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Abstract

In this paper we prove that a particular entry in the scattering matrix, if known
for all energies, determines certain rotationally symmetric obstacles in a generalized
waveguide. The generalized waveguide X can be of any dimension and we allow either
Dirichlet or Neumann boundary conditions on the boundary of the obstacle and on ∂X.
In the case of a two-dimensional waveguide, two particular entries of the scattering
matrix suffice to determine the obstacle, without the requirement of symmetry.

1 Introduction

The purpose of this paper is to show that knowledge of a single specific entry in the scat-
tering matrix suffices to determine certain analytic obstacles O ⊂ X, where X is an n+ 1
dimensional generalized waveguide. We remark that an entry in the scattering matrix is a
scalar function; see (1.4) and subsequent discussion for the definition. The results of this
paper extend the inverse results of [2], both by allowing higher-dimensional waveguides and
by considering either Dirichlet or Neumann boundary conditions on ∂O.

A cylindrical waveguide in Rn+1 has the form

X = R× Ω, (1.1)

where Ω is a bounded domain in Rn; we assume ∂Ω is smooth. If O ⊂⊂ R × Ω is a
smoothly bounded connected compact set, we desire to identify properties of O from the
scattering matrix of X \ O. In fact, both X and X \ O are examples of manifolds with
infinite cylindrical ends, and it is natural to set up inverse scattering problems for more
general such manifolds.

We recall that a smooth Riemannian manifold X with infinite cylindrical ends has the
form

X = Xc ∪
( io⋃
i=1

Xi

)
, (1.2)

where Xc is compact, each Xi ≈ [0,∞)×Yi, and each Yi is a compact, connected manifold,
possibly with boundary. In case (1.1), there are two ends, Y1 = Y2 = Ω. The Riemannian
∗2000 Math Subject Classification 35L20, 35P25, 35S30.
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metric on X is a product metric on each Xi; G
∣∣
Xi

= dx2 + gi, where gi is a Riemannian
metric tensor on Yi.

Extending the class of domains (1.1), we say that a domain X ⊂ Rn+1 with smooth
boundary is a generalized waveguide if X is a manifold with infinite cylindrical ends. Given
such a generalized waveguide, suppose one has a smoothly bounded compact subset O of
the interior of X, with the property that O is known to have nonempty intersection with
one of the ends, say with X1 = [0,∞)×Y1. Without loss of generality, we can assume O has
empty intersection with the ends Xi for i ≥ 2. We want to draw conclusions about O from
information on the scattering matrix of X \ O, which is also a manifold with cylindrical
ends. In this case the ends are [a1,∞)× Y1 and [0,∞)× Yi, i ≥ 2, given that

O ∩ [a1,∞)× Y1 = ∅. (1.3)

Before describing results we obtain about O, we recall the definition of the scattering
matrix associated to X̃ = X \ O. Let ∆ eX denote the (non-negative) Laplace operator on
X̃. We impose either the Dirichlet boundary condition or the Neumann boundary condition
on ∂X, and we impose either the Dirichlet boundary condition or the Neumann boundary
condition on ∂O. Let ∆Y denote the Laplace operator on Y = Y1 ∪ · · · ∪Yi0 , with the same
type of boundary condition on ∂Y as given on ∂X (Dirichlet or Neumann). Let {σ2

j } be
the eigenvalues of ∆Y , repeated according to multiplicity, with σ2

1 ≤ σ2
2 ≤ · · · . Let {φj} be

a corresponding real orthonormal set of eigenfunctions of ∆Y , so ∆Y φj = σ2
jφj . Arrange

that each φj is supported on one connected component of Y .
For each j ∈ N, let rj(λ) = (λ2 − σ2

j )
1/2, with the square root chosen so Im rj(λ) > 0

when Imλ > 0, and extended by continuity to real λ. Hence if λ ∈ R and |λ| > |σj |,
then sgn rj(λ) = sgnλ. For each ` ∈ N, there is a generalized eigenfunction Ψ`(λ) of ∆ eX ,
satisfying

(∆ eX − λ2)Ψ` = 0 on X \ O,

Ψ`

∣∣
Xe

= e−ir`(λ)xφ` +
∑
m

Sm`(λ)
( r`(λ)
rm(λ)

)1/2
eirm(λ)xφm,

(1.4)

where Xe = [a1,∞)×Y1∪ [0,∞)×Y2∪· · ·∪ [0,∞)×Yi0 , with coordinates (x, y) on each end.
Moreover, Ψ` satisfies the specified boundary conditions on ∂O and ∂X. The scattering
matrix is (Sm`(λ))σ2

m,σ
2
`≤λ2 . The scattering matrix depends in a mild way on the choice of

decomposition of X into Xc and Xe = ∪Xi. This can be realized in another way as the
choice of coordinate x on each end Xi. Thus, it is important to think of the scattering
matrix coming with a fixed choice of such coordinate or decomposition. For more details
on the scattering matrix and (1.4), cf. [1], [8].

We now give further conditions on an obstacle O in a generalized waveguide, which will
permit us to deduce the nature of O from knowledge of one or two elements of the scattering
matrix, for all λ ∈ [|σ1|,∞). With coordinates (x, y) on [0,∞) × Y1, suppose x|∂O∩X1 is
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maximal at p ∈ ∂O. We assume

such p is unique;

O is strongly convex in a neighborhood of p ∩ O; and

∂O has positive Gauss curvature at p.

(1.5)

Let
p = (x0, q), q ∈ Y1, x0 ∈ (0, a1). (1.6)

Consider the line in Rn+1 of the form L = {(sx0, q) : s ∈ R}. The following will be proved
in §6.

Theorem 1.1 In addition to hypothesis (1.5), assume

∂O is real analytic and connected, (1.7)

and
O is rotationally symmetric about the axis L. (1.8)

Assume q in (1.6) is known. Take k ∈ N such that supp φk ⊂ Y1 and φk(q) 6= 0. Then
knowledge of Skk(λ) for all λ ∈ [|σ1|,∞) determines O.

Remark. We do not assume knowledge of x0 in (1.6). Identification of x0 will follow from
the scattering data.

Theorem 1.1 extends Theorems 1.1 and 5.1 of [2], which deal with obstacles in planar
cylindrical waveguides. In such a case, hypothesis (1.8) becomes the hypothesis of bilateral
symmetry of O about its axis (taken in [2] to run down the middle of X = R × [γ1, γ2]).
Another way in which the current result improves on the results of [2] is that we treat the
Neumann boundary condition on ∂O as well as the Dirichlet boundary condition.

Theorem 1.2 of [2] is a result about unique determination of O ⊂ R × (γ1, γ2) without
bilateral symmetry, given knowledge of two elements of the scattering matrix, namely S11(λ)
and S13(λ) in the terminology of [2]. We give some extensions of this result to other planar
waveguide settings in §7, to which we refer for specific statements.

Theorem 1.1 bears some resemblance to results of Zelditch [9, 10, 11] on recovering
planar domains with one symmetry from the spectrum of the Laplacian. Zelditch’s proof
uses the study of singularities of the fundamental solution of the wave equation which
propagate along a single isolated periodic broken geodesic. Here we do a detailed study of
the singularity of a solution of the wave equation corresponding to a broken geodesic after
a single reflection. Our techniques and results have some similarities to those of [7], though
we do a much more detailed analysis of the singularity resulting from the reflection of the
wave.
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Some inverse scattering results for waveguides from an applied mathematics point of
view can be found in [3], [5] and references. In [4] the authors show that for a strip in the
plane, knowledge of the scattering matrix at all energies suffices to determine the compactly
supported perturbation of a sound speed.

In outline, our approach to the proof of Theorem 1.1 is parallel to the strategy used in [2].
First it is shown that {Sjk(λ) : λ ∈ [|σ1|,∞)} determines the singularities of a certain family
of distributions derived from the fundamental solution to the wave equation on R×(X \O).
In particular, it determines the singularity arising when a certain progressing wave in the
end [0,∞)× Y1 reflects off ∂O in a small neighborhood of the tip p. Calculations involving
a wave equation parametrix for transversal reflection of singularities give an asymptotic
expansion of this singularity. There is a (more or less) explicit formula, involving the
derivatives at q of the function h, defining ∂O near p by x = h(y). Under the hypothesis
of rotational symmetry about the axis L, these formulas simplify, and one sees that all
the derivatives of h at q are determined by the data specified in Theorem 1.1. The real
analyticity and connectedness hypotheses of (1.7) then guarantee uniqueness.

We implement this strategy in the following sections. In §2 we associate a certain
family of distributions uj,k,α,β ∈ D′(R) to the fundamental solution to the wave equation
on R × (X \ O) and to φj , φk, and recall from [2] that knowledge of Sjk(λ) for λ ≥ |σ1|
uniquely determines uj,k,α,β , mod C∞(R). We describe which singularity of uj,k,α,β we need
to compute in detail in order to obtain information on Dγh(q).

In §3 we construct a wave equation parametrix when ∂O has the Dirichlet boundary
condition, extending to higher dimensions a construction of [2]. As there, we switch from
(x, y) coordinates on [0,∞) × Y1 to (x, y) coordinates, with x = x − h(y), so ∂O near p is
given by x = 0. The main task is to evaluate the power series in x at x = 0 of the solutions
to eikonal and transport equations rather precisely. In §4 we make such a construction when
∂O has the Neumann boundary condition. Our method involves the Dirichlet-to-Neumann
map, which allows us to use many calculations from §3. We apply the results of §§3–4
in §5 to the needed singularity analysis of uj,k,α,β , or more precisely of its symmetrization
usj,k,α,β(t) = (uj,k,α,β(t)+uj,k,α,β(−t))/2. This sets us up to prove Theorem 1.1 in §6. Finally,
in §7, we obtain some two-dimensional uniqueness results without symmetry hypotheses, as
advertised above.

Acknowledgments. This project was initiated while both authors were visitors at MSRI
and the authors are grateful to MSRI for partial support and hospitality. In addition, the
authors gratefully acknowledge the partial support of T.J.C. by NSF grant DMS-0500267
and an MU Research Leave, and the partial support of M.T. by NSF grant DMS-0758320.
T.J.C. thanks the UC Berkeley math department for its hospitality in spring 2009.
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2 From Sjk(λ) to usj,k,α,β(t)

Let U(t, z, z′) denote the Schwartz kernel of eit∆ eX , so, for f ∈ C∞0 (X̃),

(
eit∆ eXf) (z) =

∫
eX
U(t, z, z′)f(z′) dz′. (2.1)

On each end [0,∞)× Yi, use coordinates z = (x, y), and for α, β > 0, set

uj,k,α,β(t) =
∫
Y

∫
Y

U(t, α, y, β, y′)φj(y)φk(y′) dy dy′. (2.2)

Recall that each φj and φk is supported on one component of Y . If suppφj ⊂ Y1 we require
α > a1 and if suppφk ⊂ Y1 we require β > a1. This construction is treated in detail in §3
of [2]. Proposition 3.3 of [2] is the identity

uj,k,α,β(t) =
1
π

∫ ∞
|σ1|

eitλλ Re
((
rj(λ)rk(λ)

)−1/2
eiαrj(λ)+iβrk(λ)Skj(λ)

)
dλ

+
1
π
δjk

∫ ∞
|σj |

eitλ
λ

rj(λ)
Re
(
ei(α−β)rj(λ)

)
dλ

+Rj,k,α,β(t),

(2.3)

where Rj,k,α,β ∈ C∞(R). Recall from §1 that, with ∆Y φj = σ2
jφj ,

rj(λ) = (λ2 − σ2
j )

1/2, and |λ| > |σj | ⇒ sgn rj(λ) = sgnλ. (2.4)

Consequently the singularities of uj,k,α,β(t) are determined by {Skj(λ) : λ ≥ |σ1|}.
We look more closely at the symmetrization:

usj,k,α,β(t) =
1
2
[
uj,k,α,β(t) + uj,k,α,β(−t)

]
. (2.5)

We have
usj,k,α,β(t) =

∫
Y

vkβ(t, α, y)φj(y) dy, (2.6)

where vkβ(t, x, y) solves
(D2

t −∆)vkβ = 0 on X̃. (2.7)

Moreover, the initial conditions are

vkβ(0, x, y) = δ(x− β)φk(y), ∂tvkβ(0, x, y) = 0, (2.8)

and vkβ must satisfy whatever boundary condition on [0,∞)×∂Yi as was imposed on ∆X on
∂X, and also whatever boundary condition on ∂O as was imposed for ∆ eX (either Dirichlet
or Neumann, in either case).
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From here on we assume j and k are chosen so that

suppφj , suppφk ⊂ Y1, (2.9)

so that
(D2

t −D2
x −∆Y1)vkβ(t, x, y) (2.10)

holds on (0,∞)× Y1 \ O. Recall from §1 that

O ∩ [a1,∞)× Y1 = ∅ ⇐⇒ a1 ≥ x0. (2.11)

Pick α and β to satisfy
x0 < α < β <∞. (2.12)

(Later we will take α ↘ x0.) Recalling that ∆Y1φk = σ2
kφk, we have from (2.10) and (2.8)

that
|t| < β − x0 =⇒ vkβ(t, x, y) = ukβ(t, x)φk(y), (2.13)

with
(∂2
t − ∂2

x + σ2
k)ukβ = 0,

ukβ(0, x) = δ(x− β), ∂tukβ(0, x) = 0.
(2.14)

Consequently,
|t| < β − x0 =⇒ usj,k,α,β(t) = δjkukβ(t, α), (2.15)

so
sing suppusk,k,α,β ∩ (x0 − β, β − x0) = {±(β − α)} ∩ (x0 − β, β − x0). (2.16)

Of course, the nature of the singularity at t = ±(β − α) is independent of the obstacle O.
Standard results on propagation of singularities imply that usj,k,α,β is smooth for β − α <

t < (β − x0) + (α − x0). One expects a singularity at t = (β − x0) + (α − x0) and that
the singularity depends on the behavior of ∂O at the tip p. Note that the observation of
such a singularity would serve to identify x0. Furthermore, in the limit α↘ x0 one expects
to observe a singularity of usj,k,x0,β

at t = β − x0, depending on the behavior of ∂O at p.
Verification of these expectations, together with a detailed account of this dependence, will
occupy §§3–5.

3 Dirichlet parametrix in special coordinates

We introduced in §2 functions vkβ(t, x, y) on (0,∞)× Y1 \O (given (2.9)), solving the wave
equation (2.13), with initial condition (2.8), and with boundary conditions described there.
We saw that vkβ is given by

v−kβ(t, x, y) = ukβ(t, x)φk(y), (3.1)

for |t| < β − x0, where ukβ solves (2.14). Note that such ukβ is naturally defined for
|t| < β−x0. Our goal here is to obtain a useful parametrix for vkβ(t, x, y), in a neighborhood
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of (t, x, y) = (β − x0, x0, q), where p = (x0, q) is the tip of ∂O, in case vkβ satisfies the
Dirichlet boundary condition on ∂O:

vkβ
∣∣
R×∂O = 0. (3.2)

We construct vkβ as
vkβ = v−kβ + v+

kβ, (3.3)

where v+
kβ solves

(D2
t −∆ eX)v+

kβ = 0 (3.4)

on (x, y) ∈ (0,∞)×Y1\O, with the same homogeneous boundary conditions on (0,∞)×∂Y1

as vkβ, while
v+
kβ = −v−kβ on R× ∂O, (3.5)

and
v+
kβ = 0 for t < β − x0. (3.6)

(Note that v−kβ|R×∂O vanishes for |t| < β − x0.)
Moving towards this goal, we set up eikonal and transport equations for a parametrix

v =
∫
eiϕa Φ̂(ξ, η) dξ dη, (3.7)

for solutions to (3.4) on [0,∞)×Y1 \O. We find it useful to change coordinates from (x, y)
to curvilinear coordinates

(x, y) = (x− h(y), y), (3.8)

where, as stated in §1, ∂O is defined near p by x = h(y). We will obtain eikonal and
transport equations for ϕ and a in these coordinates.

It is convenient first to present such equations in a coordinate independent fashion. We
have (with � = D2

t −∆),

(D2
t −∆)(aeiϕ) = [ϕ2

t − 〈dϕ, dϕ〉]aeiϕ − 2i[ϕtat − 〈dϕ, da〉]eiϕ

+ (�a+ ia�ϕ)eiϕ.
(3.9)

Here 〈dϕ, da〉 is the inner product of cotangent vectors, i.e., elements of T ∗z X̃. If we set

a ∼
∑
k≤0

ak, (3.10)

with ak homogeneous of degree k in (ξ, η), for |ξ|2 + η2 ≥ 1, we get the eikonal equation

〈dϕ, dϕ〉 − ϕ2
t = 0, (3.11)

and transport equations

ϕt∂tak − 〈dϕ, dak〉 =
1
2i

(iak�ϕ+ �ak+1), k ≤ 0, (3.12)
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with the convention that a1 ≡ 0.
Now for the presentation in the curvilinear coordinates (x, y). Expanding

dx2 +
∑

dy2
j =

(
dx+

∑
∂yjh dyj

)2
+
∑

dy2
j , (3.13)

we obtain the inner product on tangent vectors:

〈∂x, ∂x〉 = 1, 〈∂x, ∂yj 〉 =
∂h

∂yj
, 〈∂yj , ∂yk〉 = δjk +

∂h

∂yj

∂h

∂yk
. (3.14)

Linear algebra yields the following formula for the inner product on cotangent vectors:

〈dx, dx〉 = 1 + |dh|2, 〈dx, dyj〉 = − ∂h
∂yj

, 〈dyj , dyk〉 = δjk. (3.15)

Here
|dh|2 =

∑( ∂h
∂yj

)2
. (3.16)

We have
〈dϕ, dϕ〉 = 〈ϕx dx+ dyϕ,ϕx dx+ dyϕ〉

= (1 + |dh|2)ϕ2
x − 2ϕx〈dh, dyϕ〉+ 〈dyϕ, dyϕ〉,

(3.17)

where
〈dh, dyϕ〉 =

∑
j

∂h

∂yj

∂ϕ

∂yj
, 〈dyϕ, dyϕ〉 =

∑
j

( ∂ϕ
∂yj

)2
. (3.18)

Hence the eikonal equation (3.11) becomes

(1 + |dh|2)ϕ2
x − 2〈dh, dyϕ〉ϕx + 〈dyϕ, dyϕ〉 − ϕ2

t = 0. (3.19)

We also have

〈dϕ, dak〉 = 〈ϕx dx+ dyϕ, akx dx+ dyak〉
= [(1 + |dh|2)ϕx − 〈dh, dyϕ〉]∂xak + 〈dyϕ− ϕx dh, dyak〉,

(3.20)

where again the remaining inner products are given as in (3.18). Hence the transport
equation (3.12) becomes

ϕt∂tak − [(1 + |dh|2)ϕx − 〈dh, dyϕ〉]∂xak − 〈dyϕ− ϕx dh, dyak〉

=
1
2i

(iak�ϕ+ �ak+1). (3.21)

Returning to the eikonal equation (3.11), we have

ϕx =
〈dh, dyϕ〉
1 + |dh|2

±
√

(1 + |dh|2)(ϕ2
t − 〈dyϕ, dyϕ〉) + 〈dh, dyϕ〉2

1 + |dh|2
.

(3.22)
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It is natural to define the phase functions ϕ±(x, y, t, ξ, η) as solutions to

ϕ±x =
〈dh, dyϕ±〉
1 + |dh|2

∓ (sgn η)

√
(1 + |dh|2)((ϕ±t )2 − 〈dyϕ±, dyϕ±〉) + 〈dh, dyϕ±〉2

1 + |dh|2
.

(3.23)

with data at x = 0:
ϕ±(0, y, t, ξ, η) = y · ξ + tη. (3.24)

This is well defined for |x| small provided |ξ|2 < η2. The following result parallels Lemma
4.2 of [2].

Lemma 3.1 For |ξ|2 < η2 the phase functions ϕ±(x, y, t, ξ, η) have asymptotic expansions
at x = 0 given by

ϕ±(x, y, t, ξ, η) ∼
∑
j≥0

xjϕ±j (y, t, ξ, η), (3.25)

with ϕ±0 given by the right side of (3.24) and

ϕ±1 (y, t, ξ, η) =
ξ · ∇h

1 + |dh|2

∓ (sgn η)

√
(1 + |dh|2)(η2 − |ξ|2) + (ξ · ∇h)2

1 + |dh|2
.

(3.26)

Moreover, for j ≥ 1, ϕ±j are independent of t, and ϕ±j (y, t, ξ, η) are determined by ξ, η, and
Dαh(y) for |α| ≤ j.

Proof. The identification of ϕ±0 is clear. Setting x = 0 in (3.23) gives (3.26). The stated
result on ϕ±j follows by a straightforward induction, applying x-derivatives to (3.23) and
evaluating at x = 0. �

Returning to the transport equations, we have for each choice of phase function ϕ± the
following, from (3.21):

ϕ±t ∂ta
±
k − [(1 + |dh|2)ϕ±x − 〈dh, dyϕ±〉]∂xa±k − 〈dyϕ

± − ϕ±x dh, dya±k 〉

=
1
2i

(ia±k �ϕ± + �a±k+1), (3.27)

for k ≤ 0, as before with the convention a±1 ≡ 0. Here a±k = a±k (x, y, ξ, η) (independent of
t). We take data at x = 0:

a±0 (0, y, ξ, η) = 1, a±k (0, y, ξ, η) = 0 for k < 0. (3.28)

Then a±k are well defined and homogeneous of degree k in (ξ, η) for |x| small, provided
|ξ|2 < η2. Regarding the right side of (3.27), note that

�ϕ± = −∆ϕ±, �a±k+1 = −∆a±k+1, (3.29)
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and, in curvilinear (x, y) coordinates,

∆f = −(1 + |dh|2)∂2
xf + ∆Y f + 2〈dh, dy∂xf〉 − (∆Y h)∂xf. (3.30)

In fact, the principal symbol of ∆ = ∆ eX is given by the inner product (3.15) on cotangent
vectors and the first order term arises because ∆ eXx = ∆ eX(x− h(y)) = −∆Y h(y).

The following result parallels Lemma 4.3 of [2].

Lemma 3.2 For |ξ|2 < η2 each a±k (x, y, ξ, η) has an asymptotic expansion of the form

a±k (x, y, ξ, η) ∼
∑
j≥0

xja±kj(y, ξ, η), (3.31)

with a±kj homogeneous of degree k in (ξ, η), and a±kj(y, ξ, η) determined by ξ, η, and Dαh(y)
for |α| ≤ j + |k|+ 1.

Proof. Clearly a±00 = 1 and a±k0 = 0 for k < 0. The assertions about a±kj for j ≥ 1 follow
inductively, by evaluating (3.27) and its x-derivatives at x = 0 and making use of Lemma
3.1 and of (3.29)–(3.30). �

Remark. Note in particular that

±(sgn η)
√

(1 + |dh|2)(η2 − |ξ|2) + (ξ · ∇h)2 ∂xa
±
0

∣∣
x=0

=
1
2

∆ϕ±
∣∣
x=0

, (3.32)

which provides the asserted information on a±01. Additionally, for k < 0, (3.27) yields

±(sgn η)
√

(1 + |dh|2)(η2 − |ξ|2) + (ξ · ∇h)2 ∂xa
±
k

∣∣
x=0

=
1
2i

∆a±k+1

∣∣
x=0

. (3.33)

Returning to the parametrix construction previewed in (3.7), we have a pair of para-
metrices:

S±DΦ =
∫
eiϕ
±
a± Φ̂±(ξ, η) dξ dη, (3.34)

satisfying
S±DΦ = v±, mod C∞(U), (3.35)

where U is a neighborhood of (t, x, y) = (β − x0, x0, q), i.e., in (t, x, y) coordinates, of
(t, x, y) = (β − x0, 0, q), in R× ([0,∞)× Y1 \ O). Here v± solves

(D2
t −∆ eX)v± = 0 (3.36)

on U ,
v±
∣∣
U∩R×∂O = Φ±, mod C∞(U), (3.37)

(with U ∩R×∂O identified via (x, y) coordinates with a subset of R×Rn) and singularities
of v+ lie on rays leaving R × ∂O with t ↗, while singularities of v− lie on rays leaving
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R × ∂O with t ↘. (We say v− is an incoming solution and v+ an outgoing solution.) In
light of our construction of ϕ± and a±, we require

supp Φ̂± ⊂ {(ξ, η) ∈ Rn+1 : |ξ| < (1− ε)|η|, |η| ≥ 1}, (3.38)

for some ε > 0, which is a restriction on the wave front set of Φ±.
We can now achieve the original goal of this section, which was to construct a parametrix

for vkβ in a neighborhood of (t, x, y) = (β− x0, x0, q) in [0,∞)×Y1 \O. By virtue of (3.2)–
(3.6), such a parametrix has the form

v−kβ + S+
DΦ+, (3.39)

where we take ψ ∈ C∞0 (∂O), supported on a small neighborhood of the tip p, equal to 1 on
a smaller neighborhood, and set

Φ+ = −Φ− = −ψ v−kβ
∣∣
R×∂O, mod C∞. (3.40)

Note that the wave front set of the right side of (3.40) is contained in a small conic neigh-
borhood of {(ξ, η) : ξ = 0}, so one can take such Φ+ and arrange that (3.38) hold.

We summarize our result.

Proposition 3.3 On a neighborhood of (t, x, y) = (β − x0, x0, q) in [0,∞) × Y1 \ O, the
solution vkβ to (2.7)–(2.8) with Dirichlet boundary condition (3.2) has the form, mod C∞,

vkβ = v−kβ −
∫
eiϕ

+
a+ Φ̂−(ξ, η) dξ dη, (3.41)

with ϕ+, a+ as in Lemmas 3.1–3.2 and Φ− as in (3.39).

We end this section with a formula for Φ̂−(ξ, η), which will be useful in the analysis of
(3.41) made in §5. First, note that ukβ as defined via (2.13), is given by

ukβ(t, x) = cos t
√
−∂2

x + σ2
k δ(x− β)

=
1

2π

∫ ∞
−∞

eiµ(x−β) cos t
√
µ2 + σ2

k dµ

=
1

2π

∫
|λ|≥|σk|

(cos tλ) eirk(λ)(x−β) λ

rk(λ)
dλ,

(3.42)

where rk(λ) is given as in (2.4). This is the sum of a wave moving to the left plus a wave
moving to the right as t increases. At ∂O we need only the wave moving to the left, which
is captured by replacing cos tλ by eitλ in the formula above. Compare (7) of [2]. Then, from
(3.40) and (3.1), we get

Φ−(y, t) = ψ(y)φk(y)ukβ(t, h(y))

=
1

2π

( ∫
|λ|≥|σk|

eitλeirk(λ)(h(y)−β) λ

rk(λ)
dλ
)
ψ(y)φk(y), (3.43)
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mod C∞. This yields

Φ̂−(ξ, η) =
hk(η)

2

∫
e−iy·ξeirk(η)(h(y)−β) η

rk(η)
ψ(y)φk(y) dy. (3.44)

Here

hk(η) =

{
1 if |η| ≥ |σk|
0 if |η| < |σk|.

(3.45)

Compare (11) of [2]. The right side of (3.44) is rapidly decreasing in (ξ, η) away from
{(ξ, η) : ξ = η∇h(y) for some y ∈ suppψ}, hence rapidly decreasing for (ξ, η) away from a
small conic neighborhood of {ξ = 0}, if supp ψ is a sufficiently small neighborhood of q. It
follows that we can throw a factor of the form

χ
( |ξ|
η

)
, χ ∈ C∞0 [(−1, 1)], (3.46)

into the right side of (3.44), and still have (3.40). With this done, the condition (3.38) is
satisfied.

4 Neumann parametrix

Our setting here is parallel to that of §3, but we want a parametrix for vkβ(t, x, y), in
a neighborhood of (t, x, y) = (β − x0, x0, q), in case vkβ satisfies the Neumann boundary
condition on ∂O:

∂νvkβ
∣∣
R×∂O = 0. (4.1)

Here ∂ν denotes the normal derivative. We construct vkβ as

vkβ = v−kβ + v+
kβ, (4.2)

where v+
kβ solves (3.4) and (3.6), but with (3.5) replaced by

∂νv
+
kβ = −∂νv−kβ on R× ∂O. (4.3)

The distribution v−kβ is exactly as in §3, i.e., given by (3.1), but (4.3) yields a different v+
kβ

from that constructed in §3.
We look for such a parametrix for v+

kβ in the form

S+
DΦ+ =

∫
eiϕ

+
a+ Φ̂+(ξ, η) dξ dη. (4.4)

In this section ϕ± and a± are as constructed in §3. We play (4.4) off against

S−DΦ− =
∫
eiϕ
−
a− Φ̂−(ξ, η) dξ dη, (4.5)
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which is equal to v−kβ (mod C∞) near (t, x, y) = (β − x0, x0, q) provided

Φ− = ψv−kβ
∣∣
R×∂O, mod C∞, (4.6)

where, as in (3.40), ψ ∈ C∞0 (∂O) is supported on a small neighborhood of p, equal to 1 on
a smaller neighborhood. On such a neighborhood, we have

∂νv
±
kβ =

∫
ei(y·ξ+tη)(iϕ±ν + a±ν )Φ̂±(ξ, η) dξ dη, (4.7)

where ϕ±ν = ∂νϕ
± and a±ν = ∂νa

±. The parametrix construction thus leads to the task of
producing Φ+ so that (4.1) holds, mod C∞, near (β − x0, x0, q). That is to say, we want
Φ+ to satisfy∫

ei(y·ξ+tη)(iϕ+
ν + a+

ν )Φ̂+(ξ, η) dξ dη = −
∫
ei(y·ξ+tη)(iϕ−ν + a−ν )Φ̂−(ξ, η) dξ dη, (4.8)

mod C∞. A key observation is that

ϕ+
ν = −ϕ−ν , (4.9)

which follows from the eikonal equation (3.11); see (4.13) below for explicit formulas. We
will also see that ϕ±ν are elliptic, microlocally on the set (3.38), so (4.8) is an elliptic equation
for Φ+, given Φ−.

Hence we want to obtain explicit formulas for ϕ±ν and a±ν , in the curvilinear coordinates
(x, y) = (x− h(y), y). We compute ∂ν , which must satisfy

〈∂ν , ∂yj 〉 = 0, 〈∂ν , ∂ν〉 = 1. (4.10)

A straightforward computation using (3.14) gives

∂νf =
√

1 + |dh|2∂xf −
1√

1 + |dh|2
〈dh, dyf〉. (4.11)

We note parenthetically that 〈dx, df〉 = (1 + |dh|2)∂xf −〈dh, dyf〉, and hence an alternative
formula is

∂νf =
1√

1 + |dh|2
〈dx, df〉, (4.12)

where the inner product on the right side of (4.12) is defined by (3.15). Recalling (3.23),
we have

∂νϕ
± =

√
1 + |dh|2∂xϕ±

∣∣
x=0
− 〈dh, dyϕ

±〉√
1 + |dh|2

∣∣
x=0

= ∓(sgn η)

√
(1 + |dh|2)(η2 − |ξ|2) + (ξ · ∇h)2√

1 + |dh|2
.

(4.13)

Note how the signs on the last line verify (4.9). Ellipticity in the region (3.38) is also
apparent. Next, we have

∂νa
±
k =

√
1 + |dh|2∂xa±k

∣∣
x=0

, (4.14)
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since dya±k |x=0 = 0. In the terminology of Lemma 3.2, this reads

∂νa
±
k =

√
1 + |dh|2a±k1(y, ξ, η), (4.15)

which, according to Lemma 3.2, is determined by ξ, η, and Dαh(y) for |α| ≤ |k|+ 2.
To pursue the task of solving (4.8) for Φ+, let us write

A±Φ = ±
∫
ei(y·ξ+tη)(iϕ±ν + a±ν )Φ̂ dξ dη, (4.16)

so (4.8) is
A+Φ+ = A−Φ−. (4.17)

In (4.16), we can extend ϕ±ν and a±ν from (ξ, η) as in (3.38) to all (ξ, η), in such a fashion
that A± are elliptic operators in OPS1. By (4.9),

A− = A+ +B, B ∈ OPS0, (4.18)

where the symbol of B is −a−ν − a+
ν . Let

E+ ∈ OPS−1 be a parametrix for A+. (4.19)

Then (4.17) becomes

Φ+ = (I +R)Φ−, R = E+B ∈ OPS−1. (4.20)

Standard pseudodifferential operator calculus yields the following.

Proposition 4.1 We have

RΦ =
∫
ei(y·ξ+tη)r(y, ξ, η)Φ̂(ξ, η) dξ dη, (4.21)

with
r ∼

∑
k≤−1

rk(y, ξ, η), (4.22)

where rk is homogeneous of degree k in (ξ, η) and rk depends on ξ, η, and Dαh(y) for
|α| ≤ |k|+ 1.

Proof. This follows from (4.13) and (4.15) and accompanying remark, together with the
standard elliptic parametrix construction, via repeated use of the formula

σPQ(y, ξ, η) ∼
∑
α≥0

(−i)|α|

α!
∂αξ σP (y, ξ, η)∂αy σQ(y, ξ, η) (4.23)

for the product of classical pseudodifferential operators whose symbols depend on (y, ξ, η).
(Recall that ξ is the dual variable to y.) �

14



We deduce that S+
DΦ+ in (4.4) is given by

S+
DΦ+ = S+

DΦ− + S+
DRΦ−, (4.24)

with Φ− as in (4.6) and R as in (4.21). Application of symbol calculus of Fourier integral
operators in concert with Lemmas 3.1–3.2 gives the following.

Proposition 4.2 We have

S+
DRΦ− =

∫
eiϕ

+
b Φ̂−(ξ, η) dξ dη, (4.25)

with
b ∼

∑
k≤−1

bk(x, y, ξ, η), (4.26)

where bk is homogeneous of degree k in (ξ, η). Each bk has the asymptotic expansion

bk(x, y, ξ, η) ∼
∑
j≥0

xjbkj(y, ξ, η), (4.27)

with bkj homogeneous of degree k in (ξ, η), and bkj(y, ξ, η) is determined by ξ, η, and Dαh(y)
for |α| ≤ j + |k|+ 1.

Proof. The fact that S+
DR has the form (4.25)–(4.26) is a standard application of the

symbol calculus for Fourier integral operators. It remains to prove the asserted properties
of bkj(y, ξ, η), arising in (4.27). First, evaluating (4.25) at x = 0 gives

b(0, y, ξ, η) = r(y, ξ, η), (4.28)

so the case j = 0 of the results on (4.27) follows directly from Proposition 4.1. To tackle
the case j = 1, note that

∂xS+
DΦ
∣∣
x=0

=
∫
ei(y·ξ+tη)(iϕ+

1 + a+
x

∣∣
x=0

)Φ̂(ξ, η) dξ dη (4.29)

where here and below the ϕ+
j are as in Lemma 3.1. Denote the right side of (4.29) by A1Φ,

with A1 ∈ OPS1. Applying ∂x to the right side of (4.25) and evaluating at x = 0 gives

A1RΦ = B1Φ =
∫
ei(y·ξ+tη)(iϕ+

1 b+ bx)
∣∣
x=0

Φ̂ dξ dη. (4.30)

Using the formula (4.23) to evaluate σA1R, we get

σA1R ∼ iϕ+
1 r + a+

x

∣∣
x=0

r +
∑
|α|≥1

(−i)|α|

α!
∂αξ (iϕ+

1 + a+
x

∣∣
x=0

) · ∂αy r

= (iϕ+
1 b+ bx)

∣∣
x=0

,

(4.31)
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which we can solve for bx|x=0, obtaining

bx
∣∣
x=0
∼ −iϕ+

1 b
∣∣
x=0

+ iϕ+
1 r + a+

x

∣∣
x=0

r +
∑
|α|≥1

(−i)|α|

α!
∂αξ (iϕ+

1 + a+
x

∣∣
x=0

) · ∂αy r. (4.32)

(Note that iϕ+
1 r and iϕ+

1 b|x=0 cancel, but we will not need to make use of this. Our lack
of need to track such cancellation will be useful below.) We examine the terms of order
k ≤ −1 in (ξ, η) in bx|x=0:

bx
∣∣
x=0
∼
∑
k≤−1

bk1(y, ξ, η). (4.33)

Inspection reveals that all the terms of order k in (ξ, η) occurring in the right side of (4.32)
depend on Dγh(y) only for |γ| ≤ |k| + 2 = 1 + |k| + 1. This gives the asserted result on
(4.27) for j = 1.

For general j, we have

∂jxS+
DΦ
∣∣
x=0

= AjΦ, ∂jxS+
DRΦ

∣∣
x=0

= BjΦ, (4.34)

with
σAj (y, ξ, η) = e−iϕ

+
∂jx(a+eiϕ

+
)
∣∣
x=0

,

σBj (y, ξ, η) = e−iϕ
+
∂jx(beiϕ

+
)
∣∣
x=0

.
(4.35)

An expansion gives

∂jx(a+eiϕ
+

) =
j∑
i=0

(
j

i

)
(∂j−ix a+) ∂ixe

iϕ+

=
j∑
i=0

∑
`

c̃(j, i, `)(∂j−ix a+)(∂`1x ϕ
+) · · · (∂`νx ϕ+)eiϕ

+
,

(4.36)

for certain constants c̃(j, i, `). Here, if i ≥ 1, we have ` = (`1, . . . , `ν) with `1 + · · ·+ `ν = i

and each `µ ≥ 1. If i = 0, by convention ` = {∅}, and the associated term appearing in
(4.36) is simply (∂jxa+)eiϕ

+
. Hence, with the same conventions,

σAj (y, ξ, η) =
j∑
i=0

∑
`

c(j, i, `)ϕ+
`1
· · ·ϕ+

`ν
∂j−ix a+

∣∣
x=0

, (4.37)

with c(j, i, `) = `!c̃(j, i, `). Similarly,

σBj (y, ξ, η) =
j∑
i=0

∑
`

c(j, i, `)ϕ+
`1
· · ·ϕ+

`ν
∂j−ix b

∣∣
x=0

. (4.38)

Meanwhile, Bj = AjR, so

σBj ∼
∑
α≥0

(−i)|α|

α!
(∂αξ σAj )(∂

α
y r). (4.39)
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Note that ∂jxb|x=0 occurs as one term in (4.38), so we get

∂jxb
∣∣
x=0
∼ −

j∑
i=1

∑
`

c(j, i, `)ϕ+
`1
· · ·ϕ+

`ν
∂j−ix b

∣∣
x=0

+
∑
α≥0

(−i)|α|

α!
(∂αξ σAj )(∂

α
y r),

(4.40)

with σAj given by (4.37), so (∂αξ σAj )(∂
α
y r) is a sum of terms of the form

∂αξ (ϕ+
`1
· · ·ϕ+

`ν
(∂j−ix a)

∣∣
x=0

) · ∂αy r, (4.41)

with
α ≥ 0, `µ ≥ 1, `1 + · · ·+ `ν = i, ν ≤ i, (4.42)

for 1 ≤ i ≤ j, and with the convention given above for i = 0. Recall from Lemmas 3.1–3.2
that ϕ+

`µ
depends on Dγh(y) for |γ| ≤ `µ and

a ∼
∑
k≤0

ak, ak order k in (ξ, η),

∂j−ix ak
∣∣
x=0

depends on Dγh(y), |γ| ≤ j − i+ |k|+ 1.
(4.43)

Inspection reveals that each term of order k ≤ −1 in (ξ, η) arising from (4.41) depends on
Dγh(y) only for |γ| ≤ j + |k|+ 1. Furthermore, given j ∈ N and given that bk,j−i depends
on Dγh(y) only for |γ| ≤ j − i + |k| + 1 whenever i ≥ 1, k ≤ −1, we see that the first
set of terms on the right side of (4.40) also depend on Dγh(y) only for |γ| ≤ j + |k| + 1.
Inductively, this yields the desired result on bkj , proving Proposition 4.2. �

We summarize our results.

Proposition 4.3 On a neighborhood of (t, x, y) = (β − x0, x0, q) in R× ([0,∞)× Y1 \ O),
the solution vkβ to (2.7)–(2.8) with Neumann boundary condition (4.1) has the form, mod
C∞,

vkβ = v−kβ +
∫
eiϕ

+
(a+ + b)Φ̂−(ξ, η) dξ dη, (4.44)

with ϕ+, a+ as in Lemmas 3.1–3.2, b as in Proposition 4.2, and Φ− as in (4.6).

Note that Φ− here is the same as in Proposition 3.3. In particular, (3.43)–(3.46) apply.

5 Singularity analysis of usj,k,α,β(t)

Here we apply the results of §§3–4 to study the nature of the singularity in t, for t near
β − x0 and α near x0, of

usj,k,α,β(t)

=
∫∫

eiϕ
+(α−h(y),y,t,ξ,η)ab(α− h(y), y, ξ, η)φj(y)ψ(y)Φ̂−(ξ, η) dξ dη dy

+ δjk ukβ(t, α) +R(t)

(5.1)
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where R(t) is smooth on (β − α− ε, β − α+ ε). Here Φ̂− is as in (3.44)–(3.46) and

ab = −a+, ab = a+ + b, (5.2)

in the case of Dirichlet and Neumann boundary conditions on ∂O, respectively, as in (3.41)
and (4.28). As in (2.12) we take x0 < α < β <∞, and we are particularly interested in the
limit α↘ x0, i.e., in∫∫

eiϕ
+(x0−h(y),y,t,ξ,η)ab(x0 − h(y), y, ξ, η)φj(y)ψ(y)Φ̂−(ξ, η) dξ dη dy

+ δjk ukβ(t, x0).
(5.3)

Since the last term in (5.3) is independent of O, we need only concentrate on the first term.
In other words, we are looking at the singularity at t = β − x0 of

I(t) =
∫∫

eiϕ
+(x0−h(y),y,t,ξ,η)ab(x0 − h(y), y, ξ, η)φj(y)ψ(y)Φ̂−(ξ, η) dξ dη dy. (5.4)

It is convenient first to analyze the corresponding integral with ab replaced by 1. Re-
calling the condition (3.38) on the support of Φ̂−, let us set

ξ = ηζ, ζ ∈ Rn, |ζ| < 1, (5.5)

and analyze

I(η, t) =
∫∫

eiϕ
+(x0−h(y),y,t,ηζ,η)φj(y)ψ(y)Φ̂−(ηζ, η) dζ dy. (5.6)

The following result parallels Proposition 4.6 of [2]. Here, h′′(q) denotes the Hessian of h
at q, i.e., the n× n matrix of second order partial derivatives.

Proposition 5.1 Given M ∈ N and I(η, t) as in (5.6), as |η| → ∞,

I(η, t) = eiη(t+x0−β)

(
π3n

|η|3n|deth′′(q)|

)1/2

e−iπn·sgn(η)/4
( M∑
m=0

η−mbmjk +O(|η|−M−1)
)
.

(5.7)
Moreover,

b0jk = φj(q)φk(q), (5.8)

and, for m ≥ 1,

bmjk = Cm1φj(q)φk(q) (∇y · h′′(q)−1∇y)m+1h(y)
∣∣
y=q

+ bRmjk. (5.9)

Here Cm1 6= 0 and depends only on m and the dimension n. Also, for m ≥ 1, bRmjk is
determined by φj , φk, and a finite number of their derivatives at q, and the derivatives of h
of order ≤ 2m+ 1 at q.
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Proof. Bringing in (3.44)–(3.46), we have

I(η, t) =
hk(η)

2
η

rk(η)

∫∫∫
eiϕ

+(x0−h(y),y,t,ηζ,ζ)−iηy′·ζ+irk(η)(h(y′)−β)

×φj(y)ψ(y)χ(ζ)ψ(y′)φk(y′) dy′ dζ dy.
(5.10)

Note that ϕ+(x0−h(y), y, t, ηζ, η) = ηϕ+(x0−h(y), y, t, ζ, 1), both for η > 0 and for η < 0.
Also, we can write

eirk(η)(h(y′)−β) ∼ eiη(h(y′)−β)
(

1 +
∑
`≥0

γ`(h(y′)− β)η−`−1
)
, (5.11)

where γ`(0) = 0 and γ`(s) is a polynomial of degree ≤ ` + 1 in s. Then Theorem 7.7.5 of
[6] applies to the phase function

f(y, y′, ζ) = ϕ+(x0 − h(y), y, t, ζ, 1)− y′ · ζ + h(y′)− β. (5.12)

Note that

∂yf = −ϕ+
x (x0 − h(y), y, t, ζ, 1)∂yh(y) + (∇yϕ+)(x0 − h(y), y, t, ζ, 1),

∂y′f = −ζ + ∂y′h(y′),

∂ζf = ∂ζϕ
+(x0 − h(y), y, t, ζ, 1)− y′.

(5.13)

Clearly there is a stationary point at (y, y′, ζ) = (q, q, 0). We have

f(q, q, 0) = t+ x0 − β. (5.14)

A calculation gives

f ′′(q, q, 0) =

h′′(q) 0 I

0 h′′(q) −I
I −I 0

 , (5.15)

the right side being a (3n)× (3n) matrix of second order partial derivatives. Consequently,

det f ′′(q, q, 0) = −2 deth′′(q). (5.16)

Theorem 7.7.5 of [6] yields (5.7), with∑
m≥0

bmjkη
−m

∼
∑
m≥0

η−mLm

(
φj(y)ψ(y)χ(ζ)ψ(y′)φk(y′)

(
1 +

∑
`≥0

γ`(h(y′)− β)η−`−1
))
.

(5.17)

Here

Lmw =
∑

ν−µ=m

∑
2ν≥3µ

i−m2−ν

µ!ν!
Qν(gµw)(q, q, 0), (5.18)
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where g and Q are defined as follows. First,

g(y, y′, ζ)

= ϕ+(x0 − h(y), y, t, ζ, 1) + h(y′)− x0 − t

− 1
2

(
(y − q) · h′′(q)(y − q) + 2y · ζ + (y′ − q) · h′′(q)(y′ − q)

)
.

(5.19)

Next
Q =

1
2

[
∇y · h′′(q)−1∇y + 2∇y · h′′(q)−1∇y′ +∇y′ · h′′(q)−1∇y′

+ 2∇y · ∇ζ − 2∇y′ · ∇ζ −∇ζ · h′′(q)∇ζ
]
.

(5.20)

Given these formulas, (7.7.12)–(7.7.13) of [6] yield the expansion (5.7). The asserted results
about bmjk in (5.8)–(5.9) involve the same arguments as in Proposition 4.6 of [2], with
Lemma 3.1 of this paper playing the same role as Lemma 4.2 of [2]. �

To proceed from Proposition 5.1 to an analysis of the first term in (5.3), we bring in the
following, which parallels Proposition 4.7 of [2].

Proposition 5.2 Consider

I`(η, t) =
∫∫

eiϕ
+(x0−h(y),y,t,ηζ,η)a`(x0 − h(y), y, ηζ, η)φj(y)ψ(y)Φ̂−(ηζ, η) dζ dy, (5.21)

with
a1 = a+ − 1, a2 = b, (5.22)

and with a+, b as in (3.41) and (4.44). Then, as |η| → ∞,

I`(η, t) = eiη(t+x0−β)
(
|η|3n| deth′′(q)|

)−1/2
e−iπn·sgn(η)/4

( M∑
m=1

η−mb`mjk +O(|η|−M−1)
)
.

(5.23)
Each b`mjk is determined by Dαh(q), |α| ≤ 2m, and φj , φk and a finite number of their
derivatives at q.

Proof. The proof is similar to that of Proposition 5.1, and parallels that [2, Proposition
4.7]. In addition to Lemma 3.1, it makes use of Lemma 3.2 and, for the analysis of b2mjk,
also use of Proposition 4.2. �

We are now ready to analyze the singularity of (5.4), i.e., of

I`(t) =
∫
I`(η, t)|η|n dη, (5.24)

for ` = 3, 4, where I`(η, t) is given by (5.21) with

a3 = −a+, a4 = a+ + b, (5.25)
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the extra factor of |η|n arising from the relation ξ = ηζ. The following, which parallels
Theorem 4.8 of [2], is a direct consequence of (5.24) and Propositions 5.1–5.2. Recall that
φk, φk are chosen to both be supported on Y1.

Theorem 5.3 For Dirichlet and Neumann boundary conditions on ∂O, we have, with ` = 3
or 4 respectively,

I`(t) = |deth′′(q)|−1/2
M∑
m=0

B`
mjk(t− β + x0)n/2−1+m

+ +RM (t), (5.26)

where RM (t) is CM+n/2−1 in a neighborhood of t = β − x0. Moreover,

B`
0jk = C`0φj(q)φk(q), (5.27)

and, for m ≥ 1,

B`
mjk = C`m1φj(q)φk(q)

(
∇y · h′′(q)−1∇y

)m+1
h(y)

∣∣
y=q

+B`R
mjk. (5.28)

Here C`m1 6= 0 and depends only on ` and m. Also, for m ≥ 1, B`R
mjk is determined by φj , φk

and a finite number of their derivatives at q and the derivatives of h of order ≤ 2m + 1
at q. In particular, the discussion surrounding (5.1)-(5.4) and the identity (2.3) mean we
can, from knowledge of Sjk(λ) for all λ > |σ1|, recover the singularities of I3 at β − x0 if
the boundary conditions on ∂O are Dirichlet, and those of I4 if the boundary conditions on
O are Neumann.

6 Inverse problems with symmetry

Here we prove Theorem 1.1, that knowledge of Skk(λ) for all λ ∈ [|σ1|,∞) determines
the obstacle O uniquely, given hypotheses (1.5)–(1.8), and given knowledge of the point
q ∈ Y1 and that φk(q) 6= 0. As we have seen, such information uniquely determines the
tip p = (x0, q) of O via the first positive time for which a singularity of usj,k,α,β occurs for
α, β � 0. Let us translate coordinates in Y1 to make q the origin: q = 0. Then hypothesis
(1.8) says h(y) is a radial function of y; hence

h(y) =
∑
k≥0

τ2k|y|2k. (6.1)

Comparison with the standard power series formula

h(y) =
∑
α≥0

h(α)(0)
α!

yα, (6.2)

via the multinomial formula

|y|2k = (y2
1 + · · ·+ y2

n)k =
∑
|α|=2k

Cnk (α)yα, (6.3)
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yields the identities
|α| = 2k =⇒ h(α)(0) = α!Cnk (α)τ2k, (6.4)

while, of course,
|α| = 2k + 1 =⇒ h(α)(0) = 0. (6.5)

Also the formula

∆ = −(
∂2

∂r2
+
n− 1
r

∂

∂r
) (6.6)

for the Laplacian on radial functions gives

∆ |y|2k = −2k(2k + n− 2)|y|2k−2, (6.7)

and then, inductively,
∆k |y|2k = Dn

k , (6.8)

a combinatorial function of n and k. Hence, for a radial function h(y),

|α| = 2k =⇒ h(α)(0) =
α!Cnk (α)
Dn
k

∆kh(0) = Enk (α) ∆kh(0). (6.9)

According to Theorem 5.3, under the hypotheses of Theorem 1.1, the scattering data
uniquely determine deth′′(0). Given radial symmetry, we have

h′′(0) = − 1
n

∆h(0) I, (6.10)

where I is the n× n identity matrix, and hence

deth′′(0) = n−n
(
−∆h(0)

)n
. (6.11)

Strict convexity at p implies −∆h(0) < 0, and then ∆h(0) is determined uniquely. Hence,
by (6.9), h(α)(0) is determined uniquely for all |α| ≤ 2. Looking at (5.28), we see that(

∇y · h′′(0)−1∇y
)m+1

h(y)
∣∣
y=0

= nm+1
(
−∆h(0)

)−(m+1) (−∆)m+1h(0). (6.12)

Hence B`
mjk is a known nonzero multiple of ∆m+1h(0) plus a quantity that depends, in

a known fashion, on h(α)(0) for |α| ≤ 2m + 1, hence on ∆ih(0) for i ≤ m. Inductively,
we conclude that ∆m+1h(0) is uniquely determined by the scattering data, for all m ≥ 0.
Hence, by (6.9), the power series coefficients of h are uniquely determined. Analyticity
implies h(y) is uniquely determined for small y, hence ∂O is uniquely determined, locally.
Connectivity then implies ∂O is uniquely determined globally. This proves Theorem 1.1.
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7 Two-dimensional inverse problems without symmetry

In this section we study the inverse problem for O ⊂ X, where X ⊂ R2 is a two-dimensional
manifold. By working in two dimensions and assuming that we know two particular entries
in the scattering matrix, we are able to recover O. Theorem 7.1 extends [2, Theorem 1.2],
which considered the case of Dirichlet boundary conditions on both ∂X and ∂O.

Recall our convention that 0 ≤ σ2
1 ≤ σ2

2 ≤ · · · are the eigenvalues of the (nonnegative)
Laplacian on Y = ti0i=1Yi with Dirichlet or Neumann boundary conditions as inherited
from the boundary conditions on ∂X, and that ∆Y φj = σ2

jφj , with each φj supported
on a single connected component of Y . Note that if Y1 ' (0, γ) with the usual metric,
then the eigenvalues of the Laplacian on Y1 are k2(π/γ)2, k ∈ N for Dirichlet boundary
conditions, and k2(π/γ)2, k ∈ N ∪ {0} for Neumann boundary conditions. Choose jk so
that φjk ∈ C∞(Y ) is supported on Y1 and satisfies ∆Y1φjk = k2(π/γ)2φjk and the boundary
conditions on ∂Y1.

Theorem 7.1 Let X ⊂ R2, and let O ⊂ X satisfy assumption (1.5) and, in addition,
assume ∂O is real analytic and connected. Consider the Laplacian on X \ O with either
Dirichlet or Neumann boundary conditions on ∂X and Dirichlet or Neumann boundary
conditions on O. Then knowledge of both Sj0j0(λ) and Sj0j1(λ) (for Neumann boundary
conditions on ∂X) or both Sj1j1(λ) and Sj1j2(λ) (for Dirichlet boundary conditions on ∂X)
for all λ > |σ1| determines O.

We comment explicitly that it is not necessary to have the same boundary conditions on
∂O and ∂X.
Proof. The case of Dirichlet boundary conditions on both ∂X and ∂O is exactly [1, Theorem
1.2]. We give the proof for Neumann boundary conditions on both ∂X and ∂O, and indicate
how to adapt the proof for the remaining two combinations of boundary conditions.

As we saw earlier, x0 is determined by the given data, since φj0 is nonvanishing on
Y1. Note that given that y0 ∈ (0, γ), y0 is determined by knowledge of cos(πy0/γ) =√

2φj1(y0)/
√
γ with the identification of Y1 with (0, γ). Using Theorem 5.3 we can determine

φj1(q) by taking the ratios of the leading order singularities of usj1,j0,x0,β
(t) and usj0,j0,x0,β

(t)
at t = β − x0. Thus q is determined by the data. Now h′′(q), which is a scalar here, can be
recovered from Sj0,j0 , using the fact that we know h′′(q) < 0.

Now suppose we know h(l)(q) for l ≤ 2m, m ≥ 1. Combining [2, Proposition 4.6] with
Proposition 4.3, Proposition 5.2 and the proof of Theorem 5.3, we see that from knowledge
of Sj0,j0(λ) and Sj0,j1(λ), we can recover

[cm1h
′′(q)h(2m+2)(q) + cm2h

(3)(q)h(2m+1)(q)]φj(q)φj0(q)

+ cm3h
′′(q)h(2m+1)(q)[φ′j0(q)φj(q) + φj0(q)φ′j(q)] (7.1)

where cml are known nonzero constants and j is j0 or j1. Note that φj0 is a constant so
that φ′j0 ≡ 0 and that φ′j1 is nonzero on the interior of Y . Thus, from (7.1) with j = j0 and
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j = j1 we are able to recover first h(2m+1)(q) and then h(2m+2)(q). Inductively, then, we are
able to recover all the derivatives of h at q, and, using the assumption of analyticity and
connectivity of ∂O, we recover O.

If we have Neumann boundary conditions on ∂X and Dirichlet conditions on ∂O, the
proof is essentially unchanged, using the fact that Theorem 5.3 handles both boundary
conditions.

In the case of Dirichlet boundary conditions on ∂X and Neumann conditions on ∂O, the
proof can be adapted by first using [2, Lemma 6.1], which ensures, together with the results
on the singularities of us

j,k,x+
0 ,β

for Neumann boundary conditions on ∂O of this paper, that

q can be determined from the given data. For the inductive step, assume one knows h(l) for
l ≤ 2m, m ≥ 1. Then from Sj1j1(λ) and Sj1j2(λ) one can recover

[cm1h
′′(q)h(2m+2)(q) + cm2h

(3)(q)h(2m+1)(q)]φj(q)φj1(q)

+ cm3h
′′(q)h(2m+1)(q)[φ′j1(q)φj(q) + φj1(q)φ′j(q)] (7.2)

with j = j1 or j = j2; cf (7.1). But then [2, Lemma 6.2] ensures that from this data we can
recover h(2m+1)(q) and h(2m+2)(q). �
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