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SUMMARY

In several approaches to the quantum-gravity problem evidence has emerged

of the validity of a “GUP” (a Generalized position-momentum Uncertainty

Principle) and/or a “MDR” (a modification of the energy-momentum dispersion

relation), but very little is known about the implications of GUPs and MDRs for

black-hole thermodynamics, another key topic for quantum-gravity research.

We investigate an apparent link, already suggested in an earlier exploratory

study involving two of us, between the possibility of a GUP and/or a MDR and

the possibility of a log term in the area-entropy black-hole formula. We then

obtain, from that same perspective, a modified relation between the mass of a

black hole and its temperature, and we examine the validity of the “Generalized

Second Law of black-hole thermodynamics” in theories with a GUP and/or a

MDR. After an analysis of GUP- and MDR-modifications of the black-body

radiation spectrum, we conclude the study with a description of the black-hole

evaporation process.

1 Introduction

Various arguments suggest that the description of black holes should be an important aspect of a
quantum-gravity theory, and that some key operatively-meaningful (not merely formal) differences
between alternative theories should emerge as we establish, within each approach, how the singularity,
the evaporation, the “thermodynamics”, and the “information paradox” are handled. A similar role
could be played, as stressed in the recent literature [1, 2, 3, 4], by the analysis of the energy-momentum
dispersion relation and the position-momentum uncertainty principle. Different approaches to the
quantum-gravity problem lead to different expectations for what concerns the possibility of a MDR (a
modified energy-momentum dispersion relation) and the possibility of a GUP (a generalized position-
momentum uncertainty principle). In particular, in the study of Loop Quantum Gravity and of models
based on noncommutative geometry there has been strong interest [5, 6, 7] in some candidate modifica-
tions of the energy-momentum dispersion relation. Generalized uncertainty principles[8, 9] have been
considered primarily in the literature on String Theory [10] and on models based on noncommutative
geometry [11]. The form of the energy-momentum dispersion relation and of the position-momentum
uncertainty relation can therefore be used to characterize alternative approaches to the quantum-
gravity problem.
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Two of us were recently involved [12] in research exploring a possible link between the predictions
that a quantum-gravity theory makes for black-hole thermodynamics and the predictions that the same
theory makes for the energy-momentum dispersion relation and the position-momentum uncertainty
relation. By establishing the nature of such a link one would, in our opinion, obtain a valuable
characterization of the type of internal logical consistency that various aspects of a quantum-gravity
theory should satisfy. The study reported in Ref. [12] was not the first to explore the possible role of
MDRs and/or GUPs for black holes, as we discuss in greater detail here in Section 9 where we comment
of some relevant references [13, 14, 15, 16, 17, 18], but all of these studies, including Ref. [12], focused
on one or another aspect of the possible interplay between MDR/GUP results and black holes, without
attempting to obtain a wider picture. We here work in the spirit of Ref. [12], but we attempt to give
the first elements of a general analysis of some key characteristics of black-hole physics, as affected by
some scenarios for a MDR or a GUP.

Sections 2, 3 and 4, set the stage, by reviewing some results in the MDR/GUP literature and
revisiting the point already made in Ref. [12], which concerns an apparent link between the log-area
terms in the entropy-area relation for black holes and certain formulations of the MDR and the GUP.
In Section 5 we explore, still within the working assumptions adopted in Ref. [12], the implications
of a MDR and/or a GUP for the Bekenstein entropy bound and for the Generalized Second Law of
thermodynamics. We find that the implications are significant and we conjecture that they should
also not be negligible in the analysis of other entropy-bound proposals. Section 6 considers a role for
MDR/GUP modifications in the analysis of the black-body radiation spectrum, and again exposes some
significant changes with respect to the standard picture, including the possibility that the characteristic
frequency of black-body radiation at given temperature T might have a dependence on T such that
in the infinite-temperature limit the characteristic frequency would take a finite (Planckian) value. It
is then perhaps not surprising that in the analysis of the black-hole evaporation process, discussed in
Section 7, we also find some characteristic MDR/GUP-induced new features, such as the possibility
that the energy flux emitted by the black hole might diverge when the black-hole mass reaches a
certain finite (Planckian) value. In Section 8, we comment on one key aspect which might deserve
further consideration: for these theories with MDRs and/or GUPs there has been some speculation
that the speed of massless particles might be different from the familiar speed-of-light scale value of
c. In Sections 1-7 we assume throughout that c still is the speed of massless particles, but in Section
8 we establish how the analysis of black-body radiation would be changed if one implemented some
alternatives considered in the literature. In Section 9 we compare our analysis with other studies
which have considered the implications of a MDR or a GUP for some aspects of black-hole physics.
Section 10 concludes the paper with some remarks on the outlook of this research programme.

2 MDRs and GUPs in Quantum Gravity and implications for a
Planck-scale particle-localization limit

2.1 MDRs and GUPs in Quantum Gravity

In the study of the Quantum-Gravity problem the emergence of modified energy-momentum relations
and/or generalized position-momentum uncertainty principles, although of course not guaranteed, can
be motivated on general grounds, and also finds support in the direct analysis of certain Quantum-
Gravity scenarios.

The hypothesis of modified energy-momentum dispersion relations is understandably popular
among those adopting a “spacetime foam” intuition in the study of the quantum-gravity problem,
especially when an analogy between spacetime foam and some more familiar forms of medium (such
as certain crystal structures of interest in condensed-matter studies) is proposed. It is then expected
that wave dispersion “in vacuo” (in the spacetime foam) might resemble wave dispersion in other
media. A modified dispersion relation can also be favoured by the expectation, shared by many re-
searchers of the field, that the Planck length might fundamentally set the minimum allowed value for
wavelengths. A nonlinear relationship between energy and (space-) momentum can be easily adjusted

2



in such a way that in the infinite-energy limit the momentum saturates to the Planck-scale value
(and wavelength saturates to the Planck-length value). This possibility has become more attractive
with the recent realization [19, 20, 21] that a modified energy-momentum dispersion relation can also
be introduced as an observer-independent law1, in which case the Planckian minimum-wavelength
hypothesis can be introduced as a physical law valid in every frame. The analysis of some quantum-
gravity scenarios, even in cases in which the emergence of modified energy-momentum relations was
not intended in the original setup of the framework, has shown some explicit mechanisms for the
emergence of modified dispersion relations. This is particularly true of some approaches based on
noncommutative geometry [7, 20] and within the Loop-Quantum-Gravity approach [5, 6]. In most
cases one is led to consider a dispersion relation of the type2

~p2 = f(E,m;Lp) ≃ E2 − µ2 + α1LpE
3 + α2L

2
pE

4 +O
(
L3
pE

5
)
, (1)

where f is the function that gives the exact dispersion relation, and on the right-hand side we just
assumed the applicability of a Taylor-series expansion for E ≪ 1/Lp. The coefficients αi can take
different values in different Quantum-Gravity proposals.

The fact that these Planck-scale-deformed dispersion relations may have observably large conse-
quences in some (however rare) physical contexts has led to interest in this research also from the
perspective of phenomenology [1, 22, 23, 24, 25].

The situation concerning the possibility of a generalized position-momentum uncertainty principle
is rather similar. On general grounds it can be motivated by the intuition[8, 9] that the solution of the
quantum-gravity problem might require the introduction of an absolute Planckian limit on the size of
the collision region, applicable to high-energy microscopic collision processes. For example, a GUP of
the form

δx ≥ 1

δp
+ αL2

pδp +O(L3
pδp

2) , (2)

which has been derived within the String Theory approach to the quantum-gravity problem [10], is
such that at small δp one finds the standard dependence of δx on δp (δx gets smaller as δp increases)
but for large δp the Planckian correction term becomes significant and keeps δx ≥ Lp. Within String
Theory the coefficient α should take a value of roughly the ratio between the square of the string
length and the square of the Planck length, but this of course might work out differently in other
Quantum-Gravity proposals.

While in the parametrization of (1) we included a possible correction term suppressed only by one
power of the Planck length, in (2) such a linear-in-Lp is assumed not to be present. This reflects the
status of the presently-available literature: for the MDR a large number of alternative formulations,
including some with the linear-in-Lp term, are being considered, as they find support in different
approaches to the quantum-gravity problem (and different preliminary results adopting alternative
approximation schemes within a given approach), whereas all the discussions of a GUP assume that
the leading-order correction should be proportional to the square of Lp.

2.2 MDR and a Planck-scale particle-localization limit

The analysis reported in Ref. [12] exposed a previously unnoticed common feature of MDR and GUP
scenarios. This has to do with a Planck-scale limit on the localization of a particle, and an associated
modification of the Bekenstein argument for a area-entropy black-hole relation.

Arguably the closest starting point for the construction of the correct Quantum Gravity should be
Quantum Field Theory, and within Quantum Field Theory the most striking quantum effect concerns

1But this usually requires introducing a nonlinear deformation of the action of Lorentz boosts.
2We denote with m, as conventional, the rest energy of the particle. The mass parameter µ on the right-hand side is

directly related to the rest energy, but µ 6= m if the αi do not all vanish. For example, if α1 6= 0 but αi = 0 for every
i ≥ 2 one of course obtains µ2 = m2 +α1Lpm

3. This needed to be clarified since it is relevant for more general analyses
of MDRs, but in our study we are always concerned with particles which are either massless or anyway are analyzed at
energies such that the mass can be neglected, and therefore both µ and m will never actually enter our key formulas.
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an absolute limit on the localization of a particle of energy E, codified in the relation E ≥ 1
δx . While

in nonrelativistic quantum mechanics a particle of any energy can always be sharply localized (at the
price of renouncing to all information on the conjugate momentum), within Quantum Field Theory
only in the infinite-energy limit a particle can be sharply localized. And among those studying the
quantum-gravity problem one frequently encounters the intuition that at the Quantum-Gravity level
the idealization of sharp localization should disappear completely.

In the spirit of Ref. [12] one can attempt to codify this quantum-gravity intuition in a relation of
the type

E ≥ 1

δx
(1−∆(Lp, δx)) (3)

where ∆ is some function of Lp and δx, perhaps such that E → ∞ already at some finite value of δx
(so that the idealization δx → 0 is excluded). And it was observed in Ref. [12] that both the idea of
a MDR and the idea of a GUP would support a formula of the type (3), with nonzero ∆.

Let us briefly review this analysis reported in Ref. [12], starting with the case of a MDR of the type
(1). We can follow the familiar derivation [32] of the relation E ≥ 1

δx , substituting, where necessary, the
standard special-relativistic dispersion relation with its Planck-scale modified version. It is convenient
to start by focusing on the case of a particle of mass M at rest, whose position is being measured
by a procedure involving a collision with a photon of energy Eγ and momentum pγ . According to
Heisenberg’s uncertainty principle, in order to measure the particle position with precision δx one
should use a photon with momentum uncertainty δpγ ≥ 1

δx . Following the standard argument [32],

one takes this δpγ ≥ 1
δx relation and converts it into the relation δEγ ≥ 1

δx using the special relativistic

dispersion relation. Finally δEγ ≥ 1
δx is converted into the relation M ≥ 1

δx because the measurement
procedure requires δE ≤ M , in order to ensure that the relevant energy uncertainties are not large
enough to allow the production of additional copies of the particle whose position is being measured.

If indeed our Quantum-Gravity scenario hosts a Planck-scale modification of the dispersion relation
of the form (1) then clearly the relation between δpγ and δEγ should be re-written as follows

δpγ ≃
(
1 + α1LpE + 3

(
α2

2
− α2

1

8

)
L2
pE

2

)
δEγ (4)

which then leads to the requirement

M ≥ 1

δx
− α1

Lp

(δx)2
+

(
11

8
α2
1 −

3

2
α2

)
L2
p

(δx)3
+O

(
L3
p

(δx)4

)
. (5)

These results strictly apply to the measurement of the position of a particle at rest, but they can
be straightforwardly generalized [32] (simply using a boost) to the case of the measurement of the
position of a particle of energy E. For the standard case this leads to the E ≥ 1/δx relation while in
presence of an MDR one easily finds

E ≥ 1

δx
− α1

Lp

(δx)2
+

(
11

8
α2
1 −

3

2
α2

)
L2
p

(δx)3
+O

(
L3
p

(δx)4

)
. (6)

2.3 GUP and a Planck-scale particle-localization limit

While the connection between a MDR and a Planck-scale particle-localization limit is somewhat less
obvious (and in fact we found no mention of it in the literature previous to Ref. [12]), it is not at all
surprising that the GUP would give rise to such a particle-localization limit. In fact, as mentioned,
the GUP is primarily viewed as a way to introduce a Planckian limit on the size of the collision region,
applicable to high-energy microscopic collision processes, and a limitation on the size of collision
regions would naturally be expected to lead to a particle-localization limit. Indeed, as the careful
reader can easily verify, from the GUP one obtains (following again straightforwardly the familiar
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line of analysis discussed in Ref. [32]) a modification of the relation E ≥ 1/δx. The modification is
of the type E ≥ 1/δx + ∆, with ∆ of order αL2

p/δx
3, and originates from the fact that according

to the GUP, (2), one obtains δpγ ≥ 1/δx + λ2
s/δx

3 (instead of the original δpγ ≥ 1/δx). Using the
standard special-relativistic dispersion relation for a photon pγ = Eγ the condition on the momentum

uncertainty translates in a condition on the energy uncertainty δEγ ≥ 1
δx

(
1 + α

L2
p

δx2

)
, and ultimately

this leads to

E ≥ 1

δx
+ α

L2
p

(δx)3
+O

(
L3
p

(δx)4

)
. (7)

3 MDR and black hole entropy

In this section we revisit the argument already proposed in Ref. [12], suggesting that a Planck-scale
modification of the particle-localization limit, of the type (6) or (7), can be used to motivate corrections
to the S = A/(4L2

p) area-entropy relation for black holes. We focus here on the case of a MDR, but
since the key ingredient is the Planck-scale particle-localization limit, one should expect that, as we
confirm explicitly in the next section, the same line of analysis is applicable also to the case in which
one takes as starting point a GUP. Since the literature on MDRs is composed both of papers using
arguments that are only sufficient to specify the first terms in a series expansion of the MDR at
energies below the Planck scale, and some analyses proposing a complete all-order formula for the
MDR, we find appropriate to consider these possibilities separately. The power-series analysis will
already show that the implications of a MDR can be significant. But the power-series analysis can
only be reliably used at energies safely below the Planck scale. In considering some examples of all-
order MDR proposals we will also develop some intuition for the type of implications that a MDR
could have for black-hole physics at Planckian energy scales.

Our argument connecting a MDR (a particle-localization limit) and some modifications of the area-
entropy relation for black holes is formulated in a scheme of analysis first introduced by Bekenstein [27],
which is actually one of the classic arguments for the description of the entropy-area relation. In order
to render our presentation self-contained we open this section by describing this classic Bekenstein
argument, but we just sketch out the Bekenstein derivation since we expect most readers to be already
familiar with it.

3.1 The original Bekenstein argument (with unmodified dispersion relation and
unmodified uncertainty principle)

The argument presented by Bekenstein in Ref. [27] uses very simple ingredients to suggest that the
entropy of a black hole should be proportional to its (horizon-surface) area. The starting point
is the general-relativity result [28] establishing that the minimum increase of area when the black
hole absorbs a classical particle of energy E and size s is ∆A ≃ 8πL2

pEs (in “natural units” with
~ = c = 1). In order to describe the absorption of a quantum particle one must describe the size
of the particle in terms of the uncertainty in its position [27, 29], s ∼ δx, and take into account a
“calibration factor” [30, 31, 12] (ln 2)/2π that connects the ∆A ≥ 8πL2

pEs classical-particle result

with the quantum-particle estimate ∆A ≥ 4(ln 2)L2
pEδx. Bekenstein then enforces the requirement

that a particle with position uncertainty δx should at least [32] have energy E ∼ 1/δx, which leads to
∆A ≥ 4(ln 2)L2

p, and assumes that the entropy depends only on the area of the black hole. Also using
the fact that the minimum increase of entropy should be ln 2, independently of the value of the area,
one then concludes that

dS

dA
≃ min(∆S)

min(∆A)
≃ ln 2

4(ln 2)L2
p

. (8)

From this it follows that (up to an irrelevant constant contribution to entropy):

S ≃ A

4L2
p

. (9)
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3.2 MDR and black hole entropy in leading order

The Bekenstein argument implicitly assumes (through the E ≥ 1/δx relation) that the energy-
momentum dispersion relation and the position-momentum uncertainty principle take the standard
form. Let us now reformulate the argument, still assuming a standard form for the position-momentum
uncertainty principle, but introducing a MDR of the type (1). As in the original Bekenstein argu-
ment [27], we take as starting point the general-relativity result which establishes that the area of a
black hole changes according to ∆A ≥ 8πL2

pEs when a classical particle of energy E and size s is
absorbed. And again we describe the size of the particle in terms of the uncertainty in its position as
done in the previous subsection, obtaining ∆A ≥ 4(ln 2)L2

pEδx. Whereas in the original Bekenstein

argument one then enforces the relation E ≥ 1/δx (and this leads to ∆A ≥ 4(ln 2)L2
p), we must take

into account the MDR-induced Planck-length modification in (6), obtaining

∆A ≥ 4(ln 2)

[
L2
p −

α1L
3
p

δx
−
(
3
2α2 − 11

8 α
2
1

)
L4
p

(δx)2

]
(10)

≃ 4(ln 2)

[
L2
p −

α1L
3
p

RS
−
(
3
2α2 − 11

8 α
2
1

)
L4
p

(RS)2

]

≃ 4(ln 2)

[
L2
p −

α12
√
πL3

p√
A

−
(
3
2α2 − 11

8 α
2
1

)
4πL4

p

A

]
,

where we also used the fact that in falling in the black hole the particle acquires [15, 33, 34] position
uncertainty δx ∼ RS , where RS is the Schwarzschild radius (and of course A = 4πR2

S). From (11) we
derive an area-entropy relation assuming that the entropy of the black hole depends only on its area
and that the minimum increase of entropy should be, independently of the value of the area, ln 2:

dS

dA
≃ min(∆S)

min(∆A)
≃ ln 2

4(ln 2)L2
p

[
1− α12

√
πLp√
A

− ( 3

2
α2− 11

8
α2

1)4πL2
p

A

] ≃
(

1

4L2
p

+
α1

√
π

2Lp

√
A

+

(
3
2α2 − 11

8 α
2
1

)
π

A

)
,

(11)
which gives (up to an irrelevant constant contribution to entropy)

S ≃ A

4L2
p

+ α1

√
π

√
A

Lp
+

(
3

2
α2 −

11

8
α2
1

)
π ln

A

L2
p

. (12)

This result of course reproduces the famous linear formula if all coefficients αi vanish. If the cubic
term α1E

3 is present in the energy-momentum dispersion relation then the leading correction goes
like

√
A, whereas if the first nonzero coefficient in the dispersion relation expansion is α2 the leading

correction term goes like logA. Our “improved Bekenstein argument” therefore provides a possible
link between the form of the MDR (and of the GUP, as we stress later) and the all-order form of the
entropy-area relation for black holes. For example, if within a given quantum-gravity approach one
can find a general argument suggesting that there are no

√
A terms in the entropy-area relation, then

one can use our improved Bekenstein argument to deduce that within that given quantum-gravity
approach one should not find terms of the type α1E

3 in the energy-momentum dispersion relation.
Over the last few years both in String Theory and in Loop Quantum Gravity some techniques for

the direct analysis of the entropy of black holes, using their quantum properties, have been developed,
and these techniques are now able [35, 36] to go even beyond the entropy-area-proportionality contri-
bution: they establish that the leading correction should be of log-area type, so that one expects (for
A ≫ L2

p) an entropy-area relation for black holes of the type

S =
A

4L2
p

+ ρ ln
A

L2
p

+O

(
L2
p

A

)
. (13)
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where ρ is a coefficient which might take different value [35, 36, 37, 12] in String Theory and in Loop
Quantum Gravity. The status of the energy-momentum dispersion relation within these theories is
not completely settled (it is much debated particularly in the Loop-Quantum-Gravity literature), but
on the basis of our improved Bekenstein argument we can conclude that both String Theory and
Loop Quantum Gravity cannot allow terms of the type α1E

3 in the energy-momentum dispersion
relation. And, if their log-area corrections to the entropy-area relation are to be trusted, we expect
that both String Theory and Loop Quantum Gravity should either predict a α2E

4 correction to
the dispersion relation or (see later) they should host a corresponding modification of the position-
momentum uncertainty principle.

We can also use (12) to obtain, using the first law of black hole thermodynamics dS = dM
T , a

Planck-scale-corrected relation between black-hole temperature and mass:

TMDR
BH ≃

E2
p

8πM

(
1− α1

Ep

2
√
2M

−
(
15

32
α2
1 −

3

8
α2

)
E2

p

M2

)
, (14)

where we also used the familiar relation between black hole area and mass A = 16πM2.

3.3 Some all-order results for MDR modifications of black-hole entropy

In the previous subsection we were establishing a possible relation between MDR and log corrections
to the entropy-area relation. Since the log-area term is a leading-order term it was appropriate to
work within a power-series expansion of the MDR. Moreover, the mentioned results from quantum-
gravity research (primarily from Loop Quantum Gravity and approaches based on noncommutative
geometry) that provide motivation for a Planck-scale modification of the dispersion relation in most
cases are obtained within analyses that only have access to the first terms in a power-series expansion
of the dispersion relation. Still for some aspects of our analysis it will be useful to contemplate some
illustrative examples of all-order dispersion relations, especially when we try to figure out what could
be some examples of implications of a MDR for the behaviour of black holes of Planck-length size.

The careful reader can easily verify that once a given energy-momentum dispersion relation E =
fdisp(p) is adopted the steps of the calculation reported in the preceding subsection can be followed
rather straightforwardly, obtaining

dS

dA
≃ min(∆S)

min(∆A)
≃ 1

2L2
p

√
π

A

1

fdisp

(√
4π
A

) (15)

and

TBH ≃ 1

4π
fdisp

(
E2

p

2M

)
. (16)

As illustrative examples of “all-order MDRs” we consider the following three cases:

cosh(E/Ep)− cosh(m/Ep)−
p2

2E2
p

eE/Ep = 0, (17)

E2

(1− E/Ep)2
− p2

(1− E/Ep)2
−m2 = 0, (18)

cosh(
√
2E/Ep)− cosh(

√
2m/Ep)−

p2

E2
p

cosh(
√
2E/Ep) = 0, (19)

(17) has already been considered in the previous literature [7, 19, 20, 26], particularly as a possible
description of particle propagation in κ-Minkowski noncommutative spacetime. It provides an example
in which the coefficient of the linear-in-Lp term is nonvanishing: α1 = −1/2. And it is noteworthy
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that according to (17) there is a maximum momentum for fundamental particles: from (17) it follows
that for E → ∞ one has p → Ep.

The case (19) has not been previously considered in the literature. It provides for our purposes
a valuable illustrative example since, as in the case of (17), it would lead to a maximum momentum
(p → Ep for E → ∞) but, contrary to the case of (17), it corresponds to α1 = 0 (whereas α2 = −5/18).
This is therefore an example with the maximum-momentum feature and such that one would expect
the leading corrections to the entropy-area relation to be logarithmic.

The case of (18) has already been considered in the literature for other reasons [21], and it provides
us an opportunity to illustrate some consequences of a scenario in which both α1 and α2 vanish, but
still there are some Planck-scale modifications of the energy-momentum dispersion relation. And it
is noteworthy that (18) can be implemented in such a way that [21] the Planck scale provides the
maximum value of both momentum and energy.

For the cases with dispersion relations (17) or (19), since E → ∞ for p → Ep, the formulas derived
above would lead to the conclusion that the black hole temperature diverges at some finite (nonzero!)
value of the black-hole mass Mmin = Ep/2. We would then assume that this Mmin is the minimum
allowed mass for a black hole, and that the standard description of the evaporation process should not
be applicable beyond this small value of mass.

In cases in which one introduces both a maximum momentum and a maximum energy while keeping
the form of the dispersion relation largely unaffected3, as done in some applications of (18), one would
expect (since the energy has a maximum Planckian value, EMax = EP ) that the temperature should
be bounded to be lower than the Planck scale, TMax ∼ Ep, and that the minimum allowed value of
black-hole mass should be also Plankian, since it should be the value of mass such that temperature
reaches is maximum allowed value.

4 GUP (with and without MDR) and black hole entropy

In the previous section we focused on scenarios in which the energy-momentum dispersion relation is
modified but the position-momentum uncertainty principle preserves the Heisenberg form. But clearly
the key ingredient of our analysis is the presence of a correction term ∆ in the particle-localization-
limit relation E ≥ 1/δx + ∆. As stressed in Section 2, both a MDR and a GUP can introduce such
a correction term in the particle-localization limit, and therefore, as we want to discuss explicitly in
this Section, also in presence of a GUP one should expect corrections to the entropy-area black-hole
formula and to the formula that relates the mass and the temperature of a black hole.

We start the section by considering scenarios in which the position-momentum uncertainty prin-
ciple is Planck-scale modified, while the energy-momentum dispersion relation preserves its special-
relativistic form. Then in Subsection 4.2 we comment on the more general case, in which one might
be dealing with both a MDR and a GUP.

4.1 GUP and black hole entropy

Let us start by noting here again for convenience the particle-localization limit that one obtains
assuming a GUP of the form (2) and a standard (special-relativistic) energy-momentum dispersion
relation:

E ≥ 1

δx
+ α

L2
p

(δx)3
+O

(
L3
p

(δx)4

)
. (20)

Following the same strategy of analysis adopted in the previous section, one finds that the Beken-
stein argument, when taking into account this localization limit (20), leads to the conclusion that the

3Whenever the mass m can be ignored (i.e. for massless particles and high-energy particles with finite mass) the
dispersion relation (18) is indistinguishable from the standard special-relativistic one.
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maximum increase of black-hole area upon absorption of a particle of energy E is given by

∆A ≥ 4(ln 2)

[
L2
p +

αL4
p

(δx)2

]
≃ 4(ln 2)

[
L2
p +

αL4
p

(RS)2

]
≃ 4(ln 2)

[
L2
p +

α4πL4
p

A

]
.

From this it follows that the entropy-area relation should take the form

S ≃ A

4L2
p

− απ ln
A

L2
p

, (21)

and the formula relating the temperature and the mass of the black hole should take the form

TGUP
BH ≃

E2
p

8πM

(
1 + α

E2
p

8M2

)
. (22)

4.2 Combining MDR and GUP in the analysis of black-hole entropy

We have argued that both a MDR and a GUP are possible features of a quantum-gravity theory that
would affect black-hole termodynamics. Actually, as the careful reader must have noticed, the line of
analysis we are advocating is composed of two steps. First we notice that the “particle-localization
limit” in its standard form, E ≥ 1/δx, is derived on the basis of two key assumptions, the validity
of the Heisenberg position-momentum uncertainty principle and the validity of the special-relativistic
energy-momentum dispersion relation, and that by modifying the uncertainty principle and/or the
dispersion relation one gets a modified particle-localization limit of the type E ≥ 1/δx+∆δx,Lp

. Then
we observe that a key assumption of the Bekenstein argument for the derivation of black-hole entropy
is the validity of the standard particle-localization limit E ≥ 1/δx. With a MDR and/or a GUP
one gets a modified particle-localization limit, which in turn leads to a modification of the black-hole
area-entropy relationship.

It is worth mentioning that the modifications induced by a MDR and a GUP may (at least in part)
cancel out at the level of the area-entropy equation. In order to stress the importance of this possibility
let us consider the information presently available on the Loop Quantum Gravity approach: (i) several
Loop-Quantum-Gravity studies have argued in favour of a MDR with nonvanishing α1 (leading Planck-
scale correction to the dispersion relation that goes linearly with Lp), (ii) there is no mention of a GUP
in the Loop-Quantum-Gravity literature, (iii) several Loop-Quantum-Gravity studies have argued in
favour of an entropy-area relationship in which the leading correction, beyond the linear term, is of log-
area type. According to the perspective on the derivation of black-hole entropy that we are advocating
one would find these three ingredients to be logically incompatible: if the MDR has nonvanishing α1

and the position-momentum uncertainty principle is not Planck-scale modified then in the entropy-
area relationship the leading correction, beyond the linear term, should have

√
area dependence. Does

this mean that Loop Quantum Gravity is a logically inconsistent framework? Of course, it does not.
It simply means that some of the relevant preliminary results must be further investigated. It may
well be that, as the loop-quantum-gravity approach is understood more deeply, it turns out that the
α1 coefficient in the MDR vanishes. Or else we might discover that in Loop Quantum Gravity the α1

coefficient in the MDR takes a nonzero value, but there is a corresponding linear-in-Lp term in the
GUP with just the right coefficient to give an overall vanishing coefficient to the

√
area term in the

entropy-area relation.
Our perspective on the derivation of black-hole entropy provides a logical link between different

aspects of a quantum-gravity theory and may be used most fruitfully when, as in the case of Loop
Quantum Gravity, the formalism is very rich and some of the results obtained within that formalism
are of preliminary nature. Even before being able to derive more robust results we may uncover that
the presently-available preliminary results are not providing us with a logically-consistent picture,
and this in turn will give us additional motivation for investigating more carefully those preliminary
results.
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It is also worth mentioning that on the string-theory side our perspective on the derivation of
black-hole entropy provides no evidence of a logical inconsistency among the results so far obtained
in that framework. The string-theory literature indicates that the entropy-area relationship should
involve a leading correction, beyond the linear term, of log-area type, and provides strong evidence
of a GUP of the type (2), while the results so far obtained do not indicate the need to modify the
dispersion relation in string theory. These three ingredients provide a logically-consistent scenario
within our perspective on the derivation of black-hole entropy. As shown above, with a GUP of the
type (2) and with an unmodified (still special-relativistic) dispersion relation one is indeed led to an
entropy-area relationship in which the leading correction, beyond the linear term, is of log-area type.

5 Implications for the Bekenstein entropy bound and Generalized
Second Law

It is natural at this point, after having shown that a MDR and a GUP can affect the black-hole
entropy-area and mass-temperature relationships, to wonder whether other aspects of black-hole ther-
modynamics are also affected, and whether the overall picture preserves the elegance/appeal of the
original scheme, based on standard uncertainty principle and dispersion relation. In this section we
investigate the validity of the Generalized Second Law (GSL) of thermodynamics and the implications
for the Bekenstein entropy bound. In order to work within a definite scenario we assume here a MDR
(while we implicitly assume that the uncertainty principle takes its standard form).

The GSL [38] asserts that the second law of thermodynamics is still valid in presence of collapsed
matter. Given the entropy of the black hole, as described by the area-entropy relation, the GSL
requires that the total entropy of a system composed of a black hole and ordinary matter never
decreases. This means that the following inequality holds for all physical processes

SBH + Smat ≥ 0 . (23)

It was observed [39] that in principle (using the so-called “Geroch process”) one could violate the GSL
if objects of fixed size R and energy E could have arbitrarily large entropy S. This led Bekenstein to
propose a “entropy bound”

Smat ≤ 2πER (24)

for an arbitrary system of energy E and effective radius R. The fact that the GSL implies the
Bekenstein bound and vice versa has long been debated and is still actively debated. However the
Bekenstein bound turns out to hold for a variety of systems in flat Minkowski space and can be derived
as weak-gravity limit of the popular “Generalized Covariant Entropy Bound” [40].

A remarkable feature of the Bekenstein bound is that, in spite of being motivated by considerations
rooted in the gravitational realm, it does not involve the Planck scale (or equivalently Newton’s
constant). The absence of the Planck scale is less puzzling in light of the observation that the bound
can be derived even without advocating gravity in any way: it is sufficient [15] to analyze some
implications of the particle-localization limit E ≥ 1

δx . This alternative derivation requires considering
a matter system with energy E, in which self-gravitation effects can be neglected, that occupies
a region in flat spacetime with radius R smaller than the gravitational radius RG ≡ 2L2

pE. The
standard particle-localization limit, when generalized to this type of systems, sets a minimum value
for the energy of a quantum in a region of spatial radius R

ǫ(R) ≥ 1

R
. (25)

The maximum number of quanta that we can have in the region is then given by

Nmax ≃ E

ǫ(R)
= ER . (26)
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If we consider the simple case of a system for which the maximal number of microstates for N particles
is given by Ω(N) = 2N then the entropy of the system S = logΩ(N) is bounded by the inequality

Smat ≤ log 2ER , (27)

which is indeed consistent with the Bekenstein bound (up to another ”calibration factor” η = 2π
log2).

We briefly reviewed this derivation of the Bekenstein bound especially in order to stress the role
played by the particle-localization limit E ≥ 1

δx . It is then obvious that the modifications of the
particle-localization limit induced by a MDR (and/or a GUP) would affect the Bekenstein bound. As
shown earlier, within our parametrization of the MDR4, one obtains a particle localization limit of the
form

ǫ(R) ≥ 1

R

(
1− α1

Lp

R
−
(
3

2
α2 −

11

8
α2
1

)
L2
p

R2
+O

(
L3
p

R3

))
(28)

which gives

Smat ≤ 2πER

(
1 + α1

Lp

R
+

(
3

2
α2 −

11

8
α2
1

)
L2
p

R2
+O

(
L3
p

R3

))
. (29)

This MDR-modified Bekenstein bound fits very naturally with our corresponding formula, (12),
for the entropy-area relation; in fact, the two results combine to provide us with a picture which is
still consistent with the GSL. According to (29) when a matter system of energy E falls into the black
hole, this corresponds to a negative change of entropy which has absolute value not greater than

max(|∆Smat|) ≃ 2πER

(
1 + α1

Lp

R
+

(
3

2
α2 −

11

8
α2
1

)
L2
p

R2
+O

(
L3
p

R3

))
(30)

and correspondingly, according to (12), the black hole entropy increases at least by

min(∆SBH) ≃ 2πER

(
1 + α1

Lp

R
+

(
3

2
α2 −

11

8
α2
1

)
L2
p

R2
+O

(
L3
p

R3

))
(31)

Thus the MDR-induced corrections to SBH and Smat cancel exactly at the level of the inequality
relevant for the GSL. The GSL stills holds, even in presence of a modified particle-localization limit.

6 Corrections to black-body radiation spectrum

In preparation for some observations on black-hole evaporation, to which we devote Section 7, we now
want to investigate the implications of a MDR and/or a GUP for the black-body radiation spectrum.

6.1 MDR and black-body spectrum in leading order

Let us start by considering photons in a cubical box with edges of length L (and volume V = L3).
The wavelengths of the photons are subject to the boundary condition 1

λ = n
2L , where n is a positive

integer. This condition implies, assuming that the de Broglie relation is left unchanged, that the
photons have (space-)momenta that take values p = n

2L . Thus momentum space is divided into cells

of volume Vp =
(

1
2L

)3
= 1

8V . From this it follows that the number of modes with momentum in the
interval [p, p + dp] is given by

g(p)dp = 8πV p2dp . (32)

4For an analogous modification of the Bekenstein bound coming from the GUP see Ref. [15].
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Assuming a MDR of the type parametrized in (1) one then finds that (m = 0 for photons)

p ≃ E

(
1 +

α1

2
LpE +

(
α2

2
− α2

1

8

)
L2
pE

2

)
(33)

and

dp ≃
(
1 + α1LpE +

(
3

2
α2 −

3

8
α2
1

)
L2
pE

2

)
dE (34)

Using this in (32) one obtains

g(E)dE = 8πV

(
1 + 2α1LpE + 5

(
1

2
α2 +

1

8
α2
1

)
L2
pE

2

)
E2dE (35)

which in terms of the frequency ν takes the form

g(ν)dν = 8πV

(
1 + 2α1Lpν + 5

(
1

2
α2 +

1

8
α2
1

)
L2
pν

2

)
ν2dν . (36)

In order to obtain the MDR-modified energy density of a black body at temperature T we must now
use (36) and rely on the statistical arguments which show that in a system of bosons at temperature
T the average energy per oscillator is given by

Ē =
ν

e
ν
T − 1

. (37)

Thus the energy density at a given temperature T , for the frequency interval [ν, ν + dν], is

uν(T )dν = 8π

(
1 + 2α1Lpν + 5

(
1

2
α2 +

1

8
α2
1

)
L2
pE

2

)
ν3dν

e
ν
T − 1

. (38)

and integrating this formula we get the MDR-modified energy density of a black body at temperature
T

u(T ) =
8π5

15
T 4 + 384πζ(5)α1LpT

5 + 5

(
1

2
α2 +

1

8
α2
1

)
160π7

63
L2
pT

6 (39)

The MDR introduces corrections of the type T 4+n/En
P to the Stefan-Boltzmann law. Moreover,

the maximum value of the integrand in (38), as a function of ν, is clearly also shifted: the MDR also
introduces a modification of Wien’s law. Of course, using the low-energy expansion (1) of the dispersion
relation we only get a reliable picture at temperatures safely below the Planck scale, but the presence
of correction terms of the type T 4+n/En

P clearly suggests that the MDR-modified description leads
to departures from the Stefan-Boltzmann law that can become very significant as the temperature
approaches the Planck scale. We intend to show this explicitly by considering an example of all-order
MDR formula.

6.2 Some all-order results for MDR modifications of black-body spectrum

Let us therefore derive once again the modified Stefan-Boltzmann law, now assuming, as illustrative
example of an all-order MDR formula, the validity of the dispersion relation (19). Clearly the number
of modes in momentum space is still given by

g(p)dp = 8πV p2dp , (40)

but now

p2 = E2
p

(
1− 1

cosh(
√
2E/Ep)

)
(41)
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and this implies that the number of modes for given energy is given by

g(E)dE = 16πV E2
p sinh

2

(
E/Ep√

2

)
cosh

(
E/Ep√

2

)
1

cosh5/2
(√

2E/Ep

)dE (42)

i.e. the number of modes for given frequency is

g(ν)dν = 16πV E2
p sinh

2

(
ν/Ep√

2

)
cosh

(
ν/Ep√

2

)
1

cosh5/2
(√

2ν/Ep

)dν . (43)

Then the modified Stefan-Boltzmann law is given, in integral form, by

u(T ) =
1

V

∫ ∞

0

g(ν)

e
ν
T − 1

νdν , (44)

where g(ν) is the one of (43).
It is useful to consider some limiting forms of the integration in (44). Clearly, since (19) is consistent

with (1) for α1 = 0 and α2 = −5/18, in the limit T/Ep ≪ 1 the integration (44) gives a result that
reproduces (39) for α1 = 0 and α2 = −5/18. But, now that we are dealing with an all-order formula,
besides considering the case T/Ep ≪ 1 we can also investigate the opposite limit T/Ep ≫ 1, finding

u(T ) = 16πE4
p

{
T

Ep
C1 −

1

2
C2 −

Ep

T
C3 +O(E2

p/T
2)

}
(45)

where

C1 =

∫ ∞

0
sinh2(x/

√
2)

cosh(x/
√
2)

cosh5/2(
√
2x)

dx =
1

6
, (46)

C2 =

∫ ∞

0
x sinh2(x/

√
2)

cosh(x/
√
2)

cosh5/2(
√
2x)

dx ≃ 0.22, (47)

C3 =

∫ ∞

0
x2 sinh2(x/

√
2)

cosh(x/
√
2)

cosh5/2(
√
2x)

dx ≃ 0.41, (48)

This means that the MDR (19) leads to a modification of the Stefan-Boltzmann law which at the
Planck scale is very significant: for T ≫ Ep one finds that u depends linearly on T , rather than with
the fourth power.

It is of particular interest to establish what is the relationship between the “characteristic fre-
quency” (and characteristic wavelength) of the black-body spectrum and temperature. In the stan-
dard description of a black body the characteristic frequency grows linearly with the temperature. In
order to verify whether this is still the case in our MDR-modified scenario we can take the derivative
of uν(T ) with respect to ν, so that we can identify the value of frequency for which the energy density
(and the radiated flux) reaches a maximum. This leads to the following equation that must be satisfied
by the characteristic frequency ν̄:

(
e

ν̄
T − 1

) (
g(ν̄) + g′(ν̄)ν̄

)
− e

ν̄
T

T
g(ν̄)ν̄ = 0 . (49)

For T ≪ Ep of course this reproduces the type of small modification of Wien’s law, which we already
noticed in the previous section. The fact that we are now considering a scenario with a given all-order
MDR formula allows us to examine the dependence of the characteristic frequency on temperature
even when the temperature reaches and eventually exceeds the Planck scale. And we find that the for
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T/Ep ≫ 1 the characteristic frequency becomes essentially independent of temperature. No matter
how high the temperature goes the characteristic frequency never exceeds the following finite value:

ν̄ ≃ Ep
cosh−1[(1 +

√
41)/4]√

2
≃ 0.87Ep (50)

So basically at low temperatures any increase of temperature causes a corresponding increase in
characteristic frequency of the black-body spectrum, but gradually a saturation mechanism takes over
and even in the infinite-temperature limit the characteristic frequency is still finite, and given by the
Planck scale (up to a coefficient of order 1). This occurs with the dispersion relation (19), i.e. in a
scenario with a minimum value of wavelength but no maximum value of frequency. An analogous result
for the case of the dispersion relation (18), which leads to both a minimum value of wavelength and
a maximum value of frequency, would have not been surprising: if the framework introduces from the
beginning a maximum Planckian value of frequency, then of course also the characteristic frequency
of black-body radiation would be “subPlanckian”. But in analyzing the case of (19) we found that
the presence of a minimum wavelength at the fundamental level is sufficient for the emergence of a
maximum Planckian value of the characteristic frequency of black-body radiation, as shown explicitly
by Eq. (50).

6.3 Black-body spectrum with GUP

In the previous two subsections the key point was that a MDR leads to a modified formula for the
density of modes in a given (infinitesimal) frequency interval, g(ν)dν. If instead we now assume that
the dispersion relation takes its standard special-relativistic form, but there is a GUP, it is not a
priori obvious that the black-body spectrum is affected. One does indeed obtain a modified black-
body spectrum if it is assumed that the GUP should also be reflected in a corresponding modification
of the de Broglie relation,

λ ≃ 1

p

(
1 + αL2

pp
2
)

(51)

and
E ≃ ν

(
1 + αL2

pν
2
)
. (52)

For oscillators in a box the number of modes in an infinitesimal frequency interval would still be
described by the standard formula

g(ν)dν = 8πV ν2dν , (53)

but, as a result of (52), the average energy per oscillator would be given by

Ē =
ν

e
ν
T − 1

(
1 + αL2

pν
2

(
1−

ν
T

1− e−
ν
T

))
. (54)

Combining (52) and (54) one finds

uν(T )dν = 8π

(
1 + αL2

pν
2

(
1−

ν
T

1− e−
ν
T

))
ν3dν

e
ν
T − 1

. (55)

and the modified Stefan-Boltzmann law takes the form

u(T ) =
8π5

15
T 4 +

8π6

9
αL2

pT
6 . (56)

The L2
pT

6 correction term is just one of the Ln
pT

4+n correction terms on which we already commented
in the context of the MDR modifications of black-body radiation.
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7 Black hole evaporation

In this section we use some of the results obtained in the previous sections in a description of the black-
hole evaporation process. The key ingredients are the relation between the black-hole temperature
and mass and the relation between the black-hole temperature and the energy density emitted by the
black hole. We neglect possible non-thermal corrections due to back-reaction effects (see, e.g., the
recent studies in Ref. [41, 42] and references therein), and we therefore treat the radiation emitted by
the black-hole as black-body radiation.

7.1 MDR and Black hole evaporation

At temperature T the intensity I of the radiation emitted by a black hole of area A is given by

I(T ) = Au(T ) . (57)

Using energy conservation one can write

dM

dt
= −Au, (58)

and assuming a MDR of the type E = fdisp(p), in light of our result (16), one finds

dM

dt
= −16π

M2

E4
p

u

(
1

4π
fdisp

(
E2

p

2M

))
(59)

When M ≫ Ep (so that a power-series expansion of fdisp(E
2
p/2M) is meaningful) this takes the

form

dM

dt
= = −k0

E8
p

M2
− k1α1

E9
p

M3
− (k21α

2
1 + k22α2)

E10
p

M4
+O(E5

p/M
5) (60)

where k0 =
π2

480 , k1 = k0
90ζ(5)−π5

π5 , k21 = k0
502π5−75600ζ(5)

672π5 and k22 = −k0
211

672π5

This power-series analysis allows to conclude that a MDR can affect the speed of evaporation of a
black hole. For example, in the case of the dispersion relation (17) the evaporation process is retarded
with respect to the standard case, whereas in the case of (19) the evaporation process is accelerated.

With a given all-order MDR formula one can obtain of course even more detailed information than
available using the power-series expansion. In particular, let us look at the case of the dispersion
relation (19) and analyze the stage of the evaporation process when the mass of the black hole is of
the order of the Planck scale. For M ∼ EP we can approximate the MDR (19) as follows

E ≃ Ep√
2
ln

(
2

1− (p/Ep)2

)
(61)

and then one finds

dM

dt
≃ −(16π)2M2

{
C1

4π
√
2
ln

(
2

1− (
Ep

2M )2

)
− 1

2
C2

}
. (62)

This shows that, in the case of the MDR (19), the energy flux emitted by the black hole would
formally diverge as the black-hole mass approaches Ep/2. This is mainly a consequence of the fact
that the black-hole temperature diverges when M → Ep/2. In the standard description of black-hole
evaporation these divergences occur as M → 0.
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7.2 GUP and Black hole evaporation

The observations reported in the previous subsection for the case of a MDR (with unmodified energy-
momentum uncertainty relation) can be easily adapted to the complementary situation with a GUP
and a standard (unmodified) dispersion relation. One must however assume, as already stressed in
Subsection 6.3, that the GUP is reflected in a corresponding modification of the de Broglie relation
(λ ≃ (1 + αL2

pp
2)/p). In this hypothesis one easily finds that the black hole should lose its mass at a

rate given by

dM

dt
= −Au

(
E2

p

2M

)
= −16π

8π5

15

(
T

(
E2

p

2M

))4

+
8π6

9
αL2

p

(
T

(
E2

p

2M

))6

. (63)

Expanding for M/Ep ≫ 1 we obtain

dM

dt
≃ −16π

E4
p

M2

(
k̃0 + αk̃1

E2
p

M2

)
, (64)

with k̃0 =
π

7680 and k̃1 =
1

294912 + π
15360 .

Clearly the modifications to the black hole evaporation formula obtained in the GUP scenario are
qualitatively the same as in the MDR scenario with α1 = 0.

8 A possible dependence on the speed law for photons

Throughout our analysis we have implicitly assumed that the law vγ = 1 describing the speed of
photons is not affected by the MDR and/or the GUP. The possibility of modifications of the speed
law for photons has been however considered rather extensively, particularly in the MDR literature.
While several authors have argued that the law vγ = 1 should not be modified even in presence of an
MDR (see, e.g., Refs. [43, 44, 45] and references therein), one also finds support in the literature for the
proposal (see, e.g., Ref. [26] and references therein) of the law vγ = [dE/dp]m=0 = [dfdisp(p)/dp]m=0

and the proposal (see, e.g., Ref. [21] and references therein) of the law vγ = p/E.
For our analysis a key point is that if, instead of vγ = 1, one took vγ = [dE/dp]m=0 or vγ = p/E

then the speed of photons would acquire an energy dependence which should be taken into account
in some aspects of our derivations. We postpone to future studies this more general analysis, but in
order to explore the type of modifications which could be induced by such an energy dependence of
the speed of photons we do intend to consider here the description of black-body radiation with the
dispersion relation (19), assuming that the speed of photons is governed by either vγ = [dE/dp]m=0

or vγ = p/E.
We focus on the emitted “flux density”

Iν = Auν vγ(ν) (65)

where A is the area of the radiating surface and uν is the energy density at a given frequency.
Taking vγ = p/E, from (19) it follows that

vγ(ν) =
p

E
=

Ep

E

√√√√1− 1

cosh
(√

2E
Ep

) . (66)

From this it would then follow that the energy flux density is given by

Iν(T ) = 4πA
√
2E3

p

1

eν/T − 1

sinh(
√
2E/Ep)

cosh3(
√
2E/Ep)

[
cosh(

√
2E/Ep)− 1

]
. (67)
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This suggests that, although there are some small quantitative differences, the qualitative features of
black-body radiation with the dispersion relation (19) are largely independent of the choice between
vγ = 1 and vγ = p/E. In particular, from (67) with one finds that the typical frequency of the photons
contributing to the energy flux saturates at

ν̄ ≃ 0.76Ep, (68)

which is not much different from the typical frequency found for the case vγ = 1. The analysis of the
total emitted energy (

∫∞
0 Iν(T )dν) also leads to rather small differences between the choices vγ = 1

and vγ = p/E. In particular from (67) one finds

I/A =
8

15
π5T 4

{
1 + C1

(
T

Ep

)2

+ C2

(
T

Ep

)4

+O

(
T

Ep

)6
}
, (69)

in the limit T/Ep ≪ 1, and

I/A = E4
p

{
C̃1

T

Ep
+ C̃2 + C̃3

Ep

T
+O

(
Ep

T

)2
}
, (70)

in the limit T/Ep ≫ 1, where C1 = −100π2

21 , C2 =
164π4

5 and C̃1 = 5.57, C̃1 = −π and C̃3 = 0.79 .
If instead one adopts the law vγ = [dE/dp]m=0, still assuming (19), one obtains

vγ(ν) =
dE

dp
=

cosh
3

2

√
2E
Ep

cosh E√
2Ep

(71)

and then the flux density takes the form

Iν = 16πAE2
p ν

sinh2 ν√
2Ep(

e
ν
T − 1

)
cosh

√
2ν

Ep

. (72)

From this one easily verifies that the effects induced by the Planck-scale deformation in the case
vγ = [dE/dp]m=0 are essentially of the same type encountered in the cases vγ = 1 and vγ = p/E,
but the quantitative differences between the case vγ = [dE/dp]m=0 and the other two cases are more
significant then the ones between the cases vγ = 1 and vγ = p/E. As mentioned, in absence of the
Planck-scale effects the typical frequency of the photons contributing to the energy flux grows linearly
with the temperature, while in the cases in which the Planck-scale effects of (19) are introduced with
vγ = 1 or vγ = p/E the typical frequency saturates at a Planckian value. If the same Planck-scale
effects are introduced with vγ = [dE/dp]m=0, as implicitly codified in (72), one finds that the growth
of the typical frequency with temperature also slows down significantly at high temperatures but it
does not completely saturate: at high temperatures the typical frequency grows logarithmically with
the temperature.

In summary the choice of the speed law does not appear to affect the core features of the analysis,
but it appears that it could in some cases introduce some significant quantitative differences.

9 Comparison with previous analyses

To our knowledge, the one we reported here, in spite of its preliminary nature, is at this point
the most composite effort of exploration of the implications of a MDR and/or a GUP in black-hole
thermodynamics. But parts of the overall picture we attempted to provide had been investigated
previously, and it seems appropriate to comment briefly on this previous related studies.
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Closest in spirit to our perspective are the studies of the implications of the GUP for black-hole
thermodynamics reported in Refs. [14] and [15]. Whereas for us (2) is to be handled prudently,
as it could possibly be only an approximate form of a more complicated all-order-in-Lp formula, in
Refs. [14, 15] the formula (2) is taken as the exact form of the GUP, thereby leading to a corresponding
form of the entropy-area relation. Perhaps more importantly Refs. [14, 15] assume that the GUP would
not affect the black-body spectrum and in particular a standard expression for Stefan’s law is used
even in Planckian regimes. There was no investigation of MDRs in Refs. [14, 15].

An attempt to describe Hawking radiation in presence of a MDR was reported in Ref. [13]. There
the problem is approached from the field-theoretic perspective, considering possible modification of
the field equations coming from the MDR. No explicit formula for the corrections to the Hawking
spectrum and to the entropy-area relation was obtained in Ref. [13].

Ref. [16] investigates how a general form of the GUP could modify the volume element of phase
space, and therefore the black-body-radiation formula, using the Hamiltonian formulation in terms of
Poisson brackets.

In Ref. [17] an analysis of black-body radiation is carried out in presence of a MDR of the type
emerging from a proposed “semiclassical limit” of Loop Quantum Gravity, which is analogous to the
“leading order” MDR (1) we studied in some parts of this paper. The results reported there are
consistent with the power-series formulas for Stefan’s and Wien’s law which we derived. The features
we exposed in considering some illustrative examples of all-order MDRs, were not discussed in Ref. [17].
Also the entropy-area relation and the aspects of black-hole evaporation which we considered here were
not part of the analysis reported in Ref. [17], and Ref. [17] did not consider the possibility of a GUP.

Ref. [18] is closest in spirit to the part of our analysis where we focused on the black-body radiation
spectrum, as affected by a MDR. Although the formal setup differs in several points, the results are
roughly consistent with ours, including the possibility of “saturation” of the characteristic frequency
at T ≫ Ep. There was however no investigation of the entropy-area relation and the Generalized
Second law in Ref. [18], and Ref. [18] also did not consider the possibility of a GUP.

10 Outlook

The technical difficulties that are encountered in most approaches to the quantum-gravity problem
usually only allow one to grasp a few disconnected aspects of the physical picture that the theories could
provide. And in some approaches even the few “physical” results that are obtained, are only derived
within approximation schemes whose reliability is not fully established. We have argued that in this
situation it might be particularly valuable to establish a few logical links connecting some apparently
unrelated aspects of the physical picture. And we showed that such a link can be found between
some aspects of quantum-gravity research which have attracted strong interest in recent times, a link
providing a connection between results on modified energy-momentum dispersion relations and/or
modified position-momentum uncertainty principles and results on the thermodynamics of black holes.
We have provided a description of log corrections to the entropy-area law for black holes that is based
on the availability of a MDR and/or a GUP.

In exploring other aspects of black-hole thermodynamics as affected by MDRs and GUPs we stum-
bled upon a few noteworthy points. We found that the Generalized Second Law of thermodynamics
might be robust enough to survive the introduction of these Planck-scale effects. We found that a
MDR introducing a minimum value for wavelengths (even when no maximum value for frequencies is
introduced) could lead to a description of black-body radiation in which the characteristic frequency
of the radiation never exceeds a finite Planckian value (described in Eq. (50)). This in turn also
affects black-hole evaporation in such a way that the temperature diverges already when the mass of
the black hole decreases to a Planck-scale value (instead of diverging only in the zero-mass limit as
usually assumed).

A key test for our line of analysis will come from future improved analyses within the loop-quantum-
gravity approach. According to the perspective we adopted some preliminary results on the emergence
of modifications of the dispersion relation that depend linearly on the Planck length (at low energies)
would be incompatible with the loop-quantum-gravity results on log corrections to the entropy-area
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relation for black holes. We predict that improved analyses of the loop-quantum-gravity approach
should lead to the emergence of a picture that is instead compatible with the conceptual link we are
proposing.

As stressed in Section 8 one aspect of our analysis in which we took a rather conservative attitude
(in comparison with the possibilities considered in the literature) is the one concerning the description
of the speed of photons, which we assumed to be still frequency independent. We do not expect
major obstacles for a generalization of our analysis with the inclusion of the possibility of a frequency-
dependent speed of photons, and the preliminary investigation reported in Section 8 suggests that
some of the core features that emerged from our analysis are only moderately affected by the choice
of law for the speed of photons.
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