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Abstract

We present a system, ESOLID, that performs exact boundary evaluation of low-degree
curved solids in reasonable amounts of time. ESOLID performs accurate Boolean operations
using exact representations and exact computations throughout. The demands of exact compu-
tation require a different set of algorithms and efficiency improvements than those found in a
traditional inexact floating point based modeler. We describe the system architecture, represen-
tations, and issues in implementing the algorithms. We also describe a number of techniques
that increase the efficiency of the system based on lazy evaluation, use of floating point filters,
arbitrary floating point arithmetic with error bounds, and lower dimensional formulation of
subproblems.

ESOLID has been used for boundary evaluation of many complex solids. These include
both synthetic datasets and parts of a Bradley Fighting Vehicle designed using the BRL-CAD
solid modeling system. It is shown that ESOLID can correctly evaluate the boundary of solids
that are very hard to compute using a fixed-precision floating point modeler. In terms of per-
formance, it is about an order of magnitude slower as compared to a floating point boundary
evaluation system on most cases.

1 Introduction

A key operation in solid modeling systems is boundary evaluation, or computing the boundary

of Boolean combinations of two or more solids. A number of algorithms have been proposed in
�
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the literature for boundary evaluation, however these are hard to implement because of accuracy

and robustness problems. These problems are particularly significant when dealing with curved

primitives. In general, geometric computations on non-linear primitives are more susceptible to

inaccuracies in representation and computation. As a result, designing a reliable solid modeling

system for graphics and CAD/CAM applications remains a major challenge.

The difficulties in developing a reliable or consistent solid modeler using only fixed-precision

arithmetic have been noticed and attacked by many different researchers [17, 21, 22, 25, 26, 32, 45,

51, 52]. Beyond the reliability of individual solid modeling systems, numerical inaccuracy plays

a significant role in problems of data transfer, leading to an estimated loss of more than $1 billion

annually in the U.S. automobile industry alone [6]. There are many sources of numerical inaccu-

racy, including errors in input data, approximation of output, and roundoff error in floating-point

computation or intermediate storage. Any complete treatment of the problem would require ad-

dressing issues throughout the entire modeling process. In our system, we address the inaccuracies

that arise within and are then propagated by the internal system computations.

The numerical inaccuracies cause problems when they result in conflicting geometric and topo-

logical information. Such conflicts lead to serious problems, including program crashes and incor-

rect or impossible to realize output, Many solutions, based on symbolic relationships, tolerances,

interval arithmetic, perturbation techniques, etc. have been proposed to increase the accuracy and

robustness of boundary evaluation systems. One such approach is the exact computation paradigm

[50]. This approach eliminates numerical error in geometric computations entirely. Unfortunately,

exact implementations are often far too slow. Naive implementations of even very simple geo-

metric operations can take several orders of magnitude longer than an equivalent floating-point

implementation [30]. Various speedup techniques can improve efficiency considerably, but the use

of exact computation for curved solids is still widely perceived to be too slow for practical use.

In practice, most exact approaches for boundary evaluation have been applied to polyhedral

models only. Exact computations and representations are regarded as extremely slow and imprac-

tical for non-linear (curved) models. Polyhedral models are much easier to deal with exactly for
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several reasons. Intersections of the planar surfaces making up polyhedra result in points with

coordinates that can be expressed as rational numbers. Furthermore, in general, two planes will

intersect in a line and three in a single point. In contrast, with curved surfaces two surfaces will

intersect in (possibly several) curves, and three surfaces can intersect in a large number of points,

each of which may have irrational algebraic coordinates. While additional bits of precision are

sufficient to handle rational numbers, a different type of representation is needed to handle alge-

braic numbers exactly. In addition, the polynomial calculations that are required for these algebraic

numbers are significantly more complex and time-consuming. While the algebraic issues involved

in curved surface intersections are well-understood (e.g. as described by Hoffmann [23]), the prac-

tical difficulties and inefficiencies have prevented most work on exact solid modeling with curved

surfaces. Worst-case analysis of exact computation for curved objects (e.g. [52]) has further fueled

the perception that exact computation on curved solids is completely impractical.

Our work addresses this by demonstrating, for the first time, that an exact computation-based

approach can achieve reasonable efficiency for boundary evaluation on curved solids, while elimi-

nating numerical error.

1.1 Main Results

We present a system, ESOLID, that performs exact boundary evaluation of low-degree algebraic

curved solids described by parametric patches. We show that ESOLID can perform these oper-

ations on real-world data in “reasonable” amounts of time. ESOLID uses exact representations

throughout in order to compute accurate Boolean combinations. We present the issues and chal-

lenges involved in implementing such a system. We describe techniques for taking advantage of

a sequence of low-dimension operations in order to avoid operations in higher dimensions, thus

saving time. We also describe a number of other techniques that improve the efficiency of the

system, including lazy representations and evaluation, floating point filters, and the use of arbi-

trary precision floating-point arithmetic with tight error bounds. ESOLID has been applied to a

number of complex solid models, including both synthetic models and models designed using the
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BRL-CAD solid modeling system. We have compared its performance with a boundary evaluation

system based on floating-point computation. In terms of performance, ESOLID is less than one

order of magnitude slower in most cases and no more than two orders of magnitude slower in the

worst case. However, ESOLID can easily handle cases that are very hard to handle by fixed pre-

cision boundary evaluation systems. The work presented here describes the system and practical

implementation aspects of an exact boundary evaluation approach proposed in a different form

in our earlier work [33, 34], and builds upon the exact two dimensional operations implemented

previously [35]. A shortened form of this paper has appeared in Solid Modeling ’02 [31]. To the

best of our knowledge, there are no previous exact implementations of boundary evaluation that

achieve comparable speeds on real-world examples.

1.2 Exact Computation

The primary reason for using exact computation has been to ensure consistency in operations by

eliminating numerical error accumulation in intermediate computations. Although input data might

not be exact (e.g. positions may be inaccurate or “noisy,” and certain desirable rotations can not

be represented exactly by rational numbers), exact computation is still very useful. Without exact

computation, errors build up in intermediate computation, resulting in inconsistent intermediate

data that can cause program crashes and incorrect or invalid output. ESOLID makes a particular

interpretation of the given data, then uses exact computation for all operations on the data and exact

representations for intermediate data. This eliminates problems due to intermediate error buildup.

As long as a consistent interpretation of the input data can be made (not necessarily a trivial task),

all further computation is guaranteed not to suffer numerical problems.

1.3 Paper Outline

In section 2 we describe previous work that has led to the development of ESOLID. In section 3 we

give an overview of ESOLID, breaking it into its major components. In section 4, we describe some

of the major challenges encountered in implementing ESOLID, along with the solutions that we
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used. We discuss the various techniques used to increase efficiency in section 5. Section 6 presents

the results of ESOLID applied to both synthetic datasets and “real world” examples. Finally,

section 7 concludes with a summary of important lessons learned in the process of implementing

ESOLID.

2 Previous Work

2.1 Boundary Evaluation

As a key part of conversion from a constructive solid geometry (CSG) representation to a boundary

representation (B-rep), boundary evaluation is a well-studied problem in solid modeling. Specifi-

cally, boundary evaluation refers to determining the boundary of Boolean combinations of solids.

Braid [4] provided one of the earliest treatments, and Requicha and Voelcker [43] gave a compre-

hensive description of basic boundary evaluation. Casale and Bobrow presented one of the first

detailed descriptions for boundary evaluation for curved solids [7]. Today, the basic approaches

for boundary evaluation are well-understood, and have been incorporated into textbooks [23, 40].

More recently, robustness in boundary evaluation has gained greater attention. Some researchers

have focused on the use of exact computation for polyhedral solids. This work includes that of

Sugihara and Iri [48], Yu [52], Benouamer et al. [2], Sugihara [47], and Fortune [17]. Others have

proposed methods for increasing robustness that do not rely on exact computation. Hoffmann et al.

[24] have described methods for increasing robustness by eliminating redundancy and checking for

consistency. For eliminating numerical errors in boundary evaluation on curved solids, the work

has been much more limited. Yu has explored some theoretical bounds of exact computation [52],

Fang et al. have explored tolerance methods for boundary evaluation [16], Hu et al. have explored

interval computations and representations [25, 26], and Desaulniers and Stewart have given limited

results on the interpretation of (possibly inconsistent) output [12].

Boundary evaluation is a common part of many solid modeling systems, and there are far too

many such systems to attempt to list them here. Requicha and Voelcker have listed and summarized
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many of the earliest solid modeling systems [42]. Solid modeling systems have continued to be

developed in recent years, such as the Recent modeling systems relevant to this work include the

CSG-based BRL-CAD system from the Army Research Lab [14, 13], the IRIT system [15], and a

number of research systems created to demonstrate new robustness techniques. Examples of these

latter systems are ones by Fortune [17], Jackson [27], Benouamer et al. [2], Fang et al. [16], and

Hu et al. [25, 26].

2.2 Exact Computation

A significant amount of work has been done on exact computation in computational geometry,

solid modeling, and symbolic computation. The primary focus of this work has been on making

exact computations more efficient. Usually, this involves trying to replace high bit-length numbers

with less precise numbers that provide faster computation. Error bounds of various types are used

to guarantee that the computed result is accurate enough that a particular decision based on that

number is correct. Thus, the decision is made as if the numerical calculation were exact, but at a

faster rate. This guarantee that all decisions are made as if the input and subsequent computation

were exact (i.e. guaranteed correct decisions) is known as exact computation. Note that exact

computation eliminates the topology vs. geometry inconsistencies that cause robustness problems.

Among the methods used to increase the efficiency of exact computations are those based

on interval arithmetic [30, 28], floating-point filters [18, 19], lazy arithmetic [2], tuned computa-

tions [18, 19], precision-driven computation [50], minimized intermediate computation [8, 5], fast

hardware computation [46], and modular arithmetic [18, 5]. Libraries supporting basic exact com-

putation have been developed, with LEDA [41] and CORE [29] being notable examples. These

libraries, however, have supported only linear computations and a limited set of algebraic computa-

tions, and are not sufficient for general boundary evaluation problems. While some exact methods

have been applied to polyhedral solids, we are not aware of any previous practical implementations

for curved solids.
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2.3 Exact Boundary Evaluation on Non-linear Primitives

Keyser et al. previously presented [32, 33, 34] the outline of an approach for exact boundary eval-

uation. While this approach has guided our later work, the work presented here builds on this

previous work and significantly extends the results presented in those papers. Specifically, the ar-

chitecture specifics, data transfer algorithms, efficiency considerations, implementation issues, and

performance details are presented here for the first time. Other relevant previous work by Keyser et

al. includes the MAPC library [35]. MAPC provides data structures and routines for polynomials,

algebraic plane curves, and two-dimensional points with algebraic coordinates. The MAPC data

structures and routines, which were developed in the process of implementing ESOLID, form a

primary building block for ESOLID.

3 ESOLID Overview

ESOLID is a system for performing exact boundary evaluation. Input is supported for several

primitives (including the “CSG standard primitives” [23]), stored in a CSG tree that allows union,

intersection, and difference operations, as well as transformations by a
�����

matrix (see section

3.3 for a more detailed discussion of input). The internal representation supports manifold objects

made up of trimmed patches with surfaces expressed as rational functions of polynomials with

rational coefficients.

Note that ESOLID is designed to work correctly for parametric surfaces of arbitrary degree

and complexity. For efficiency reasons, however, only low-degree (algebraic degree four or less)

surfaces are practical—higher degree surfaces (such as bicubic patches) tend to take unreasonable

amounts of time and memory. With each operation, ESOLID determines the boundary of the

result, updating all geometry and topology to store the resulting object. Boolean operations are

not supported for degenerate configurations of objects. Thus input, intermediate representations,

and output must all be manifold solids, intersection curves may not have singularities, surfaces of

different objects should not overlap, etc. Currently, output is provided in one of two forms: either a
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human-readable exact output suitable mainly for testing and debugging, or an approximate output

of trimmed Bezier patches, useful mainly for visualization (e.g. the pictures shown here).

Below, we briefly discuss the architecture and representations in ESOLID, the process of

boundary evaluation, and input considerations.

3.1 Architecture

ESOLID consists of approximately 45,000 lines of C++ code, implemented on top of the LiDIA

library [3]. LiDIA provides data structures and routines for exact arithmetic on rational numbers.

Other libraries (such as LEDA [41]) for exact rational arithmetic could easily be used instead.

Solids in ESOLID are represented as B-reps broken up into trimmed parametric patches. Each

patch is described by a surface with both a parametric and implicit form. The trimming curves are

described in the same way as intersection curves between two patches, since this is how trimming

curves in the output of a Boolean operation are formed. The intersections of such surfaces are

stored as algebraic plane curves in the parametric patch domain. Note that these intersection curves

are typically not parameterizable. For example, representing the intersection of the patches by a

rational parametric curve with rational coefficients (such as a B-spline) could not be done without

introducing some error. So, intersection curves (and trimming curves) are stored in implicit form

with endpoints. These endpoints, since they can be the intersection of two algebraic plane curves,

can have irrational algebraic coordinates. ESOLID uses the MAPC representation for points, which

involves representing points as 2D intervals that are guaranteed to contain a unique intersection of

two algebraic plane curves. The interval bounds are rational numbers, and the interval size can be

reduced on demand.

A diagram showing the organizational structure of ESOLID is given in figure 1. The portions

of ESOLID that are incorporated in MAPC are represented as an external library in the figure.

� MAPC provides routines for handling polynomials (K POLYs), algebraic plane curves (K CURVEs),

and both 1D points (K POINT1Ds) and 2D points (K POINT2Ds) with algebraic coordi-

nates [35]. It includes routines for determining the topology of algebraic plane curves over
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a limited domain and intersecting algebraic plane curves. MAPC was developed while im-

plementing ESOLID.

� A K SURF is the ESOLID representation for a surface. It includes K POLYs that describe

the rational parametric form of the surface, as well as a K POLY giving the implicit form.

� A K PATCH describes a single patch in the B-rep. A K PATCH includes a K SURF

defining the surface, LiDIA bigrationals defining the domain boundaries, and arrays of

K CURVEs defining trimming and intersection curves. Trimming curves define the bound-

ary of the patch, and intersection curves indicate where the patch intersects patches of an-

other solid. Each curve, of either type, is associated with a K SURF that intersects the patch.

To illustrate, let patch � be part of a surface � . If 	 is a curve in � ’s domain, then 	 will

be associated with a surface, ��
 , such that 	 is a subset of the intersection of � and ��
 . The

associated K SURFs are kept in an array parallel to the array of K CURVEs. In some cases,

the associated K SURF is the K SURF of a different patch from the same solid. In other

cases it only exists to determine a boundary between adjacent patches, so that, e.g., a sphere

may be parameterized using multiple patches.

� A K PARTITION describes one subpatch formed during boundary evaluation. During

boundary evaluation, each patch is subdivided into one or more subpatches based on the

intersection of that patch with all the patches of the other solid. A K PARTITION includes

data denoting the particular curves in an associated (parent) K PATCH structure that define

the K PARTITION.

� A K SOLID describes the overall solid, and is made from a group of K PATCHs. K SOLIDs

are the input and output for boundary evaluation. They can also be formed from collections

of K PATCHs, groups of K PARTITIONs coupled with topological information, and con-

version of input CSG data (from BRL-CAD).

� Topological connectivity information is kept in the individual classes. Each face stores the
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list of trimming curves and the adjacent face along each curve. Each curve (edge) stores

the adjacent vertices. The same 3D curve or point is often stored in more than one 2D

patch domain. These “associations” (pointers to an equivalent point or curve in another do-

main) are also stored and are important in boundary evaluation. An overall topological graph

(K GRAPH) is constructed as necessary during later stages of boundary evaluation. Details

of the topological information stored and proof of its sufficiency are given by Keyser [36].

Note that because of the use of exact computation, storing redundant topological information

does not lead to robustness problems.

� Not shown in the figure, the PRECISE library [39] can be optionally included as a part of

MAPC to speed up calculations involving algebraic numbers. PRECISE is an extension of

the range arithmetic techniques developed by Aberth and Schaefer, and implemented in their

range library [1].

3.2 Boundary Evaluation

Boundary evaluation is defined within the K SOLID class. The traditional two-stage approach to

boundary evaluation is followed in ESOLID. In the first stage, the patches are intersected pairwise,

partitioning them into separate components. In the second stage, the partitions are identified and

selectively stitched together to form the final solid. Although this traditional approach is well-

understood and straightforward, a number of individual steps must be modified considerably in

order to allow it to be used in an exact computation scheme. Previous papers have described some

of these issues in detail [33, 34], but actual implementation highlighted the importance of other

issues (e.g. curve correspondence) that had not been considered. Only a brief overview will be

given here, although some steps are treated in more detail in section 4.

The procedure is as follows:

� For each pair of patches:
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K_PARTITION K_GRAPHK_PATCH

BRL-CAD ConvertersBoundary Evaluation

Graph Algorithms

K_SOLID

MAPC

K_SURF

LiDIA

Figure 1: The major parts of ESOLID. Shaded boxes indicate external libraries used in ESOLID
(including MAPC). A solid arrow indicates that one library or structure is a necessary part of
another. A dashed arrow from one structure to another indicates that the source structure can be
used to create the destination structure.
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– Generate an intersection curve (in implicit form) in the domains of the patches by

substituting the parametric representation of each patch into the implicit representation

of the other patch. Each intersection curve is represented as the zero set of a bivariate

polynomial.

– Resolve the topology of the intersection curves (i.e. determine their structure in the

patch domain). This involves finding intersections with the domain boundary, closed

loops of the curve, etc.

– Intersect the intersection curve with the trimming boundary. This involves in-

tersecting curves in a 2D patch domain, then determining the position of each such

intersection point in the domain of the other patch (point inversion).

– Determine the curve correspondence, that is, how the individual portions of the alge-

braic plane curve in one patch domain relate to those in the other domain.

– Clip the intersection curves in each domain so that only the portions inside the trimmed

regions of both patches are maintained.

� For each patch:

– Merge intersection curves from the separate patch/patch intersections to form patch/solid

intersection curves.

– Partition the patch into different components based on the trimming curves and merged

intersection curves.

– Classify partitions as to whether they are inside or outside of the other solid. This is

done by classifying whether a point contained in one partition from each solid is inside

or outside of the other solid. From there, inside/outside decisions can be made on the

basis of topological relationships.

– Based on the Boolean operation, choose the correct components from each solid to

build the final solid, updating all topological information.

12



Generate
Intersection
Curves

Clip to
Trimming
BoundaryTopology

Resolve

Topological
Data

Determine
Curve
Correspondence

Intersect With
Trimming
Boundary

Patch
Data

Curve
Topology

Point
Location/
Generation

Curve-Curve
Intersection

Implicit
Surface
Generation

Point
Data

Curve
Data

Figure 2: A summary of the five main steps in the first stage of the boundary evaluation algorithm.
These operations are done for each pair of patches (one from the first solid, one from the second
solid). Arrows show how the basic data and kernel operations are used in the various steps. At top
are the steps in boundary evaluation, in the middle are the kernel operations, and at bottom are the
data structures for the input solids.
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Figure 3: A summary of the four main steps in the second stage of the boundary evaluation algo-
rithm. Arrows show how the basic data and kernel operations are used in the various steps. At top
are the steps in boundary evaluation, in the middle are kernel operations, and at bottom are the data
structures for the input solids.
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These operations are built on a set of “kernel operations.” The efficiency of these kernel op-

erations has a tremendous effect on the efficiency of the entire system. Curve-curve intersection

and curve topology are a part of MAPC, and the new algorithms developed for them have been

highlighted elsewhere [35]. Point generation refers to quickly generating a point with rational

coordinates that lies on the surface of an object. Point location refers to classifying whether a

2D point lies inside or outside the trimmed region of a patch, or whether a 3D point lies inside or

outside of another solid, and is accomplished through ray-shooting tests. Implicit surface genera-

tion refers to creating an implicit surface that meets certain criteria related to a specific parametric

curve and/or patch. Figures 2 and 3 show the relationships between the kernel operations and the

steps in boundary evaluation. Also shown in the figures is the way that the point (K POINT), curve

(K CURVE), patch (K PATCH), and topological data are used in the various kernel routines and

steps of boundary evaluation.

3.3 Input Considerations

ESOLID was designed to handle data from real-world examples, meaning data not developed

specifically to test exact boundary evaluation. The BRL-CAD [14, 13] data format was used as

the model for ESOLID input. BRL-CAD is a CSG-based solid modeling system developed at the

Army Research Lab and used for a variety of defense applications. Specifically, we focused on the

Bradley Fighting Vehicle model provided to us courtesy of the Army Research Lab. It provided a

large, complex, real-world example on which previous boundary evaluation attempts had proven

difficult. While BRL-CAD supports a number of primitive CSG solids, most of them, including

all those primitives used in the Bradley, are of low degree (surfaces no more than degree four), so

we focused our efforts on handling such low-degree cases efficiently.

BRL-CAD represents all transformations as transformation matrices. Transformation matrices

are the only method currently supported by ESOLID for specifying translations, rotations, etc.

Note that transformation matrices can be input exactly, while other transformation descriptions,

such as “rotation by  degrees,” might not have an exact representation using rational numbers.
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While we view the use of transformation matrices as a restriction on the input allowed, we do not

view it as an overly important problem because:

� The system we are using for our real-world input already uses this format for specifying

transformations.

� Any other common transformation description (e.g. rotate by  degrees) can be expressed

to within any desired tolerance as a transformation matrix with rational entries. We are

currently exploring ways of automatically generating such approximations, thus allowing

them to be used in an exact computation paradigm.

Although routines have been developed to convert BRL-CAD data files into the ESOLID in-

put format, ESOLID is not limited to BRL-CAD data. Any data that can be expressed by the

structures given in section 3.1 can be used in ESOLID. Specifically, solids must have a boundary

representable as a set of parametric patches described as rational functions of polynomials with

rational coefficients. Note, however, that only low-degree surfaces will yield reasonable running

times. Surfaces such as bicubic Bezier patches and most NURBS surfaces have an implicit form

that is of too high an algebraic degree to be practical in our current implementation. There are some

other minor restrictions (e.g. the surfaces must be one-to-one mappings over the patch domain),

however these are not significant for the most common CSG primitives. See [36] for conversion of

several common CSG primitives to the ESOLID format.

By default, ESOLID will treat input as exact. However, as mentioned in section 1.2, the purpose

of exactness is mainly to ensure consistency. Routines are included in ESOLID that allow a user

the option of perturbing input data to achieve a particular interpretation. For example, the four

vertices of a face of an input rectangular parallelepiped might not be coplanar, due to roundoff

error in the input file. Options are provided to either treat the face as a bilinear patch (an “exact”

interpretation), or to fit planes to each face then form new vertices at the intersections of the faces

(the “perturbed” interpretation). As long as such interpretation is made only at the original input

stage, and not in intermediate computations, the consistency provided by exact computation is
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maintained.

Finally, ESOLID input is restricted to non-degenerate configurations. Although certain de-

generacies are accounted for and handled within ESOLID, other degeneracies can cause ESOLID

to fail. Many real-world examples (including several from the Bradley Fighting Vehicle) contain

numerous degeneracies. ESOLID cannot be considered a robust system, in terms of handling all

possible input configurations. However, ESOLID’s elimination of numerical error increases ro-

bustness (over an inexact system), and since treating numerical error is an important prerequisite

to fully handling degeneracies, ESOLID supports future treatment of degeneracies.

4 Challenges

A number of challenges were faced in the development of ESOLID. Among these were creating

the necessary data structures and algorithms for exact computation and propagating information

between the patches. A primary concern was efficiency, and this is discussed further in section 5.

Other challenges, such as parts of algorithm design and development of certain new algorithms,

have been presented previously [33, 34, 35].

4.1 Exact Data Structures and Algorithms

One major obstacle encountered in implementing ESOLID was the lack of existing library support

for exact computation. While libraries exist for exact rational number computation, none were

found for algebraic number computation, except general computer algebra systems. Because of

their generality, these computer algebra systems do not provide the level of efficiency needed for

boundary evaluation. Also, libraries providing geometric data structures tend to focus on linear

structures (and occasionally circles). A more general library for representing curves exactly was

not found.

We developed the MAPC library to meet this need. Although geared specifically to the bound-

ary evaluation problem, the data structures and routines for polynomials, points, and 2D curves
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that MAPC provides have been applied to other problems, as well [10, 49, 20]. As libraries are

developed that support exact computation, one of the major hurdles to exact implementations (lack

of library/compiler/hardware support) will gradually be lowered.

4.2 Transferring Data Between Patches

Many sub-algorithms used in boundary evaluation involve transferring the data from the patch of

one solid to the other. Two major examples of this are point inversion (part of the intersecting

curve step) and the curve correspondence step (see section 3.2).

In these cases, the most obvious and direct approach would be to treat the problem in 3 or more

dimensions. This proves to be problematic, however. First, exact operations in higher dimensions

are generally extremely slow. Second, and perhaps more fundamental, new data structures might be

necessary to perform such computations. For example, the intersection curve between two patches

is represented as a 2D curve in each patch domain—the algebraic space curve is not explicitly

represented. We present algorithms for point inversion and curve correspondence based on the

lower-dimensional representation.

While these algorithms are specific to the boundary evaluation problem, we believe that they are

illustrative of the type of reasoning that can be used to improve efficiency in other exact geometric

calculations. In each case, we take advantage of problem-specific information (such as known

surface relationships) to reduce the complexity of the overall calculation significantly.

4.2.1 Point Inversion

A point in the domain of a patch ��� determines, via the parameterization, a point � in 3-space. If

� is in the intersection of ��� with another patch ��� , it may be necessary to find the inverse image of

� under the parameterization of ��� . This process is point inversion and the inverse image is called

the inverted point. Point inversion can be viewed as a problem in as many as seven dimensions (the

two dimensions, � and � of ��� , the two dimensions, � and � , of ��� , and the three spatial dimensions
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( ��������� )). The problem is easily reduced to four dimensions:

 "!$# �%�&�&')( * !%# ���+�,'
 �-%# �%�&�&')( * -.# ���+�,'
 �/0# �%�&�&')( * /1# ���+�,'

where one wants to find a particular
# ���+�,' interval (the inverted point) corresponding to a given

# �2���&' interval. This four dimensional operation is still too time-consuming to yield an efficient

implementation. Fortunately, we can reduce the computation to a series of 2D and simple 3D

calculations, as presented here:

In the domain of ��� , � is described as a particular intersection of two curves, 3 # �2���&'4(65 and

7 # �2���&'�(85 . In boundary evaluation, 3 and 7 will always be either intersection or trimming curves.

Thus, 3 is the intersection of a surface, ��� # ���+�9���%'�()5 with �:� , and 7 is the intersection of a

surface, �;� # ���+�9���%'<(=5 with �:� . In all cases where point inversion is necessary, either ��� or �>�
(without loss of generality, say ��� ) is the surface corresponding to the patch ��� .

The intersection of ��� with �"� is already computed as a curve, ?3 # ���+�,'@(A5 in ��� ’s domain.

The intersection of �;� with �"� is now computed in the form ?7 # ���+�,'�(B5 . Next, the intersections of

the curves ?3C(D5 and ?7 (D5 are computed. This yields a set of points, E��F�GEH�I�IJIJIJK�GEHL , in the domain

of ��� , one of which must be the inverted point.

Note that if �"� or �>� is self-intersecting (i.e. it does not have a one-to-one correspondence

between the domain and the surface), then there may be more than one possible inverted point. We

avoid such cases by always dividing primitive input solids into patches such that each patch has a

one-to-one mapping over the patch domain. By decomposing solids appropriately, this is always

possible for the patches of the common CSG primitives [36].

To this point, only 2D operations have been required. Very basic 3D operations are now used

to determine which of the ENM is the inverted point. We find a 3D interval (in ���+���+� space) bounding

each EHM . This can be done by substituting the 2D interval bounding E�M into the parametric form
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of the ��� ’s surface, �"� . Interval arithmetic operations determine the bounds for a 3D interval

guaranteed to bound EOM . These intervals are compared to an interval bounding � (generated from

the 2D interval in �:� ’s domain). Typically, only one ENM has an overlapping interval and this will

be the inverted point. If two or more intervals overlap � ’s interval, the involved intervals can be

reduced. This is done by reducing the interval surrounding each point in the 2D patch domain (a

function provided in MAPC), constructing a new 3D interval from that 2D interval, and iterating

until the ambiguity is resolved.

In this way, point inversion has been converted from a higher-dimensional problem into a series

of 2D computations (curve-curve intersections), along with some simple 3D interval matching.

4.2.2 Curve Correspondence

Curve correspondence refers to finding the orientation of a curve in one patch domain relative to the

same curve represented in the domain of another patch. Each algebraic plane curve has a direction

induced on it in the domain of the patch. The algebraic plane curve (in the parameter space) is

part of a curve in three spatial dimensions. This 3D curve (or a portion of it), represented in the

domain of a different patch, may have either the same or an opposite orientation from the original

algebraic plane curve. A common way to compute curve correspondence is to trace the curve in

three dimensions. However, most tracing methods are approximate, and subject to numerical error.

Furthermore, it is preferable to rely on only 2D operations, for efficiency reasons.

Note (see figure 2) that Curve correspondence occurs after intersection with trimming curves.

The intersection with trimming curves step determines points on each curve, and inverts those

points to the other patch domain. The curves that have either a point or inverted point on them

are potentially corresponding curves (i.e. they may be part of the same 3D curve). Curves that do

not have such points, with one easily-handled exception involving loops, are not relevant to the

boundary evaluation problem, and do not need to be considered further.

Each of the remaining curves is guaranteed to contain at least 2 points for which a correspond-

ing point is known on another curve in another domain. If there are three or more points (i.e.
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the curve hits the trimming boundary in at least 3 places), then these three points can be used to

determine a direction for the curve in both patches, and to verify that a particular portion of the

curve in one patch domain (bounded by two of the points) corresponds to a given portion in the

other. If there are only two intersections, an additional point on both curves can be generated to

determine this information. While requiring several steps, this point generation and inversion is

actually a simpler process in practice than finding the original intersection points and inversions.

Thus, previously generated inverted point information (and possibly generating and inverting one

more point) is used instead of curve tracing to transmit orientation from one patch domain to the

other. There are a number of non-obvious details in this process, as well as a number of other

simplifying assumptions that can be made. For space reasons, these are omitted here, but more

details are given by Keyser [36].

5 Efficiency Considerations

Efficiency was a major concern in the implementation of ESOLID. The goal was to create an

implementation that was one to two orders of magnitude slower than an inexact implementation

(i.e. taking no more than 10–100 times as long) on real-world examples. In order to achieve this, a

number of different speedup techniques had to be combined.

In order to understand certain speedups, we must mention Sturm sequences. Sturm sequences

are used to count the number of real roots of a polynomial in an interval. Sturm sequences are

obtained by performing a computation similar to a polynomial greatest common divisor to obtain

a sequence of polynomials. These polynomials are then evaluated at various points to count the

number of roots in an interval (see elsewhere for a more complete description [11]). Along with

resultant calculations, they form the basis for the curve-curve intersection tests in MAPC, and play

a major role in ESOLID’s efficiency.
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5.1 Speedups

Numerous speedup techniques were employed in ESOLID, and space permits only a brief mention

of each type here. References are provided to prior uses of the techniques, though not necessarily

in the way used in ESOLID. Note that all of these techniques are used while maintaining exactness.

That is, even when approximate calculations are performed, guaranteed error bounds are used to

ensure that any decisions made are correct.

� Lazy evaluation attempts to postpone high-precision (i.e. time-consuming) computations

as long as possible in hope that they will not be necessary [2]. Lazy evaluation is applied

to both point representations (reducing intervals surrounding algebraic coordinates only as

needed) and curve representations (subdividing curves into segments) in the MAPC portion

of ESOLID.

� Quick rejection techniques quickly identify cases where computation can be avoided en-

tirely. Interval arithmetic [30, 28] can be used to avoid more complicated algebraic cal-

culations involving curves and patches (e.g. determining whether a curve can intersect a

particular patch boundary). Affine arithmetic [9], closely related to interval arithmetic, can

speed up polynomial sign tests by providing tight error bounds and an efficient implemen-

tation for evaluating an interval in a polynomial. ESOLID uses interval arithmetic based on

both exact rational interval bounds and IEEE floating-point bounds. The use of bounding

boxes is another well-known technique for quick rejection, and is part of the point, curve,

and patch representations in ESOLID. For example, patch bounding boxes are compared to

eliminate cases where patches clearly do not intersect.

� Simplified computation refers to substituting fast, simple computations for more complex

ones. As an example in ESOLID, qualitative information can be maintained with points

to allow nearly instantaneous equality checking in certain cases, as opposed to the rather

time-consuming exact algebraic number comparisons used otherwise. Algorithms can make

use of problem-specific information to avoid more general, and thus more time-consuming,
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computation. For example, curve-curve intersection is greatly simplified when the curves

are horizontal or vertical. Algorithms developed for MAPC [35] use knowledge about the

limited domain to perform more efficient curve-curve intersection tests and to determine

curve topology. Interval reduction is used in ESOLID to speed computation of the bounds on

polynomial roots. If an algebraic number is a simple root, its defining polynomial is negative

on one side of the root and positive on the other (and which side is which is already known).

This allows one to use a simple polynomial sign test (rather than a full Sturm sequence

evaluation) to reduce the width of the interval. The polynomial sign tests themselves can be

made faster through other speedup techniques.

� Lower-dimensional formulation of several parts of the computation also leads to great

efficiency improvements. With exact computation especially, the higher the dimension of

the problem, the longer the computation takes. It is often much faster to replace a single

higher-dimensional computation by several lower-dimensional computations. Examples in

ESOLID are point inversion and curve correspondence (see section 4.2), the overall bound-

ary evaluation algorithm (all points, curves, and computations are in only two dimensions),

and curve-curve intersection (2D computation replaced by a resultant and a series of 1D

computations [35]).

� Floating-point evaluations are still very useful as a speedup technique, even though they

might not be exact. Floating-point filters [18, 19] are a way of avoiding certain expensive ex-

act computations by computing in floating-point hardware, but maintaining an error bound.

If the error is small enough, a decision is made based on the result of the computation, but

without exact arithmetic. This is used to avoid certain Sturm sequence calculations in ES-

OLID. Another technique, floating-point guided computation has proven even more useful

for dealing with algebraic numbers. This refers to making a “guess” of a root using floating-

point techniques (with no error bound), then using exact methods to verify that the guess was

close enough to the real answer. For example, roots of a polynomial can be approximated us-
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ing an imprecise method (e.g. Newton’s method), then Sturm sequences can be used to verify

that the right number of roots was found, and that a small interval around each approximate

root contains the true root. Thus a tight, guaranteed, exact bound is generated faster than

by standard interval bisection techniques. Arbitrary-precision floating-point computations

can also be used. This means that floating-point numbers are represented using any number

of bits. Although slower than standard, hardware supported, IEEE floating-point computa-

tions, such floating-point numbers can provide precision from the IEEE level (53 bits) all the

way up to exact floating-point calculations. This allows floating-point filters with varying

levels of accuracy. The PRECISE library [39] implements arbitrary-precision floating-point

computation. It is an extension of the range arithmetic presented by Aberth and Schaefer

and implemented in their range library [1]. ESOLID optionally includes PRECISE within

MAPC as part of a filter for speeding up Sturm sequence computations.

5.2 Layering Speedups

ESOLID applies all of the speedups listed above into a multilayered approach. As an example, the

process for reducing the size of an interval surrounding an algebraic root (in one dimension) will

be described. This interval reduction computation is in turn part of more complex computations

that incorporate more of the speedups listed above.

� The midpoint of the interval is determined (or another point is provided).

� If the root is simple, the defining polynomial will be positive on one side, negative on the

other. The signs at the upper and lower interval bounds are known beforehand. Thus, only

the sign at the midpoint needs to be determined:

1. Apply a floating-point filter to try to determine the sign of the polynomial at the point.

2. If that fails, evaluate the polynomial using exact computation.

� Otherwise, a Sturm sequence calculation at the midpoint must be performed:
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1. Use floating-point filtered computation to attempt to evaluate the Sturm sequence.

2. If that is unsuccessful, use arbitrary-precision floating-point computation (PRECISE

library) to determine and evaluate an approximate Sturm sequence.

3. If that also fails, determine polynomials for Sturm sequence exactly, and evaluate signs

using a multilevel approach as described above.

5.3 Effectiveness of Combined Techniques

Many of the speedup techniques we use have been used individually in previous applications with

good success. Combining techniques, however, does not necessarily combine the effectiveness of

individual techniques. There are two reasons for this.

First, certain techniques tend to speed up the same cases. For example, the cases where exact

affine arithmetic [9] is most effective are often the same as where floating-point filters are most

effective. In most cases we have found, there is still a benefit to be realized by using both tech-

niques, but in other cases, the increased overhead from applying a second method can actually

reduce overall efficiency.

Second, some speedup techniques have different goals and tend to conflict. For example, lazy

evaluation of point coordinates encourages intervals surrounding the point to be maintained as

large as possible, shrinking them only as necessary. Floating-point guided computation, on the

other hand, encourages intervals surrounding points to be reduced to the precision of the floating-

point estimate. To find the best technique or (as in the case of shrinking intervals) a good balance

between techniques takes experimentation and results may vary based on a particular type of input.

The important things to realize are that:

� Blindly adding speedup techniques does not provide the product of the improvement that the

methods would provide on their own. In fact, some speedup techniques might not help at all.

� It might be necessary to balance the use of different methods. That is, using one technique

to a point, then moving to a different one.
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� An “ideal” balance and combination will depend on the particular data it is being tested on.

It might be difficult to measure the exact tradeoffs and impossible to arrive at an optimum.

� Nevertheless, by combining these techniques and carefully choosing when to use each one,

we have observed that they can provide several orders of magnitude improvement in speed

over a straightforward exact approach.

6 Results

ESOLID has been applied to several test cases, both “synthetic” and “real-world.” Synthetic cases

were created specifically to test or demonstrate the capabilities of ESOLID. Real-world cases were

taken from a model developed in another solid modeling system (BRL-CAD [14, 13]) in order to

determine the effectiveness of ESOLID on cases not specifically designed for ESOLID.

ESOLID provides the option of including the PRECISE library [39]. PRECISE is an extension

of Aberth and Schaefer’s range arithmetic [1], based on arbitrary precision floating-point compu-

tation. It is used in ESOLID as a filter to speed up calculation of Sturm sequences, a key part

of curve-curve intersection calculations as well as other calculations involving algebraic numbers.

Except where noted, timings below do not include PRECISE.

All timings are in CPU seconds on a 300 MHz R12000 processor.

6.1 Synthetic Data

Figure 4 shows examples of simple Boolean combinations on basic primitives supported in ES-

OLID. This demonstrates some of the objects that ESOLID allows. Note that ESOLID can han-

dle cases where objects have multiple components and genus greater than zero. Table 1 gives

performance data for these basic cases. As can be seen, even for these basic examples, several

curve-curve intersection tests may be performed, and the results may need to be found to high

precisions.
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Figure 4: The result of Boolean operations on pairs of primitives in ESOLID. Details of the various
operations are given in table 1.
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Example a b c d e f g h i

Object 1 box box cyl. ell. torus twist cyl. ell. ell.
Object 2 box twist box box box cyl. cyl. cyl. twist

Degree of Object 1,1 1,2 2,1 2,1 4,1 2,2 2,2 2,2 2,2
Surfaces

Number of
Intersecting Patches 6 12 6 8 8 8 4 8 9
Maximum Degree of 1 2 3 2 4 6 6 6 4
Intersection Curves

Number of Curve-Curve 90 551 394 990 447 562 407 881 744
Intersections

Number of Univariate 0 240 353 1268 900 2004 607 2248 1753
Roots Found

Bits of Precision in - 10 13 59 87 52 31 87 25
Algebraic Numbers

Total Time 0.39 1.35 0.90 4.62 8.25 22.05 5.50 49.41 28.83

Table 1: Details of the difference operations illustrated in Figure 4. Object 1 describes the base
primitive, while Object 2 describes the primitive being subtracted. The primitives shown are a box
(polyhedron), twist (a box twisted so that some faces are bilinear patches), cylinder, ellipsoid, and
torus. The degree of the surfaces in the two objects is given, followed by the number of pairs of
patches that actually intersect. The maximum degree (in the parametric domain) of the intersection
curves is also shown. The total number of curve-curve intersection operations performed is given,
along with the total number of univariate roots found (i.e. the number of algebraic numbers found
as a root of a univariate polynomial). The maximum number of bits of precision used to repre-
sent these algebraic numbers is given, followed by the total time taken to perform the Boolean
operation.
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6.2 Real-World Data

Real-world sample input was taken from the Bradley Fighting Vehicle model, provided courtesy

of the Army Research Lab. This is a model created in the BRL-CAD system [14, 13], a CSG-

based solid modeling system. The Bradley is composed of over 5000 solids. Primitives used are

polyhedra (53%), generalized cones including cylinders (44%), ellipsoids including spheres (2%),

and tori (1%). Although these primitives are low-degree, they have been combined to create a

complex model. ESOLID was created specifically to handle the inputs provided by BRL-CAD,

and includes conversion routines that were used to read in the BRL-CAD format and convert the

primitives to the ESOLID format.

ESOLID was applied to several parts of the Bradley, some of which are shown in figure 5.

These are meant as a representative sample of objects from the Bradley model. Timing data was

taken both with and without inclusion of the PRECISE library. The same parts were also processed

by the BOOLE system [38, 37]. The BOOLE system performs (inexact) boundary evaluation based

on IEEE double-precision floating-point arithmetic. BOOLE uses tolerances to attempt to reduce

the problems associated with numerical error. Table 2 gives the number of Booleans involved

in each part, along with timing data for each system. Note that these parts sometimes include a

grouping operation, which may appear as a union operation but does not require any arithmetic

computation (i.e. solids are merged without concern for potential intersections). As is shown, for

cases that BOOLE also worked on, ESOLID performs within two orders of magnitude in time.

With the inclusion of PRECISE, these times are within about one order of magnitude. Note also

that BOOLE is unable to handle several cases (see section 6.3).

A breakdown of the individual timings under ESOLID (without PRECISE) are shown in ta-

ble 3. Notice that curve-curve intersection computations are the dominant factor in the overall

time. The two major parts of curve-curve intersection (as implemented in MAPC) are resultant

computations and (univariate) Sturm sequence computations. As the table shows, the portion of

curve-curve intersection time spent in each of these varies greatly. In general, it appears that for

longer-running cases, the curve-curve intersections (specifically Sturm sequence calculations) take
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Figure 5: Example parts from the Bradley Fighting Vehicle model. Details of the models and
timings are given in tables 2 and 3.
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Example Name Number of ESOLID Time ESOLID Time BOOLE
Number Booleans w/out PRECISE w/ PRECISE Time

a Tow Hook 2 10.23 10.95 2.23
b Wheel Assembly 4 12.57 12.69 2.81
c M16 Rifle 6 633.42 42.99 6.68
d Track Link 11 132.48 137.64 27.74
e Relay Mechanism 1 250.74 73.86 -
f Launcher Mount Part 3 63.15 61.26 -
g Support Assembly Part 6 213.72 105.99 -
h Rear Hatch Hinge 7 58.92 63.48 -
i Engine Access Hatch 16 54.78 58.44 -

Table 2: Overall timings for the examples in figure 5. The number of Boolean operations performed
is shown, along with the times taken in ESOLID (both without and with the PRECISE library for
arbitrary-precision floating-point filters of Sturm sequences) and in BOOLE (a boundary evaluation
system based on double precision IEEE floating-point arithmetic and tolerances). A ‘-’ indicates
that boundary evaluation failed on that object.

Number Number of Maximum % of Time % of Total % of Total
Example of Curve- Univariate Bits of Total in Curve- Time in Time in
Number Curve Roots Precision Time Curve Resultant Sturm

a 425 1831 42 10.23 68.0 54.3 5.0
b 637 1106 59 12.57 54.2 46.8 1.9
c 1003 3834 57 633.42 98.2 3.6 94.3
d 4444 13511 75 132.48 74.9 64.6 3.7
e 320 6311 41 250.74 95.1 15.6 76.0
f 974 5227 65 63.15 81.7 63.6 13.2
g 1162 7116 66 213.72 92.5 35.8 54.7
h 1266 8191 87 58.92 69.1 57.4 5.3
i 1799 5334 69 54.78 64.2 55.0 3.8

Table 3: Timing breakdown under ESOLID, without PRECISE, for the examples in figure 5. The
number of curve-curve intersections is given. The number of algebraic numbers found as roots
of univariate polynomials is shown, along with the maximum number of bits of precision used
to represent these algebraic numbers. The total time is shown, along with the percentage of time
spent in curve-curve intersection, the major component of the boundary evaluation algorithm. The
percentage of total time spent in the two major components of curve-curve intersection, resultant
computations and Sturm computations (generation and evaluation of Sturm sequences), is also
shown.
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a higher percentage of the overall time. The range arithmetic (following Aberth and Schaefer’s

development [1]) included in the PRECISE library primarily speeds up Sturm sequence calcula-

tions, and achieves its best effects on cases where Sturm computations dominate the running time.

Also notice that all cases use a high level of precision to isolate algebraic numbers. Due to the lazy

evaluation procedures used in ESOLID, it is likely that levels of precision close to this would be

required in order to guarantee accuracy. While a system that does not provide this level of precision

may still work (e.g. BOOLE on cases a–d), it will be prone to failure.

6.3 Importance of Precision

The effectiveness of exact arithmetic in dealing with numerical errors can easily be demonstrated.

Consider the synthetic example in table 1. Two cylinders barely interpenetrate. The table gives

performance data for this case at varying levels of interpenetration. As can be seen in the table,

depending on the depth of penetration, high levels of accuracy may be required in order to guar-

antee correctness. For some depths, it is impossible for standard floating-point data to provide the

appropriate level of precision, since IEEE double-precision arithmetic provides at most 53 bits of

precision, under the most ideal circumstances. In fact, IEEE floating point data could not even

represent the input in most cases shown, as the depth of interpenetration is too small. While this

is a synthetic case, and it is unlikely that any real-world example would be arranged like this, this

case illustrates that ESOLID can correctly operate at these high levels of accuracy.

Accuracy in numerical calculations is also very important in real-world situations, as seen in

the failure of the BOOLE system on certain example inputs. It is not always clear why BOOLE

fails on specific examples. While numerical error is certainly a contributing factor [38], other

failures may be due to more general programming bugs. Nevertheless, there are cases where the

cause of failure is more clearly due to numerical problems.

Figure 6 shows two real-world examples where a fixed precision arithmetic based modeler can

have problems. Example 6(a) shows one Boolean operation that is part of a larger model in the

Bradley. A difference operation is performed, resulting in the solid shown in figure 6(b). ESOLID
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Depth of Precision Total Sturm Resultant
Penetration Required Time Time Time

( PQ5$R
!
) (bits) (s) (s) (s)

3 20 8.64 2.19 4.17
6 20 12.45 4.14 5.61
9 25 17.25 7.23 7.47

12 30 22.98 11.13 9.15
15 40 33.21 17.07 11.88
18 52 47.46 24.66 14.46
21 58 60.15 32.64 18.15
24 62 86.76 47.64 22.80
27 68 147.66 99.75 26.37
30 71 120.36 74.79 29.64
33 77 164.01 108.03 34.41
36 117 205.17 143.40 38.34
39 88 446.28 357.63 46.89
42 141 317.55 237.15 49.11
45 96 385.80 296.19 55.80

Table 4: Timing results for the example shown in the picture. The depth of penetration of the
two cylinders is given in the first column. Following that is the maximum precision required in
the boundary evaluation algorithm to represent the algebraic numbers exactly. S bits of precision
required means that algebraic numbers were determined to an interval of width no smaller thanT R L . The total time to perform boundary evaluation is listed, followed by the time spent in Sturm
computations (both generation and evaluation of Sturm sequences), and in resultant computations.
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Figure 6: Close-up views of two operations where BOOLE fails.
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correctly handles the case, while BOOLE fails. BOOLE’s failure in this case is reported as a

“curves did not close” error, indicating a significant problem with the intersection curve computa-

tion. Although there are many possible reasons this could occur, it is clear that the two solids meet

nearly tangentially. Near-tangential intersections are highly prone to numerical error, since a slight

modification in either solid can have a major impact on the intersection curves between them. It

can be surmised that such a problem led to BOOLE’s failure.

A more direct example is shown in figure 6(c). This close-up view of the Relay Mechanism

(5(e)) shows two cylinders meeting in a nearly degenerate configuration. The intersection curve,

shown in the domain of one patch in figure 6(d), even appears singular. In fact, this curve is

not singular (it has two separate components) and ESOLID correctly resolves the topology of the

curve. BOOLE, however, exits with an error that a singularity has been found. Clearly the exact

computation of ESOLID allows an operation to be easily performed that would otherwise cause

problems.

7 Conclusion

We have presented a description of the ESOLID system for performing exact boundary evaluation

of curved solids. It has been applied to real-world examples, achieving times within one order

of magnitude of the time spent by an inexact system on those cases. We have demonstrated that

ESOLID can accurately evaluate a boundary in cases that are prone to numerical error in inexact

systems. To our knowledge, no other exact system has achieved such results.

7.1 Implications for Further Development

ESOLID has demonstrated that exact boundary evaluation is possible with reasonable efficiency

for low-degree curved solids. ESOLID was designed both as a proof-of-concept and as a system

to allow various speedups and algorithms to be compared. We hope that showing that such an

implementation is possible will spark further work in exact computation with curved solids, and
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that knowledge gained from the implementation of ESOLID can be transferred to aid future sys-

tems. Although exact computation may still be too slow for many applications, it is reasonable to

expect that with further research and development, the efficiency of exact computations can far ex-

ceed the level presented here. The speedups described in this paper have allowed an improvement

of many orders of magnitude, and further research should yield significantly more improvement.

For example, recent work by Rouillier and Zimmerman [44] might yield significant speedup in the

curve-curve intersection routines, far beyond what has been obtained via MAPC’s implementation.

We have attempted to show that exact computation is a feasible approach for eliminating numerical

error, is not as hopeless as common perception would believe, and should be a useful direction for

further research.

7.2 Lessons Learned

The implementation of ESOLID led us to several observations about the implementation of exact

systems. Among these were:

� Designing Algorithms for Exact Computation: It is tempting to just take an existing al-

gorithm and substitute exact computations for the inexact ones. This implementation may

be exact, but it is likely to be far less efficient than an algorithm for which exact arithmetic

was assumed during design. When building an (efficient) exact system, exactness should be

considered at all levels of algorithm design.

For example, in an inexact system, point coordinates may be represented as IEEE floating-

point numbers, while an exact system would use some exact representation of algebraic

numbers. Algorithms designed assuming inexact arithmetic would likely assume that com-

paring two points for equality would be very fast, as would be the case if their coordinates

were just floating-point numbers. However, comparing two points represented exactly can

potentially take a great deal of time. An algorithm designed with this consideration in mind

may be able to reduce the number of point comparisons, and perform better on exact point

representations.
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� Layering Speedups: As mentioned in section 5, for efficiency, a wide variety of layered

speedups must be used. Different speedup techniques may be appropriate at different algo-

rithmic and conceptual levels of the program. Finding the appropriate places to use various

techniques requires a significant amount of testing.

� Testing: Although exact computation is meant to eliminate numerical errors, exact compu-

tations are just as prone (if not more so) to programming errors as inexact ones. Since each

exact routine is assumed to be reliable and no tolerances are used at later stages, thorough

testing is important. While general-purpose computer algebra systems, such as Mathemat-

ica, might not be appropriate for the basis of a program, they can be extremely helpful in the

testing and analysis stage.

� Space Requirements: Exact computations and representations tend to use tremendous amounts

of memory. Although not a focus of the ESOLID work, the importance of memory manage-

ment became apparent at later stages of development. ESOLID has the potential to take up

very large amounts of memory (several megabytes on simple problems). Decisions made

at earlier development stages, such as a lack of reference counting and storing intermedi-

ate results, made it difficult to implement more memory-efficient approaches at later stages.

While this was not a problem for our development, memory consumption could easily be-

come an issue for exact implementations on other systems. This is likely to be a problem for

any exact implementation, since exact calculations tend to produce results that use far more

memory (e.g. require additional data structures and arbitrary numbers of bits) than standard,

hardware supported calculations. Such considerations need to be taken into account at the

original stages of system design.

� Redundant Information: In a non-exact system, redundant topological or geometric in-

formation is a potential source for serious robustness problems. For example, storing both

vertex positions and plane equations for polyhedra can yield inconsistencies (since the ver-

tex might not lie exactly on the plane of an adjacent face). Thus, in inexact computations, it
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is often wise to avoid redundant data. With exact computation, however, no inconsistencies

will arise, so it is not necessary to constantly ensure that only a consistent set of data is used.

This can result in much simpler programming and allows certain operations to be performed

much more efficiently.

7.3 Future Work

There are several avenues open for future work extending from ESOLID. Among these are:

� Higher-degree Surfaces: Although ESOLID does not limit the degrees of input surfaces,

higher-degree parametric surfaces, including most spline patches (e.g. bicubic Beziers), are

still far too slow (more than 1–2 orders of magnitude difference) in our current implemen-

tation. While low-degree surfaces are sufficient for the standard CSG primitives, handling

higher-degree surfaces would certainly be useful.

� Degeneracies: ESOLID is restricted in that it assumes that input will not be degenerate,

preventing ESOLID from being considered fully robust. Degeneracies are a part of many

real-world examples, including several from the Bradley Fighting Vehicle, and it would be

useful to address them directly. Because numerical error can both create and remove degen-

eracies, exact computation is an important prerequisite to fully handling degeneracies. Thus,

ESOLID can serve as a base for exploring new approaches to degeneracies.

� Speedups: Besides those listed, numerous other speedup techniques may be applied.

� Memory Issues: Besides time-efficiency, memory-efficient exact computations are a worth-

while subject for further study.

� Extended I/O and Integration: The current input and output capabilities of ESOLID, while

useful for research purposes, could be expanded significantly. Of particular interest would

be to identify ways to output or store intermediate data in such a way that the exact repre-

sentation could be easily recovered.
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� Implicit Surfaces: Our approach relies on the assumption that models are described by

parametric patches. It would be useful to see whether a similar exact computation approach

could be applied to solids described by implicit surfaces.
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