. Bottom
row: the evolution of the 2d angle averaged power spectrum P2d

ρ defined in (3.7). The top panel plots

P2d
ρ as a function of transverse wavenumber k⊥ and position along the collision axis x‖. The bottom

panel plots the value along the blue line indicated in the top panel. In all three rows, the data are taken
at mSGt = 0, 166, 192, and 280. Corresponding animations can be found at www.cita.utoronto.

ca/~jbraden/Movies/cascade_field_wfluc.avi and www.cita.utoronto.ca/~jbraden/Movies/

cascade_contour_wfluc.avi.

This network is contained within a planar region of width ∼m−1 along the collision axis
and extends indefinitely in the directions orthogonal to collision (due to the original planar
symmetry). This process is illustrated in the first, second and third columns of figure 4. In
Fourier space, the developing network of filaments manifests itself as a rapidly growing tail of
fluctuation power that extends to k⊥ ∼ 15m. As the final step in the process, the filaments
fracture into localized blobs of field — the oscillons of the double-well potential. Thus, exactly
as in the sine-Gordon model, a population of oscillons is produced in the collision region as
the endpoint of the dynamical amplification of the symmetry breaking fluctuations.
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Figure 4. Several snapshots demonstrating various aspects of the time evolution of two colliding
domain walls in the symmetric double-well with initial speeds u = 0.05. From the top row to bottom:
(a) the field distribution taken on a slice through the center of the collision (mx‖ = 16), (b) contours
of the energy density, (c) the dimensionless 2d angular averaged power spectrum for the energy
density as a function of position along the collision direction. We align our coordinates so that the
collision occurs along the x-direction. The simulation parameters were mdx = 0.125, mL‖ = 64,
mL⊥ = 256, and mdt = 0.025. Absorbing boundary conditions were used at mx‖ = 0, 64. For this

initial speed, the energy density at the center of the wall is ρ/λφ4
0 = 0.5/(1 − u2)1/2 ≈ 0.50125.

A description of the dynamics is given in the main text. An animation of the field is available at
www.cita.utoronto.ca/~jbraden/Movies/field_v0.05.mp4, the evolving energy density at www.

cita.utoronto.ca/~jbraden/Movies/econtour_v0.05.mp4, and the power spectrum at www.cita.
utoronto.ca/~jbraden/Movies/v0.05_spec.avi.
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Figure 5. Energy within a slab of width mLslab = 10 centered on the initial collision of the two walls
for u = 0.05. We have plotted the result for both bulk fluctuations and transverse fluctuations in
the wall’s location, as well as for a range of box sizes and grid spacings. Also shown for comparison
is the result if no fluctuations are included. Unless indicated in the legend, we used mdx = 0.25,
mL⊥ = 128 and mL‖ = 64. If a value of Ab is listed in the legend we used initial conditions (3.4),
while if λ is listed we used (3.3). The oscillations in the planar solution are due to the slab being
slightly smaller that the size of the region occupied by the oscillating blob.

An important quantity is the amount of energy that escapes from the collision region
as scalar radiation versus the amount that remains stored in oscillons. In figure 5 we plot
the energy density per unit transverse area

σ2 =
1

A⊥

∫
d2x⊥

∫ L‖/2

−L‖/2
dx‖ρ A⊥ =

∫
d2x⊥ (3.10)

remaining in the simulation box as a function of time. The production and longevity of
the oscillons prevents a complete release of the energy originally stored in the domain walls
into the bulk. However, relative to the case of exact planar symmetry much more of the
energy escapes. Of course, this occurs because in the planar limit the wall and antiwall don’t
immediately annihilate each other, but instead form a long-lived bound state. The planar
bound state is the one-dimensional version of the oscillon for this potential, and since it is
very long lived the energy release in the planar case is slow.

3.2.2 Interactions in a resonant escape band

As an example of an even more dramatic effect induced by the breaking of planar symmetry,
let’s now choose an incident velocity of u = 0.2. In the planar case, the walls bounce twice
before escaping back to infinity, which is illustrated in figure 6 and the top right panel of
figure 3 of [1]. During the first collision the planar shape mode is excited, draining energy
from the kinetic motion of the (planar) walls. In the second collision, the nonlinear field
interactions transfer energy from the excited shape mode back into translational energy of
the (planar) walls. This transfer process clearly requires a tuning between the oscillation
period of the shape mode and the time between collisions for the two walls. If this tuning
is disrupted or energy is drained from the planar oscillations of the shape mode, then rather
than escape the walls will capture each other.
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Figure 6. Evolution of the energy density ρ
λφ4

0
for a planar symmetric collision in the symmetric

double-well with initial kink and antikink speeds given by u = 0.2. The location of the the kink
and antikink are clearly visible as peaks in the energy density. For this choice of initial speed, the
wall-antiwall pair bounce off of each other twice before escaping back to infinity.

When we include the transverse fluctuations, they experience a nonadiabatic kick at each
collision. As well, since the (homogeneous) shape mode is excited during the first collision,
further pumping occurs while the walls are separated. The energy required to amplify the
fluctuations must be drained from the kinetic energy of the planar background and the
oscillations of the planar shape mode. Since the initial stage of fluctuation amplification is a
linear effect, the size of this backreaction on the planar background increases with the initial
amplitude of the fluctuations. Therefore, for sufficiently large initial amplitudes the resulting
backreaction will prevent the walls from escaping back to infinity. In this case the qualitative
behaviour of the system changes; instead of escaping the walls capture each other and fracture
into oscillons. To illustrate this figure 7 shows the energy per unit area (3.10) within a slab of
width mLslab = 10 centered on the collision for a range of initial fluctuation amplitudes. For

an isolated kink moving at speed u with L =∞ this energy is σ2√
λφ30

= 2
√

2
3
√

1−u2 . Two distinct

behaviours are visible: either ρ drops abruptly to zero by mt ∼ 200 corresponding to the case
when the two walls escape back to infinity, or else ρ slowly decays for mt & 200 corresponding
to the case when the walls capture and subsequently fracture into oscillons. The transition
between these two behaviours occurs as we increase the initial amplitude of the fluctuations.
We only included fluctuations associated with the translation mode of the walls (3.4) and
also set δu = 0. Hence, this underestimates the true amount of backreaction on the walls and
is only an illustration of the dramatic effect that fluctuations can have. We have not carefully
explored the space of initial conditions, so more complicated behaviour such as three bounces
before escaping or annihilating may also be possible for finely tuned fluctuations.

3.3 Asymmetric double-well potential

Finally, consider collisions in the asymmetric double well with δ = 1/30. As a concrete
example, we give the walls an initial separation 2mrinit = 16 with initial speeds u = 0. The
vacuum energy difference between the two wells causes the walls to accelerate and they collide
with an initial speed u2 = µ(µ+2)

(1+µ)2
∼ 0.6. We’ve defined µ = rinit∆ρ/σkink ∼ 0.57 in terms
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Figure 7. Energy density within a slab of width mLslab = 10 for initial speed u = 0.2 and various
initial fluctuation amplitudes Ab for the 2d Gaussian random field corresponding to the local transla-
tions in the wall position. For the simulations we used a box of size L‖ = 64, L⊥ = 128 and dx = 0.25,
and we used the initial fluctuations (3.4) with δu = 0.

of the energy difference between the two wells ∆ρ ∼ 2δλφ4
0 and the suface tension of the

wall σkink = 2
√

2
3

√
λφ3

0. Because their relative velocity at collision is much larger than the
cases considered above, the walls separate much further from each other between collisions.
However, the pressure induced by the nondegeneracy of the two vacua eventually turns the
walls around and prevents them from escaping back to infinity.

The resulting behaviour is illustrated in figure 8. The left column shows the initial well
separated walls with small fluctuations. The walls accelerate towards each other and bounce
multiple times. At each bounce a band of transverse fluctuations are excited. As well, planar
symmetric shape modes are excited by the collision. While the walls are separated between
collisions, the shape mode further excites transverse modes of the field. By the time of the
final collision, these transverse fluctuations have become quite large. They are visible in the
second column of figure 8 as bumps in the energy density contours, bumps in the field profile,
and as peaks in the power spectrum. The nearly planar radiation emitted during the early
stages of the evolution is also visible in the field profile.

Aside from the pumping of fluctuations by the planar shape mode becoming a distinct
process, the biggest difference between this case and the u = 0.05 case in the symmetric well
is the inhomogeneity of the final disintegration of the walls. In the case we have illustrated,
fluctuations with transverse wavelengths much larger than the typical size of the bumps in
the walls and the oscillons that eventually form were excited. As a result, clusters of true
vacuum tubes threading the walls appear, as opposed to the regular honeycomb like structure
from the u = 0.05 case. This can be seen in the third column of figure 8. Once again the
walls become threaded by tubes where the field is near the true vacuum. These tubes then
expand producing a network of filaments with the field trapped near the false vacuum in the
interior, just as in the u = 0.05 case. Subsequently these filaments fracture and a collection
of oscillons is formed.

For the case illustrated here, the walls collide five times with the fifth collision resulting
in the breakup of the walls and ultimately the production of oscillons. Whether or not a long-
wavelength mode was excited in an individual collision depends on the particular realization
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Figure 8. Collision dynamics in the asymmetric well with δ = 1
30 during several different stages

of evolution. The choice of illustrations match those in figure 1. From left to right, we have
snapshots of the initial setup (mt = 0), just prior to the final collision (mt = 108), during the
fracturing process (mt = 136) and showing the final population of oscillons (mt = 250). The
blue line in the pseudocolor plot of the 2d power spectrum indicates both the position of the
orthogonal slice of the field in the top row, as well as the slice along which the 2d spectrum
is plotted (bottom panels, bottom row). Animations of the field evolution can be found at
www.cita.utoronto.ca/~jbraden/Movies/field_nondegen.avi, the energy density evolution
at www.cita.utoronto.ca/~jbraden/Movies/econtour_nondegen.mp4, and the power spectrum
evolution at www.cita.utoronto.ca/~jbraden/Movies/nondegen_spec.avi.

of the initial fluctuations used in the simulation. An interesting feature of this particular run
was the ejection of a pair of oscillons into the bulk during the breakup of the filamentary
network. These are visible as two isolated peaks at mx‖ ∼ 15, 50 in the transverse power
spectrum in the right column of figure 8. The ejection of oscillons into the bulk was sensitive
to the particular realization of the fluctuations.
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3.4 Growth of fluctuations from planar shape mode

Thus far we have considered the three-dimensional dynamics of colliding wall-antiwall pairs
(the higher dimensional equivalent of a kink-antikink pair in one-dimension) including small
planar symmetry breaking fluctuations. Among the cases we considered were the oscillations
of tightly bound wall-antiwall pairs (such as the v ≥ 1 sine-Gordon breathers) and repeated
collisions between weakly bound pairs (such as the asymmetric double well). In the latter
case, the internal dynamics (specifically planar symmetric excitations of the shape mode) of
each individual wall plays an important role both in the evolution of the background planar
solutions as well as the growth of fluctuations. This is especially true for the double-well
potential at large collision velocities where the walls either escape back to infinity (symmetric
well) or become well separated from each other between collisions (asymmetric well). To
isolate the effects of the internal wall dynamics, we now study a single domain wall at rest in
the symmetric double well with an initial width different from that of the static kink solution

φinit = φ0 tanh

(
m(x− x0)

mw

)
+ δφfluc . (3.11)

The initial width of the wall is mw 6=
√

2 and as before δφfluc is a realization of a random field.
This choice of initial background mimics the excitation of a planar symmetric shape mode.

Just as for collisions, the presence of transverse fluctuations radically modifies the be-
haviour of the field. A very explicit demonstration of this comes from studying the en-
ergy contained within our simulation volume as shown in figure 9. Once again, initially
the energy decreases via emission of planar symmetric radiation that can be captured via
1 + 1-dimensional simulations. However, as the shape mode oscillates it pumps transverse
fluctuations, eventually leading to the onset of strong nonlinearities amongst the symmetry
breaking fluctuations. At this point energy is released much more rapidly and approaches the
energy of a single isolated domain wall. As expected, the timing of this transition depends
on the initial amplitude and spectrum of the fluctuations, but the subsequent behaviour is
rather insensitive to these details.

To shed further light on the field dynamics and the origin of the decay in excess energy
bound to the domain wall, figure 10 shows several snapshots of the wall as it passes through
the nonlinear phase. Initially the field is nearly homogeneous and looks like a tanh function
with a vibrating width. This means that the well binding localized fluctuations to the wall
has an oscillating width (and shape). These oscillations pump a narrow band of transverse
fluctuations as expected from linear perturbation theory. As these fluctuations grow, a
speckled pattern emerges in the field distribution taken along a slice through the middle of
the wall. This pattern is superimposed on the overall oscillation of the wall. Eventually,
the transverse oscillations enter the nonlinear regime, leading to a slight broadening of the
spectral peak and emission of radiation from the wall. The planar oscillation of the wall
disappears and bound transverse lumps of field appear along the wall as seen in the third
and fourth columns. These transverse lumps persist for times mt & 800. We can now
understand the residual energy relative to an unexcited domain wall seen in figure 9 as being
due to this population of “wall lumps”. Comparing the second column of figure 8 with the
second column of figure 10, we can see that the pumping of fluctuations by the shape mode
is indeed an important effect for collisions in the asymmetric well.
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Figure 9. Time dependence of the excess energy density within the simulation volume for a box
with lengths parallel and orthogonal to the collision given by mL‖ = 32 and mL⊥ = 128 respectively.
Absorbing boundary conditions were used in the collision direction and the grid spacing was mdx =
0.25. Left: the result for several choices of the initial wall width w. Right: the result for several
choices of initial fluctuations and mw = 2. For comparison we also plot the excess energy when no
initial fluctuations are present. The effect of the fluctuations is clearly visible as a sharp change in
the rate of energy loss relative to the planar case.

Figure 10. Several snapshots of the growth of transverse fluctuations due to excitation of the planar
shape mode of the wall. Top row: slice of the field φ parallel to the collision axis and orthogonal to the
collision axis and centered on the middle of the wall. Bottom row: two-dimensional power spectrum
P2d
ρ defined in (3.7). An animation of the field evolution can be found at www.cita.utoronto.

ca/~jbraden/Movies/field_shapemode.avi and the power spectrum at www.cita.utoronto.ca/

~jbraden/Movies/shapemode_spec.avi.
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4 Oscillons as a long-lived intermediate state

By solving for the full nonlinear evolution of wall-antiwall collisions, we found that the
initial rapid amplification of linear fluctuations is followed by a very short stage during
which the walls dissolve. At the end of this stage, we are left with a population of quasi-
stable localized oscillating blobs of field distributed in a narrow plane orthogonal to the
collision axis. These field structures are known as oscillons and arise from a dynamical
balancing act between the dispersive effect of the Laplacian and the attractive force from
the potential. Oscillons were first discovered by Bogolyubsky and Makhankov [24] and then
rediscovered by Gleiser [25]. There is a large literature devoted to their properties [26–34] and
interactions [35, 36]. Several studies of the classical [37–40] and quantum [41–43] decay of
these objects have also been performed. A number of production methods have been studied:
collapse of subcritical bubbles nucleated during first-order phase transitions [44], production
from collapsing domain wall networks [35], production from homogeneous field oscillations
around a false vacuum minimum as a method of facilitating the formation of true vacuum
bubbles [45–47], amplification of thermal fluctuations during inflation [48], and production
as a result of preheating at the end of inflation [49–52].

In our study oscillons appear in two forms. The first is the localized blobs of oscillating
field in the planar background dynamics — the planar equivalent of the oscillons in the cor-
responding one-dimensional field theory. More interesting are the three-dimensional oscillons
that form at the end of the fracturing of the walls. The production mechanisms listed in the
previous paragraph are based on the amplification of fluctuations around a homogeneous field
background; thus the resulting oscillons are homogeneously distributed throughout the bulk.
In this sense, our mechanism is somewhat different since we have a strong localization along
the collision axis. Of course, the oscillons are still distributed uniformly in the directions
transverse to the collision axis.

We now consider some simple oscillon properties of relevance to our domain wall colli-
sions. For simplicity, we only explicitly consider oscillons in the symmetric double-well. First
we demonstrate that an isolated localized blob of field displaced from the minimum of the
potential can indeed collapse to form an oscillon. This problem has been studied using the
assumption of exact spherical symmetry [44, 53], and also for the case of nonspherical blobs
in two spatial dimension [39, 54].

As seen from our simulations, oscillons ultimately form from the fracturing of the walls
and subsequent collapse of either a network of tubes or densely packed pockets with the field
displaced from the true vacuum minimum in the interior. As a very rudimentary approxi-
mation to this, we consider initial field profiles given by

φinit = φtrue + (φfalse − φtrue) exp

(
−
(
x2

a2
+
y2

b2
+
z2

c2

))
(4.1)

with φ̇ = 0. While this initial profile and the choice φ̇ = 0 are simplifications of what is seen
in our simulations, whether or not an oscillon forms cannot be too sensitive to the initial field
configuration or we would not see them form at all. In order to reduce the phase space of
initial configurations, we further impose that b2 = c2. By choosing a2 > b2 we get cigar-like
initial blobs and a2 < b2 gives us pancake like configurations.

In figure 11 we show the energy contained within a sphere of radius 12.5m−1 centered
on the initial blob for several choices of the initial asymmetry. Provided the blobs are not too
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Figure 11. Energy in a sphere of radius 12.5m−1 as a function of time for several choices of initial
elliptical field profiles given by (4.1). We have parameterized the departure from spherical symmetry
by ε2 = 1 − R2

min/R
2
max where Rmin = min(a, b) and Rmax = max(a, b). On the left we plot the

results for cigar shapes and on the right for pancake shapes. For definitions of the pancake and cigar
configurations see the main text.

asymmetrical, the energy within the sphere reaches a long-lived plateau indicating the pres-
ence of an oscillon. For all initial conditions that result in an oscillon the plateau energy is the
same, suggesting that the final oscillon states are all very similar for this particular model.2

We now provide some brief comments about the relationship between the 2D power
spectrum after the walls have annihilated and the corresponding power spectrum for a single
oscillon. Since unbound forms of energy such as radiation escape the collision region, we can
approximate the field near the collision site as

φ ≈
∑
αi

φosc,i(x− xαi , t) (4.2)

where the oscillons are located at positions xαi and the profile of the ith oscillon is given
by φosc,i. Similar expressions hold for other derived fields such as the energy density. The
distribution of xα is determined by the (random) realization of the initial fluctuations, as
well as the choice of initial planar background. In the special case that φosc,i is independent
of i (i.e. all of the oscillons have the same shape), the resulting power spectrum simplifies
tremendously and we obtain

〈|φ̃k|2〉 =

〈∣∣∣∣∣∑
αi

eik·xαi

∣∣∣∣∣
2〉〈∣∣∣φ̃osc(k)

∣∣∣2〉 ≡ Pform(k)Poscillon(k) . (4.3)

In the general case, (4.3) is replaced by a significantly more complicated expression, especially
if there are many possible oscillon profiles and the positions and profiles are correlated.

Given the potential to extract information about the distribution of oscillons from mea-
surements of two-point correlations, it is worthwhile to explore the possible spectra of indi-
vidual oscillons as well as a characterize the range oscillon properties and time-dependence.
For our semiclassical simulations, we can extract this information directly in real space. How-
ever, in numerical methods based on evaluation of a hierarchy of n-point correlation functions
(such as the nPI formalism) this direct approach is not available.

2There exist models for which a range of different oscillons with different radii exist [34].
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Figure 12. A sequence of snapshots illustrating the time evolution of an oscillon formed from an
initially spherical Gaussian field profile φinit = 1 − 2e(r/rinit)

2

with mrinit = 3 in the symmetric
double well. In the top row are 2-dimensional slices of the energy density taken along a slice through
the middle of the blob. In the bottow row is the dimensionless 2-dimensional power spectrum as a
function of position along the slicing axis (top panel, bottom row) and also along the line indicated
by the green line in the top panel (bottom panel, bottom row). An animation of the energy density is
available at www.cita.utoronto.ca/~jbraden/Movies/oscillon_rho.avi and the power spectrum
at www.cita.utoronto.ca/~jbraden/Movies/oscillon_spec.avi.

A complete characterization of all oscillon properties in an arbitrary field theory is a
rather daunting numerical task, so here we simply provide the spectra for a sample oscil-
lon in the symmetric double-well potential. The energy plateaus in figure 11 provide some
preliminary evidence that the oscillons themselves have a very narrow range of properties
in this model, hence studying only a small sample may be sufficient. Figure 12 shows the
energy density and 2D power spectrum for an oscillon formed from an initial spherical Gaus-
sian field blob of radius mrinit = 3. After a short transient, the field quickly settles down
into an oscillon configuration. The energy density oscillates in time and looks like a shell of
energy density that begins to expand outward before collapsing to form a sharp peak and
subsequently expanding outward again. Comparing the spectra with figure 8, we see that
the two isolated blobs of power away from the collision region in the asymmetric double-well
collision are indeed oscillons that were ejected from the collision region.

5 Summary of mechanism

We explored the fully nonlinear three-dimensional evolution of colliding nearly planar domain
wall-antiwall pairs for various choices of background solutions in the sine-Gordon and double-
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Figure 13. A heuristic view of the final collision between a wall-antiwall pair. White corresponds
to the regions in the true vacuum, the blue angle hatched pattern to regions near the false vacuum
minimum and the red hatched pattern to regions which have experienced a displacement due to
the collision. In the double well the field in the red region is initially displaced up the potential
past the true vacuum, while in the sine-Gordon potential the field is displaced towards another
minimum of the potential. The red regions subsequently form the tubes of “true vacuum” that
puncture the domain walls. Left: the two walls with just before the final collision with large ripples
due to the pumping of transverse fluctuations in previous collisions. Center: the first moments
of the final collision. Due to the large fluctuations in the location of the wall, the collision occurs
asynchronously at different locations. Right: the production of pockets of false vacuum as a result
of the inhomogeneous nature of the final collision.

well potentials. We now highlight the features of the dynamics that are most important in
determining the qualitative outcomes of the collisions. Although the evolution of the fields is
complex and difficult to intuit without the aid of numerical simulation, once the results are
known the qualitative behaviour is simple to understand.

Initially, the system is accurately described by a planar symmetric background φbg(x, t)
and a collection of small nonplanar fluctuations δφ. The fluctuations couple to the back-
ground through the curvature of the potential evaluated on the background solution, V ′′(φbg).
When the walls collide repeatedly or form oscillating bound states, this coupling drives an
instability in the fluctuations which eventually pushes the entire system into the nonlinear
regime. Since the amplified fluctuations vary in the directions transverse to the collision,
when they become large the walls develop noticable bumps and ripples.

The details of the next stage of the evolution depend on the particular choice of planar
background and potential. In one scenario, which occurs for the sine-Gordon breathers with
v ≥ 1, the fluctuations “pinch off” to form an egg-carton like structure of field pockets.
The pockets of field are distributed in the plane orthogonal to the collision and centered
on the collision location. Outside the pockets the field is near the origin, while inside the
field is displaced from the minimum towards a neighbouring vacuum. In the second scenario,
seen here in the case where the wall and antiwall repeatedly collide with each other, this
stage is instead characterized by a final inhomogeneous collision between the wall-antiwall
pair. A heuristic illustration of the final collision is given in figure 13. During this collision,
punctures develop that thread the walls with regions of true vacuum. These punctures then
expand and eventually coalesce to leave behind an approximately two dimensional network
of filaments. Inside the filaments the field is near the false vacuum, while outside it is near
the true vacuum. From the viewpoint of observations restricted to an orthogonal slice of the
field through the collision region the whole process resembles the nucleation, expansion and
coalescence of a collection of two-dimensional bubbles.
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In either of the two cases outlined above, the collision dynamics ultimately results in
the formation of a highly inhomogenous field configuration with many peaks where the field
is displaced from the true vacuum. These peaks are distributed in the transverse plane, but
they are localized along the collision axis. As demonstrated in section 4, isolated peaks of the
field can collapse nonlinearly to form oscillons. When we have a field configuration with many
peaks, we similarly expect some of them to form oscillons. Of course, nonlinear interactions
between the various peaks as the collapse is occurring leads to a more complicated scenario
than the case of a single isolated peak, but the effects of these interactions are insufficient to
completely disrupt the production of oscillons.

6 Conclusions

We performed fully nonlinear three-dimensional simulations of parallel planar domain wall
collisions, with the effects of initially small quantum fluctuations included. This allowed
us to probe nonlinear regimes inaccessible to the linear analysis of the fluctuations in [1].
As anticipated from the resonances found in the linear theory, early in the evolution the
fluctuations grow rapidly during collisions between the walls. However, the most interesting
phenomenology arises once the fluctuations begin to nonlinearly interact with each other,
causing a complete breakdown of the original planar symmetry. For the collisions we con-
sidered, this symmetry breakdown results in an extremely inhomogeneous dissolution of the
walls and eventually the production of oscillons distributed in the collision plane. Our find-
ings show a radical departure from the behaviour in the symmetry reduced one-dimensional
collisions. The evolution is also completely different than the result if the backreaction of the
fluctuations on the domain walls is treated as a homogeneous effect in the transverse plane,
such as a Hartree-like approximation would assume. Therefore, we discovered a completely
new phenomenology which can only be adequately studied using lattice simulations such as
those used in this paper.

The dissolution of the walls is a consequence of our restriction to collisions between
wall-antiwall pairs, which means there is no topological conservation law preventing the
walls from eventually annihilating each other. If we were to consider collisions between
walls interpolating between different vacua as |x| → ∞, then the post-collision state must
contain domain wall like structures interpolating between the two different vacua at infinity.
Although the final dissolution of the walls will not occur in this case, our general finding
that the planar symmetry is broken should continue to hold. A specific example of this was
our study of the fluctuations about a single isolated domain wall with an oscillating width.
In more general collisions, we expect that any walls remaining after the collision will not be
produced with perfect planar symmetry, but instead will be bumpy.

Our results indicate a hurdle to constructing viable cosmological models predicated
on the existence of many domain wall solutions. In the absense of a topological charge
preventing their annihilation, collisions lead to a mutual annihilation of the walls after only
a few collisions. This is much more rapid that the corresponding annihilation in the exactly
planar one-dimensional theory. Therefore, any braneworld model where we are confined to
such a domain wall must take great care to ensure that these types of collisions are infrequent.

In [2] we consider the full nonlinear dynamics of SO(2,1) collisions between vacuum
bubbles. We show that similar phenomenology arises in bubble collisions when the effects of
fluctuations are included in the nonlinear problem.
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