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Abstract
Research in several fields now requires the analysis of datasets in which multiple high-
dimensional types of data are available for a common set of objects. In particular, The Cancer
Genome Atlas (TCGA) includes data from several diverse genomic technologies on the same
cancerous tumor samples. In this paper we introduce Joint and Individual Variation Explained
(JIVE), a general decomposition of variation for the integrated analysis of such datasets. The
decomposition consists of three terms: a low-rank approximation capturing joint variation across
data types, low-rank approximations for structured variation individual to each data type, and
residual noise. JIVE quantifies the amount of joint variation between data types, reduces the
dimensionality of the data, and provides new directions for the visual exploration of joint and
individual structure. The proposed method represents an extension of Principal Component
Analysis and has clear advantages over popular two-block methods such as Canonical Correlation
Analysis and Partial Least Squares. A JIVE analysis of gene expression and miRNA data on
Glioblastoma Multiforme tumor samples reveals gene-miRNA associations and provides better
characterization of tumor types.

*This work was partially supported by NIH grant R01 MH090936-01, NSF grant DMS-0907177, NSF grant DMS-0854908 and NIH
grant U24-CA143848.

Data and software are available at https://genome.unc.edu/jive/.
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1. Introduction
Many fields of scientific research now analyze high-dimensional data, in which a large
number of variables are measured for a given set of experimental objects. Increasingly, those
data include multiple high-dimensional datasets for a common set of objects. Table 1 gives
very diverse examples of such data objects. In this context we refer to each dataset as a data
type to indicate that it comes from a distinct mode of measurement or domain.

The motivation for this article is a particular application to biological data. In biomedical
studies, a number of technologies now commonly collect diverse information on an
organism or tissue sample. The amount of available biological data from multiple platforms
and technologies is expanding rapidly. The 2011 Online Database collection of Nucleic
Acids Research lists 1330 publicly available databases that measure various aspects of
molecular and cell biology (Galberin and Cochrane, 2011). Large online databases such as
ArrayExpress (Parkinson et al., 2009) and the UCSC Genome-browser (Rhead et al., 2010)
often contain multiple data types collected from a common set of samples. Large-scale
projects like The Human Connectome Project (Sporns, Tononi and Kotter, 2005) and The
Cancer Genome Atlas (TCGA Research Network, 2008) focus on the integrated analysis of
multiple data types.

Well established multivariate methods can be used to separately analyze different data types
measured on the same set of objects. However, individual analyses will not capture the
critical associations and potential causal relationships between data types. Furthermore, each
data type can impart unique and useful information. There is a strong need for new statistical
methods that explore associations between multiple data types and combine data from
multiple sources when making inference about the objects. This motivates an interesting
new area of statistical research.

1.1. Data
We describe an application to data from TCGA, an ongoing collaborative effort funded by
the National Cancer Institute (NCI) and the National Human Genome Research Institute
(NHGRI). A goal of TCGA is to characterize cancer on a molecular level through the
analysis and integration of multidimensional large scale genomic data. The integration of
information from disparate genomic sources has the promise to provide a more
comprehensive understanding of cancer genetics and cell biology.

We focus, in particular, on a set of 234 Glioblastoma Multiforme (GBM) tumor samples.
GBM is a common and very fatal form of malignant brain tumor. However, GBM cases are
not homogeneous, and an understanding of systematic distinctions between the tumor
samples may lead to more targeted therapies. Verhaak et al. (2010) classified the TCGA
GBM samples into four subtypes: Neural, Mesenchymal, Proneural and Classical. These
subtypes have distinct expression characteristics, copy number alterations, and gene
mutations. In addition, there were clinical differences across subtypes in response to
aggressive therapy.

Copy number aberrations and somatic mutations, and their relation to gene expression, have
been recognized as important aspects of GBM biology (see, e.g., Bredel et al. (2009) and
TCGA Research Network (2008)). However, the role of microRNA (miRNA) data in GBM
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biology has not been well studied. In this article we focus on the integrated analysis of
miRNA and gene expression data. These data are two distinct data types, as they are
measured on different platforms and represent different biological components.

Current biological ideas suggest that miRNAs function primarily as post-transcriptional
regulators of gene expression. Typically, they are considered negative regulators, decreasing
gene expression levels. Many of the algorithms that predict miRNA targets (TargetScan,
miRanda, PicTar, and rna22) have vastly different predicted gene lists (Peter, 2010).
Therefore, miRNA and gene expression relations are not well understood. However, recent
research suggests that miRNAs may be partly responsible for the expression of well-known
tumor activating genes (oncogenes) and tumor suppressing genes.

Investigating each data type individually would lose some important relations, considering
the inherent interactions between miRNAs and gene expression. An integrative, multivariate
approach is desired. The data decomposition proposed in Section 1.2 gives new insight into
the joint and individual variation between the miRNA and gene expression data. Although
this decomposition is unsupervised with respect to the above GBM subtypes, we further
investigate how it leads to a better characterization of these subtypes.

For each tumor sample, there are measures of intensity for 534 miRNAs and 23,293 genes
(messenger RNA). These data are publicly available from TCGA. The preprocessed data
used for this analysis are available at https://genome.unc.edu/jive.

1.2. Proposed Method
Given the biological relation between gene expression and miRNA, it is reasonable to
expect shared patterns in the two sets of measurements. We refer to such shared patterns as
joint structure. We also expect the gene expression data to have systematic variation that is
unrelated to the miRNAs, and vice versa. This individual structure can be the result of
technical artifacts, but may also be of biological interest. For example, miRNA regulation is
just one of many factors that can influence gene expression. This structured individual
variation can interfere with finding important joint signal, just as joint structure can obscure
important signal that is individual to a data type.

To separate joint and individual effects, we introduce a method called Joint and Individual
Variation Explained (JIVE). This exploratory method decomposes a dataset into a sum of
three terms: a low-rank approximation capturing joint structure between data types, low-
rank approximations capturing structure individual to each data type, and residual noise.
Analysis of individual structure provides a way to identify potentially useful information
that exists in one data type, but not others. Accounting for individual structure also allows
for more accurate estimation of what is common between data types. As illustrated in
Section 4.2, JIVE can identify joint structure not found by existing methods. It may be used
regardless of whether the dimension of a dataset exceeds the sample size. Furthermore, JIVE
is applicable to datasets with more than two data types, and has a simple algebraic
interpretation.

A heatmap of joint structure and individual structure in the GBM data, identified by JIVE, is
shown in Figure 1. Columns (corresponding to the 234 samples) are shown in the same
order for both gene and miRNA data in the display of joint structure. This common ordering
shows complex structure in both data types, and shared patterns are present in subsets of
genes and miRNAs. JIVE also identifies a large amount of structured variation individual to
the gene expression data, and a lesser degree of individual structure in the miRNA data.
While the individual structure accounts for more variability in the data than the joint
structure, our analysis suggests that the joint structure is more relevant to the cancer biology.
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2. Model and Estimation
2.1. Formal Framework

Formally, we focus on data for multiple matrices X1, X2, …, Xk with k ≥ 2. Each matrix has
n columns, corresponding to a common set of n objects. The ith matrix Xi has pi rows, each
corresponding to a variable in a given measurement technology that varies from matrix to
matrix. For example, in our application to GBM data the rows of X1 contain gene expression
measurements (of dimension p1 = 23, 293) and the rows of X2 contain miRNA
measurements (of dimension p2 = 534) for the same set of 234 tissue samples (n = 234). The
k matrices may be combined into a single data matrix

where p = p1 + p2 + … + pk.

Direct analysis of X can be problematic as the size and scale of the constituent data types
often differ. To remove baseline differences between data types, it is helpful to row-center
the data by subtracting the mean within each row. Data types may also be of different
dimension (pi) or differ in variability. To circumvent cases where “the largest dataset wins”,
it is helpful to scale each data type by its total variation, or sum-of-squares. In particular, for

each i define , where || · || defines the Frobenius norm . Then,

 for each i, and each data type contributes equally to the total variation of the
concatenated matrix

(2.1)

2.2. Model
Let X1, X2, …, Xk be matrices as in Section 2.1, scaled appropriately. Joint structure is
represented by a single p × n matrix of rank r < rank(X). Individual structure for each Xi is
represented by a pi × n matrix of rank ri < rank(Xi).

More formally, let Ai be the matrix representing the individual structure of Xi, and let Ji be
the submatrix of the joint structure matrix that is associated with Xi. Then, the unified JIVE
model is

(2.2)

where εi are pi × n error matrices of independent entries with (εi) = 0p</sub>i</sub>×n. Let
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denote the joint structure matrix. The model imposes the rank constraints rank(J) = r and
rank(Ai) = ri for i = 1, …, k. Furthermore, we require that the rows of joint and individual

structure are orthogonal:  for i = 1, …, k. Intuitively, this means that sample
patterns responsible for joint structure between data types are unrelated to sample patterns
responsible for individual structure. This requirement does not constrain the model, in that
any matrix in the form (2.2) can be written equivalently with orthogonality between joint
and individual structure. Furthermore, the orthogonality constraint assures that the joint and
individual components in (2.2) are uniquely determined (see Supplement A for more
details). It is remarkable that no further orthogonality constraints (say, between the column
space of Ji and the column space of Ai, or between the row spaces of each Ai) are required to
make the decomposition identifiable.

2.3. Estimation
Here we discuss estimation of the model for fixed ranks r, r1, …, rk. The choice of these
ranks is important to accurately quantify the amount of joint and individual structure.
Supplement A describes a permutation testing approach to rank selection.

Joint and individual structure are estimated by minimizing the sum of squared error. Let R
be the p × n matrix of residuals after accounting for joint and individual structure:

We estimate the matrices J and A1, …, Ak by minimizing ||R||2 under the given ranks. This
is accomplished by iteratively estimating joint and individual structure:

• Given J, find A1, …, Ak to minimize ||R||.

• Given A1, …, Ak, find J to minimize ||R||.

• Repeat until convergence.

The joint structure J minimizing ||R|| is equal to the first r terms in the singular value
decomposition (SVD) of X with individual structure removed. The estimated individual
structure for Xi is equal to the first ri terms of the SVD of Xi with the joint structure
removed. The estimate of individual structure for Xi will not change those for Xj, j ≠ i, and
hence the k individual approximations minimize ||R|| for fixed joint structure. Pseudocode
for this iterative algorithm is given in Supplement A. Computing time can be improved by
reducing the dimensionality of X1, …, Xk at the outset via their SVD (see Supplement A).

The iterative method is monotone in the sense that ||R|| decreases at each step. Thus ||R||
converges to a coordinate-wise minimum, which can’t be improved by changing the
estimated joint or individual, structure. Further convergence properties of the algorithm are
currently under study.
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2.4. Illustrative Example
As a basic illustration we generate two matrices, X and Y, with simple patterns
corresponding to joint and individual structure. The simulated data are depicted in Figure 2.
Both X and Y are of dimension 50 × 100, i.e., each has 50 variables measured for the same
100 objects. A common pattern V of 100 independent standard normal variables is added to
half of the rows in X and half of the rows in Y. This represents the joint structure between
the two datasets. Structure individual to X is generated by partitioning the objects into five
groups, each of size twenty. Those columns corresponding to group 1, 2, 3, 4, or 5 have −2,
−1, 0, 1, 2 added to each row of X, respectively. Structure individual to Y is generated
similarly, but the groups are randomly determined and are therefore independent of the
groups in X. Finally, independent N(0,1) noise is added to both X and Y. Note that the
important joint structure is visually obscured.

The common pattern V represents an underlying phenomenon that contributes to several
variables in both X and Y. Practically, the individual structure in X (or Y) may correspond
to an experimental grouping of the measured variables in X (Y) not present in Y (X), e.g.,
batch effects in microarray data. Our goal is to identify both the common underlying
phenomenon and individual group effects.

Figure 3 shows the JIVE estimate for joint structure, JIVE estimates for individual structure,
and the fit given by the sum of joint and indivual structure. Estimates closely resemble the
true signal in Figure 2.

2.5. GBM Data
As the gene expression and miRNA data for the GBM samples differ in dimension and
variability, they were scaled as in Section 2.1. Permutation testing (see Supplement A) was
used to determine the ranks of estimated joint and individual structure. The test (using α =
0.01, and 1000 permutations) identified

• rank 5 joint structure

• rank 33 structure individual to gene expression.

• rank 13 structure individual to miRNA.

The percentage of variation (sum of squares) explained in each dataset by joint structure,
individual structure, and residual noise is shown in Figure 4. This illustrates how the JIVE
decomposition can be used to quantify and compare the amount of shared and individual
variation between data types. As shown in Figure 4, joint structure is responsible for more
variation in miRNA than in gene expression (23% and 14%, respectively), and the gene
expression data has a considerable amount of structured variation (58%) that is unrelated to
miRNA. This is consistent with current biological understanding, as miRNAs are just one of
several factors that can influence gene expression.

Heatmaps of the low-rank estimates for joint structure, individual structure, and residual
noise are shown in Figure 5. Columns have the same order in all heatmaps. This reveals the
shared patterns present in the joint structure from Figure 1, but little of the structure that is
present in the individual estimates.

3. Model Factorization
3.1. Relation to PCA

The JIVE model can be factorized as in Principal Component Analysis (PCA). For a row-
centered p × n matrix X, the first r principal components yield the rank r approximation
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where S(r×n) contains the sample scores and U(p×r) contains the variable loadings for the
first r components.

As in PCA, the rank r joint structure matrix J in the JIVE model can be written as US, where
U is a p ×r loading matrix and S is an r ×n score matrix. Let

where Ui gives the loadings of the joint structure corresponding to the rows of Xi. The rank
ri individual structure matrix Ai for Xi can be written as WiSi, where Wi is a pi × ri loading
matrix and Si is an ri × n score matrix. Then, the low-rank decomposition of Xi into joint and
individual structure is given by Xi ≈ UiS + WiSi. This gives the factorized model

(3.1)

Joint structure is represented by the common score matrix S. These scores summarize
patterns in the samples that explain variability across multiple data types. The loading
matrices Ui indicate how these joint scores are expressed in the rows (variables) of data type
i. The score matrices Si summarize sample patterns individual to data type i, with variable
loadings Wi.

3.2. GBM Data
Sample scores for joint structure, matrix S in Equation 3.1, reveal sample patterns that are
present across the miRNA and gene expression data. Sample scores for individual structure,
matrices S1 and S2 in Equation 3.1, reveal sample patterns that are individual to each data
type. Figure 6 shows separate scatterplots of the sample scores for the first two principal
components of estimated joint structure, the first two components individual to miRNA, and
the first two components individual to gene expression. Subtype distinctions are clearly
present in the scatter-plot of joint scores, but a subtype effect is not visually apparent in
either of the individual scatterplots.

Since the subtypes are defined by gene expression clustering, their appearance in Figure 6 is
not surprising. However, the clustering apparent in the joint plot shows involvement of
miRNA in the differentiation of these subtypes. It is interesting that a subtype effect is not
apparent in either scatterplot for individual structure, suggesting that this variation is driven
by other biological components. This is remarkable, as the fraction of gene expression
variation explained by joint structure (see Figure 4) is small.

To numerically compare the extent to which subtype distinctions are present, we consider
the standardized within-subtype sum of squares
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where s(j) = {k: samples j and k belong to the same subtype}. This represents the variability
within subtypes (across all rows) as a proportion of total variability. Table 2 gives SWISS
scores for the gene expression and miRNA data, and SWISS scores for the JIVE estimates
of joint and individual structure. A permutation test described in Cabanski et al. (2010)
concludes that the four subtypes are significantly more distinguished on the estimated joint
structure than on the gene expression and miRNA data (p < 0.001; 10, 000 permutations).
SWISS scores for individual structure in gene expression and miRNA are close to one, as
subtype distinctions are almost entirely represented in the joint structure between the two
data types. This suggests that miRNA may play a greater role in GBM biology than
previously thought.

In general, these analyses illustrate how an unsupervised, integrated analysis across multiple
data types can result in a better distinction between subtypes or other biological classes. One
could conduct a similar analysis to investigate how the JIVE components relate to survival
or other clinical factors, rather than subtype. Furthermore, a direct cluster analysis on the
JIVE components could be used to identify sample groups that are distinguished across
multiple data types.

4. Comparison with Existing Methods
4.1. Existing Methods

One approach to the analysis of multiple datasets is to mine the data for variable-by-variable
associations. In computational biology, large-scale correlation studies can identify millions
of pairwise variable associations between genomic data types (see, for example, Gilad,
Rifkin and Pritchard (2008)). Furthermore, network models can link associated variables
across and within data types (see Adourian et al. (2008)). However, analysis of variable-by-
variable associations alone does not identify the global modes of variation that drive
associations across and within data types, which is the focus of this paper.

PCA of the block-scaled matrix Xscaled in (2.1) coincides with Consensus PCA (Wold,
Kettaneh and Tjessem, 1996 ; Westerhuis, Kourti and MacGregor, 1998). This direct
approach is also used by the iCluster method (Shen, Olshen and Ladanyi, 2009), which
performs clustering based on a factor analysis of the concatenated matrix X. While these
methods synthesize information from multiple data types, they do not distinguish between
joint or individual effects.

Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a popular method to globally
examine the relation between two sets of variables. If X1 and X2 are two datasets on a
common set of samples, the first pair of canonical loadings (variable weights) u1 and u2 are

unit vectors maximizing . Geometrically, u1 and u2 can be interpreted as
the pair of directions that maximize the correlation between X1 and X2. Sample projections

on the canonical loadings,  and , give the canonical scores for X1 and X2.
Subsequent CCA directions can be found by enforcing orthogonality with previous
directions. For datasets with p1 > n or p2 > n the CCA directions are not well defined, and
over-fitting is often a problem even when p1, p2 < n. Hence, standard CCA is typically not
applicable to high-dimensional data.
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Partial Least Squares (PLS) (Wold, 1985) directions are defined similarly to CCA, but
maximize covariance rather than correlation. PLS is appropriate for high-dimensional data.
However, Trygg and (Wold 2003) examine how structured variation in X1 not associated
with X2 (and vice-versa) can drastically alter PLS scores, making the interpretation of such
scores problematic. Their solution, called O2-PLS, seeks to remove structured variation in
X1 not linearly related to X2 (and vice versa) from the PLS components. As such, O2-PLS
components are often more representative of the true joint structure between two data types.
However, the restriction of O2-PLS (and PLS) to pairwise comparisons limits their utilty in
finding common structure among more than two data types.

Witten and Tibshirani (2009) recently introduced Multiple Canonical Correlation Analysis
(mCCA) to explore associations and common structure on two or more datasets. For X1, X2,
…, Xk as in Section 2.1, standardized so that each row has mean 0 and standard deviation 1,
the standard mCCA loading vectors u1, u2, …, uk satisfy

As such, mCCA can be viewed as a natural extension of PLS to more than two data types.

Di et al. (2009) develop multi-level functional PCA (MF-PCA) for the analysis of variation
between and within grouped samples of functional data. Similar in spirit to JIVE, MF-PCA
yields a sum of two PCA decompositions: one for variability between groups and one for
variability within groups. We stress that JIVE is designed for analysis across disparate data
types, while MF-PCA analyzes grouped observations on the same functional data type.
More substantively, MF-PCA does not model shared structure and individual structure.
Rather, MF-PCA models structure among main effects (e.g., at the group level) and
structured variation about those main effects (e.g., at the sample level), in the context of
functional data.

4.2. Illustrative Example
We return to the example introduced in Section 2.4. Consensus PCA of the concatenated
matrix [X′ Y′]′ does a poor job of finding the joint structure. The scatterplot in Figure 7
shows a weak association between the first principal component scores and the joint
response V. This is because PCA of the concatenated data is driven by all variation in the
data, joint or individual.

Figure 8 shows an analysis of PLS and CCA for X and Y. The scores for the first PLS
direction for X and Y show a weak association (panel C). Furthermore, the PLS scores are
not strongly related to the joint response V (panels A and B). Scores for X and Y show a
stronger association with V within groups, indicating how for PLS individual structure can
interfere with the identification of joint structure. The CCA scores are very highly correlated
(panel F), but show nearly no association with the joint or individual structure (panels D and
E). This illustrates the tendency of CCA to overfit on high-dimensional data.

Next we consider the JIVE analysis of X and Y. Scores and loadings for the joint component
and both individual components are shown in Figure 9. JIVE is able to find the true joint
signal between the two datasets, as joint scores are closely associated with the common
response V (panel A). Furthermore, individual scores do a good job of distinguishing the
groups specific to X and Y (panels D and F). The joint signal was added to only the first 25
variables in X and Y, which is reflected in the joint loadings (panels B and C). The
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individual groups were defined on all 50 variables for both X and Y, which is reflected in
the individual loadings (panels E and G). Note that joint and individual loadings are not
constrained to be orthogonal, which gives the analysis more flexibility.

5. Variable Sparsity
In many practical applications, important structure between samples or objects is present on
only a small subset of the measured variables. This motivates the use of sparse methods, in
which only a subset of variables contribute to a fitted model. Sparse versions of exploratory
methods such as PCA (Shen and Huang, 2008), PLS (Le Cao et al., 2008) and CCA
(Parkhomenko, Tritchler and Beyene, 2009) already exist.

Here, we describe the use of a penalty term to induce variable sparsity in the JIVE
decomposition. Sparsity is accomplished if some of the variable loadings for joint and
individual structure (U and Wi in Equation 3.1) are exactly 0. For weights λ and λi, we
minimize the penalized sum of squares

where Pen is a penalty designed to induce sparsity in the loading vectors. In our
implementation, Pen is an L1 penalty analogous to Lasso regression (Tibshirani, 1996),
namely

Under this penalty, loadings of variables with a small or insignificant contribution tend to
shrink to 0. Other sparsity-inducing penalties (e.g. hard thresholding) may be substituted for
L1 penalization.

Estimation with sparsity is accomplished by an iterative procedure analogous to that used for
the non-sparse case:

• Given J, find Ai to minimize ||Ri||2 + λi Pen(Wi) for each i = 1, …, k.

• Given A1, …, Ak, find J to minimize ||R||2 + λ Pen(U).

• Repeat until convergence.

At each iteration, the sparsity penalty is incorporated through the use of a sparse singular
value decomposition (SSVD), adapted from Lee et al. (2010). The weights λ, λi may be
pre-specified or estimated via the Bayesian Information Criterion (BIC) (Schwarz, 1978) at
each iteration.

Inducing sparsity in the joint structure effectively identifies subsets of variables within each
data type that are associated. Examination of the joint sample scores, in turn, reveals sample
patterns that drive these associations.

5.1. GBM Data
A natural way to explore associations between individual genes and miRNAs is to compute
the matrix of all gene-miRNA correlations, and then examine the set of significant
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correlations. Panel A of Figure 10 shows a heatmap of the significant gene-miRNA
correlations.

A sparse implementation of JIVE provides an alternative approach to identifying gene-
miRNA associations, and can reveal additional structure. Panel B shows the sample scores
in the first joint component resulting from a sparse JIVE analysis of the data. Panel C shows
all the gene-miRNA pairs with the property that both that gene and miRNA have non-zero
loadings in the first joint component. Thus, the non-zero entries of the heat map have the
form of a Cartesian product. We note that the non-zero entries in Panel C closely match
those in the correlation map of Panel A, and that the signs of these entries also show good
agreement. Scores for the first joint component (Panel B) distinguish the Mesenchymal and
Proneural subtypes, suggesting that differences between these sample groups are driving the
first joint component, and appear to influence the correlation structure of the data as well.

Panels D and E display sample scores and non-zero loadings for the second joint component.
Panel D shows that the second joint component distinguishes the Neural and Classical
subtypes. We note that Panel E is markedly different from Panel A, indicating that the
second joint component is capturing associations between the expression of genes and
miRNA that are not immediately apparent from the consideration of correlations alone.
Indeed, these associations appear to be masked by variation captured in the first joint
component.

Of primary interest are the biological relations between the genes and miRNAs. Figure 11
displays a network of possible gene-miRNA interactions for each of the first two joint
components, constructed from genes and miRNAs with large absolute loadings. A gene-
miRNA pair is linked if the miRNA is predicted to regulate the expression of the gene,
based on its DNA sequence. In particular, we use the mirWalk target prediction module
(Dweep et al., 2011) and include those pairs that are given in two or more of the miRNA
target databases miRanda, Pictar, RNA22 and TargetScan. We caution that current methods
to predict miRNA targets are inexact, and linked gene-miRNA pairs only indicate potential
causal relations. Nevertheless, each joint component includes several predicted gene-
miRNA interactions.

We further examine the individual genes and miRNAs that contribute the most to the first
two joint components. The POSTN gene, which has the largest loading among genes in the
first joint component, encodes the protein Periostine. Over-expression of Periostine is
frequently reported in cancerous tumor cells, and is suspected to facilitate cell motility (the
ability of a cancer cell to migrate quickly and spontaneously) (Gillan et al., 2002). In GBM,
the downregulation of POSTN expression by mir-219 has recently been linked to differences
in survival and time to disease progression (Zinn et al., 2011). Interestingly, the miRNA
mir-124a has the largest loading in both components, and a recent study suggests that this
miRNA may also play an important role in GBM cell motility (Fowler et al., 2011).

6. Summary and Discussion
TCGA and similar projects are providing researchers with access to an increasing number of
datasets that consist of multiple high-dimensional data types. However, there are relatively
few general statistical methods for the analysis of such integrated datasets, and the unique
features of JIVE provide a powerful new approach. JIVE finds both the coordinated
activities of multiple data types, as well as those features unique to a particular data type.
We demonstrate how accounting for joint structure can lead to better estimation of
individual structure, and vice-versa. Our application of JIVE to gene and miRNA data on
GBM tumor samples has provided better characterization of tumor types, and better
understanding of the biological interactions between the given data types.
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JIVE does not require that the data are ordered, as in functional data analysis. Regularization
techniques such as smoothing may improve the method for functional data. As pointed out
by an Associate Editor, JIVE estimates for joint and individual structure are not robust to
outliers. Exploratory methods such as PCA suffer similarly, and robust versions of PCA
have recently been developed (see, for example, Candes et al. (2009)). A robust version of
JIVE is an interesting potential extension. Further, any missing values must be imputed prior
to computing JIVE estimates. An approach that explicitly accounts for missing values in the
estimation of joint and individual structure is another potential extension.

The statistical properties of the algorithm also deserve further attention. In particular,
measures of confidence (e.g., for variation explained by joint and individual structure)
would be useful. Standard resampling techniques such as bootstrapping may help in this
regard. However, factors such as the discrete nature of the ranks must be considered
carefully.

While this paper focuses on vertically integrated biomedical data, the JIVE model and
algorithm are very general and may be useful in other contexts. A similar approach can be
applied to horizontally integrated data, in which disparate sets of samples (e.g. sick and
healthy patients) are available on the same data type. In finance, JIVE has the potential to
improve on current models that explain variation across and within disparate markets (see
Bekaert, Hodrick and Zhang (2009)). These applications are currently under study.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
JIVE estimates for joint structure and individual structure in the GBM data. Blue
corresponds to negative values, red positive values. Columns are given in the same order in
the joint structure, and subsets of genes and miRNAs that share similar patterns are
highlighted in green and yellow.
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Fig 2.
X and Y are generated by adding together joint structure, individual structure, and noise.
Blue corresponds to negative values, red positive values.
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Fig 3.
JIVE estimates for joint structure and individual structure. Blue corresponds to negative
values, red positive values.
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Fig 4.
Percentage of variation (sum of squares) explained by estimated joint structure, individual
structure and residual noise for miRNA and gene expression data.
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Fig 5.
Heatmaps of low-rank estimates for joint structure, individual structure and residual noise in
the gene expression (top) and miRNA (bottom) data. Blue corresponds to negative values,
Red positive values. Columns have the same order in all heatmaps.
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Fig 6.
Scatterplots of sample scores for the first two joint components, first two individual miRNA
components, and first two individual gene expression components. Samples are colored by
subtype: Mesenchymal ( yellow), Proneural ( blue), Neural ( green) and Classical ( red).
Samples colored black were assayed after the initial subtype analysis, and are considered
unclassified.
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Fig 7.
Scatterplot of the first consensus principal component scores vs the joint signal V. The
scores are weakly associated with the joint signal.
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Fig 8.
Scores for the first PLS, and CCA, directions for X and Y. Panels (A) and (B) show some
association between the PLS scores and the joint signal V. Points are colored by simulated
group in both X and Y, and are more highly associated with V within each group. The two
PLS directions have a weak correlation (C). The CCA directions correlate with each other
(F), but not the common signal V (D and E). This illustrates the tendency of CCA to overfit.
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Fig 9.
Scores and loadings for joint and individual components in the JIVE decomposition. Joint
scores are highly associated with the common signal V (panel A). Individual scores
distinguish groups specific to X and Y (D and F). Joint loadings (B and C) show a strong
effect (difference from zero) on half of the variables in X and Y. Individual loadings (E and
G) show a similar effect on all variables in X and Y.
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Fig 10.
Plot of gene-miRNA correlations (A), and scores and loadings for the first two sparse joint
components (B–E). In (A), gene-miRNA pairs are colored red if they have a significant
positive correlation and blue if they have a signficant negative correlation (P < 10−5). Panels
(B) and (D) show sample scores for the first two joint components, colored by subtype.
Panels (C) and (E) display gene-miRNA pairs where both have nonzero loadings. Pairs are
colored red if both gene and miRNA loadings have the same sign, blue otherwise. In panels
(A), (C) and (E) genes and miRNAs are ordered separately by average linkage correlation
clustering.
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Fig 11.
Network of predicted gene-miRNA interactions for the first two sparse joint components.
Gene-miRNA pairs are linked if the miRNA is predicted to target the gene in two or more of
the four databases miRanda, Pictar, RNA22 and TargetScan. Genes are shown as circles,
and miRNAs are shown as squares. All predicted targets are shown between the 10 miRNAs
with the largest absolute loading and the 10 genes with the largest absolute loading, for both
components (genes and miRNAs with no targets are not shown). Genes and miRNAs with a
positive loading are colored red, and with a negative loading are colored blue. The icon size
is proportional to the absolute loading.

Lock et al. Page 25

Ann Appl Stat. Author manuscript; available in PMC 2013 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lock et al. Page 26

Table 1

Examples with multiple high-dimensional data types.

Field Object Data types

Computational biology Tissue samples Gene expression, microRNA, genotype, protein abundance/activity

Chemometrics Chemicals Mass spectra, NMR spectra, atomic composition

Atmospheric sciences Locations Temperature, humidity, particle concentrations over time

Internet traffic Websites Word frequencies, visitor demographics, linked pages
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Table 2

SWISS scores for TCGA subtypes. Lower scores indicate more subtype distinction.

Data
Gene expression 0.8431

miRNA 0.8763

JIVE

Joint 0.7678

Gene expression individual 0.9019

miRNA individual 0.9284
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