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A MORSE INDEX THEOREM FOR ELLIPTIC OPERATORS ON BOUNDED

DOMAINS

GRAHAM COX, CHRISTOPHER K.R.T. JONES, AND JEREMY L. MARZUOLA

Abstract. Given a selfadjoint, elliptic operator L, one would like to know how the spectrum changes
as the spatial domain Ω ⊂ R

d is deformed. For a family of domains {Ωt}t∈[a,b] we prove that the
Morse index of L on Ωa differs from the Morse index of L on Ωb by the Maslov index of a path of
Lagrangian subspaces on the boundary of Ω. This is particularly useful when Ωa is a domain for which
the Morse index is known, e.g. a region with very small volume. Then the Maslov index computes
the difference of Morse indices for the “original” problem (on Ωb) and the “simplified” problem (on
Ωa). This generalizes previous multi-dimensional Morse index theorems that were only available on
star-shaped domains or for Dirichlet boundary conditions. We also discuss how one can compute the
Maslov index using crossing forms, and present some applications to the spectral theory of Dirichlet
and Neumann boundary value problems.

1. Introduction

Let L be a second-order, selfadjoint elliptic operator on a bounded domain Ω ⊂ R
n. The abstract

spectral theory of such operators is well understood, but it is not known in general how to relate the
spectrum to underlying geometric features of either the operator or the domain. For instance, if ū is a
steady state for the reaction-diffusion equation ut+f(u) = ∆u, then the linear stability of ū is determined
by the spectrum of L = −∆+ f ′(ū). The operator depends explicitly on the steady state through the
potential f ′(ū), and it would be useful if one could relate spectral properties of L, such as the number
of negative eigenvalues, to the structure of ū and f .

A motivating example comes from Sturm–Liouville theory for ordinary differential equations. If ū
is a steady state of ut + f(u) = uxx, then its Morse index can be found by counting the zeros of the
derivative ūx. In a more geometric vein, the Morse index theorem shows that the number of unstable
(length decreasing) directions in which a Riemannian geodesic can be perturbed is equal to the number
of conjugate points along the geodesic [13]. This relates the index to the curvature of the manifold, which
affects the existence of conjugate points in a fundamental way.

A multi-dimensional Morse index theorem was proved by Smale [21] for a selfadjoint, elliptic operator
L on a bounded domain, with Dirichlet boundary conditions. Assuming that the domain Ω could be
deformed smoothly though a family {Ωt} with Vol(Ωt) → 0, Smale showed that the Morse index of L
equals the total number of times t, with multiplicity, for which the problem

Lu = 0 in Ωt, u = 0 on ∂Ωt

has a nontrivial solution. These times are analogous to conjugate points in the Riemannian case, which
correspond to solutions of the Jacobi equation with Dirichlet boundary conditions. An abstract general-
ization of this result was given by Uhlenbeck in [23].

In [1] Arnol′d gave a symplectic interpretation of Sturm–Liouville theory by equating the Morse index
to the Maslov index—a topological invariant assigned to a path of Lagrangian subspaces in a symplectic
vector space. This interpretation was extended to the multi-dimensional setting by Deng and Jones [5]
for a Schrödinger operator L = −∆ + V on a bounded, star-shaped domain Ω ⊂ R

n. Their idea was
to contract Ω through the one-parameter family Ωt := {tx : x ∈ Ω}, then for each t ∈ (0, 1] define a
pair of Lagrangian subspaces in H1/2(∂Ω)⊕H−1/2(∂Ω) that encode the given boundary condition and
the boundary data of weak solutions to Lu = 0 on Ωt, respectively. By construction, these subspaces
intersect when there is a nonzero solution to Lu = 0, with the prescribed boundary conditions, on Ωt.
This fact was used to relate the Maslov index of the path obtained by contracting Ω to the Morse index
of L.

In the star-shaped case the approach of Deng and Jones recovers Smale’s result, but also allows one
to consider more general boundary conditions. This generalization is significant because eigenvalues
for a general boundary value problem can exhibit more complicated behavior, with respect to domain
variations, than in the Dirichlet case. For instance, in the Neumann problem the eigenvalues are not
necessarily increasing for a shrinking family of domains, as was recently observed in [14].
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The main shortcoming of [5] is the star-shaped assumption on the domain. Stability problems on
general domains are of great interest, and one needs effective tools for computing the Morse index.
There is also a more subtle (and important) reason for considering general domains. If Lū = 0, then
it is desirable to relate the Morse index of L to the geometric structure of ū, analogous to the Sturm
oscillation theorem and Courant’s nodal domain theorem. A relevant family of domains is given by the
sublevel sets

Ωt = {x ∈ Ω : ū(x) < t},

which remain diffeomorphic as long as t does not pass through a critical value of ū. There is no reason
to expect the Ωt to be star-shaped, even when Ω ⊂ R

n is a ball and the coefficients of L are radially
symmetric.

In the current paper we show that, through a careful scaling of the operators and boundary conditions,
it is possible to preserve the symplectic structure on the boundary as the domain is deformed, with no
assumptions on the geometry of Ω. This allows us to define the Maslov index—a signed enumeration of
conjugate times—and relate it to the Morse index of the boundary value problem on Ω. For a family of
domains {Ωt}a≤t≤b, our main result is that the difference in Morse indices

Mor(L|Ωa)−Mor(L|Ωb
)

equals the Maslov index of a path of Lagrangian subspaces in H1/2(∂Ω)⊕H−1/2(∂Ω). We describe how
to compute the relevant Maslov index in practice, and use the resulting formulas to determine Morse
indices for a variety of boundary value problems.

Outline of the paper. In Section 2 we make precise our assumptions on the domains, operators and
boundary conditions under consideration; the main results are stated in Section 2.5. The path for which
the Maslov index will be computed is constructed in Section 3, and the main theorem is proved in
Section 4. In Section 5 we describe the computation of the Maslov index via crossing forms and give
some applications to spectral problems with Dirichlet and Neumann boundary conditions.

Appendix A summarizes the relation between symmetric bilinear forms and selfadjoint, unbounded
operators that lies at the heart of our presentation. A review of the Fredholm–Lagrangian Grassmannian
and Maslov index for symplectic Hilbert spaces is given in Appendix B. In Appendix C we prove some
regularity results for families of bilinear forms that are are needed in Section 3.
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2. Definitions and statement of results

2.1. The Morse index. Throughout we assume that Ω ⊂ R
n is a bounded domain with Lipschitz

boundary. Let L be a strongly elliptic operator of the form

Lu = −∂i(a
ij∂ju) + cu (1)

where aij , c ∈ L∞(Ω) are real-valued functions with aij = aji. Suppose D is a Dirichlet form for L, i.e.
a symmetric, bilinear form such that

D(u, v) = 〈Lu, v〉L2(Ω)

for all u, v ∈ C∞
0 (Ω). Letting X be a closed subspace of H1(Ω) that contains H1

0 (Ω), we say that u ∈ X
is an eigenfunction for the (D,X ) problem, with eigenvalue λ, if

D(u, v) = λ 〈u, v〉L2(Ω)

for all v ∈ X . The correspondence between D and L is standard (see [6, 10, 12, 16] or Appendix A for
details). Before proceeding, we define

γu = u|∂Ω (2)

to be the Dirichlet trace operator, the mapping properties of which will be recalled in Lemma 3.2.



A MORSE INDEX THEOREM FOR ELLIPTIC OPERATORS 3

Proposition 2.1. There exists an unbounded, selfadjoint operator LX , with dense domain D(LX ) ⊂ X ,
such that

D(u, v) = 〈LXu, v〉L2(Ω)

for all u ∈ D(LX ) and v ∈ X , and a first-order differential operator B defined near ∂Ω such that

D(u, v) = 〈Lu, v〉L2(Ω) +

∫

∂Ω

(Bu)(γv)dµ

whenever u, v ∈ H1(Ω) and Lu ∈ L2(Ω). Moreover, there exists an orthonormal basis for L2(Ω) consist-
ing of eigenfunctions {ui} for LX , with discrete eigenvalues {λi} tending to ∞.

Without further regularity assumptions on ∂Ω and D, the eigenfunctions are only known to be in
H1(Ω). It is proved in Appendix A that

D(LX ) =

{
u ∈ X : Lu ∈ L2(Ω) and

∫

∂Ω

(Bu)(γv)dµ = 0 for all v ∈ X

}
.

The eigenvalues of LX satisfy the minimax principle (cf. Theorem XIII.2 in [17])

λn = sup
V ⊂L2(Ω)

dim(V )=n

inf

{
D(u, u)

‖u‖2L2(Ω)

: u ∈ X ∩ V ⊥

}

and the Morse index of LX can be computed as

Mor(LX ) = sup{dim(U) : U ⊂ X , D(u, u) < 0 for all u ∈ U}.

The boundary operator B depends on D but not on X . The boundary conditions, and hence the
domain of LX , typically depend on both D and X . To illustrate this dependence, we consider the form

D(u, v) =

∫

Ω

[∇u · ∇v + V uv] (3)

on the following closed subspaces of H1(Ω)

X 0 = H1
0 (Ω),

X 1 = H1(Ω),

X 2 =
{
u ∈ H1(Ω) : u|Σi

is constant for each i
}
,

X 3 =

{
u ∈ H1(Ω) :

∫

Σi

(γu)dµ = 0 for each i

}
,

where {Σi} are the connected components of ∂Ω and dµ is the induced volume form on ∂Ω. Integrating
by parts, we obtain L = −∆+ V (x) and

Bu =
∂u

∂N

∣∣∣∣
∂Ω

.

The selfadjoint operators LX 0, . . . , LX 3 given by Proposition 2.1 have domains

D(LX 0) =
{
u ∈ H1(Ω) : ∆u ∈ L2(Ω) and u|∂Ω = 0

}
,

D(LX 1) =

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω) and

∂u

∂n

∣∣∣∣
∂Ω

= 0

}
,

D(LX 2) =

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω), u|Σi

is constant and

∫

Σi

∂u

∂N
dµ = 0 for each i

}
,

D(LX 3) =

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω),

∫

Σi

(γu)dµ = 0 and
∂u

∂N

∣∣∣∣
∂Σi

is constant for each i

}

and satisfy LX iu = Lu for u ∈ D(LX i). Without further assumptions on ∂Ω and V (x) (cf. Theorem
4.18 of [12]) we cannot conclude that D(LX i) ⊂ H2(Ω).

Note that LX 0 and LX 1 are the Dirichlet and Neumann Laplacian, respectively. The X 2 boundary
conditions arise in the study of inviscid fluid flow on a multiply-connected domain—see Section 5 of [11].
One can also represent Robin boundary conditions through appropriate choices of D and X ; the reader
is referred to [6] for further examples.
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2.2. Scaling of domains. Now suppose {Ωt}a≤t≤b is a family of domains given by Lipschitz diffeomor-
phisms ϕt : Ω → Ωt. For each t let Dϕt : Ω → R

n×n denote the Jacobian of ϕt, which is contained in
L∞(Ω,Rn×n) as a consequence of Rademacher’s theorem. We say that {ϕt} is of class Ck if t 7→ ϕt is in
Ck ([a, b], L∞(Ω,Rn)) and t 7→ Dϕt is in C

k ([a, b], L∞(Ω,Rn×n)).
For instance, if Ω is star-shaped, we can define Ωt = {tx : x ∈ Ω} and ϕt(x) = tx for t ∈ [ǫ, 1]. Another

example comes from the gradient flow of a Morse function f . If f−1[a, b] ⊂ R
n is compact and contains

no critical points, it is easy to construct a family {ϕt} such that ϕt(Ω) = f−1(−∞, t] for t ∈ [a, b].
It will be assumed that the Dirichlet form D is defined on a domain in R

n that contains ∪a≤t≤bΩt.
The above examples both satisfy Ωt1 ⊂ Ωt2 for t1 < t2, in which case it suffices to have D defined on Ωb.
We define a family of Dirichlet forms {Dt} on X ⊂ H1(Ω) by

Dt(u, v) = D|Ωt
(u ◦ ϕ−1

t , v ◦ ϕ−1
t ). (4)

Each Dt is symmetric and coercive, so by Proposition 2.1 there exists a family of unbounded, selfadjoint
operators {LX ,t} on L2(Ω) such that Dt(u, v) = 〈LX ,tu, v〉L2(Ω) for each u ∈ D(LX ,t) and v ∈ X , and

operators Lt and Bt such that

Dt(u, v) = 〈Ltu, v〉L2(Ω) +

∫

∂Ω

(Btu)(γv)dµ (5)

whenever u, v ∈ H1(Ω) and Ltu ∈ L2(Ω).
Our main result, Theorem 1, relates the Morse indices of {LX ,a} and {LX ,b}. Both operators are

defined on L2(Ω). It follows from a change of variables that the (Dt,X ) eigenvalue problem is equivalent
to the (D|Ωt ,Xt) problem, where Xt := {u ◦ ϕ−1

t : u ∈ X} ⊂ H1(Ωt). To determine the boundary
conditions on ∂Ωt, it is necessary to identify Xt explicitly. For the examples considered above we have

X 0
t = H1

0 (Ωt),

X 1
t = H1(Ωt),

X 2
t =

{
u ∈ H1(Ωt) : u|Σti

is constant for each i
}
,

X 3
t =

{
u ∈ H1(Ωt) :

∫

Σti

(γtu)(ϕ
−1
t )∗dµ = 0 for each i

}
,

where γt denotes the Dirichlet trace on Ωt. In the first three cases X j
t depends on Ωt, but not the

particular diffeomorphism ϕt : Ω → Ωt. On the other hand, X 3
t is not, in general, equal to the space

{
u ∈ H1(Ωt) :

∫

Σti

(γtu)dµt = 0 for each i

}
,

because the pulled-back volume form (ϕ−1
t )∗dµ on ∂Ωt does not necessarily agree with the induced form

dµt. Therefore the interpretation of a conjugate time—a value of t for which the (D|Ωt ,X
3
t ) problem has

a nontrivial kernel—depends on the diffeomorphisms {ϕt} and not just the family of domains {Ωt}.
One can always modify {ϕt} to obtain a new family {ϕ̂t} such that ϕ̂t(∂Ω) = ϕt(∂Ω) for all t, and

X̂ 3
t =

{
u ∈ H1(Ωt) :

∫

Σti

(γtu)dµt = 0 for each i

}
,

but we will not explore this issue any further in the current paper.

2.3. A symplectic Hilbert space. We define

H = H1/2(∂Ω)⊕H−1/2(∂Ω).

In Appendix B it is shown that H has the structure of a symplectic Hilbert space. Through a minor
abuse of notation, we will denote the dual pairing between H1/2(∂Ω) and H1/2(∂Ω)∗ ∼= H−1/2(∂Ω) by
the integral notation

H1/2(∂Ω) 〈f, g〉H−1/2(∂Ω) =

∫

∂Ω

fg dµ

for f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω).
We now construct two families of Lagrangian subspaces ofH, corresponding to the rescaled differential

operators and boundary conditions, respectively. The space of weak solutions to Ltu = λu, in the absence
of boundary conditions, is denoted by

Kλ,t =
{
u ∈ H1(Ω) : Dt(u, v) = λ 〈u, v〉L2(Ω) for all v ∈ H1

0 (Ω)
}

(6)
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for (λ, t) ∈ R× [a, b]. We define a trace map Trt : C
1(Ω) → C0(∂Ω)× C0(∂Ω) by

Trt u = (γu,Btu) , (7)

where γ is the Dirichlet trace operator from (2) and Bt is the rescaled boundary operator from (5). It is
observed in Lemma 3.2 that Trt extends to a bounded operator on Kλ,t, so we can define

µ(λ, t) = Trt(Kλ,t). (8)

We also define the space of admissible boundary values by

ν =

{
(f, g) ∈ H : f ∈ γ(X ),

∫

∂Ω

g(γv)dµ = 0 for all v ∈ X

}
. (9)

Again referring to the four examples above, we have

ν0 = {0} ⊕H−1/2(∂Ω),

ν1 = H1/2(∂Ω)⊕ {0},

ν2 =

{
(f, g) ∈ H : f |Σi

is constant and

∫

Σi

g dµ = 0 for each i

}
,

ν3 =

{
(f, g) ∈ H :

∫

Σi

f dµ = 0 and g|Σi
is constant for each i

}
.

2.4. Conjugate times. The spaces µ(λ, t) and ν are defined so a nontrivial intersection corresponds to
an eigenvalue of LX ,t, as we prove in Section 3.4.

Proposition 2.2. The intersection µ(λ, t) ∩ ν is nontrivial if and only if there is a nonzero function
u ∈ D(LX ,t) with LX ,tu = λu. Moreover,

dim [µ(λ, t) ∩ ν] = dimker (LX ,t − λ) .

We say that t∗ ∈ [a, b] is a conjugate time if µ(0, t∗) ∩ ν 6= {0}. Thus t∗ is a conjugate time if and
only if LX ,t∗ has a nontrivial kernel, which is true if and only if

kerDt∗ := {u ∈ X : Dt∗(u, v) = 0 for all v ∈ X}

is nontrivial. By a change of coordinates we see that kerDt∗ is isomorphic to

ker D|Ωt∗
:= {u ∈ Xt∗ : D|Ωt∗

(u, v) = 0 for all v ∈ Xt∗}.

For our example (3), t∗ ∈ [a, b] is a conjugate time for the X 0 (Dirichlet) problem if there exists
u ∈ H1(Ωt∗) such that

−∆u+ V (x)u = 0, u|∂Ωt∗
= 0,

and is a conjugate time for the X 1 (Neumann) problem if there exists u ∈ H1(Ωt∗) such that

−∆u+ V (x)u = 0,
∂u

∂Nt∗

∣∣∣∣
∂Ωt∗

= 0.

Analogous to (5), there is an operator B̂t such that

D|Ωt
(u, v) = 〈Lu, v〉L2(Ωt)

+

∫

∂Ωt

(B̂tu)(γv)dµ (10)

whenever u, v ∈ H1(Ωt) and Lu ∈ L2(Ωt). In the example above, B̂t = ∂/∂Nt on ∂Ωt, whereas the
rescaled boundary operator Bt on ∂Ω is given by a more complicated expression involving the Jacobian
of ϕt.

2.5. Statement of results. By construction, {µ(λ, t)} is a smooth family of Lagrangian subspaces and
has a well-defined Maslov index with respect to ν. Our main result is the following.

Theorem 1. Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary, and ϕt : Ω → Ωt a C0 family

of Lipschitz diffeomorphisms for t ∈ [a, b] (as defined in Section 2.2). Suppose D is a strongly elliptic
Dirichlet form with continuous coefficients, and X ⊂ H1(Ω) is a closed subspace that contains H1

0 (Ω).
With LX ,t, µ(λ, t) and ν defined as above, the Maslov index of µ(λ, t) with respect to ν satisfies

Mas(µ(0, t); ν) = Mor(LX ,a)−Mor(LX ,b). (11)
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The Maslov index gives a signed count of the conjugate times in [a, b], and it is natural to ask when the
difference in Morse indices is in fact equal to the number of conjugate times. This requires monotonicity
of the Maslov index, in the sense that all intersections of µ(0, t) and ν have the same orientation. This
is easily shown for Dirichlet problem when the domains and operators are sufficiently regular.

Corollary 2.3. Additionally assume that the family {ϕt} is C1, each ∂Ωt is of class C1,1, and the
coefficients of D are continuous differentiable. Let X = H1

0 (Ω), so that LX ,t = LD,t is the Dirichlet
realization of L. If Ωt1 ⊂ Ωt2 for t1 < t2, then the number of conjugate times in [a, b] is finite and

Mor(LD,b) = Mor(LD,a) +
∑

t∈[a,b)

dimkerDt. (12)

This is precisely the index theorem proved by Smale in [21]. A symplectic interpretation was given
by Swanson in [22]; our method differs in its ability to handle more general boundary conditions. Note
that the sum includes t = a but not t = b, so it is not relevant if b is a conjugate time. Intuitively, this is
because the Dirichlet spectrum is strictly decreasing with respect to t, so an eigenvalue that equals zero
at t = b is positive for t < b and hence does not contribute to the Morse index. For general boundary
conditions an intersection at t = b can only contribute nonpositively to the Morse index.

While such monotonicity cannot always be expected, one use crossing forms (defined in Appendix
B) to determine the direction of intersection between µ and ν and hence find the contribution to the
Morse index from each conjugate time. A conjugate time corresponds to a zero eigenvalue for Dt, with
multiplicity dimkerDt; the crossing form determines how many of these eigenvalues are increasing, and
how many are decreasing, with respect to t. For related results on the motion of simple eigenvalues see
[2, 8, 9] and references therein.

In the star-shaped case, where Ωt := {tx : x ∈ Ω} for t ∈ (0, 1], the rescaled Dirichlet form Dt can
be computed easily, and one obtains more explicit expressions for the crossing form than are generally
available. In particular, it is possible to deduce monotonicity results for the Neumann Laplacian −∆N ,
which we define to be the unbounded, selfadjoint operator corresponding to the Dirichlet form D(u, v) =∫
Ω
∇u · ∇v with domain X = H1(Ω), and similarly for the rescaled operators −∆N,t on Ωt.

Corollary 2.4. Let Ω ⊂ R
n be a star-shaped domain with C1,1 boundary. Suppose V ∈ C1(Ω) and λ is

an eigenvalue of multiplicity k for LN,t := −∆N,t + V (x) for some t ∈ (0, 1). If

λ > V (x) +
1

2
x · ∇V (x) (13)

for all x ∈ Ωt, then

Mor(LN,t+δ − λ) = Mor(LN,t−δ − λ) + k

for δ > 0 sufficiently small.

In other words, as the domain expands from Ωt−δ to Ωt+δ, the number of Neumann eigenvalues below
λ increases by k, assuming λ is sufficiently large. Setting V = 0 we find that any positive eigenvalue of
the Neumann Laplacian satisfies

Mor(−∆N,t+δ − λ) = Mor(−∆N,t−δ − λ) + k, (14)

under the hypotheses of Corollary 2.4. While seemingly elementary, this result is actually rather subtle,
because the monotonicity of the eigenvalues (or Morse index) for the Neumann Laplacian is known to
fail for domains that are not star-shaped, even in the radially symmetric case. For instance, it was shown
in [14] that the first nonzero Neumann eigenvalue on the annulus

Ar,R := {x ∈ R
n : r ≤ |x| ≤ R}

is decreasing with respect to both r and R. This differs from the first Dirichlet eigenvalue, which is
decreasing in R but increasing in r.

By a unique continuation argument it suffices to have

λ ≥ V (x) +
1

2
x · ∇V (x)

for all x, with strict inequality on a nonempty, open subset of Ωt. Since V and ∇V are bounded on Ω,
there are only a finite number of eigenvalues for which this condition could fail. If the potential is radial,
V (x) = f(|x|), this is equivalent to

λ ≥ f(r) +
r

2
f ′(r)

for r ≤ t.
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As a final example, suppose the potential satisfies

0 > V (x) +
1

2
x · ∇V (x)

for all x ∈ Ω (which in particular implies V (0) < 0). Then the Morse index of −∆N + V (x) can be
related to the number of conjugate times t ∈ (0, 1), as in Corollary 2.3. Letting c(t) denote the dimension
of the solution space of

−∆u+ V (x)u in Ωt,
∂u

∂Nt
= 0 on ∂Ωt

for each t ∈ (0, 1), we have

Mor(−∆N + V ) =
∑

t∈(0,1)

c(t) + 1. (15)

3. Construction of the symplectic path

We now give in detail the construction of the subspaces µ(λ, t) and ν outlined in Section 2. Throughout
we consider the symplectic Hilbert space H := H1/2(∂Ω) ⊕H−1/2(∂Ω) with symplectic form ω defined
by

ω ((f1, g1), (f2, g2)) =

∫

∂Ω

(f1g2 − f2g1)dµ, (16)

where dµ denotes the induced area form on ∂Ω. We denote by J : H → H the almost complex structure
on H, given by

J(f, g) =
(
R−1g,−Rf

)
(17)

for (f, g) ∈ H, where R : H1/2(∂Ω) → H−1/2(∂Ω) ∼= H1/2(∂Ω)∗ is the Riesz duality isomorphism.
The main definitions and properties of symplectic Hilbert spaces are given in Appendix B; for now we

simply recall that Λ(H) denotes the Lagrangian Grassmannian of H and FΛν(H) denotes the Fredholm–
Lagrangian Grassmannian with respect to a fixed Lagrangian subspace ν ∈ Λ(H). The following propo-
sition, the main result of this section, summarizes the properties of µ(λ, t) and ν needed in the proof of
Theorem 1.

Proposition 3.1. If the hypotheses of Theorem 1 are satisfied, then µ(·, t0) ∈ C∞ (R,FΛν(H)) and
µ(λ0, ·) ∈ C ([a, b],FΛν(H)) for any fixed λ0 ∈ R and t0 ∈ [a, b]. Moreover, if {ϕt} is of class Ck, then
µ(λ0, ·) ∈ Ck ([a, b],FΛν(H)).

In particular, for each (λ, t) ∈ R × [a, b] the subspaces µ(λ, t) and ν are Lagrangian and comprise a
Fredholm pair. Moreover, µ(λ, t) is smooth in λ and Ck in t. As described in Appendix B, the Maslov
index is defined for any continuous path in the Fredholm–Lagrangian Grassmannian, but its computation
via crossing forms requires differentiability.

We assume for the remainder of the section that the hypotheses of Theorem 1 are satisfied.

3.1. The trace map. Recall that for each t ∈ [a, b], there exist operators Lt and Bt such that

Dt(u, v) = 〈Ltu, v〉L2(Ω) +

∫

∂Ω

(Btu)(γv)dµ (18)

provided u, v ∈ H1(Ω) and Ltu ∈ L2(Ω) (cf. Theorem 4.4 of [12]).

We define the space H1,0
Lt

(Ω) = {u ∈ H1(Ω) : Ltu ∈ L2(Ω)} with the graph norm

‖u‖2Lt
= ‖u‖2H1(Ω) + ‖Ltu‖

2
L2(Ω).

Note that Kλ,t ⊂ H1,0
Lt

and each u ∈ Kλ,t satisfies ‖u‖Lt ≤ C‖u‖H1(Ω) for some constant C = C(λ, t).

The following lemma shows that H1,0
Lt

(Ω) is an appropriate domain for the trace operator.

Lemma 3.2. For each t ∈ [a, b] the map Trt defined in (7) extends to a bounded map

Trt : H
1,0
Lt

(Ω) −→ H1/2(∂Ω)⊕H−1/2(∂Ω).

Moreover, if U ⊂ R× [a, b] is open and uλ,t ∈ Ck(U,H1(Ω)) satisfies uλ,t ∈ Kλ,t for all (λ, t) ∈ U , then
Trt(uλ,t) ∈ Ck(U,H).
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Proof. The boundedness of Trt follows from Theorem 3.37 and Lemma 4.3 of [12].
The differentiability of (λ, t) 7→ γuλ,t and λ 7→ Btuλ,t follows immediately. However, the regularity of

the map t 7→ Btuλ,t is more subtle since the domain of Bt is t-dependent.

Since Kλ,t ⊂ H1,0
Lt

, it follows that
∫

∂Ω

(Btuλ,t)(γv)dµ = Dt(uλ,t, v)− λ 〈uλ,t, v〉L2(Ω) (19)

for all v ∈ H1(Ω) and all (λ, t) ∈ U . Equivalently,
∫

∂Ω

(Btuλ,t)f dµ = Dt(uλ,t, Ef)− λ 〈uλ,t, Ef〉L2(Ω)

for all f ∈ H1/2(∂Ω), where E : H1/2(∂Ω) → H1(Ω) is a bounded right inverse for the Dirichlet trace γ.
By assumption uλ,t ∈ Ck(U,H1(Ω)) and Dt is smooth, so we find that Btuλ,t ∈ Ck(U,H−1/2(∂Ω)). �

The next lemma, a consequence of the unique continuation property for second-order elliptic operators,
shows that Trt gives an isomorphism from Kλ,t onto µ(λ, t). This implies dimTrt(V ) = dimV for any
finite-dimensional subspace V ⊂ Kλ,t (cf. Proposition 2.2).

Lemma 3.3. For each (λ, t) ∈ R× [a, b] there exists C = C(λ, t) such that

‖u‖H1(Ω) ≤ C‖Trt u‖H (20)

for every u ∈ Kλ,t.

The constant C can be chosen uniformly on compact subsets of R× [a, b], but we do not require such
generality.

Proof. It follows from the coercivity of Dt that

‖u‖H1(Ω) ≤ C(‖Trt u‖H + ‖u‖L2(Ω)) (21)

for all u ∈ Kλ,t. To obtain the stronger estimate (20) we argue by contradiction, using a standard
compactness argument.

Assuming the existence of a sequence {ui} in Kλ,t with ‖ui‖L2(Ω) = 1 and ‖ui‖H1 ≥ i‖Trt ui‖H for

each i, we conclude from (21) that {ui} is bounded in H1(Ω). Therefore, there is a function ū ∈ H1(Ω)
with ‖ū‖L2(Ω) = 1, and a subsequence {ui}, such that ui → ū in L2(Ω) and ui ⇀ ū in H1(Ω). It follows

that ū ∈ Kλ,t, and so Trt ū ∈ H is defined. The boundedness of γ : H1(Ω) → H1/2(∂Ω) implies γui ⇀ γū

in H1/2(∂Ω) and (18) yields Btui ⇀ Btū in H−1/2(∂Ω), hence Trt ui ⇀ Trt ū. Since {ui} is bounded in
H1(Ω) we have Trt ui → 0 in H, which implies Trt ū = 0.

By construction ū ∈ H1(Ω) is a nonvanishing weak solution to Ltū = λū, with boundary data γū = 0
and Btū = 0. It follows from a unique continuation argument (see Proposition 2.5 of [3]) that this is
only possible if ū ≡ 0, so we obtain a contradiction and the proof is complete. �

3.2. The solution space. We now turn our attention to the space µ(λ, t) = Trt(Kλ,t).

Lemma 3.4. For each (λ, t) ∈ R× [a, b], µ(λ, t) is a closed, isotropic subspace of H.

Proof. That µ(λ, t) is closed in H follows immediately from Lemmas 3.2 and 3.3 and the fact that Kλ,t

is a closed subspace of H1(Ω). To see that µ(λ, t) is isotropic, consider u, v ∈ Kλ,t. It follows from (18)
that ∫

∂Ω

(Btu)(γv)dµ =

∫

∂Ω

(Btv)(γu)dµ,

hence ω(Trt u,Trt v) = 0 as required. �

We next analyze the regularity of µ(λ, t) in the Lagrangian Grassmannian, recalling that the topology
on Λ(H) is defined by identifying a subspace µ with the orthogonal projection Pµ in the space of bounded
operators B(H). If ρ ∈ Λ(H) and A : ρ→ ρ is a bounded, selfadjoint operator, then the graph of A over
ρ, defined by

Gρ(A) = {x+ JAx : x ∈ ρ}

with J as in (17), is also Lagrangian. By equation (2.16) of [7] the corresponding orthogonal projection
is

PGρ(A)(x+ Jy) = (I + JA)
[
(I +A2)−1(x+Ay)

]
(22)

for x, y ∈ ρ, so it suffices to express {µ(λ, t)} as the graph of a suitably smooth family {A(λ, t)} of
selfadjoint operators on a fixed Lagrangian subspace.
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If Lt − λ has trivial Neumann kernel, then µ(λ, t) is the graph of the Neumann-to-Dirichlet map
over the Lagrangian subspace {0} ⊕ H−1/2(∂Ω), which can be shown to vary smoothly in λ and t.
More generally, in the proof of the following proposition we show that one can always find a Robin
boundary condition for which Lt −λ is invertible, then express µ(λ, t) as the graph of the corresponding
Robin-to-Robin map.

Proposition 3.5. For each (λ, t) ∈ R × [a, b], µ(λ, t) is a Lagrangian subspace of H and µ(·, t) ∈
C∞ (R,Λ(H)). If {ϕt} is of class Ck, then µ(λ, ·) ∈ Ck ([a, b],Λ(H)).

In the following proof (and nowhere else) a Banach space-valued map is called “smooth” if it is C∞

with respect to λ and Ck with respect to t.

Proof. Fix (λ0, t0) ∈ R × [a, b]. We claim that there is an open set U ⊂ R × [a, b] containing (λ0, t0),
a Lagrangian subspace ρ ⊂ H and a family of bounded, selfadjoint operators A(λ, t) : ρ → ρ, such that
Gρ(A(λ, t)) = µ(λ, t) for (λ, t) ∈ U . The family A(·, ·) : U → B(ρ) is smooth, so it follows from (22) that
the map (λ, t) 7→ Pµ(λ,t) is smooth, completing the proof.

To see that the claimed U and A exist, we define a perturbed Dirichlet form Dβ,λ,t by

Dβ,λ,t(u, v) = Dt(u, v)− λ 〈u, v〉L2(Ω) − β

∫

∂Ω

(Rγu)(γv)dµ

for u, v ∈ H1(Ω) and β ∈ R. It follows from Theorem 3.2 of [20] that Dβ0,λ0,t0 is invertible for some β0,
and Lemma C.2 implies Dβ0,λ,t is invertible in a neighborhood U of (λ0, t0).

We define the subspace

ρ = {(f, g) ∈ H : f + β0R
−1g = 0},

which is Lagrangian, with

Jρ = {(f, g) ∈ H : g − β0Rf = 0}.

Let (f, g) ∈ ρ. For each (λ, t) ∈ U there exists a unique function uλ,t ∈ H1(Ω) such that

Dβ0,λ,t(uλ,t, v) =

∫

∂Ω

(g − β0Rf)(γv)dµ (23)

for all v ∈ H1(Ω). In particular, Dt(uλ,t, v) = λ 〈uλ,t, v〉L2(Ω) for v ∈ H1
0 (Ω), so uλ,t ∈ Kλ,t. Proposition

C.1 implies (λ, t) 7→ uλ,t is smooth in H1(Ω) and it follows from Lemma 3.2 that the path

(λ, t) 7→ Btuλ,t = g − β0Rf + β0Rγ(uλ,t) (24)

is smooth in H−1/2(∂Ω). (For our choice of boundary conditions, the regularity of the above map only
requires the boundedness of γ and not the full statement of Lemma 3.2.)

Since J is an isomorphism, we can implicitly define A(λ, t) : ρ→ H by

JA(λ, t)(f, g) = (γ(uλ,t)− f, β0Rγ(uλ,t)− β0Rf)

for (f, g) ∈ ρ. It follows that JA(λ, t)(f, g) ∈ Jρ, so we in fact have A(λ, t) : ρ→ ρ.
To see that A is selfadjoint, we take (f1, g1) and (f2, g2) in ρ, and let u1 and u2 denote the respective

solutions to (23) (omitting the λ and t subscripts for convenience). Writing (23) for u1 with the test
function v = u2, and vice versa, we have

Dt(u1, u2)− λ 〈u1, u2〉L2(Ω) =

∫

∂Ω

[β0R(γu1 − f1) + g1](γu2)dµ

and

Dt(u2, u1)− λ 〈u2, u1〉L2(Ω) =

∫

∂Ω

[β0R(γu2 − f2) + g2](γu1)dµ.

Subtracting and using the fact that
∫
∂Ω(Rh1)h2dµ =

∫
∂Ω(Rh2)h1dµ for h1, h2 ∈ H1/2(∂Ω) yields

∫

∂Ω

[g1 − β0Rf1](γu2)dµ =

∫

∂Ω

[g2 − β0Rf2](γu1)dµ.

We next recall the relation ω(x, y) = 〈Jx, y〉H for all x, y ∈ H and compute using the above equality

〈A(f1, g1), (f2, g2)〉H − 〈A(f2, g2), (f1, g1)〉H = ω (JA(f2, g2), (f1, g1))− ω (JA(f1, g1), (f2, g2))

=

∫

∂Ω

[f1g2 − β0(Rf1)f2 − f2g1 + β0(Rf2)f1] dµ

= ω ((f1, g1), (f2, g2)) .

The right-hand side vanishes because ρ is Lagrangian, and it follows that A(λ, t) is selfadjoint.
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In particular, this implies the graph Gρ(A(λ, t)) ⊂ H is Lagrangian, and hence maximal. We also
have from the definition of A and (24) that

(f, g) + JA(λ, t)(f, g) = Trt(uλ,t)

for any (f, g) ∈ ρ, and so Gρ(A(λ, t)) ⊂ µ(λ, t). Since µ(λ, t) is isotropic by Lemma 3.4, the maximality
of the graph implies Gρ(A(λ, t)) = µ(λ, t). Therefore µ(λ, t) ⊂ H is Lagrangian and the corresponding
orthogonal projections in B(H) vary smoothly with respect to λ and t. �

3.3. The boundary space. We next discuss the subspace ν defined in (9).

Lemma 3.6. The boundary space ν ⊂ H is Lagrangian.

Proof. We first observe that ν can be decomposed as

ν = γ(X )⊕R
[
γ(X )⊥

]
, (25)

where γ(X )⊥ denotes the orthogonal complement of γ(X ) in H1/2(∂Ω). By definition, g ∈ R
[
γ(X)⊥

]

if and only if
〈
R−1g, γu

〉
H1/2(∂Ω)

= 0 for all u ∈ X . Since
〈
R−1g, γu

〉
H1/2(∂Ω)

= 〈g,Rγu〉H−1/2(∂Ω), this

implies R
[
γ(X)⊥

]
= [Rγ(X )]

⊥
.

The subspace ν ⊂ H is closed because γ : H1(Ω) → H1/2(∂Ω) admits a bounded right inverse, and
(9) implies ν is isotropic. A direct computation shows that

Jν = γ(X )⊥ ⊕R [γ(X )] = ν⊥, (26)

hence ν is Lagrangian. �

The boundary space ν is rather special within the class of Lagrangian subspaces. It decomposes as
a direct sum of H1/2(∂Ω) and H−1/2(∂Ω) factors, as in (25), so (f, g) ∈ ν precisely when both (f, 0)
and (0, g) are contained in ν. This fact, which is not true for arbitrary Lagrangian subspaces, is a key
ingredient in the proof of the following energy estimate, which is essential to the proof of Lemma 3.8.

Lemma 3.7. Let Pν denote the H-orthogonal projection onto ν, and P⊥
ν = I − Pν the projection onto

ν⊥. There is a constant C = C(λ, t) such that

‖u‖2H1(Ω) ≤ C
(
‖u‖2L2(Ω) +

∥∥P⊥
ν Trt u

∥∥2
H

)

for each u ∈ Kλ,t.

Proof. It follows from (18) and the coercivity of Dt that there exists C′ > 0 with

‖u‖2H1(Ω) ≤ C′

(
‖u‖2L2(Ω) +

∫

∂Ω

(Btu)(γu)dµ

)

for u ∈ Kλ,t. For Trt u = (f, g) we define

(f1, g1) = Pν(f, g),

(f2, g2) = P⊥
ν (f, g),

so that f = f1 + f2 and g = g1 + g2. We compute
∫

∂Ω

(Btu)(γu)dµ =

∫

∂Ω

(f1 + f2)(g1 + g2)dµ

=

∫

∂Ω

f1g2dµ+

∫

∂Ω

f2g1dµ,

using the fact that ∫

∂Ω

f1g1dµ =
〈
f1, R

−1g1
〉
H1/2(∂Ω)

= 0

by (25) because (f1, g1) ∈ ν, and similarly for (f2, g2) ∈ ν⊥ using (26). Therefore
∫

∂Ω

(Btu)(γu)dµ ≤ ǫ‖(f1, g1)‖
2
H + (4ǫ)−1‖(f2, g2)‖

2
H

≤ ǫC′′‖u‖2H1(Ω) + (4ǫ)−1
∥∥P⊥

ν Trt u
∥∥2

for any ǫ > 0, and the result follows. �
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3.4. The intersection. We complete the section by proving the Fredholm property of µ(λ, t) and ν,
and giving a proof of Proposition 2.2.

Lemma 3.8. For each (λ, t) ∈ R× [a, b], µ(λ, t) and ν are a Fredholm pair.

Proof. For convenience we fix (λ, t) and abbreviate µ = µ(λ, t). Proposition 2.2 yields dim(µ ∩ ν) =
dimker(LX ,t − λ), which is finite by Theorem 4.10 of [12] (cf. Theorem 7.21 of [6]). Temporarily
assuming µ+ ν is closed, and using that µ and ν are Lagrangian, we find that the codimension of µ+ ν
equals the dimension of

(µ+ ν)⊥ = µ⊥ ∩ ν⊥ = Jµ ∩ Jν = J(µ ∩ ν),

which is finite because J is an isomorphism.
To prove that µ+ ν is closed it suffices, by Theorem IV.4.2 of [10], to show that the number

κ := inf
x∈µ,x/∈ν

dist(x, ν)

dist(x, µ ∩ ν)
(27)

is positive. Let P and P̂ denote the orthogonal projections onto ν and µ ∩ ν, respectively, so that

dist(x, ν) = ‖x− Px‖H and dist(x, µ ∩ ν) = ‖x− P̂ x‖H.
We first show that there is a positive constant K such that

‖x‖H ≤ K‖x− Px‖H (28)

for all x ∈ µ ∩ (µ ∩ ν)⊥. Suppose not, so there exists a sequence {ui} in Kλ,t ⊂ H1(Ω) such that the
traces xi = Trt ui are orthogonal to µ ∩ ν and satisfy

‖xi‖H ≥ i‖xi − Pxi‖H.

Rescaling, we can assume that ‖ui‖L2(Ω) = 1 for each i. It follows from Lemma 3.7 that

‖ui‖
2
H1(Ω) ≤ C

(
1 + i−1‖ui‖

2
H1(Ω)

)
,

hence the sequence {ui} is bounded in H1(Ω), and there exists an element ū ∈ H1(Ω) and a subsequence
{ui} such that ui → ū in L2(Ω) and ui ⇀ ū inH1(Ω). This implies ‖ū‖L2(Ω) = 1 andDt(ui, v) → Dt(ū, v)

for any v ∈ H1(Ω), hence ū ∈ Kλ,t and Trt ū ∈ H is well defined. Lemma 3.2 implies {xi} is bounded, so
there is a weakly convergent subsequence xi ⇀ x̄ in H. Since weak limits are unique and Trt ui ⇀ Trt ū
(cf. the proof of Lemma 3.3), we have that x̄ = Trt ū. We also have ‖xi − Pxi‖H → 0, hence x̄ ∈ ν.
Finally, since each xi ∈ (µ ∩ ν)⊥, the weak convergence xi ⇀ x̄ implies x̄ ∈ (µ ∩ ν)⊥ and we conclude
that x̄ = 0. By Lemma 3.3 this implies ū = 0, a contradiction. This completes the proof of (28).

Recalling that P and P̂ are the orthogonal projections onto ν and µ ∩ ν, and letting x ∈ µ, we thus
have

dist(x, µ ∩ ν) = ‖x− P̂ x‖H

≤ K‖(x− P̂x) − P (x− P̂x)‖H

= K‖x− Px‖H

where in the last equality we have used the fact that PP̂ = P̂ because µ ∩ ν ⊂ ν. Referring to (27), we
have shown that κ ≥ K−1 > 0, hence µ+ ν is closed.

�

We conclude with the proof of Proposition 2.2, first proving a simple lemma about the Dirichlet trace
restricted to a subspace of H1(Ω).

Lemma 3.9. Let X ⊂ H1(Ω) be a subspace that contains H1
0 (Ω), and suppose u ∈ H1(Ω). Then

γu ∈ γ(X ) if and only if u ∈ X .

Proof. Suppose γu ∈ γ(X ), so there exists w ∈ X with γu = γw, hence γ(u − w) = 0. This implies
u− w ∈ H1

0 (Ω) ⊂ X , so u = (u− w) + w ∈ X . �

Proof of Proposition 2.2. First suppose there exists a nonzero function u ∈ D(LX ,t) with LX ,tu = λu.
Then Dt(u, v) = λ 〈u, v〉L2(Ω) for all v ∈ X , hence for all v ∈ H1

0 (Ω), and so u ∈ Kλ,t. From (18) we find
∫

∂Ω

(Btu)(γv)dµ = 0

for all v ∈ X , which implies Trt u = (γu,Btu) ∈ µ(λ, t)∩ ν. It follows from Lemma 3.3 that µ(λ, t)∩ ν 6=
{0}.
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Now suppose that µ(λ, t) ∩ ν 6= {0}. By definition, there exists u ∈ Kλ,t with nonvanishing trace
Trt u ∈ µ(λ, t) ∩ ν. Since Trt u ∈ ν we have γu ∈ γ(X ), hence u ∈ X by Lemma 3.9. We also have from
the definition of ν that ∫

∂Ω

(Btu)(γv)dµ = 0,

and hence

Dt(u, v) = 〈Ltu, v〉L2(Ω) ,

for all v ∈ X . It follows that u ∈ D(LX ,t) and LX ,tu = Ltu = λu. �

4. Proof of Theorem 1

We now prove the main theorem. As in [5], this follows from the homotopy invariance of the Maslov
index, along with a monotonicity computation and a uniform lower bound on the eigenvalues of LX ,t.

For any fixed λ0 < 0, µ(λ, t) defines a homotopy [λ0, 0]× [a, b] → FΛν(H), hence

Mas(µ(λ, a); ν) +Mas(µ(0, t); ν) = Mas(µ(λ0, t); ν) +Mas(µ(λ, b); ν). (29)

To prove Theorem 1 we analyze each term in the above equation.

Lemma 4.1. There exists a constant λ0 < 0 such that µ(λ, t) ∩ ν = {0} for all t ∈ [a, b] and λ ≤ λ0.

In other words, the operators LX ,t have eigenvalues bounded uniformly below for t ∈ [a, b], so we can
choose λ0 to ensure Mas(µ(λ0, t); ν) = 0.

Proof. By Proposition 2.2 it suffices to show that Dt(u, u) ≥ C‖u‖L2(Ω) for all u ∈ H1(Ω) and t ∈ [a, b],
where C ∈ R is independent of t. This follows from the continuity of the coefficients of Dt with respect
to t and the compactness of the interval [a, b] (cf. the proof of Proposition C.1 in Appendix A). �

The following lemma, along with (29), completes the proof of Theorem 1.

Lemma 4.2. If t0 ∈ [a, b], then Mas(µ(λ, t0); ν) = −Mor(LX ,t0).

Proof. Since the path λ 7→ µ(λ, t0) is smooth, we can determine its Maslov index using crossing forms.
We claim that the path is negative definite (as defined in Appendix B) hence

Mas(µ(λ, t0); ν) = −
∑

λ0≤λ<0

dim [µ(λ, t0) ∩ ν]

= −
∑

λ<0

dim [µ(λ, t0) ∩ ν]

= −Mor(LX ,t0),

where in the last two equalities we have used Lemma 4.1 and Proposition 2.2, respectively.
To prove the claimed monotonicity, we assume there is a crossing at λ∗, so there exists a path {xλ}

in H with xλ ∈ µ(λ, t0) for |λ−λ∗| ≪ 1 and xλ∗
∈ ν. By Lemma 3.3 there is a path {uλ} in H1(Ω) such

that Trt0 uλ = xλ. Differentiating the equation Dt0(uλ, v) = λ 〈uλ, v〉L2(Ω) with respect to λ and letting
′ = d

dλ , we find

Dt0(u
′
λ, v) = 〈λu′λ + uλ, v〉L2(Ω)

for all v ∈ H1
0 (Ω), so (18) implies

Dt0(u
′
λ, uλ) = 〈λu′λ + uλ, uλ〉L2(Ω) +

∫

∂Ω

(Bt0u
′
λ)uλdµ,

Dt0(uλ, u
′
λ) = 〈λuλ, u

′
λ〉L2(Ω) +

∫

∂Ω

(Bt0uλ)u
′
λdµ.

Since Dt0 is symmetric, we obtain

Q(xλ∗
, xλ∗

) = ω (Trt0 uλ,Trt0 u
′
λ)|λ=λ∗

= −‖uλ∗
‖2L2(Ω),

which is negative because uλ∗
is not identically zero. �
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5. The crossing form

Having completed the proof of Theorem 1, we study the Maslov index on the left-hand side of (11)
in greater detail. This is a signed count of the conjugate times in [a, b], with the sign depending on
the direction in which the subspace µ(0, t) passes though ν. This is intimately related to the motion of
the eigenvalues of LX ,t with respect to t, which depends nontrivially on the boundary conditions. We
elucidate this dependence by computing crossing forms for the Dirichlet and Robin problems introduced
in Section 2.5, corresponding to the spaces X 0 = H1

0 (Ω) and X 1 = H1(Ω).
We assume throughout that each Ωt has C1,1 boundary and the coefficients of D are continuously

differentiable on ∪a≤t≤bΩt. (This is the true under the hypotheses of either Corollary 2.3 or 2.4.) By
Lemma C.3 the coefficients of Dt are contained in C1([a, b], L∞(Ω)), and Theorem 4.18 of [12] implies
that if u ∈ kerLX ,t, then u ◦ ϕ−1

t ∈ H2(Ωt).

5.1. The general framework. We start with some computations that are valid for any boundary
conditions, letting D′

t denote the derivative of the form Dt with respect to t, so that

d

dt
Dt(ut, vt) = D′

t(ut, vt) +Dt(u
′
t, vt) +Dt(ut, v

′
t)

when ut, vt are differentiable paths in H1(Ω).

Lemma 5.1. Suppose U ⊂ [a, b] is open and ut ∈ C1(U,H1(Ω)). If ut ∈ K0,t for each t ∈ U , then

ω (Trt ut, (Trt ut)
′) = D′

t(ut, ut), (30)

where ′ = d/dt.

Proof. From the definition of ω we have

ω (Trt ut, (Trt ut)
′) =

∫

∂Ω

[(Btut)
′γut − (Btut)γu

′
t] dµ.

Recalling that Dt(ut, v) =
∫
∂Ω

(Btut)(γv)dµ for all v ∈ H1(Ω), we differentiate with respect to t and
then evaluate at v = ut to find

D′
t(ut, ut) +Dt(u

′
t, ut) =

∫

∂Ω

(Btut)
′(γut)dµ.

We also have

Dt(ut, u
′
t) =

∫

∂Ω

(Btut)(γu
′
t)dµ

and the result follows from the symmetry of Dt.
�

It thus remains to compute D′
t(ut, ut) when t is a conjugate time. We start by writing the Dirichlet

form D abstractly as

D(u, u) =

∫

Ω

F (u,∇u). (31)

Proposition 5.2. Suppose t∗ ∈ [a, b] is a conjugate time, with ut∗ ∈ kerLX ,t∗. Let û = ut∗ ◦ ϕ−1
t∗ and

x∗ = Trt∗ ut∗. Then the crossing form satisfies

Q(x∗, x∗) =

∫

∂Ωt

[
F (û,∇û) (X ·Nt)− 2(B̂tû)(Xû)

]
dµt (32)

where X = ϕ′
t, Nt is the outward unit normal to ∂Ωt, dµt is the induced volume form on ∂Ωt and B̂t is

the boundary operator defined in (10).

Proof. From (31) and the definition of Dt we have

Dt(u, u) = D|Ωt
(u ◦ ϕ−1

t , u ◦ ϕ−1
t )

=

∫

Ωt

F
(
u ◦ ϕ−1

t ,∇(u ◦ ϕ−1
t )
)
.

Differentiating and using Theorem 1.11 from [9] we obtain

D′
t(u, u) =− 2 D|Ωt

(
X(u ◦ ϕ−1

t ), u ◦ ϕ−1
t

)

+

∫

∂Ωt

F
(
u ◦ ϕ−1

t ,∇(u ◦ ϕ−1
t )
)
(X ·Nt)dµt.

Setting t = t∗ and u = ut∗ , the result follows. �
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We now consider some specific examples for the operator L = −∆+ V (x).

5.2. The Dirichlet (X 0) problem. We use the Dirichlet form

D(u, v) =

∫

Ω

[∇u · ∇v + V uv] , (33)

which has rescaled boundary operator B̂t = ∂/∂Nt. Suppose that t∗ is a crossing time. With x∗, ut∗
and û as in Proposition 5.2 we have

Q(x∗, x∗) =

∫

∂Ωt

[(
|∇û|2 + V û2

)
(X ·Nt)− 2Xû

∂û

∂Nt

]
dµt. (34)

Since û vanishes on ∂Ωt, this reduces to

Q(x∗, x∗) =

∫

∂Ωt

∂û

∂Nt

[
(X ·Nt)

∂û

∂Nt
− 2Xû

]
dµt.

We decompose the velocity field X into normal and tangential components, X = X⊤ + (X ·Nt)Nt, and
observe that

Xû = (X ·Nt)
∂û

∂Nt

because X⊤û = 0. It follows that

Q(x∗, x∗) = −

∫

∂Ωt

(
∂û

∂Nt

)2

(X ·Nt)dµt. (35)

More generally, for the operator L = −∂i(a
ij∂j) + c, the same computation yields

Q(x∗, x∗) = −

∫

∂Ωt

a(Nt, Nt)

(
∂û

∂Nt

)2

(X ·Nt)dµt,

where a(·, ·) denotes the bilinear form corresponding to aij . In either case, we see that crossings for the
Dirichlet problem are isolated and negative definite as long as X · Nt > 0; the proof of Corollary 2.3
follows. Geometrically the condition X ·Nt > 0 means that Ωt is moving outward as t increases. If X ·Nt

changes sign on ∂Ωt, then the signature of the crossing form is more difficult to determine, as it depends
on the structure of ∂û/∂Nt on the boundary.

The expression for Q given in (34) is valid for any boundary value problem corresponding to the
Dirichlet form (33) (that is, for any choice of X ). In particular, we can use this to compute crossing
forms for the Neumann problem, as well as the X 2 and X 3 problems formulated above. The Robin
boundary value problem requires a modification to the form and is considered in detail below.

5.3. The Robin (X 1) problem. We now consider the Dirichlet form

D(u, v) =

∫

Ω

[∇u · ∇v + div(uvY ) + V uv]

where Y is vector field of class C2 (hence div Y is C1). This corresponds to L = −∆ + V , with the
boundary operator

B̂tu =
∂u

∂Nt
+ βtu

on Ωt, where we have defined βt = (Y |∂Ωt) · Nt. Without loss of generality we may assume that Y has
no component tangential to ∂Ωt∗ , hence Y |∂Ωt∗

= βt∗Nt∗ .

Since X 1 = H1(Ω) we have B̂tû = 0 at a crossing time, so Proposition 5.2 yields

Q(x∗, x∗) =

∫

∂Ωt

[
|∇û|2 + div(û2Y ) + V (y)û2

]
(X ·Nt)dµt.

Using the fact that Y |∂Ωt = βtNt to compute the second term explicitly, we obtain

div(û2Y ) = div
(
βtû

2Nt

)

=
∂βt
∂Nt

û2 + 2βtû
∂û

∂Nt
+ βtû

2 divNt

=

(
∂βt
∂Nt

− 2β2
t + βtH∂Ωt

)
û2
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where we have used the fact that B̂tû = 0, and the mean curvature is defined to be H∂Ωt = divNt.

Decomposing ∇û = ∇⊤û + ∂û
∂Nt

into tangential and normal components, then applying the boundary
conditions, we have

|∇û|2 = |∇⊤û|2 + β2
t û

2,

and so

Q(x∗, x∗) =

∫

∂Ωt

[
|∇⊤û|2 +

(
V − β2

t + βtH∂Ωt +
∂βt
∂Nt

)
û2
]
(X ·Nt)dµt. (36)

This crossing form coincides with the formula for the first variation of a simple Robin eigenvalue in
equation (4.3) of [2] and example 3.5 of [9]. (The computations in the proof of the latter reference agree
perfectly with ours, but the final result on p. 40 contains an extra factor of 2 on the ∂βt/∂Nt term.)
One advantage of the symplectic formulation is that it describes the change in the Morse index, rather
than the individual eigenvalues, and hence is robust against multiplicities and degeneracies.

5.4. The star-shaped case. We finally revisit the star-shaped case for the Dirichlet and Neumann
problems. With

D(u, v) =

∫

Ω

[∇u · ∇v + V (x)uv] dx

as above, ϕt(x) = tx and Ωt = {tx : x ∈ Ω}, a simple computation shows that

Dt(u, v) = tn−2

∫

Ω

[
(∇u · ∇v) + t2V (tx)uv

]
dx

and so

D′
t(u, v) =(n− 2)tn−3

∫

Ω

[
(∇u · ∇v) + t2V (tx)uv

]
dx

+ tn−2

∫

Ω

d

dt

[
t2V (tx)

]
uv dx.

Evaluating at a solution ut to the equation −∆ut + t2V (tx)ut = 0 (i.e. Ltut = 0) we find that

D′
t(ut, ut) = (n− 2)tn−3

∫

∂Ω

ut
∂ut
∂N

dµ+ tn−2

∫

Ω

u2t
d

dt

[
t2V (tx)

]
dx. (37)

In particular, for either Dirichlet or Neumann boundary conditions, we have

D′
t(ut, ut) = tn−2

∫

Ω

u2t
d

dt

[
t2V (tx)

]
dx. (38)

Replacing V (x) with V (x)− λ, this becomes

D′
t(ut, ut) = tn−2

∫

Ω

u2t
d

dt

[
t2V (tx) − t2λ

]
dx, (39)

and we conclude that all crossings are negative definite provided

d

dt

[
t2V (tx) − t2λ

]
< 0

for all x ∈ Ω. This is equivalent to (13), so Corollary 2.4 follows immediately.

Appendix A. Selfadjoint operators and bilinear forms

In this appendix we review the correspondence between symmetric bilinear forms and selfadjoint
operators described in Proposition 2.1. While the result is standard, it is worth reviewing, as the
constructions in the paper (in particular for the boundary space) rely on an explicit identification of the
domain of the unbounded operator corresponding to a given form.

Our starting point is a symmetric bilinear form

D(u, v) =

∫

Ω

[
aij(∂iu)(∂jv) + bi(∂iu)v + biu(∂iv) + cuv

]

with real coefficients aij , bi, c ∈ L∞(Ω) satisfying aij = aji. We assume that D is strongly elliptic, so
there exists a constant λ0 > 0 such that

aij(x)ξiξj ≥ λ0|ξ|
2

for all x ∈ Ω and ξ ∈ R
n. Formally integrating by parts, we find

D(u, v) =

∫

Ω

[
−∂i(a

ij∂ju) + (c− ∂ib
i)u
]
v +

∫

∂Ω

Ni

(
aij∂ju+ biu

)
v dµ (40)
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where {Nj} are the components of the outward-pointing unit normal to ∂Ω. The following weak version
of Green’s formula (Theorem 4.4 of [12]) justifies this computation.

Lemma A.1. Let L = −∂i(a
ij∂j)+ (c− ∂ib

i) and B = Ni(a
ij∂j + bi). If u, v ∈ H1(Ω) and Lu ∈ L2(Ω),

then

D(u, v) = 〈Lu, v〉L2(Ω) +

∫

∂Ω

(Bu)(γv)dµ.

We let X be a closed subspace of H1(Ω) that contains H1
0 (Ω), and view D as an unbounded form

on L2(Ω) with domain X . Since D is bounded and coercive over H1(Ω), and hence over X , Theorem
VIII.15 of [16] (cf. Theorem VI.2.1 of [10]) implies there is a selfadjoint operator LX , with domain

D(LX ) =
{
u ∈ X : ∃w ∈ L2(Ω) with 〈w, v〉L2(Ω) = D(u, v) for all v ∈ X

}
,

satisfying

D(u, v) = 〈LXu, v〉L2(Ω)

for all u ∈ D(LX ) and v ∈ X . We can identify the domain explicitly in terms of the operators L and B.

Lemma A.2. Let u ∈ X . Then u ∈ D(LX ) if and only if Lu ∈ L2(Ω) and
∫

∂Ω

(Bu)(γv)dµ = 0

for every v ∈ X .

Proof. Suppose u ∈ X , with Lu ∈ L2(Ω) and
∫
∂Ω(Bu)(γv)dµ = 0 for all v ∈ X . Then Lemma A.1

implies D(u, v) = 〈Lu, v〉L2(Ω) for all v ∈ X , hence u ∈ D(LX ) and LXu = Lu.

On the other hand, suppose u ∈ D(LX ). Since D(u, v) = 〈LXu, v〉L2(Ω) for all v ∈ H1
0 (Ω), we have

Lu = LXu ∈ L2(Ω). It follows from Lemma A.1 that

〈LXu, v〉L2(Ω) = D(u, v) = 〈Lu, v〉L2(Ω) +

∫

∂Ω

(Bu)(γv)dµ

for all v ∈ X , hence ∫

∂Ω

(Bu)(γv)dµ = 0

as claimed. �

Appendix B. The Maslov index in symplectic Hilbert spaces

We next review the definitions and basic properties of symplectic Hilbert spaces, the Fredholm–
Lagrangian Grassmannian, and the Maslov index. These will be our main tools in the proof of Theorem
1. Unless stated otherwise, technical details can be found in [7].

Let H be a real, infinite-dimensional, separable Hilbert space, and ω : H ×H → R a bilinear, skew-
symmetric form. If the map x 7→ ω(x, ·) is an isomorphism H → H∗ we say that ω is nondegenerate,
and call the pair (H,ω) a symplectic Hilbert space. For example, if E is a Hilbert space, we can set
H = E ⊕ E∗ and define

ω((x, φ), (y, ψ)) = ψ(x) − φ(y),

which is easily seen to be nondegenerate.
A subspace µ ⊂ H is said to be isotropic if ω(x, y) = 0 for all x, y ∈ µ. A Lagrangian subspace is then

defined to be a maximal closed, isotropic subspace of H . The set of all Lagrangian subspaces in H is
called the Lagrangian Grassmannian and denoted by Λ(H). Given the gap topology (where the distance
between subspaces µ and ν, with respective orthogonal projections Pµ and Pν , is the operator norm
‖Pµ − Pν‖), the Lagrangian Grassmannian becomes a smooth, contractible Banach manifold, locally
equivalently to the space of bounded, selfadjoint operators on H .

If follows that any homotopy invariant C0(S1; Λ(H)) → Z is necessarily trivial. This differs from
the finite-dimensional case, where we have π1(Λ(R

2n)) = Z. For this reason we must work with the
Fredholm–Lagrangian Grassmannian, which is topologically nontrivial.

We first introduce the notion of a Fredholm pair in the Lagrangian Grassmannian. This is a pair of
closed subspaces µ, ν ∈ Λ(H) such that

(1) dim(µ ∩ ν) <∞, and
(2) µ+ ν is closed and of finite codimension in H .
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Then the Fredholm–Lagrangian Grassmannian of H , with respect to fixed ν ∈ Λ(H), is the set

FΛν(H) = {µ ∈ Λ(H) : (µ, ν) is a Fredholm pair}.

This is an open subset of Λ(H), and hence a smooth Banach manifold, with π1(FΛν(H)) ∼= Z.
We conclude our review by defining the Maslov index of a continuous path µ : [a, b] → FΛν(H). We

define a continuous family of operators {S(t)} by the formula

S(t) = (2Pµ(t) − I)(2Pν − I),

where P denotes orthogonal projection onto the designated subspace. The operator S(t) comprises
reflection across the subspace ν followed by reflection across µ(t). There exist times a = t0 < t1 < · · · <
tN = b and positive constants ǫj ∈ (0, π) for 1 ≤ j ≤ N such that

(1) e±iǫj /∈ σ(S(t)), and
(2)

∑
|θ|≤ǫj

dimker
(
S(t)− eiθ

)
<∞

for all t ∈ [tj−1, tj ]. Intuitively this means that as t ranges from tj−1 to tj , the number of eigenvalues of
S(t) in the arc {|θ| ≤ ǫj} ⊂ S

1 is constant and finite.
Following [4] and [15], we define the Maslov index by the formula

Mas(µ(t); ν) =

N∑

j=1

∑

0≤θ≤ǫj

[
dimker

(
S(tj)− eiθ

)
− dimker

(
S(tj−1)− eiθ

)]
.

This gives a count (with sign and multiplicity) of the eigenvalues of S(t) that pass through the point
1 ∈ S

1 in a counterclockwise direction as t increases from a to b.
To compute the Maslov index in practice, we make frequent use of crossing forms—see [18] for the

general theory and [19] for an application to first-order, elliptic operators. Suppose µ : [a, b] → FΛν(H)
is a C1 path and t∗ ∈ [a, b] is a crossing time, so µ(t∗) ∩ ν 6= {0}. For each t close to t∗ there exists a
bounded operator At : µ(t∗) → µ(t∗) such that µ(t) is the graph

µ(t) = Gµ(t∗)(At) = {x+ JAt(x) : x ∈ µ(t∗)}.

The crossing form is the symmetric, bilinear form defined by

Q(x, y) =
d

dt
ω (x, JAt(y))

∣∣∣∣
t=t∗

(41)

for all x and y in the finite-dimensional space µ(t∗) ∩ ν. This is useful for the following reason.

Proposition B.1. Let µ ∈ C1([a, b],FΛν(H)) and suppose t∗ ∈ [a, b] is a crossing time. Assume Q is
nondegenerate, with p positive and q negative eigenvalues. If t∗ ∈ (a, b) and δ > 0 is sufficiently small,
then

Mas
(
µ(t)|[t∗−δ,t∗+δ]; ν

)
= p− q.

If t∗ = a, then

Mas
(
µ(t)|[a,a+δ]; ν

)
= −q,

and if t∗ = b, then

Mas
(
µ(t)|[b−δ,b]; ν

)
= p.

In other words, the local contribution to Mas(µ(t); ν) at t∗ is determined by the signature of the
crossing form. When the crossing occurs at an endpoint of the curve, an initial crossing (t∗ = a) can
only contribute negatively to the Maslov index, while a terminal crossing (t∗ = b) can only contribute
positively. If µ(t) is a negative path, in the sense that Q is strictly negative at any crossing time, then

Mas(µ(t); ν) = −
∑

t∈[a,b)

dim (µ(t) ∩ ν) ,

while for a positive curve one has

Mas(µ(t); ν) =
∑

t∈(a,b]

dim (µ(t) ∩ ν) .
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Appendix C. Smooth families of Dirichlet forms

The form D on Ω is said to be invertible if, for any nonzero u ∈ H1(Ω), there exists v ∈ H1(Ω) with
D(u, v) 6= 0.

Proposition C.1. Let

Dt(u, v) =

∫

Ω

[
aijt (∂iu)(∂jv) + bit(∂iu)v + citu(∂iv) + dtuv

]

be a one-parameter family of invertible, strongly elliptic Dirichlet forms, defined for t in a compact
interval I, with coefficients aijt , b

i
t, c

i
t, dt ∈ Ck (I, L∞(Ω)) for some k ≥ 0.

Let {Ft} be a one-parameter family of bounded linear functionals on H1(Ω), contained in Ck(I;H1(Ω)∗).
Then for each t ∈ I, there exists a unique ut ∈ H1(Ω) such that Dt(ut, v) = Ft(v) for every v ∈ H1(Ω).
Moreover, the path t 7→ ut is contained in Ck(I,H1(Ω)).

Therefore, when the boundary-value problem for each Dt is uniquely solvable, the path of solutions
ut will be at least as smooth as the coefficients of Dt and the inhomogeneous term Ft.

Proof. From Theorem 4.7 of [12] (cf. Theorem 7.13 in [6]) we have that each Dt is coercive, i.e. there
exist constants C1 > 0 and C2 ∈ R such that

|Dt(u, u)| ≥ C1‖u‖
2
H1(Ω) − C2‖u‖

2
L2(Ω) (42)

for all u ∈ H1(Ω). Since the interval I is compact and the coefficients of D are in C(I, L∞(Ω)), we can
choose C1 and C2 independent of t. The existence of ut follows from (42) and the invertibility of Dt (cf.
Theorem 7.21 of [6]).

We next claim that there exists A > 0 such that

‖ut‖H1(Ω) ≤ A‖Ft‖H1(Ω)∗ (43)

for any t ∈ I and Ft ∈ H1(Ω)∗. Assume this is not the case, so there exist sequences {ti} and {Fti}
with ‖uti‖L2(Ω) = 1 and ‖uti‖H1(Ω) ≥ i‖Fti‖H1(Ω)∗ . The uniform coercivity bound (42) implies {uti} is

bounded in H1(Ω), so there exists a subsequence with

ti → t̄, uti → ū in L2(Ω), uti ⇀ ū in H1(Ω)

for some ū ∈ H1(Ω) and t̄ ∈ I. We also have Fti → 0 in H1(Ω)∗, hence Dt̄(ū, v) = 0 for all v ∈ H1(Ω).
The invertibility of Dt̄ implies ū = 0, which is a contradiction because ‖ū‖L2(Ω) = 1, so the proof of (43)
is complete.

We are now ready to prove continuity of t 7→ ut in H
1(Ω). It suffices to check at a single point, say

t = 0, which we can assume is contained in I by performing a translation. From the definition of ut we
obtain

D0(ut − u0, v) = (Ft − F0)(v) − (Dt −D0)(ut, v).

Defining a functional Gt ∈ H1(Ω)∗ by Gt(v) = (Ft − F0)(v)− (Dt −D0)(ut, v), we have from (43) that

‖ut − u0‖H1(Ω) ≤ A‖Gt‖H1(Ω)∗ .

Since ‖ut‖H1(Ω) is uniformly bounded for t close to zero (again using (43)), the continuity of Dt and Ft

implies ‖Gt‖H1(Ω)∗ → 0 as t→ 0. This completes the proof for k = 0.

Now assume the result holds for some k ≥ 0, and suppose that Dt and Ft are of class Ck+1. Differ-
entiating the equation Dt(ut, v) = Ft(v) with respect to t, we obtain

Dt(u
(k)
t , v) = F

(k)
t −

k−1∑

j=0

(
k

j

)
D

(k−j)
t

(
u
(j)
t , v

)
(44)

For convenience we let u
(j)
0 denote the jth derivative of ut evaluated at t = 0, and similarly for Dt. We

claim that u
(k+1)
0 exists, and is equal to the unique function w ∈ H1(Ω) that satisfies

D0(w, v) = F
(k+1)
0 (v)−D(1)(u

(k)
0 , v)−

k−1∑

j=0

(
k

j

)[
D

(k+1−j)
0

(
u
(j)
0 , v

)
+D

(k−j)
0

(
u
(j+1)
0 , v

)]
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for all v ∈ H1(Ω). Using (44), we find

D0

(
w −

u
(k)
t − u

(k)
0

t
, v

)
=

(
F

(k+1)
0 −

F
(k)
t − F

(k)
0

t

)
(v)

+

k∑

j=0

[
D

(k−j)
t (u

(j)
t , v)−D

(k−j)
0 (u

(j)
0 , v)

t
−D

(k+1−j)
0 (u

(j)
0 , v)−D

(k−j)
0 (u

(j+1)
0 , v)

]
.

SinceDt and Ft are of class C
k+1, the right-hand side defines a linear functionalHt(v) with ‖Ht‖H1(Ω)∗ →

0 as t→ 0, and the uniform estimate (43) yields

lim
t=0

∥∥∥∥∥w −
u
(k)
t − u

(k)
0

t

∥∥∥∥∥
H1(Ω)

= 0

as was to be shown. The continuity of u
(k+1)
t is proved in a similar fashion. �

The assumption of invertibility on an interval I (as opposed to at a single point) is not unreasonable.

Lemma C.2. Let {Dt} satisfy the regularity assumptions of Proposition C.1 with k = 0. If Dt0 is
invertible for t0 ∈ I, then Dt is invertible for |t− t0| ≪ 1.

Proof. It suffices to consider t0 = 0. Suppose the claimed result is false; then there exist numbers ti → 0
and functions ui ∈ H1(Ω) such that Dti(ui, v) = 0 and ‖ui‖L2(Ω) = 1. The uniform coercivity estimate

(42) implies {ui} is bounded in H1(Ω), so there exists a subsequence {ui} and a function ū ∈ H1(Ω)
such that ui ⇀ ū in H1(Ω) and ui → ū in L2(Ω). It follows that ‖ū‖L2(Ω) = 1. Since the coefficients of
Dt are continuous, and weakly convergent subsequences are bounded, we have

D0(ū, v) = lim
i→∞

Dti(ui, v) = 0

for each v ∈ H1(Ω). The invertibility of D0 yields ū = 0, which is not possible. �

To apply Proposition C.1 in practice we use the following elementary consequence of the chain rule.

Lemma C.3. Let

D(u, v) =

∫

Ω

[
aij(∂iu)(∂jv) + bi(∂iu)v + ciu(∂iv) + duv

]

and define Dt by (4). If the coefficients aij , bi, ci, d are contained in Ck
(
∪a≤t≤bΩt

)
and the family {ϕt}

is of class Ck, then the coefficients of Dt are contained in Ck(I, L∞(Ω)).

Proof. Recalling that Dϕt denotes the Jacobian matrix of ϕt, and |Dϕt| its determinant, we have

Dt(u, v) =

∫

Ωt

[
aij(∂iut)(∂jvt) + bi(∂iut)vt + ciut(∂ivt) + dutvt

]

=

∫

Ω

|Dϕt|
[
aij(∂iut)(∂jvt) + bi(∂iut)vt + ciut(∂ivt) + dutvt

]
◦ ϕt

where we have defined ut = u ◦ ϕ−1
t and similarly for vt. Therefore, the rescaled coefficients on Ω are

aijt = |Dϕt|(a
pq ◦ ϕt)(Dϕt)

−1
ip (Dϕt)

−1
jq , bit = |Dϕt|(b

p ◦ ϕt)(Dϕt)
−1
ip ,

cit = |Dϕt|(c
p ◦ ϕt)(Dϕt)

−1
ip , dt = |Dϕt|(d ◦ ϕt),

where (Dϕt)
−1
ip denotes the i, p entry of the matrix Dϕt. The hypotheses imply that |Dϕt| and (Dϕt)

−1
ip

are contained in Ck(I, L∞(Ω)). Since d is uniformly continuous on each Ωt and t 7→ ϕt is continuous,
the composition d ◦ ϕt defines a continuous map from I into L∞(Ω), and similarly for apq ◦ ϕt etc. For
k = 1 we have that

d

dt
(d ◦ ϕt) =

dϕt

dt
· (∇d) ◦ ϕt

is a continuous map from I to L∞(Ω). Higher derivatives are treated in a similar fashion. �
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