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Sparse Principal Component Analysis (PCA) methods are effi-
cient tools to reduce the dimension (or the number of variables) of
complex data. Sparse principal components (PCs) are easier to in-
terpret than conventional PCs, because most loadings are zero. We
study the asymptotic properties of these sparse PC directions for
scenarios with fixed sample size and increasing dimension (i.e. High
Dimension, Low Sample Size (HDLSS)). Under the previously stud-
ied spike covariance assumption, we show that Sparse PCA remains
consistent under the same large spike condition that was previously
established for conventional PCA. Under a broad range of small spike
conditions, we find a large set of sparsity assumptions where Sparse
PCA is consistent, but PCA is strongly inconsistent. The boundaries
of the consistent region are clarified using an oracle result.

1. Introduction. Principal Component Analysis (PCA) is an impor-
tant visualization and dimension reduction tool for High Dimension, Low
Sample Size (HDLSS) data. However, the linear combinations found by PCA
typically will involve all the variables, with non-zero loadings, which can be
challenging to interpret. In order to overcome this weakness of PCA, we
will study sparse PCA methods that generate sparse principal components
(PCs), i.e. PCs with only a few non-zero loadings. Several sparse PCA meth-
ods have been proposed to facilitate the interpretation of HDLSS data, see
for example Zou, Hastie and Tibshirani (2006) [? ], Shen and Huang (2008) [?
], Leng and Wang (2009) [? ], Witten, Tibshirani and Hastie (2009) [? ],
Johnstone and Lu (2009) [? ], Amini and Wainwright (2009) [? ], and Ma
(2010) [? ].

This paper studies the HDLSS asymptotic properties of sparse PCA.
HDLSS asymptotics are based on the limit, as the dimension d → ∞,
with the sample size n fixed, as originally studied by Hall, Marron and
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Neeman (2005) [? ] and Ahn et al. (2007) [? ]. Theoretical properties of
sparse PCA have been studied before under different asymptotic frame-
works. Leng and Wang (2009) [? ] used the adaptive lasso penalty of Zou,
Hastie and Tibshirani (2006) [? ] to introduce sparse loadings, and estab-
lished some consistency result for selecting non-zero loadings when the sam-
ple size n → ∞, with the dimension d fixed. Johnstone and Lu (2009) [? ]
considered a single-component spiked covariance model (originally proposed
by Johnstone (2001) [? ]) and showed that conventional PCA is consistent if
and only if d(n)/n→ 0; furthermore, under the condition log(d∨n)/n→ 0,
they proved consistency of PCA performed on a subset of variables with
largest sample variance. Amini and Wainwright (2009) [? ] considered the
same single-component spiked model, and further restricted the maximal
eigenvector to have k non-zero entries; they studied the thresholding subset
PCA procedure of Johnstone and Lu [? ] and the sparsePCA procedure of
d’Aspremont et al. (2007) [? ], and explored conditions on the triplet (n, d, k)
under which each procedure can recover the support set of the sparse eigen-
vector with probability one. Paul and Johnstone [? ] developed the aug-
mented sparse PCA procedure along with its optimal rate of convergence
property. Ma [? ] proposed an iterative thresholding procedure for estimating
principal subspaces that has nice theoretical properties.

Sparse PCA is primarily motivated by modern data sets of very high di-
mension; hence we prefer the statistical viewpoint of the High Dimension
Low Sample Size (HDLSS) asymptotics. Note that this case of d→∞ with
n fixed was not considered by Johnstone and Lu [? ]. Conventional PCA was
first studied using HDLSS asymptotics by Ahn et al. [? ] and the most com-
prehensive current result is Jung and Marron (2009) [? ]. The latter found
conditions when the first several empirical PC directions would be consis-
tent or subspace consistent with the corresponding population PC directions.
This happens when the first several eigenvalues are large enough, compared
with the rest of the eigenvalues of the population covariance matrix. More-
over, if the first few eigenvalues are not sufficiently large, all empirical PC
directions will be strongly inconsistent with their population counterparts
in the sense that the angle between them will converge to 90 degrees.

The main contribution of this paper is an exploration of conditions where
conventional PCA is strongly inconsistent (for scenarios with relatively small
population eigenvalues), yet sparse PCA methods are consistent. Further-
more, the mathematical boundaries of the sparse PCA consistency are estab-
lished by showing strong inconsistency, for even an oracle version of sparse
PCA, beyond the consistent region. Similar to Johnstone and Lu (2009) [?
] and Amini and Wainwright (2009) [? ], we focus on the single component
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spiked covariance model. Our results depend on a spike index, α, defined
below in the context of Example 1.1, which measures the dominance of the
first eigenvalue, and on a sparsity index, β, defined also in Example 1.1,
which measures the number of non-zero entries of the first population eigen-
vector. For illustration purposes, we simplify the consistency and strong
inconsistency results for the exemplary model considered in Example 1.1,
and summarize them below as functions of α and β in Figure 1:

• Previous Results (dark grey rectangle): Jung and Marron (2009)
[? ] showed that the first empirical eigenvector is consistent with the
first population eigenvector when the spike index α is greater than 1.
• Consistency (white triangle): We will show that sparse PCA is

consistent even when the spike index α is less than 1, as long as α
is greater than the sparsity index β. This is done in Section 2 for a
simple thresholding method and in Section 3 for the RSPCA method
proposed by Shen and Huang (2008) [? ].
• Strong Inconsistency (black triangle): In Section 4 we show that

even an oracle sparse PCA procedure is strongly inconsistent with the
first population eigenvector, when the spike index α is smaller than
the sparsity index β.
• Irrelevant Area (light grey rectangle): The sparsity index β can

not be larger than 1, hence the light grey rectangular area is irrelevant.

1.1. Notation and Assumptions. All quantities are indexed by the di-
mension d in this paper. However, when it will not lead to confusion, the
subscript d will be omitted for convenience. Let the population covariance
matrix be Σd. The eigen-decomposition of Σd is

Σd = UdΛdU
T
d ,

where Λd is the diagonal matrix of the population eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λd and Ud is the matrix of corresponding population eigenvectors so
that Ud = [u1, · · ·, ud].

Assume thatX1, . . . , Xn are random samples from a d-dimensional normal
distribution N(0,Σd). Denote the data matrix by X(d) = [X1, . . . , Xn]d×n

and the sample covariance matrix by Σ̂d = n−1X(d)X
T
(d). Then, the sample

covariance matrix Σ̂d can be similarly decomposed as

Σ̂d = ÛdΛ̂dÛ
T
d ,

where Λ̂d is the diagonal matrix of the sample eigenvalues λ̂1 ≥ λ̂2 ≥ . . . ≥
λ̂d and Ûd is the matrix of the corresponding sample eigenvectors so that
Ûd = [û1, . . . , ûd].
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Fig 1. Consistent areas for PCA and sparse PCA, as a function of the spike index α and
the sparsity index β, under the single component spiked model considered in Example 1.1.
Conventional PCA is consistent only on the dark grey rectangle (α > 1), while sparse
PCA is also consistent on the white triangle (0 ≤ β < α ≤ 1). In addition, an oracle
sparse PCA procedure is strongly inconsistent on the black triangle (0 ≤ α < β ≤ 1). The
light grey rectangular area (0 ≤ α < 1, β > 1) is not considered because the sparsity index
β ≤ 1. The dots show the grid points studied in the simulation study of Section 4.

Let ūi be any sample based estimator of ui, e.g. ūi = ûi for i = 1, . . . , d.
Two important concepts from Jung and Marron (2009) [? ] are:

• Consistency: The direction ūi is consistent with its population coun-
terpart ui if

(1.1) Angle(ūi, ui) ≡ arccos(|< ūi, ui >|)
p−→ 0, as d→∞,

where < ·, · > denotes the inner product between two vectors.
• Strong Inconsistency: The direction ūi is strongly inconsistent with

its population counterpart ui if

Angle(ūi, ui) = arccos(|< ūi, ui >|)
p−→ π

2
, as d→∞.

In addition, we consider another important concept in the current paper:
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• Consistency with convergence rate dι: The direction ūi is consis-
tent with its population counterpart ui with the convergence rate dι

if |< ūi, ui >|= 1 + op(d
−ι), where the notation Gd ≡ op(d

−ι) means

that dιGd
p−→ 0, as d→∞.

Example 1.1. Assume that X1, . . . , Xn are random sample vectors from
a d-dimensional normal distribution N(0,Σd), where the covariance matrix
Σd has the eigenvalues as

λ1 = dα, λ2 = . . . = λd = 1, α ≥ 0.

This is a special case of the single component spike covariance Gaussian
model considered before by, for example, Johnstone (2001) [? ], Paul (2007)
[? ], Johnstone and Lu (2009) [? ], Amini and Wainwright (2009) [? ]. With-
out loss of generality (WLOG), we further assume that the first eigenvector
u1 is proportional to the following d-dimensional vector

u̇1 = (

bdβc︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T ,

where 0 ≤ β ≤ 1 and bdβc denotes the integer part of dβ. (In general the
non-zero entries do not have to be the first bdβc elements, neither do they
need to be equal.) If β = 0, the first population eigenvector becomes u1 =
(1, 0, . . . , 0)T .

For the above model, Jung and Marron (2009) [? ] showed that the first
empirical eigenvector (the PC direction) û1 is consistent with u1 when α > 1;
however for α < 1, it is strongly inconsistent. Again, the main point of the
current paper is an exploration of conditions under which sparse methods
can lead to consistency when the spike index α ≤ 1, (recall that the first
eigenvalue λ1 = dα), by exploiting sparsity. Sparsity is quantified by the
sparsity index β, where bdβc is the number of non-zero elements of the first
eigenvector u1. Here we use the above simple example for intuitive illustra-
tion purposes, to highlight the key findings. More general single component
spike models will be considered in Sections 2 to 4.

1.2. Roadmap of the paper. The organization of the rest of paper is as
follows. For easy access to the main ideas, Section 2 first introduces a simple
thresholding method to generate sparse PC directions. Section 2.1 shows the
consistency of the sparse PC directions, obtained by this simple threshold-
ing method. Section 3 then generalizes these ideas to a current sparse PCA
method. In particular, we consider the sparse PCA method developed by
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Shen and Huang (2008) [? ], and build its connection to the simple thresh-
olding method. We then establish the consistency of the sparse PCA method
under the sparsity and small spike conditions where the conventional PCA is
strongly inconsistent. Section 4 considers scenarios when the spike index α is
smaller than the sparsity index β, and proves the strong inconsistency of an
appropriate oracle PCA procedure. Section 5 reports some simulation results
to illustrate both consistency and strong inconsistency of PCA and sparse
PCA. Section 6 concludes the paper with some discussion of future work
on extending consistency of sparse PCA to more general distributions. We
point out that it is challenging to move beyond Gaussianity to get HDLSS
consistency of sparse PCA. Section 7 contains the proofs of the theorems.

2. Consistency of a simple thresholding method for sparse PCA
in HDLSS. In Example 1.1, the first eigenvector of the sample covariance
matrix û1 is strongly inconsistent with u1 when α < 1, because it attempts
to estimate too many parameters. Sparse data analytic methods assume
that many of these parameters are zero, which can allow greatly improved
estimation of the first PC direction u1. Here, this issue is explored in the
context of sparse PCA, where u1 = (1, 0, . . . , 0)T is an extreme case. The
sample covariance matrix based estimator, û1, can be improved by exploiting
the fact that u1 has many zero elements.

A natural approach is a simple thresholding method where entries with
small absolute values are replaced by zero. In HDLSS contexts, it is challeng-
ing to apply thresholding directly to the entries of û1, because the number
of them grows rapidly as d→∞, which naturally shrinks their magnitudes
given that û1 is a unit vector. Thresholding is more conveniently formulated
in terms of the dual covariance matrix as used by Jung, Sen and Marron
(2010) [? ].

Denote the dual sample covariance matrix by Sd = 1
nX

T
(d)X(d) and the

first dual eigenvector by ṽ1. The sample eigenvector û1 is connected with
the dual eigenvector ṽ1 through the following transformation,

(2.1) ũ1 = (ũ1,1, . . . , ũd,1)
T = X(d)ṽ1,

and the sample estimate is then given by û1 = ũ1/‖ũ1‖ [? ].
Given a sequence of threshold values λ, define the thresholded entries as

(2.2) ŭi,1 =

{
ũi,1 if |ũi,1| > λ,

0 if |ũi,1| ≤ λ,
for i = 1, . . . , d.

Denote ŭ1 = (ŭ1,1, . . . , ŭ1,1)
T and normalize it to get the simple thresholding

(ST) estimator ûST1 = ŭ1/‖ŭ1‖.
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For the model considered in Example 1.1, given an eigenvalue of strength
α ∈ (0, 1), (recall λ1 = dα and û1 is strongly inconsistent), below we explore
conditions on the threshold sequence λ under which the ST estimator ûST1 is
in fact consistent with u1. First of all, the threshold λ can not be too large;
otherwise all the entries will be zeroed out. It will be seen in Theorem 2.1
that a sufficient condition for this is λ ≤ d

γ
2 , where γ ∈ (0, α). Secondly, the

threshold λ can not be too small, or pure noise terms will be included. A
parallel sufficient condition is shown to be λ ≥ logδ(d), where δ ∈ (12 ,∞).

2.1. Consistency of the simple thresholding method. Below we formally
establish conditions on the eigenvalues of the population covariance matrix
Σd and the thresholding parameter λ, which give consistency of ûST

1 to
u1. All the technical proofs are provided in Section 7 and the supplement
materials.

We begin with considering the extreme sparsity case u1 = (1, 0, . . . , 0)T .
Suppose that λ1 ∼ dα, in the sense that 0 < c1 ≤ limd→∞

λ1
dα ≤ limd→∞

λ1
dα ≤

c2, where c1 and c2 are two constants. Similarly, assume
∑d

i=2 λi ∼ d. As in
Jung and Marron [? ], denote the measure of sphericity as

ε ≡ tr2(Σd)

dtr(Σ2
d)

=
(
∑d

i=1 λi)
2

d
∑d

i=1 λ
2
i

,

and assume the ε-condition: ε� 1
d , i.e

(dε)−1 =

∑d
i=1 λ

2
i

(
∑d

i=1 λi)
2
→ 0, as d→∞.(2.3)

Now we need to impose the following conditions on the eigenvalues:

• Assume that limd→∞
λ1∑d
i=2 λi

= c, where c is a non-negative constant,

and the ε-condition is satisfied. These conditions can guarantee that
the dual matrix Sd has a limit. Hence the first dual eigenvector v̂1 will
have a limit and it will then help build up the consistency of ûST1 .
• In addition, we need the second eigenvalue λ2 to be an obvious distance

away from the first eigenvalue λ1. If not, it will be hard to distinguish
the first and second empirical eigenvectors as observed by Jung and
Marron, among others. In that case the appropriate amount of thresh-
olding on the first empirical eigenvector becomes unclear. Therefore,
we assume that λ2 ∼ dθ, where θ < α.

Theorem 2.1. Suppose that X1, . . . , Xn are random samples from a d-
dimensional normal distribution N(0,Σd) and the first population eigenvec-
tor u1 = (1, 0, . . . , 0)T . If the following conditions are satisfied:
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(a) λ1 ∼ dα, λ2 ∼ dθ, and
∑d

i=2 λi ∼ d, where θ ∈ [0, α) and α ∈ (0, 1],
(b) for a non-negative constant c, limd→∞

λ1∑d
i=2 λi

= c and the ε-condition (2.3)

is satisfied,

(c) logδ(d) d
θ
2 ≤ λ ≤ d

γ
2 , where δ ∈ (12 ,∞) and γ ∈ (θ, α),

then the simple thresholding estimator ûST1 is consistent with u1.

In fact, u1 = (1, 0, . . . , 0)T in Theorem 2.1 is a very extreme case. The
following theorem considers the general case u1 = (u1,1, . . . , ud,1)

T , where
only bdβc elements of u1 are non-zero. WLOG, we assume that the first bdβc
entries are non-zero just for notational convenience.

Define

(2.4) Zj ≡ (z1,j , . . . , zd,j)
T = (XT

j u1, . . . , X
T
j ud)

T , j = 1, . . . , n.

We can show that Zj are iid N (0,diag{λ1, . . . , λd}) random vectors. In
addition, let

(2.5) Wj ≡ (w1,j , . . . , wd,j)
T = (λ

− 1
2

1 z1,j , . . . , λ
− 1

2
d zd,j)

T , j = 1, . . . , n,

and the Wj are iid N(0, Id) random vectors, where Id is the d-dimensional
identity matrix.

The following additional conditions are needed to ensure the consistency
of ûST1 :

• The non-zero entries of the population eigenvector u1 need to be a
certain distance away from zero. In fact, if the non-zero entries of the
first population eigenvector are close to zero, the corresponding entries
of the first empirical eigenvector would also be small and look like pure
noise entries. Thus, we assume

max1≤i≤bdβc|ui,1|−1 ∼ d
η
2 , where η ∈ [0, α).

• From (2.4), we have

Xj =
d∑
i=1

zi,jui, j = 1, . . . , n.

Since z1,j has the largest variance λ1, then z1,ju1 contributes the most
to the variance of Xj , j = 1, . . . , n. Note that z1,ju1 is consistent with
u1, and so z1,ju1 is the key to making the simple thresholding method
work. So we need to show that the remaining parts

Hj ≡ (h1,j , . . . , hd,j)
T =

d∑
i=2

zi,jui, j = 1, . . . , n(2.6)
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have a negligible effect on the direction vector ûST1 .
• Suppose that the Hj are iid N(0,∆d), where ∆d = (mkl)d×d, for
j = 1, . . . , n. A sufficient condition to make their effect negligible is
the following mixing condition of Leadbetter, Lindgren and Rootzen
(1983) [? ]:

|mkl| ≤ mkk
1
2mll

1
2 ρ|k−l|, 1 ≤ k 6= l ≤ bdβc,(2.7)

where ρt < 1 for all t > 1 and ρt log(t) −→ 0, as t → ∞. This mix-
ing condition can guarantee that max1≤j≤n|h1,j | has a quick conver-
gence rate, as d→∞. It enables us to neglect the influence of Hj for
sufficiently large d and make zi,ju1 the dominant component, which
then gives consistency to the first population eigenvector u1. Thus the
thresholding estimator ûST1 becomes consistent.

We now state one of the main theorems:

Theorem 2.2. Assume that X1, . . . , Xn are random samples from a d-
dimensional normal distribution N(0,Σd). Define Zj, Wj and Hj as in (2.4),
(2.5), and (2.6) for j = 1, . . . , n. The first population eigenvector is u1 =
(u1,1, . . . , ud,1)

T with ui,1 6= 0, i = 1, . . . , bdβc, and otherwise ui,1 = 0.
If the following conditions are satisfied:

(a) λ1 ∼ dα, λ2 ∼ dθ, and
∑d

i=2 λi ∼ d, where θ ∈ [0, α) and α ∈ (0, 1],
(b) for a non-negative constant C, limd→∞

λ1∑d
i=2 λi

= C and ε-condition

(2.3) is satisfied,
(c) max1≤i≤[dβ ]|ui,1|−1 ∼ d

η
2 , where η ∈ [0, α),

(d) Hj satisfies the mixing condition (2.7), j = 1, . . . , n ,

(e) logδ(d) d
θ
2 ≤ λ ≤ d

γ
2 , where δ ∈ (12 ,∞) and γ ∈ (θ, α− η),

then the thresholding estimator ûST1 is consistent with u1.

We offer a couple of remarks regarding the above theorem. First of all,
the theorem naturally reduces to Theorem 2.1 if we let the sparsity index
β = 0. More importantly, this theorem, and the following ones in Sections 2
to 4, show that the concepts depicted in Figure 1 hold much more generally
than just under the conditions of Example 1.1. In particular, in the above
Theorem 2.2, setting θ = 0 and η = β would give the results plotted in
Figure 1.

In addition, for different thresholding parameter λ, the ST estimator ûST1
is consistent with u1 with different convergence rate. This result is stated in
the following theorem. The notation λ = o(dρ) below means that λd−ρ → 0
as d→∞.
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Theorem 2.3. For the thresholding parameter λ = o(d
α−η−ς

2 ), where
ς ∈ [0, α− η− θ), the corresponding thresholding estimator ûST1 is consistent
with u1, with a convergence rate of d

ς
2 .

3. Asymptotic properties of RSPCA. As noted in Section 1, several
sparse PCA methods have been proposed in the literature. Here we perform a
detailed HDLSS asymptotic analysis of the sparse PCA procedure developed
by Shen and Huang (2008) [? ]. For simplicity, we refer to it as the regularized
sparse PCA, or RSPCA for short. All the detailed technical proofs are again
provided in Section 7 and the supplement materials.

We start with briefly reviewing the methodological details of RSPCA.
(For more details, see [? ].) Given a d-by-n data matrix X(d), consider the
following penalized sum-of-squares criterion:

‖X(d) − uvT ‖2F + Pλ(u), subject to ‖v‖ = 1,(3.1)

where u is a d-vector, v is a unit n-vector, ‖ · ‖F denotes the Frobenius
norm, and Pλ(u) =

∑d
i=1 pλ (|ui,1|) is a penalty function with λ ≥ 0 being

the penalty parameter. The penalty function can be any sparsity-inducing
penalty. In particular, Shen and Huang [? ] considered the soft thresholding
(or L1 or LASSO) penalty of Tibshirani (1996) [? ], the hard thresholding
penalty of Donoho and Johnstone (1994) [? ], and the smoothly clipped
absolute deviation (SCAD) penalty of Fan and Li (2001) [? ].

Without the penalty term or when λ = 0, minimization of (3.1) can be
obtained via singular value decomposition (SVD) [? ], which results in the
best rank-one approximation of X(d) as ũ1ṽ

T
1 , where ũ1 and ṽT1 minimize

the criterion (3.1). The normalized ũ1 turns out to be the first empirical PC
loading vector. With the penalty term, Shen and Huang define the sparse PC
loading vector as û1 = ũ1/‖ũ1‖ where ũ1 is now the minimizer of (3.1) with
the penalty term included. The minimization now needs to be performed
iteratively. For a given ṽ1 in the criterion (3.1), we can get the minimizing
vector as ũ1 = hλ

(
X(d)ṽ1

)
, where hλ is a thresholding function that depends

on the particular penalty function used and the penalty (or thresholding)
parameter λ. See [? ] for more details. The thresholding is applied to the
vector X(d)ṽ1 componentwise.

Shen and Huang (2008) [? ] proposed the following iterative procedure
for minimizing the criterion (3.1):

The RSPCA Algorithm

1. Initialize:
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(a) Use SVD to obtain the best rank-one approximation ũ1ṽ
T
1 of the

data matrix X(d), where ṽ1 is a unit vector.

(b) Set ũold1 = ũ1 and ṽold1 = ṽ1.

2. Update:

(a) ũnew1 = hλ
(
X(d)ṽ

old
1

)
.

(b) ṽnew1 =
XT

(d)
ũnew1

‖XT
(d)
ũnew1 ‖ .

3. Repeat Step 2 setting ũold1 = ũnew1 and ṽold1 = ṽnew1 until convergence.
4. Normalize the final ũnew1 to get û1, the desired sparse loading vector.

There exists a nice connection between the simple thresholding (ST)
method of Section 2 and RSPCA. The ST estimator ûST1 is exactly the
sparse loading vector û1 obtained from the first iteration of the RSPCA it-
erative algorithm, when the hard thresholding penalty is used. In particular,
the first dual eigenvector ṽ1 in (2.1) is just the ṽ1 from the best rank-one
approximation ũ1ṽ

T
1 of the data matrix X(d). Then, the application of the

simple thresholding method to the vector X(d)ṽ1 as in (2.2) leads to the

sparse ST estimator ûST1 . This is the same as applying the hard threshold-
ing penalty in (3.1) to generate the sparse loading vector û1, for the given
ṽ1. The thresholding parameter λ in (2.2) also corresponds to the penalty
parameter λ in (3.1) in the case of the hard thresholding penalty.

Below we develop conditions under which the sparse RSPCA loading
vector û1 is consistent with the population eigenvector u1 when a proper
thresholding parameter λ is used. All three of the soft thresholding, hard
thresholding or SCAD penalties are considered. First, the following theorem
states conditions when the first step sparse loading vector û1 is consistent
with u1 under the proper thresholding parameter λ.

Theorem 3.1. Under the assumptions and conditions of Theorem 2.2,
the first step sparse loading vector û1 is consistent with u1.

Theorem 3.1 explores conditions when the first iteration of the iterative
procedure of RSPCA gives a consistent sparse loading vector û1, with an
appropriate thresholding parameter λ. Similar to the ST estimator, for dif-
ferent parameters λ, û1 is consistent with u1 with different convergence rates.
The result is given in the following Theorem 3.2.

Theorem 3.2. For the thresholding parameter λ = o(d
α−η−ς

2 ), where
ς ∈ [0, α− η − θ), the sparse loading vector û1 in Theorem 3.1 is consistent
with u1, with a convergence rate of d

ς
2 .
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We then set ûold1 to be the consistent sparse loading vector obtained after
the first iteration of the RSPCA algorithm. We then obtain an updated
estimate for v1 as ṽnew1 = XT

(d)û
old
1 /‖XT

(d)û
old
1 ‖. The theorem below studies

the asymptotic properties of ṽnew1 .

Theorem 3.3. Assume that ûold1 is consistent with u1 with the conver-
gence rate d

ς
2 , where ς ∈ [1− α,∞). If the ε-condition is satisfied, then

ṽnew1
p−→ W̃1

‖W̃1‖
, as d→∞,

where W̃1 = (w1,1, · · ·, w1,n) follows a standard n-dimensional normal dis-
tribution N(0, In) and the wi,j are defined in (2.5).

Since Theorem 3.3 establishes the asymptotic properties of ṽnew1 , we can
now study the asymptotic properties of the updated sparse loading vector

ûnew1 =
ũnew1

‖ũnew1 ‖
, with ũnew1 = hλ(X(d)ṽ

new
1 ),(3.2)

as defined in the iterative procedure of RSPCA. The following Theorem 3.4
shows that with a proper choice of the thresholding parameter λ, the updated
sparse loading vector ûnew1 remains to be consistent with the population
eigenvector u1.

Theorem 3.4. Under the assumptions and conditions of Theorems 2.2
and 3.3, the updated sparse loading vector ûnew1 in (3.2) is consistent with
u1.

For different threshold parameters λ, ûnew1 is again consistent with u1 with
different convergence rates, as seen in the following theorem.

Theorem 3.5. For the thresholding parameter λ = o(d
α−η−ς

2 ), where
ς ∈ [0, α− η − θ), the updated sparse loading vector ûnew1 in Theorem 3.4 is
consistent with u1, with convergence rate d

ς
2 .

According to Theorems 3.2 and 3.5, if α−η−θ > 1−α, then we can choose

the thresholding parameter λ = o(d
α−η−ς

2 ) and make the updated sparse
loading vector ûnew

1 in (3.2) to be consistent with u1 at every updating
step.
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4. Strong Inconsistency. We have shown that we can attain consis-
tency using sparse PCA, when the spike index α is greater than the sparsity
index β. This motivates the question of consistency using sparse PCA when
the spike index α is smaller than the sparsity index β. To answer this ques-
tion, we consider an oracle estimator which uses the exact positions of zero
entries of the population eigenvector u1. We will show that even this oracle
estimator is strongly inconsistent with the population eigenvector u1 when
the spike index α is smaller than the sparsity index β. Compared with this
oracle sparse PCA, threshold methods can perform no better because they
also need to estimate location of the zero entries; hence threshold methods
will also be strongly inconsistent.

For Example 1.1, the first bdβc entries of the population eigenvector
u1 are known to be the non-zero entries. So we could first find a bdβc-
dimensional estimator û∗1 through subspace PCA for the bdβc-dimensional
subspace eigenvector u∗1 which is proportional to the following bdβc-dimensional
vector,

ü1 = (

bdβc︷ ︸︸ ︷
1, . . . , 1)T .

Then we get the oracle (OR) estimator for u1 as,

ûOR
1 = ((û∗1)

T ,

d−bdβc︷ ︸︸ ︷
0, . . . , 0)T .

The oracle estimator ûOR
1 has the same sparsity as the population eigenvec-

tor u1. Furthermore, it is strongly inconsistent with u1 when α < β.
To make this precise, we study the procedure to generate the oracle esti-

mator for general single component models. Assume that the first bdβc en-
tries of the population eigenvector u1 are non-zero and the rest are all zero:
u1 = (u1,1, . . . , ud,1)

T ,where ui,1 6= 0, i = 1, . . . , bdβc, otherwise ui,1 = 0.
Let X∗j = (x1,j , . . . , xbdβc,j)

T ∼ N(0,Σ∗bdβc), where Σ∗bdβc is the covariance

matrix of X∗j , j = 1, . . . , n. Then, the eigen-decomposition of Σ∗bdβc is

Σ∗bdβc = U∗bdβcΛ
∗
bdβc(U

∗
bdβc)

T ,

where Λ∗d is the diagonal matrix of eigenvalues λ∗1 ≥ λ∗2 ≥ . . . ≥ λ∗bdβc
and U∗bdβc is the matrix of the corresponding eigenvectors so that U∗bdβc =

[u∗1, . . . , u
∗
bdβc]. Since the last d − bdβc entries of the first population eigen-

vector u1 equal zero, it follows that the first eigenvector u∗1 of Σ∗bdβc is
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formed by the non-zero entries of the population eigenvector u1, i.e. u∗1 =
(u1,1, . . . , ubdβc,1)

T . So we have

u1 = ((u∗1)
T ,

d−bdβc︷ ︸︸ ︷
0, . . . , 0)T .

Consider the following data matrix X∗bdβc = [X∗1 , . . . , X
∗
n], and denote

the sample covariance matrix by Σ̂∗bdβc = n−1X∗bdβcX
T
bdβc. Then, the sample

covariance matrix Σ̂∗bdβc can be similarly decomposed as

Σ̂∗bdβc = Û∗bdβcΛ̂
∗
bdβc(Û

∗
bdβc)

T ,

where Λ̂∗bdβc is the diagonal matrix of the sample eigenvalues λ̂∗1 ≥ λ̂∗2 ≥
. . . ≥ λ̂∗bdβc and Û∗bdβc is the matrix of the corresponding sample eigenvectors

so that Û∗bdβc = [û∗1, . . . , û
∗
d]. Then, we define the oracle (OR) estimator as

ûOR
1 = ((û∗1)

T ,

d−bdβc︷ ︸︸ ︷
0, . . . , 0)T .(4.1)

The following theorem states the main result regarding strong inconsis-
tency.

Theorem 4.1. Assume that X1, . . . , Xn are random samples from a d-
dimensional normal distribution N(0,Σd). The first population eigenvector
is u1 = (u1,1, . . . , ud,1)

T ,where ui,1 6= 0, i = 1, . . . , bdβc, otherwise ui,1 = 0.
If the following conditions are satisfied:

(a) λ1 ∼ dα, λ2 ∼ dθ, λd ∼ 1 and
∑d

i=2 λi ∼ d, where θ ∈ [0, β2 ),
(b) α < β,
then the oracle estimator ûOR

1 in (4.1) is strongly inconsistent with u1.

5. Simulations for sparse PCA. Here, we will perform simulation
studies to illustrate the performance of the ST method and the RSPCA
with the hard thresholding penalty. Let the sample size n = 25 and the
dimension d = 10, 000. To generate the data matrix X(d), we first need to
construct the population covariance matrix for X(d) that approximates the
conditions of Theorems 2.2 and 3.1 when the spike index α is greater than
the sparsity index β.

For the population covariance matrix, we consider the motivating model in
Example 1.1 for the first population eigenvector and the eigenvalues, where
the first eigenvalue λ1 = dα and the rest equal one, i.e. λi = 1, i ≥ 2. For
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the additional population eigenvectors ui, 2 ≤ i ≤ bdβc, let the last d−bdβc
entries of these eigenvectors be zero. In particular, let the eigenvectors ui,
2 ≤ i ≤ bdβc, be proportional to

u̇i = (

i−1︷ ︸︸ ︷
1, . . . , 1,−i+ 1, 0, . . . , 0)T .

After normalizing u̇i, we get the i-th eigenvector ui = u̇i/‖u̇i‖. For i > bdβc,
let the i-th eigenvector have just one non-zero entry in the i-th position such

that ui = (

i−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0)T .

Then the data matrix is generated as

X(d) = d
α
2 u1z

T
1 +

d∑
i=2

uiz
T
i ,

where the zi are generated from the n-dimensional standard normal distri-
bution N(0, In).

We select twenty spike and sparsity pairs (α, β) that have spike index
α = {0.2, 0.4, 0.6, 0.8} and sparsity index β = {0, 0.1, 0.3, 0.5, 0.7}, which
are shown in Figure 1. We perform the simulation for all twenty spike and
sparsity pairs. For each spike and sparsity pair (α, β), we generate 100 real-
izations of the data matrix X(d). Results for three representative pairs are
reported below, and interesting observations are discussed. Additional sim-
ulation results can be found at [? ].

First of all, the plots in Figure 2 summarize the results for the spike and
sparsity pair (α, β) = (0.6, 0.1), corresponding to one of the square dots in
the white (consistent) triangular area of Figure 1. For each replication of the
data matrix X(d) and a range of the thresholding parameter λ, we obtained

the ST estimator ûST1 (Section 2) and the RSPCA estimator û1 (Section 4).
Then we calculate the angle between the estimates ûST1 (or û1) and the first
population eigenvector u1 through (1.1). Plotting this angle as a function
of the thresholding parameter λ gives the curve in Panel (A) of Figure 2.
Since ST and RSPCA have very similar performance in this case, we just
show the RSPCA plots in Figure 2. The 100 simulation realizations of the
data matrices X(d) generate the one-hundred curves in the panel. We rescale
the thresholding parameter λ as log10(λ + 10−5), to help reveal clearly the
tendency of the angle curves as the thresholding parameter increases.

In these angle plots, the angles with λ = 0 (essentially the left edge of
each plot) correspond to the ones obtained by the conventional PCA. Note
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Fig 2. Performance summary of RSPCA for spike index α = 0.6 and sparsity index
β = 0.1 where consistency is expected. Panel (A) shows angle to the first population
eigenvector as a function of thresholding parameter λ. Panel (B) and (C) are Type I Error
and Type II Error as a function of λ. The vertical dashed and solid lines are the left and
right bounds of the range of the thresholding parameter, which leads to the consistency of
RSPCA. These show very good performance of RSPCA within the indicated range, which
empirically confirms our asymptotic calculation. The circles indicate values at the BIC
choice of λ.

that these angles are all over 40 degrees which confirms the results of Jung
and Marron (2009) [? ] that when the spike index α < 1, the conventional
PCA can not generate a consistent estimator for the population eigenvector
u1. As λ increases, the angle remains stable for a while, then decreases to
almost 0 degree, before eventually starting to increase to 90 degrees. The
dashed and solid vertical lines in the angle plots indicate the range of the
thresholding parameter that gives a consistent estimator for u1, as stated in
Theorems 2.2 and 3.4. These plots suggest that RSPCA does improve over
PCA and the indicated thresholding range is very reasonable in this case,
which in turn empirically validates the asymptotic results of the theorems.
For each realization of the data, as the thresholding parameter increases, all
entries will be thresholded out, i.e. become zero, so the sparse PCA estimator
eventually becomes a d-dimensional zero vector. Hence the angles go to 90
degrees when the thresholding parameter is large enough.

Zou, Hastie and Tibshirani (2007) [? ] suggest the use of the Bayesian
Information Criterion (BIC) [? ] to select the number of the non-zero coef-
ficients for a lasso regression. Lee et al. (2010) [? ] apply this idea to the
sparse PCA context. According to [? ], for a fixed ṽ1, minimization of (3.1)
with respect to ũ1 is equivalent to minimization of the following penalized
regression criterion with respect to ũ1:

‖X(d) − ũ1ṽT1 ‖2F + Pλ(ũ1) = ‖Y − (Id
⊗

ṽ1)ũ1‖2 + Pλ(ũ1),(5.1)
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where Y = (X1, . . . , Xd)T , with Xi being the i-th row of X(d), and
⊗

is
the Kronecker product. Following their suggestion, for the above penalized
regression (5.1) with a fixed ṽ1, we define

BIC(λ) =
‖Y − Ŷ ‖2

ndσ̂2
+

log(nd)

nd
d̂f(λ),(5.2)

where σ̂2 is the ordinary-least squares estimate of the error variance, and
d̂f(λ) is the degree of sparsity for the thresholding parameter λ, i.e. the
number of non-zero entries in ũ1. For every step of the iterative procedure of
RSPCA, we can use BIC (5.2) to select the thresholding parameter and then
obtain the corresponding sparse PC direction, until the algorithm converges.

For every angle curve in the angle plots of Figure 2, we use a blue circle to
indicate the thresholding parameter λ that is selected by BIC during the last
iterative step of RSPCA, and the corresponding angle. In the current α =
0.6, β = 0.1 context, BIC works well, and all the BIC-selected λ values are
very close, so the 100 circles are essentially over plotted on each other. BIC
also works well for the other spike and sparsity pairs (α, β) we considered
where α > β, which are shown in [? ].

Another measure of the success of a sparse estimator is in terms of which
entries are zeroed. Type I Error is the proportion of non-zero entries in u1
that are mistakenly estimated as zero. Type II Error is the proportion of
zero entries in u1 that are mistakenly estimated as non-zero. Similar to the
angle, Type I Error (Type II Error) is also a function of the thresholding
parameter. For each replication of the data matrix X(d), we calculate a Type
I Error (Type II Error) curve. Thus, there are one hundred such curves in
Panels (B) and (C) of Figure 2, respectively. The dashed and solid lines in
these two panels are the same as those in Panel (A). Note that for all the
thresholding parameters in the range indicated by the lines, the errors are
very small, which is again consistent with the asymptotic results of Theo-
rems 2.2 and 3.4. Again, the circles in these plots are selected by BIC and
they have the same horizonal thresholding parameter, as in the angle plots.
Thus, BIC works well here. BIC also generates similarly very small errors
for the other spike and sparsity pairs (α, β) in Figure 1 that satisfy α > β.

Next we will compare the relative performance among PCA, ST and
RSPCA. In almost all cases, ST and RSPCA give better results than PCA
and in some extreme cases, the three methods have similar poor perfor-
mance. Although in most cases both ST and RSPCA have similar per-
formance, however, there are some cases (for example when α = 0.4 and
β = 0.3), where RSPCA performs better than ST. For every replication of
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the data matrix X(d), we use BIC to select the thresholding parameter, and

then calculate the ST estimator ûST1 and the RSPCA estimator û1. After
that, we calculate the angle, Type I Error and Type II Error for the three
estimators, as well as the difference between ST and RSPCA (ST minus
RSPCA). For each measure, the 100 values are summarized using box plots
in Figure 3.

PCA ST RSPCA Diff
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Fig 3. Comparison of PCA, ST and RSPCA for spike index α = 0.4 and sparsity index
β = 0.3. Panels (A), (B) and (C) respectively contain four angle, Type I Error and Type
II Error box plots: (i) conventional PCA; (ii) and (iii) ST and RSPCA with BIC; (iv) the
difference between ST and RSPCA. In Panel (A), angles for conventional PCA are gen-
erally larger than ST and RSPCA which indicates the worse performance of contentional
PCA. In addition, the angles and Type I Errors for ST are larger than RSPCA and their
difference box plots furthermore confirm this point, which indicates the better performance
of RSPCA in this case. Type II Errors for ST and RSPCA are almost the same.

Panel (A) of Figure 3 shows the box plots of the angles between the
first population eigenvector u1 and the estimates obtained by PCA, ST and
RSPCA, as well as the differences between ST and RSPCA. Note that the
PCA angles are large, compared with ST and RSPCA, indicating the worse
performance of PCA. The angle of ST seems larger than RSPCA. For a
deeper view of this comparison, the pairwise differences are studied in the
fourth box plot of the panel. The angle differences are almost always positive,
with some differences bigger than 50 degrees, which suggests that RSPCA
has a better performance than ST. Similar conclusions can be made from
the box plots of the errors, in Panels (B) and (C) of Figure 3. The box plot
for PCA is not shown in Panel (C) because the corresponding Type II Er-
ror almost always equals one, which is far outside the shown range of interest.

Finally, Theorems 2.2 and 3.4 consider the condition that the spike index
α is greater than the sparsity index β. When α is smaller than β, neither ST
nor RSPCA is expected to give consistent estimation for the first population
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Fig 4. Performance summary of RSPCA for spike index α = 0.2 and sparsity index
β = 0.7 where strong inconsistency is expected. Panel (A) shows the angle curves, between
the RSPCA estimator and the first population eigenvector. Same format as Figure 2. Since
the spike index α = 0.2 is smaller than the sparsity index β = 0.7, it follows that the right
bound (solid line) is smaller than the left bound (dashed line). Thus the theorems do not
give a meaningful range of the thresholding parameter. As expected, performance is very
poor for any thresholding parameter λ.

eigenvector u1, as discussed in Section 4. For the spike and sparsity pairs
(α, β) such that α < β, the simulation results also confirm this point. Here,
we display the simulation plots for the spike and sparsity pair (α, β) =
(0.2, 0.7) in Figure 4 as a representative of such simulations. Since ST and
RSPCA have very similar performance here, we just show the simulation
results for RSPCA. Similar to Figure 2, the circles in Figure 4 correspond to
the thresholding parameter selected by BIC. From the angle plots, we can see
that the angles, selected by BIC, are close to 90 degrees, which suggests the
failure of BIC in this case. In fact, all the angle curves are above 80 degrees.
Thus, neither ST nor RSPCA generates a reasonable sparse estimator. This
is a common phenomenon when the spike index α is smaller than the sparsity
index β. It is consistent with the theoretical investigation in Section 4.

Furthermore, the corresponding Type I Error, generated by ST or RSPCA
with BIC, is close to one. This further confirms that BIC doesn’t work when
the spike index α is smaller than the sparsity index β. ST and RSPCA
with λ = 0 is just the conventional PCA, and typically will not generate
a sparse estimator. This entails that the Type I Error and Type II Error,
corresponding to λ = 0, respectively equals zero and one. As the thresholding
parameter increases, more and more entries are thresholded out; hence Type
I Error increases to one and Type II Error decreases to zero.

6. Non-Gaussian Variations. In this paper, we consider HDLSS data
analysis contexts, using the high dimensional normal distribution. In the fu-
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ture, we hope to extend our theorems to more general distributions. However,
this will be challenging because sparse PCA methods may not work in some
extreme cases. This point is illustrated by the following interesting example.

Example 6.1. Let α ∈ (0, 1) and X = (x1, . . . , xd)
T , where {xi, i =

1, . . . , d} are independent discrete random variables with the following dis-
crete probability distributions:

x1 =

{
d
α
2 , with probability 1

2 ,

−d
α
2 , with probability 1

2 ;

and for i = 2 . . . , d

xi =


d
α+1
4 , with probability d−

α+1
2 ,

−d
α+1
4 , with probability d−

α+1
2 ,

0, with probability 1− 2d−
α+1
2 .

Then X has mean 0 and variance-covariance Σd with

Σd = dαu1u
T
1 +

d∑
k=2

uku
T
k ,

where u1 = (1, 0, . . . , 0)T .

Suppose that we only have sample size n = 1, i.e. X1 = (xi,1, . . . , xd,1)
T ,

then the first empirical eigenvector

û1 = (û1,1, . . . , ûd,1)
T =

1√∑d
i=1 x

2
i,1

(xi,1, . . . , xi,d)
T .

Under this condition, we have

P (argmaxi|ûi,d| = 1) = P (|x1,1| > max {|x2,1|, . . . , |xd,1|})
= P (x2,1 = 0, . . . , xd,1 = 0)

=
(

1− 2d−
α+1
2

)d−1
−→ 0 as d→∞.

In particular, the absolute value of the first entry of the empirical eigenvec-
tor can not be greater than the others with probability 1, so we can not
always threshold out the right entries which results in the failure of the sim-
ple thresholding method. Similar considerations apply to other sparse PCA
methods.
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7. Proofs.

7.1. Proofs of Theorem 2.2 and Theorem 2.3. In order to prove Theo-
rem 2.2 and Theorem 2.3, we need the dependent extreme value results from
Leadbetter, Lindgren and Rootzen (1983) [? ], in particular their Lemma
6.1.1 and Theorem 6.1.3.

An immediate consequence of those results is the following proposition.

Proposition 7.1. Suppose that the standard normal sequence {ξi, i =
1, . . . , bdβc} satisfies the mixing condition (2.7). Let the positive constants

{ci} be such that
∑bdβc

i=1 (1−Φ(ci)) is bounded and such that Cbdβc = min1≤i≤bdβc

ci ≥ c(log(bdβc))
1
2 for some c > 0.

Then the following holds:

P

bdβc⋂
i=1

{ξi ≤ ci}

− bdβc∏
i=1

Φ(ci) −→ 0, as d→∞,

where Φ is the standard normal distribution function. Furthermore, if for
some  ≥ 0, we have

bdβc∑
i=1

(1− Φ(ci)) −→ , as d→∞,

then

P

bdβc⋂
i=1

{ξi ≤ ci}

 −→ e−, as d→∞.

Proposition 7.1 is used to control the right side of (2.6) through the fol-
lowing lemma.

Lemma 7.1. Suppose that ξi ∼ N(0, δi,i) satisfies the mixing condi-
tion (2.7), where δij is the covariance of the normal sequence {ξi}, i, j =

1, . . . , bdβc. If Cbdβc ≥ (log(bdβc))δmax1≤i≤bdβcδ
1
2
ii , where δ ∈ (12 ,∞), then

C−1bdβcmax1≤i≤bdβc|ξi|
p−→ 0, as d→∞.



22 DAN SHEN, HAIPENG SHEN AND J. S. MARRON

Proof. Note that for every τ > 0

P
[
C−1bdβcmax1≤i≤bdβc|ξi| > τ

]
= P

[
max1≤i≤bdβc|ξi| > Cbdβcτ

]
(7.1)

≤ P
[{

max1≤i≤bdβcξi > Cbdβcτ
}⋃{

max1≤i≤bdβc(−ξi) > Cbdβcτ
}]

≤ P
[
max1≤i≤bdβcξi > Cbdβcτ

]
+ P

[
max1≤i≤bdβc(−ξi) > Cbdβcτ

]
= 2P

[
max1≤i≤bdβcξi > Cbdβcτ

]
≤ 2

1− P

bdβc⋂
i=1

{
ξiδ
− 1

2
ii ≤ c(log(bdβc))δ

} ,

where c is a positive constant. Since

bdβc∑
i=1

(
1− Φ

(
c(log(bdβc))δ

))
−→ 0, as d→∞,

it then follows from Proposition 7.1 that

P

bdβc⋂
i=1

{
ξiδ
− 1

2
ii ≤ c(log(bdβc))δ

} −→ 1, as d→∞.(7.2)

From (7.1) and (7.2), we can get

C−1bdβcmax1≤i≤bdβc|ξi|
p−→ 0, as d→∞.

Now we will begin the proof of Theorem 2.2 and Theorem 2.3. Denote
X̃i = (xi,1, · · ·, xi,n)T , Z̃i = (zi,1, · · ·, zi,n)T , W̃i = (wi,1, · · ·, wi,n)T and H̃i =
(hi,1, · · ·, hi,n), i = 1, · · ·, d.

Note that

| < ûST1 , u1 > | =
|
∑[dβ ]

i=1 ŭi,1ui,1|√∑d
i=1(ŭi,1)

2

=
λ
− 1

2
1 |

∑[dβ ]
i=1 ŭi,1ui,1|

λ
− 1

2
1

√∑d
i=1(ŭi,1)

2

.(7.3)

Below we need to bound the denominator and the numerator of (7.3).
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We start with the numerator. Since X̃i = ui,1Z̃1 + H̃i, i = 1, · · ·, d, it
follows that ṽT1 X̃i = ui,1ṽ

T
1 Z̃1 + ṽT1 H̃i, which yields

ŭi,1 = ui,1ṽ
T
1 Z̃11{|ṽT1 X̃i|>λ}

+ ṽT1 H̃i1{|ṽT1 X̃i|>λ}

= ui,1ṽ
T
1 Z̃1 + ui,1ṽ

T
1 Z̃11{|ṽT1 X̃i|≤λ}

+ ṽT1 H̃i1{|ṽT1 X̃i|>λ}
,

and

[dβ ]∑
i=1

ŭi,1ui,1 =

[dβ ]∑
i=1

u2i,1ṽ
T
1 Z̃11{|ṽT1 X̃i|>λ}

+

[dβ ]∑
i=1

ui,1ṽ
T
1 H̃i1{|ṽT1 X̃i|>λ}

= ṽT1 Z̃1 +

[dβ ]∑
i=1

u2i,1ṽ
T
1 Z̃11{|ṽT1 X̃i|≤λ}

+

[dβ ]∑
i=1

ui,1ṽ
T
1 H̃i1{|ṽT1 X̃i|>λ}

.

It follows that

λ
− 1

2
1 |

[dβ ]∑
i=1

ŭi,1ui,1| ≤ λ
− 1

2
1

[dβ ]∑
i=1

u2i,1|ṽT1 Z̃1|+ λ
− 1

2
1

[dβ ]∑
i=1

|ui,1ṽT1 H̃i|(7.4)

= |ṽT1 W̃1|+
[dβ ]∑
i=1

n∑
j=1

λ
− 1

2
1 |ui,1hi,j |,

and

λ
− 1

2
1 |

[dβ ]∑
i=1

ŭi,1ui,1|(7.5)

≥ λ−
1
2

1 |ṽ
T
1 Z̃1| − λ

− 1
2

1

[dβ ]∑
i=1

u2i,1|ṽT1 Z̃1|1{|ṽT1 X̃i|≤λ} − λ
− 1

2
1

[dβ ]∑
i=1

|ui,1ṽT1 H̃i|

≥ |ṽT1 W̃1| − |ṽT1 W̃1|
[dβ ]∑
i=1

u2i,11{|ṽT1 X̃i|≤λ}
−

[dβ ]∑
i=1

n∑
j=1

λ
− 1

2
1 |ui,1hi,j |.

Next we will show that

[dβ ]∑
i=1

n∑
j=1

λ
− 1

2
1 |ui,1hi,j | = op(d

− ς
2 ),where ς ∈ [0, α− η − θ).(7.6)

Since Hj = (h1,j , · · ·, hd,j)T =
∑d

k=2 zk,juk, j = 1, · · ·, n, it follows that

hi,j =
∑d

k=2 ui,kzk,j =
∑d

k=2 ui,kλ
1
2
kwk,j ∼ N(0, σ2i,j), where σ2i,j ≤ λ2, i =
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1, · · ·, [dβ], j = 1, · · ·, n. Thus, for fix τ

P

 [dβ ]∑
i=1

n∑
j=1

d
ς
2λ
− 1

2
1 |ui,1hi,j | ≥ τ

 ≤ P
[dβ ]⋃
i=1


n∑
j=1

|ui,1hi,j | ≥ d−
ς
2λ

1
2
1 τu

2
i,1




≤
[dβ ]∑
i=1

n∑
j=1

P

[
|hi,j | ≥ n−1d−

ς
2λ

1
2
1 τ |ui,1|

]
≤

[dβ ]∑
i=1

n∑
j=1

P
[
|hi,jσ−1i,j | ≥ c

∗d
α−η−θ−ς

2

]
= 2n[dβ]

∫ +∞

cd(α−η−θ−ς)/2

1√
2π

exp

{
−x

2

2

}
dx −→ 0, as d→∞,

where c is constant. Similar, we can show that

[dβ ]∑
i=1

λ−11 (
n∑
j=1

|hi,j |)2 = op(d
ς
2 ),(7.7)

and

d∑
i=[dβ ]+1

n∑
j=1

λ
− 1

2
1 |hi,j |1{∑n

j=1 |hi,j |>λ} = op(d
− ς

2 ),(7.8)

where ς ∈ [0, α− η − θ).
Finally, we want to show that

[dβ ]∑
i=1

u2i,11{|ṽT1 X̃i|≤λ}
= op(d

− ς
′

2 ),(7.9)

where ς
′

satisfies that d
ς
′
+η−α
2 λ = o(1). Since we can always find a subse-

quence of { λ1∑d
i=2 λi

} and make it convergent to a nonnegative constant, for

simplicity, we just assume that limd→∞
λ1∑d
i=2 λi

= C. If C = 0, then the spike

index α < 1, and Jung and Marron (2009) [? ] showed that

c−1d Sd
p−→ In, as d→∞,

where cd = n−1
∑d

i=1 λi. Since the eigenvector ṽT1 of c−1d Sd can be chosen
so that they are continuous according to Acker (1974) [? ], it follows that
ṽT1 ⇒ v1, as d → ∞, where ⇒ denotes the convergence in distribution and
v1 is the first eigenvector of n-dimensional identity matrix. If C = 0, then
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the spike index α = 1 and Jung, Sen and Marron (2010) [? ] showed that

ṽT1 ⇒ W̃1

‖W̃1‖
, as d→∞. Therefore, we have

| ṽT1 W̃1 |⇒| vT1 W̃1 | or ‖W̃1‖, as d→∞.(7.10)

Since d
ς
′
+η−α
2 λ = o(1), d

ς
′
+η−α
2

∑n
j=1 max1≤i≤[dβ ]|hi,j | = op(1), and

[dβ ]∑
i=1

d
ς
′

2 u2i,11{|ṽT1 X̃i|≤λ} ≤
[dβ ]∑
i=1

d
ς
′

2 u2i,11{|ui,1ṽT1 Z̃1|≤|ṽT1 H̃i|+λ}

≤
[dβ ]∑
i=1

d
ς
′

2 u2i,11
{
|ṽT1 W̃1|≤λ

− 1
2

1 max
1≤i≤[dβ ]

|ui,1|−1
(∑n

j=1 max
1≤i≤[dβ ]

|hi,j |+λ
)}

≤
cd

ς
′
+η−α
2

∑n
j=1 max1≤i≤[dβ ]|hi,j |+ cd

ς
′
+η−α
2 λ

|ṽT1 W̃1|
,

where c is a constant, it follows that (7.9) is established.
Then, from (7.4), (7.5), (7.6), and (7.9), we obtain the following result

about the numerator

λ
− 1

2
1 |

[dβ ]∑
i=1

ŭi,1ui,1| = |ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 ).(7.11)

Similarly for the denominator, we have

λ
− 1

2
1

√√√√ d∑
i=1

ŭ2i,1 ≤ λ
− 1

2
1

√√√√ [dβ ]∑
i=1

ŭ2i,1 + λ
− 1

2
1

√√√√√ d∑
i=[dβ ]+1

ŭ2i,1(7.12)

≤ λ−
1
2

1

√√√√ [dβ ]∑
i=1

(
ui,1ṽT1 Z̃1

)2
+ λ

− 1
2

1

√√√√ [dβ ]∑
i=1

(ṽT1 H̃i)2 + λ
− 1

2
1

d∑
i=[dβ ]+1

|ŭi,1|

= |ṽT1 W̃1|+

√√√√√ [dβ ]∑
i=1

λ−11 (

n∑
j=1

|hi,j |)2 +

+

d∑
i=[dβ ]+1

n∑
j=1

λ
− 1

2
1 |hi,j |1{∑n

j=1 |hi,j |>λ},
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and

λ
− 1

2
1

√√√√ d∑
i=1

ŭ2i,1 ≥ λ
− 1

2
1

√√√√ [dβ ]∑
i=1

ŭ2i,1(7.13)

≥ |ṽT1 W̃1| − |ṽT1 W̃1|

√√√√ [dβ ]∑
i=1

u2i,11{|ṽT1 X̃i|≤λ}
−

√√√√√ [dβ ]∑
i=1

λ−11 (
n∑
j=1

|hi,j |)2.

Combining (7.12), (7.13), (7.7), (7.8) and (7.9), we have

λ
− 1

2
1

√√√√ d∑
i=1

ŭ2i,1 = |ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 ).(7.14)

Furthermore, (7.3), (7.10), (7.11), and (7.14) suggest that

| < ûST1 , u1 > | =
|ṽT1 W̃1|+ op(d

−min{ς,ς′ }
2 )

|ṽT1 W̃1|+ op(d
−min{ς,ς′ }

2 )

= 1 + op(d
−min{ς,ς′ }

2 ),

which means that ûST1 is consistent with u1 with convergence rate d−
min{ς,ς′ }

2 .
This concludes the proof for Theorem 2.2.

In addition, note that d
ς
′
+η−α
2 λ = o(1). If λ = o(d

α−η−ς
2 ), then we can

take ς
′

= ς. Then ûST1 is consistent with u1 with convergence rate d
ς
2 . This

finishes the proof of Theorem 2.3.

7.2. Proofs of Theorem 3.1, 3.2, 3.3, 3.4 and 3.5. The proofs of Theo-
rems 3.1, 3.2, 3.4 and 3.5 are modifications of the proofs of Theorems 2.2
and 2.3. These are provided in the supplementary material, available online
at [? ]. The proof of Theorem 3.3 is also given in the supplement.

7.3. Proof of Theorem 4.1. Since X∗j = (Ibdβc, (0)bdβc×(d−bdβc))Xj , where

Ibdβc denotes the bdβc-dimensional identity matrix and (0)bdβc×(d−bdβc) is the

bdβc-by-(d− bdβc) zero matrix, j = 1, . . . , n, it follows that

Σ∗bdβc = (Ibdβc, (0)bdβc×(d−bdβc))Σd(Ibdβc, (0)bdβc×(d−bdβc))
T ,

which yields

λ∗1 = λ1, λ2 ≥ λ∗i ≥ λd, j = 2, . . . , bdβc.
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Therefore, ∑bdβc
i=2 λ

∗
i
2

(
∑bdβc

i=2 λ
∗
i )

2
≤ bdβcλ22

(bdβc)2λ2d
=
O(dβ)O(d2θ)

O(d2β)
= o(1),(7.15)

and

λ∗1∑bdβc
i=2 λ

∗
i

≤ λ1
bdβcλd

=
O(dα)

O(dβ)
= o(1).(7.16)

If we rescale λ∗i , i = 1, . . . , bdβc, (7.15) satisfies the ε2 assumption of Jung
and Marron (2009) [? ] and (7.16) satisfies the assumption λ1 = O(dα) and∑d

i=2 λi = O(d), where α < 1. For this case, Jung and Marron (2009) [? ]
have shown that û∗1 is strongly inconsistent with u∗1. This means that the
oracle estimator ûOR

1 is strongly inconsistent with u1.
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