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Abstract

Estimation problems arise routinely in subsurface hydrology for applications that
range from water resources management to water quality protection to subsurface
restoration. Interest in optimal design of such systems has increased over the last
two decades and this area is considered an important and active area of research.
In this work, we review the state of the art, assess important challenges that must
be resolved to reach a mature level of understanding, and summarize some promis-
ing approaches that might help meet some of the challenges. While much has been
accomplished to date, we conclude that more work remains before comprehensive,
efficient, and robust solution methods exist to solve the most challenging applica-
tions in subsurface science. We suggest that future directions of research include
the application of direct search solution methods, and developments in stochastic
and multi-objective optimization. We present a set of comprehensive test problems
for use in the research community as a means for benchmarking and comparing
optimization approaches.
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Notation

Roman Letters

Qg weighting coefficients in multiobjective formulation
b exponential coefficients in cost objective functions
cj coefficients in cost objective functions
G initial contaminant distribution for species ¢
Ct source or steady state concentration for species ¢
cev concentration of solute in seawater
Cy background concentration of solute in freshwater
Cy concentration in extraction well 7 for species ¢
B target efluent concentration from treatment process for species ¢
D hydrodynamic dispersion tensor
D> free liquid diffusivity of species ¢
d; depth of well below the ground surface
I T objective function
fe capital costs
fe operational costs
e measure of reliability
fetean pdf for cleanup performance
feost pdf for cost function
F multi-objective functional
F,, allowable solute concentration normalized by seawater concentration
g mathematical model
2o initial conditions for g
g boundary conditions for g
g magnitude of gravitational acceleration, oriented in the -k direction
h hydraulic head,
hmax maximum allowable head
pmin minimum allowable head
h; head in well 7
hs steady-state solution to the unperturbed flow problem
A interphase mass exchange
A interphase mass transfer relations
k effective permeability tensor
K hydraulic conductivity tensor
K hydraulic conductivity scalar
k¢ first-order mass transfer rate coefficient
K; Freundlich capacity coefficient
M maximum fractional mass remaining after remediation
n number of wells
ne number of extraction wells
ny exponent related to the sorption energy



number of objective functions
number of injection wells

set of model parameters

Darcy velocity, or volumetric flux
fluid pressure

Darcy flux out of the domain

design extraction rate at well ¢
maximum extraction rate

maximum injection rate

total net pumping rate rate

total extraction rate

maximum total extraction rate
minimum total extraction rate
extraction or injection rate for well 7
Q@; < 0 indicates extraction and (); > 0 indicates injection
species qualifier for the sorbing species,
biological or chemical reactions
specific storage coefficient

solute source term

fluid source term

time

operation or remediation time
plume development time

vector of state variables

mean pore fluid flow velocity vector
vector of decision variables

position vector

location of contaminant source

well locations

vector of decision variables

spatial coordinate oriented aligned with k
elevation of ground surface

height of air stripping tower

Greek Letters

aq

Gy

Nas Nys Mz

o

Hlog K

V, Vg, I/y, Uy
w

rse
w

longitudinal dispersivity,

transverse dispersivity

spatial correlation scales

dynamic viscosity

mean K in logyo space

spatial coordinates in covariance model
mass fraction

equilibrium solid-phase mass fraction



Q model domain
Q, feasible region of u
Qu feasible region of w
Q, feasible region of z
P density
Po freshwater density
Psw seawater density
Oiog K variance of K in logjgspace.
T tortuosity of the porous medium
6 volume fraction
Subscripts
1 well index
k objective function index
s qualifier denoting source or steady state
Q phase index

Superscripts
a qualifier denoting aqueous phase
e qualifier denoting extraction
1 qualifier denoting injection
s qualifier denoting solid phase
L species index
Abbreviations
BIO engineered bioremediation
CNSMOP constrained, nonlinear, stochastic, multi-objective optimization prob-
lems
COM combinatorial method
D ), includes decision variable
DS direct search
DYL dynamic, linear f form
DYLP dynamic, linear programming
DYNL dynamic, nonlinear f form
DYNLP dynamic, nonlinear programming
EA evolutionary algorithm
GAC granular activated carbon
GLO global approximation
HC hydraulic capture



LF
LP
LS
LT
MO
MS
NL
NLF
NLP
NLS
NLT
PAT
PDF
RS
RX
STO
SVE
WS

f form includes integer term

linear f form

g form includes linear flow

linear programming

(), includes state variable, linear

g form includes linear transport

f form considers multiple objectives

g form includes multiple species

nonlinear f form

g form includes nonlinear flow

nonlinear programming

), includes state variable, nonlinear

g form includes nonlinear transport

pump and treat

probability distribution function

response surface used as solution of g form
g form includes non-conservative transport
stochastic variable(s) in g form

soil vapor extraction

water supply



1 INTRODUCTION

Modeling of fluid flow and contaminant transport in subsurface porous medium
systems has become commonplace [128]. These simulations continue to ad-
vance our general understanding of transport phenomena and are increasingly
used as a basis for managing subsurface systems. Such management may in-
volve identifying model parameters [84, 132], planning data collection pro-
grams [14, 80|, or designing and operating engineered systems [66]. Within
this general class of problems, design problems associated with fluid flow and
species transport in subsurface systems are especially important [102].

Broadly speaking, design problems for these applications fall into the general
class of constrained, nonlinear, stochastic, multi-objective optimization prob-
lems (CNSMOP)—an especially challenging class of application. The stochas-
tic nature of these problems results directly from our imperfect knowledge of
model parameters, auxiliary conditions, or in some cases even the fundamental
form of the model that governs transport phenomena in typical heterogeneous
porous medium systems [101]. The multi-objective aspect of these problems
arises, for example, from a conflicting desire to minimize cost and maximize
reliability of a design [116].

Most efforts to date for subsurface optimization problems have been some
simple subset of the general class of CNSMOP problems. This is largely be-
cause of the complexity and computational demands of solving this general
class of problems and partly because of the evolving nature of stochastic op-
timization. Over the last two decades, groundwater quality control and re-
mediation have been the focus of optimization efforts in the subsurface lit-
erature [4, 5, 7, 6, 87, 43, 82, 93, 134, 66, 80, 118, 8, 3, 133, 92, 90, 147,
74, 113, 83, 110, 45, 92, 102, 13, 106, 12, 79]; in particular, the design of
pump-and-treat (PAT) systems is the most frequent application considered
[4, 5,7, 6,87, 93, 74, 118, 3, 83, 10, 79, 23, 92, 12, 13, 90, 121].

The objectives of this work are (1) to provide a common conceptual framework
for subsurface design problems; (2) to consider the state of knowledge in the
light of this framework; (3) to highlight limitations of existing approaches
used to solve subsurface design problems; (4) to introduce evolving approaches
from other fields that may be of use in advancing our study of subsurface
design problems; and (5) to introduce a set of problems that could further the
development and testing of methods for solving subsurface design problems.



2 PROBLEM STATEMENT

The problem of finding optimal designs for subsurface systems can be formu-
lated as

ijp /(2 W

where the objective function f is assumed with a minimization convention,
z(u, w) is a vector of decision variables consisting of a vector u of state vari-
ables and a vector w of decision variables, 2, = €2, U(2,, is the feasible region
of z represented by a set of constraint equations, {2, represents the feasible
region of u, and €2, represents the feasible region of w. The constraints, €2,
and €2,, are specified for state and decision variables as a way to enforce
practical, technological constraints or to reduce the size or complexity of the
optimization problem. The objective function f can include one or more than
one function f;, where k¥ < K represents the number of discrete objective func-
tions. When K > 1, the problem is termed a multi-objective (MO) problem.
An MO problem would arise when separate objective functions are considered
that are conflicting and not convertible to the same units, i.e. cost ($) vs. risk
(increased incidence of disease).

The decision variables for subsurface flow and transport applications can in-
clude both real number quantities, integers, and categorical variables related
to the design problem of interest. For example, real number decision variables
might be associated with injection or withdrawal flow rates, the mass rate of
injection of a species added to encourage a desired reaction, and variables de-
scribing the size and location of remediation unit processes. Integer variables
could include the number of injection or withdrawal wells. Categorical vari-
ables are discrete quantities that are a part of the design space and for which
only certain values may be specified in order for the objective function to be
evaluated and return a valid quantity. An example of a categorical variable
would be a type of design or a unit process from a set of possible processes.

State variables represent the state of the physical system being considered,
which could include fluid pressures or species concentrations. For the prob-
lems of concern, the state of the physical system is typically represented by a
mechanistic mathematical model consisting of a set of conservation equations
and closure relations, which take the form of a set of differential equations and
auxiliary conditions. We represent our mathematical model as

g = g(x,t; 80,8, P) (2)



where x is a position vector, ¢ is time, gy represents initial conditions, g rep-
resents the boundary conditions, and p represents a set of model parameters,
which may include decision variables w, thus w C (pUg,). The mathematical
model may also include components not represented by a mechanistic model;
for example, an empirical model may be used to represent a treatment process.

While the standard approach is for g to represent a deterministic model of a
physical system, such representations of natural systems are often unreliable.
This is so because gy, gy, and p are not known with certainty. Under such
conditions, g is best represented by a stochastic mathematical model, leading
to a stochastic u, and hence a stochastic f function. Such so-called stochastic
optimization problems are difficult to solve. In the simplest stochastic con-
ceptualization, we can imagine u as a probability density function (PDF, P,)
and f as being linearly dependent on u. In this case, we can determine a PDF
for f that is simply a linear transformation of P,. However, the real situation
is considerably more complex—u may not be described with an analytical
PDF, f is unlikely to depend on u in a linear fashion, and €2, may need to
be specified in a stochastic manner as well. In addition to the mathematical
and algorithmic complexities resulting from a stochastic g, it may be costly
to compute the solution to a stochastic mathematical model g.

The objective function f is a functional that depends upon g and perhaps
other functions. Since the mathematical form of f is important in choosing the
appropriate optimization solution method, the properties of all components
of f, including g, and €2, are important. It is tempting to apply simplifying
assumptions such that f is deterministic, convex, and linear. It is our opinion
that such simplified representations might be useful for a first-cut analysis, but
that real problems are typically nonlinear and most appropriately represened
using a stochastic approach—suggesting that solution methods for solving
such noisy optimization problems are needed.

3 RECENT APPROACHES AND REMAINING CHALLENGES

Significant work has been performed over the last two decades on optimal
design problems associated with subsurface flow and transport phenomena.
These works can be classified in a number of ways: the technological applica-
tion; the mathematical representation of the physical, chemical and biological
systems, g; the form of the objective function to be minimized, f; the form of
the constraints, €2,; and the methods used to solve the optimization problem.
Table 1 is a summary of subsurface design problems organized according to
this framework, first by application and second by model form. All abbrevia-
tions used in this table are defined in the notation section. We rely upon this
tabulation to discuss the work accomplished to date and highlight unresolved



problems. The works cited in this table and throughout the text are a com-
prehensive and representative, but not an exhaustive, survey of the literature.

Table 1: Summary of Subsurface Design Approaches

Application g form f form | Q, form | Solution Reference
Approach
water supply NLF, LT MO, L D, NLS | NLP, RS [66]
water supply STO, LF DYL D, NLS | RS [14]
water supply LF, LT NL D, NLS | NLP [113]
hydraulic capture | LF L D, LS LP [8]
hydraulic capture | LF MO, D LP [56]
L/NL
hydraulic capture | NLF L LS NLP [134]
hydraulic capture | NLF L D, NLS | NLP [106]
hydraulic capture | LF, LT I, L D, LS COM [122]
hydraulic capture | STO, LF, | NL D, LS NLP [139]
LT
hydraulic capture | STO, LF, | NL D NLP [146]
NLT
hydraulic capture | STO, LF I, L L LP/EA [147]
hydraulic capture | STO, LF MO,L |D LP [94]
hydraulic capture | STO, NLF | L D,LS | NLP [105]
pump & treat LF, LT L D, NLS | NLP [10]
pump & treat LF, LT L D, NLS | NLP [5]
pump & treat LF, LT L D, NLS | NLP [4]
pump & treat LF, LT L/NL D, NLS | NLP [7]
pump & treat LF, LT L/NL D, NLS | NLP [6]
pump & treat LF, LT DYNL D, NLS | DYNLP [92]
pump & treat LF, LT I, D, NLS | EA [79]
DYNL
pump & treat LF, LT I, NL D, NLS | NLP [140]

continued on next page




Table 1: continued

Application g form f form | Q, form | Solution References
Approach
pump & treat LF, LT I, NL D, NLS | NLP/EA, [12]
RS
pump & treat LF, LT I, NL D, NLS | GLO [83]
pump & treat LF, LT MO, I, | D, NLS | EA [51]
NL

pump & treat LF, LT MO, L | D,LS NLP [3]

pump & treat LF, LT NA D, NLS | NA [9]

pump & treat NLF, LT DYNL D, NLS | GLO [117]

pump & treat NLF, LT I, NL D, NLS | GLO [82]

pump & treat NLF, LT MO,I,L | D, NLS | EA [93]

pump & treat NLF, LT |DYNL |D,NLS | DYNLP [90]

pump & treat LF, NLT, |L NLS NLP [74]
MS, RX

pump & treat LF, NLT DYL D, LS DYNLP [43]

pump & treat NLF, NLT | I, NL D, NLS | NLP [98]

pump & treat STO, LF,|MO, 1I,|D,NLS | NLP [23]
LT DYNL

pump & treat STO, LF, | MO, I |D,NLS | EA, RS [13]
LT NL

pump & treat STO, LF, |I, NL D, NLS | NLP [123]
LT

pump & treat STO, LF, |I, NL D, NLS | EA [95]
LT

pump & treat STO, LF, |L D, NLS | NLP [138]
LT

pump & treat STO, NLF, | DYNL | D, NLS | DYNLP [87]
LT

continued on next page
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Table 1: continued

Application g form f form | Q, form | Solution References
Approach
pump & treat STO, NLF, | NL D, NLS | COM [121]
LT
bioremediation LF, NLT, | DYNL | D,NLS | DYNLP [102]
MS, RX
bioremediation LF, NLT, | DYNL | D,NLS | DYNLP/EA| [144]
MS, RX
bioremediation STO, LF, | DYNL | D,NLS | EA, RS [76]
NLT, MS,
RX
bioremediation STO, LF, | DYNL D, NLS | DYNLP [103]
NLT, MS,
RX
soil vapor ext. NLF, NLT, | I, NL D, NLS | COM [133]
RX, MS
soil vapor ext. NLF DYNL | D, NLS | DYNLP, [75]
EA,

3.1 Applications

In Table 1, we have focused primarily on subsurface remediation applications.
The applications listed in Table 1 indicate that the most frequent application
of optimization in subsurface flow and transport problems are hydraulic con-
trol (HC) and PAT. The goal of HC is to control the spread of a contaminant
via manipulation of groundwater levels and flow directions. In PAT remedia-
tion, the goal is to reduce the contaminant mass in the subsurface, in order
to meet a target concentration or global mass fraction. As in most subsurface
optimization problems, including water supply optimization, the decision vari-
ables for HC and PAT consist of the number of wells n and the corresponding
extraction or rates (); and locations, x;, or

w=(n,Q;,x;) fori=1,...n (3)

Each of the decision variables (n,Q;,x;) can change with time. In Table 1,
time-varying, or dynamic, approaches are indicated by DYL and DYLP f
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forms and DYNL and DYNLP solution methods. Dynamic pumping rates
have been shown to result in less expensive PAT designs compared to fixed
pumping rate designs [e.g. 70, 31]. Dynamic decision variables also allow the
flexibility to handle design goals that change with time; for example, the initial
goal may be to capture the contaminant plume, followed later by the goal of
reducing the contaminant mass [145].

Table 1 indicates that remediation technologies other than HC and PAT have
been considered in the subsurface remediation literature. In situ bioremedia-
tion (BIO) is an established subsurface remediation technology strategy that
is effective for certain, readily degradable classes of compounds. In situ biore-
mediation, like PAT, involves extracting and injecting water to control the
flow system. Unlike PAT, the injection also supplies certain chemical species,
such as electron acceptors and nutrients, that are needed for the biochemical
reaction to occur and which are expected to be rate limiting for the applica-
tion at hand. The computational effort required to optimize a bioremediation
design is significantly greater than that for a PAT design, because additional
transport equations need to be solved and additional decision variables must
be considered [102]. Several strategies have been attempted to overcome these
difficulties, such as assuming that oxygen is the single rate-limiting injectant
and ignoring the additional decision variables [102].

Soil vapor extraction (SVE) is frequently used to remove volatile contaminants
from regions above the water table. SVE involves pumping of air through
contaminated media, in order to strip volatile contaminants from trapped
liquid phases. The decision variables for SVE are similar to those for the PAT
problem— well locations, extraction rates, and number of wells. Investigations
of SVE optimization have focused on formulating the problem such that the
optimization is robust and converges quickly [133, 75]. Other technologies
where mathematical optimization has been applied include surfactant flushing
[89], and combining thermal oxidation with PAT [119].

To date, each subsurface remediation technology (HC, PAT, BIO, SVE, etc.)
has been treated separately when mathematical optimization has been applied
to technology design. Furthermore, there are many more subsurface remedi-
ation technologies where optimization has not yet been applied in the design
process. These limitations may in turn limit the widespread applicability of
mathematical optimization to remediation design, since the design process
includes choosing the appropriate remediation technology or combination of
technologies. A separate line of research has been dedicated in recent decades
to develop tools for choosing among remediation technologies [e.g. 1]). These
tools typically take the form of user-friendly software packages, but have lim-
ited design capabilities.
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3.2 Mathematical Model

The mathematical model g for the problems of concern represents fluid flow
and, in some cases, species transport and reaction problems in the subsurface,
along with any ez situ processes (e.g. water treatment) that are a part of the
system to be designed. The subsurface flow and transport processes can be
described by a wide range of mechanistic models, which can abstractly be
represented by a set of conservation equations and general closure relations,
which can assume a wide range of specific forms.

Standard mathematical models for isothermal systems include some set of
mass conservation equations and approximate momentum conservation equa-
tions of a form given by Darcy’s law [101]. The conservation of mass for a
species ¢ in a phase « is

0 .
a (el)ép()éwu)é) — _V . (eapawbava) _ v .‘]La +ILO¢ _"_ RLO{ _"_ SLC!’ (4)

where t is time, 6 is a volume fraction, p is density, w is a mass fraction, v is
a mean pore fluid flow velocity vector, j represents non-advective transport,
T represents interphase mass exchange, R represents biological or chemical
reactions and S represents a mass source. The superscripts ¢ and « are species
and phase indices, respectively.

The following identities apply to eqn (4)

Y or=1, Y IT*=0, Yuw=1 Y j*=0, Y R*=0 (5

87 L L

We also define

ZILCV — Ia’ Zsba — Sa- (6)

Eqn (4) may be used along with eqns (5) and (6) to derive a species-summed
a-phase mass balance equation

9
S (0°57) = =V - (0°°V") + I° 4 S (7)

Darcy’s law is used to approximate momentum conservation:
[0 ] o] ka o o
0°v® =q =—E-(Vp +p%gVz), (8)
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where q is the Darcy velocity, or volumetric flux; k is the effective permeability
tensor; u is the dynamic viscosity; p is the fluid pressure; g is the magnitude of
gravitational acceleration, which is assumed to be oriented in the -k direction,
and z is a spatial coordinate oriented aligned with k.

Complete specification of a physical model requires selection of a set of phases
and chemical species; closure relations for interphase mass exchange and reac-
tions; equations of state for fluid and solid phases; functions describing fluid
pressure interrelationships, saturations, and conductivities; and auxiliary con-
ditions [101]. Variations in choices among even standard models can lead to
a large number of specific models, which will not be summarized in detail in
this work.

Relatively little work has been done to solve optimization problems for the
general class of multiphase models formulated above, due to the computational
effort needed to solve such models. All but a few of the applications listed in
Table 1 involve solving saturated flow and/or transport models. This class of
models can be formulated for fluid flow by

ssg—?:v-(K-Vh)+3 (9)
and for species transport by
00. L
%=V-(0“DL-VCL)—V~(qC’L)—i-I‘-I—’RL-I—SL (10)

where S is a specific storage coefficient, A is hydraulic head, K is a hydraulic
conductivity tensor, S is a fluid source term, C* is the aqueous phase con-
centration of species ¢, D is a hydrodynamic dispersion tensor, Z* represents
interphase mass transfer relations, R* represents biogeochemical reactions, and
S* represents a source of mass. Closure relations for Z* and R* require fur-
ther specification and can assume many forms. The classic dispersion tensor
is written as [22]

UZ

L L i Uj Lx
D' = Dij = (5ijat|v| + (Oél - at)‘Tr + dijTD (11)

where o; and oy are the longitudinal and transverse dispersivities, respectively,
T is the tortuosity of the porous medium, and D" is the free liquid diffusivity
of species &.

The deficiencies associated with the model represented by eqn (9) and eqn (10)
result from unresolved and spatially variable K. Although these deficiencies are
well-known [48, 36, 61], many issues remain regarding a satisfactory solution
to unresolved variability, especially for reactive systems.
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The typical set of decision variables, n, );, and x;, usually enter through spec-
ification of S and &*, which provide a mechanistic link to the state variables,

e.g.

/ S(t) d = ﬁj Qi(xs, 1) (12)
/ S'(t)dQ= iQi(xi,t)C{(xi,t) (13)

where () is the domain of the system; @); is a volumetric rate of extraction or
injection and C} is a concentration of the fluid added to or removed from the
system. Note that (); < 0 indicates extraction and (); > 0 indicates injection.

The primary state variables in eqns (9) and (10) are h and C*. One of the
most significant differences between HC and PAT optimization efforts is that
HC only requires solution of (9) for h, whereas PAT requires the solution of
eqns (9) and (10) for A and C*. The solution of eqn (10) is considerably more
computationally demanding than eqn (9)and requires knowledge of additional
parameters and auxiliary conditions that are likely to be uncertain.

Numerical approximations are usually required to solve eqns (9) and (10).
Since a typical problem involves thousands to millions of unknowns and eqns
(9) and (10) often pose numerical difficulties, the solution of the governing
equations is usually the most computationally intensive portion of the opti-
mization problem. This expense leads to the frequent use of simplified models
and relatively coarse discretization in space and time. Common simplifica-
tion include two-spatial-dimensional models, steady-state conditions, confined
aquifers, simple reaction models, single species, and local equilibrium inter-
phase mass transfer.

Eqns (9) and (10) also contain several parameters that may be uncertain in
a typical field situation, notably K and D. Furthermore, the auxiliary condi-
tions accompanying eqns (9) and (10) are often uncertain. When uncertainty
in model parameters and/or auxiliary conditions exist, the model results are
uncertain, or stochastic, as well. Rigorous treatment of such cases requires
the solution of a stochastic optimization problem; this has rarely been accom-
plished in the subsurface flow and transport field [23, 13, 123, 138, 87, 121, 76].

One difficulty in comparing different works on subsurface remediation opti-
mization is the wide range of flow and transport simulators used. The simula-
tors differ in terms of the applied numerical method, discretization, boundary
conditions, and sources and sinks. The result is that simulation outputs from
a set of simulators can vary, perhaps significantly, and different values of the
state variables are sent to the objective function(s) and constraint evaluations.
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Assessments of the numerical accuracy of the simulations performed during
the optimization are rarely reported in the subsurface remediation literature.

Without careful assessment of the simulator accuracy, an optimization solu-
tion method could suggest a value for the decision variables that would exceed
the numerical abilities of the simulator. For example, a high extraction rate
could result in local velocities that would exceed grid-based numerical accu-
racy criteria (e.g. Peclet or Courant number constraints for finite-difference
or finite-element based transport simulators). Thus, a set of decision variables
may be feasible from the standpoint of the optimization criteria but infeasible
due to the limitations of the flow and transport simulator. This is an example
of a “hidden” constraint.

3.8  Objective Functions

The majority of the applications listed in Table 1 incorporate a single objective
function, where the objective is to minimize cost. The remaining design goals
are formulated into constraints; these are described in the following section.
The literature varies widely in the definition of the cost objective function, but
the function usually is divided into capital and operating costs. The capital
costs of the design often depends on an integer quantity, such as the number
of wells (n). In the case where n is a decision variable (as opposed to fixing
the number of wells), the optimization problem is mixed-integer continuous.
Applications that consider integer terms are designated with an I in Table
1. Various approaches have been adopted to solve this type of problem, such
as formulating the optimization problem as a mixed-integer linear or nonlin-
ear program [122, 99] or by approximating the capital costs as a constant
multiplied by a penalty function [82, 99]. Solving mixed-integer problems is
straightforward with evolutionary algorithms [97].

The operational costs are functions of continuous decision variables (e.g. @;)
as well as continuous state variables (e.g. h and C*). These functional defini-
tions are often nonlinear. Applications with nonlinear objective functions are
designated as NL or DYNL in Table 1. For example, the cost of groundwa-
ter extraction is a nonlinear function of the extraction rate ); and hydraulic
head h [2, 141]. In the case where h is included in the extraction cost term,
the hydraulic head is estimated via a groundwater flow simulator based on
eqn (9), which is usually solved numerically. In the special case of a confined
groundwater aquifer, the hydraulic head is linearly related to the extraction or
injection rate decision variables. In this case, linear programming can be used
to obtain the solution [2]. In addition, repeated, computationally expensive so-
lutions of eqn (9) are unnecessary, since superposition can be employed [141].
However, if the aquifer must be treated as unconfined, A is a nonlinear function
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of the pumping rate decision variable, ();, and neither linear programming nor
superposition are applicable [72].

Treatment of extracted groundwater is performed with a range of technologies,
such as granular activated carbon adsorption (GAC), air stripping, and chem-
ical or thermal oxidation. The installation and operational costs associated
with these technologies depend on the influent flow rates and concentrations.
For example, the operational cost for GAC is a nonlinear function of con-
centration (C*) and a linear function of influent flow rate [47]. In the case
where C* is included in the objective function, the concentration field must be
simulated. If the choice of treatment technology is unspecified and becomes a
decision variable in the optimization problem, then categorical variables are
involved.

As mentioned previously, the formulations of the cost objective functions vary
from work to work. In some cases, variations in the cost formulations are re-
lated to differences in the engineering problem to be solved (e.g. HC vs. PAT).
But, in other cases, the choice of formulation seems to be arbitrary. This ar-
bitrariness is problematic, since it makes it difficult to compare one work to
another, and it implies that there is no consensus regarding the engineering
problem to be solved. Several researchers have shown that the optimal solu-
tion is sensitive to the cost formulation [43, 31, 99], but a systematic study
of the effects of cost function formulation on the optimal design has not been
performed. In addition, cost objective functions for other remediation tech-
nologies have been reported only rarely.

3.4 Constraints

Constraints, €2,, are placed on decision variables (designated as D in Table 1)
and/or state variables (designated as LS or NLS in Table 1). The decision vari-
able constraints are usually associated with a technological limitation, such as
the maximum extraction rate in a well or the total flow rate associated with
all wells. In remediation applications, constraints on state variables are asso-
ciated with the goal of the remediation effort. For example, the constraints for
HC require that the hydraulic gradients and corresponding velocity vectors in
the area comprising the plume be oriented towards the extraction wells. Mul-
ligan and Ahlfeld [106] and Ahlfeld and Mulligan [2] noted that the hydraulic
gradient approach for enforcing the capture constraint is attractive because
the constraint is linear with respect to the state variable, h. They note that,
in practice, however, inefficient designs can result unless considerable effort is
expended in calibrating the constraint.

Alternatively, the capture constraint is based explicitly on whether the con-
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taminant is captured by an extraction well, referred to as an advective control
constraint. In this case, the contaminant mass is represented as a series of par-
ticles. The velocity field for each particle is determined by Darcy’s law, eqn
(8). Solution of eqns (8) and (9) provides streamlines that define the pathline
of each particle. The constraint is expressed such that particles tracked from
the edge of the contaminant plume are required to terminate at an extraction
well. The difficulty introduced by considering advective control constraints is
that the constraints are nonlinearly related to extraction rates. Advantages
and disadvantages of various formulations of the advective control constraint
are discussed by Mulligan and Ahlfeld [106].

In the case of PAT optimization, constraints are incorporated that explic-
itly consider contaminant mass reduction. Constraints based on contaminant
mass reduction are based either on values of contaminant concentration at
observation points or global contaminant mass. The introduction of contami-
nant constraints increases the complexity of the problem considerably. First,
the constraint is a nonlinear function of the decision variables (extraction
or injection rates). This nonlinear relationship introduces local minima and
non-convexity in the envelope surrounding the feasible region [11]. Second,
developing and executing a contaminant transport simulator requires a signif-
icant amount of human and computational effort, especially when compared
to the effort involved in groundwater flow simulation.

3.5 Solution Approaches

The ideal solution method is capable of converging to the global minimum
while minimizing the computational effort. The appropriate class of methods
for solving the optimization problem depends on the problem formulation,
i.e., the form of the objective function and constraints. Table 1 identifies the
solution approaches taken for each application, which range from the well
established linear programming methods (LP) to the newer global optimiza-
tion methods (GO). Here, we briefly review optimizations methods that have
been applied to PAT design, since optimization of PAT design has, in general,
proven more difficult than HC design. Since PAT formulations include con-
straints based on contaminant mass reduction, nonlinear optimization meth-
ods are needed to solve the PAT design problem. The most frequently applied
nonlinear optimization methods are derivative-based, nonlinear programming
methods (NLP), such as reduced gradient methods (e.g. MINOS, cf [71, 99,
or sequential quadratic programming, (SQP, e.g. NPSOL, cf [74]), or the suc-
cessive linear quadratic regulator method [31]. Direct search (DS) methods,
such as modified simplex, Nelder-Mead simplex, or parallel directive search
have been applied far less frequently [144].
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The derivative-based methods have been criticized with regard to their abil-
ity to handle the non-smooth objective functions, local minima, and non-
convexity that are typical in problems where contaminant mass reduction is a
constraint. In response, the so-called global optimization (GO) methods have
been applied to solve the PAT optimization problem. For example, in [12],
MINOS [107], a standard NLP code, is trapped in local minima in some of
the results, leading to a preference for a genetic algorithm, one of the classes
of GO methods.

A GO method attempts to find the global minimum and is designed to that
end. Methods such as genetic algorithms, simulated annealing, and DIRECT
are global optimization methods. A true global optimization method must, in
theory, examine a dense mesh in the design space [129]. Therefore implemen-
tations rely on heuristics. This class of methods includes outer approximation
methods [82, 83|, where the optimal solution is found by making successive
“cuts” in the objective function space, along the feasible space boundary.

The evolutionary algorithms (EA’s) are also classified as GO methods. EA’s
have the advantage of straightforward incorporation of discontinuous decision
variables and relatively straightforward implementation on parallel processor
computing platforms. EAs applied to PAT design optimization include variants
of genetic algorithms, or GA’s, [116, 118, 79, 12], simulated annealing [93, 117,
and tabu search [147]. However, EA’s are criticized because the performance
of the algorithms depends on values selected for heuristic parameters. For
example, the simple GA is controlled by population size, crossover rates, and
mutation rates. In most EA applications that have considered remediation
optimization, the optimal parameter values have been determined by trial and
error. Recent work by Reed et al. [115] and Erickson et al. [51] has resulted
in guidelines for selecting optimal parameter values associated with variants
of the GA.

Only a few extant works compare the performance of solution methods. Karatzas
and Pinder [83] compared GO (outer approximation) to NLP (MINOS) for
determining optimal pumping rates for 40 wells with respect to cost, given
maximum pumping rate and maximum concentration constraints. They found
that the outer approximation technique provided a significantly less costly so-
lution for a fraction (1/15) of the computational effort. Yoon and Shoemaker
[144] compared EA, DS, and NLP methods for a bioremediation problem with
time-varying extraction rates. The successive approximation linear quadratic
regulator (SALQR) technique, an NLP method, was found to require consid-
erably less computational effort than the other methods. However, we note
that SALQR has a limitation in that it cannot be used to solve discontinuous
problems with multiple local optima.

Aly and Peralta [12] compared EA (simple GA) with NLP (MINOS) and
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a combination of NLP and integer programming to determine optimal, time-
varying pumping rates. Two different formulations were tested: minimizing the
maximum concentration remaining with cost as a constraint and minimizing
cost with concentration remaining as a constraint. For both formulations, the
GA performed as well or better than NLP-based optimization in terms of
minimizing the objective function values. However, no information was given
to compare the computational effort among the different methods.

A more subtle issue is that there is no guarantee that the objective function
will even return a value, for example an internal iteration within a PDE solver
may not converge. Failure of the function evaluation has been observed in
practice [142, 34, 30, 42, 27]. We call the need for the function to return a
value a “hidden constraint” because only an attempt to evaluate f(z) can
determine if z is a feasible point. Such constraints are also called “virtual
constraints” [42] or “yes/no” constraints [29]. In some cases [34, 32, 52], it is
even difficult to find a point to begin an iteration.

3.6  Multi-Objective Optimization

The need for multi-objective optimization stems from the observation that de-
cisions regarding remediation design are frequently based on multiple, conflict-
ing criteria [56]. Yet, as indicated in Table 1, the vast majority of subsurface
remediation optimization applications have been based on achieving a single
objective: minimizing costs. Additional objectives could be considered, such
as maximizing cleanup performance, maximizing reliability, and minimizing
cleanup time. These objectives are incorporated implicitly into single objec-
tive optimization frameworks by transforming them into fixed constraints. The
MO approach allows the decision-maker complete flexibility and the oppor-
tunity to view tradeoffs between objectives. However, the number of choices
offered in the problem solution may be overwhelming; furthermore, solving
MO problems may require complex and computationally expensive solution
methods.

The potential value of viewing tradeoffs between multiple criteria is significant.
First, plots of the curve could reveal areas where tradeoffs between conflicting
objectives are uneven, and thus represent inefficient values of the decision
variables. For example, a cost vs. cleanup performance curve might indicate
that a threshold contaminant concentration exists where the slope of the curve
changes from linear to exponential. Second, tradeoff curves could be used to
prioritize among sites; a decision maker could use multiple tradeoff curves to
intelligently allocate resources for maximizing risk reduction across a set of
sites. These hypothetical examples demonstrate that the application of multi-
objective optimization to subsurface remediation design could also have a
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significant impact on decision-making and policy.
The generic multi-objective problem can be stated as

min f(z) = min f(f1,- -, fu) (14)

7€,

where f is a multi-objective functional depending upon the vector of n; ob-
jective functions fy.

More than one set of decision variables, w, and corresponding functional eval-
uations of fj can satisfy eqn (14). In Figure 1, we have plotted a few hy-
pothetical evaluations in a two-objective function problem (f; and f;). Each
point represents the evaluation of f; and fy; that corresponding to a given
value of the decision variable, wy, ws, ws. The concept of “Pareto optimality,”
states that one candidate dominates another only if it is at least equal in all
objectives and superior in at least one. For example, in Figure 1, where the
objective is to minimize both objective functions, designs w; and wy dominate
design w3 because they are superior in both objectives. Moreover, designs w;
and wy are said to be non-dominated.

From this simple example, we can see that the concept of Pareto optimal-
ity gives rise to a set of solutions known as the Pareto optimal set. The
K-dimensional surface defined by the non-dominated solutions is known as
the Pareto front, or tradeoff surface. A class of multi-objective EA’s (known
as EMO’s) that operates on the concept of Pareto optimality. Evolution-
ary methods are particularly suitable for solving multi-objective problems,
since they deal simultaneously with a set of possible solutions [40]. The class
of EMO’s includes the multi-objective genetic algorithm (MOGA, [e.g. 53]),
vector-evaluated genetic algorithm (VEGA [124]) and the Pareto genetic al-
gorithm (PGA, [69]). Ritzel et al. [116] applied PGA and VEGA to a HC
optimization problem where the objectives were to minimize the containment
design cost while maximizing the design’s reliability. Ritzel et al. [116] con-
cluded that the PGA was superior to the VEGA in finding the largest portion
of Pareto optimal solutions.

Rogers and Johnson [119] implemented a multi-objective simulated annealing
algorithm (SAA) using a linearly weighted formulation along the lines of eqn
(15). The objective functions were “minimize source removal cost” vs. “mini-
mize source remaining.” Although the weights were fixed, the stochastic nature
of the SAA provided a range of solutions with variable values of the objective
function. These solutions were used to plot a tradeoff curve. Erickson et al.
[61] used the niched Pareto GA (NPGA) developed by Horn [78] to develop
tradeoff curves for cost vs. contaminant mass remaining for PAT problems.
The NPGA was compared to a single objective GA, where the contaminant
mass remaining was fixed as a series of constraints, and to a random enumer-
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ation. The NPGA was shown to be superior in terms of both computational
performance and Pareto front metrics for larger numbers of decision variables
(e.g. n > 5 extraction wells).

The challenge remains for the decision-maker to choose a “best” solution
among the infinite number of solutions on the tradeoff surface. If the rela-
tive importance (to the decision-maker) of each objective function is known
a priori, we can aggregate the objectives into a single objective function and
solve the resulting problem with the appropriate optimization method. For
example, we could minimize a weighted, linear combination of the objective
functions, as in

2]

min f = ;rel}zn > apfi (15)

")
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where a; > 0 are weighting coefficients representing the relative importance
of the n; objective functions. The usual approach is to properly scale the
objective functions and to scale the weighting coefficients as > ;% a; = 1.
This approach was used by Xiang et al. [143] in a two-objective PAT design
problem, where the weights were chosen as a; = as = 0.5, implying equal
importance to the objective functions. In cases where the values of a; are
unknown a priori, it is necessary to solve eqn (15) for many values of a;. Each
solution can be plotted on a tradeoff surface; however this approach is limited
to finding solutions only where the tradeoff surface is convex.

Fig. 1. Pareto domination
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3.7 Stochastic Approaches

Subsurface design problems are usually solved deterministically, as seen in the
majority of the works cited in Table 1. However, it has been noted for more
than a decade that, due to the variability of and impossibility to character-
ize subsurface systems, stochastic modeling approaches are more appropriate
for many subsurface problems [137, 138, 14, 87|. Of primary concern is the
spatially variable nature of hydraulic conductivity, which is well known to
vary markedly in space and is usually assumed to be log-normally distributed
[565, 138, 87]. However, hydraulic conductivity is not the only aspect of subsur-
face models that is variable and difficult to characterize; boundary conditions,
initial conditions, mass transfer parameters [112, 114], reaction rate coeffi-
cients [103], and even the form of the flow and transport model itself [84, 87]
are often uncertain. Because the unknown model parameters are distributed
in space, inverse solution approaches are notoriously ill posed [84]. Regardless
of the difficulty associated with problems of concern, this situation is realistic,
and efforts to incorporate uncertainty into the design of subsurface manage-
ment solutions are critical for advancing a solution to the true problem of
concern.

In a series of papers, Freeze and co-workers advanced a framework for hy-
drogeological decision analysis [58], considered a simple subset of the general
framework that relied upon simple analytical models [94], extended the work
to uncertainty in a variably saturated model using Monte Carlo analysis to as-
sess slope stability [127], and investigated the important question of the value
of information [57]. This comprehensive approach has yet to be fully exploited
due to technical difficulties associated with the variety of coupled problems
involved: parameter identification, stochastic flow and transport modeling,
chance constraints, multi-objective problems, value of information, and risk-
cost-benefit modeling. Interest in this conceptual approach remains high and
recent work on a PAT application has shown the importance of an accurate
characterization of nature and probability of system failure [121].

There remains a divide between practitioners charged with remediating sub-
surface systems and researchers focused on advancing improved techniques
to optimize the design of such systems. This is largely due to the difficulty
with the real problems of concern and the need to tackle small bites of the
complex problem to incrementally advance the field with a manageable level
of effort. This conflict leaves practitioners unsatisfied and the real problems
largely unsolved. Practitioners may view the problem as an optimal control
problem and implicitly acknowledge that they are uncertain about the sys-
tem behavior—relying on measurements of system performance with time to
inform their decision making.

23



The work of Lee and Kitanidis [87] is useful from this perspective. They formu-
lated the problem as a stochastic optimal control problem in which sequential
adjustments to pumping rates were made based upon all prior information,
which was used to update the model predictions using an extended Kalman fil-
ter. Such approaches can be termed stochastic control problems with recourse.
They showed that such approaches that naturally account for uncertainty in
parameter distributions and modeling errors provide a more robust solution
than a sequential deterministic management plan. Lee and Kitanidis [87] did
not couple this approach with the details of the optimal design, only time
varying pumping rates, and they did not consider the value of information or
complex and realistic patterns of subsurface heterogeneity. Bear and Sun [23]
have also recently advanced a multistage recourse approach considering design
reliability.

Reliability is a natural and important aspect of remediation design that can
be considered using stochastic approaches and has been considered in recent
works [134, 23, 13]. Because of the links among cost, reliability, and uncer-
tainty, this is a natural case in which multi-objective approaches are useful.
This is so because highly reliable solutions can be relatively very expensive
and presenting a decision maker with this sort of information a priori might
well effect the decision made.

3.8 Challenges

The many challenges in the optimization of subsurface remediation problems
include contending with objective functions and constraints that are nonlinear
with respect to decision and state variables, state variables that are stochastic,
the numerical solution of difficult governing equations, and multiple objectives.
In light of these challenges, we believe that the community should consider
undertaking the following tasks:

(1) introduce more efficient and robust optimization solution methods,

(2) develop a set of test problems for the purposes of benchmarking,

(3) consider a wider range of remediation technologies,

(4) consider routinely the use of stochastic representations of subsurface
properties,

(5) represent more realistically the physics, chemistry, and biology in the
contaminated subsurface,

(6) develop more efficient flow and transport simulators, and

(7) apply multi-objective solution methods.
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4 Potential Methods

In this section, we discuss emerging ideas for meeting the challenges in the
optimization of subsurface flow and transport problems. We begin with a
holistic view of the optimization problem and introduce the “all-at-once” ap-
proach, where decision and state variables are considered simultaneously. We
next consider a class of optimization solution methods: deterministic sampling
methods. These methods have received scant attention in the subsurface op-
timization community, but show promise for handling the typical difficulties
(e.g. local minima, nonconvexity, hidden constraints, and nonsmoothness) en-
countered in subsurface flow and transport optimization problems. We address
potential approaches for dealing with stochastic optimization problems, which
we anticipate will become the norm, rather than the exception, in the near fu-
ture. Lastly, we discuss potential applications of multi-objective optimization
methods to subsurface optimization problems.

4.1 Formulation of Optimization Problems

Having selected appropriate algorithms, one still must decide on how the state
and design variables will be treated in the optimization. The all-at-once ap-
proach treats both w and w as optimization variables. This means that the
optimization looks at the vector z = (w, u) as a single set of design variables,
ignoring the dependence of u upon w. In this approach, the simulator and
optimization code must be tightly coupled, since no distinction is made be-
tween state and decision variables in the optimization algorithm. This has the
significant advantage that if the optimization method and the simulator are
designed simultaneously, one can often compute gradient information from
linear sensitivity equations [85] that can be solved as the simulation runs.
Such equations can be derived directly, with an adjoint formulation, or with
automatic differentiation [73].

One disadvantage of the all-at-once approach is that it is difficult to use an
existing simulator in this mode because (a) differentiating the mathematical
model with respect to both decision and state variables requires access to parts
of the code that may not be intended for user access, and (b) the simulator
may not be designed with optimization in mind, having, for example, control
structures (if-then-else and case statements, for example) that add artificial
nonsmoothness. While a global optimization algorithm method can, in prin-
ciple, overcome this problem, the high cost in function evaluations, especially
for large numbers of design variables, may be overwhelming.

If the problem is smooth and has only continuous variables, the all-at-once
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approach makes nonlinear constraints on w much easier for the optimizer to
handle. This method for handling state constraints is well-known in the control
literature [25], where very large problems have been solved.

In [46, 104] and related papers, a differential-dynamic programming [96] method
has been applied to PAT and BIO problems. The simulator is tightly cou-
pled with the optimizer, computing gradients and second derivatives in a way
similar to the method of adjoints in optimal control. This means that some
derivatives must be available analytically to form the adjoint equations. The
method is equivalent to a Newton iteration and, therefore, converges rapidly
for smooth problems. The simulator must be designed at a detailed level to
work well with this approach. See [44, 91] for examples of the these simulators.

The level of effort in an all-at-once approach is high. Experts in optimization,
groundwater modeling, and simulation must combine in the design of a state-
of-the-art simulator that can interface at a low level with more than one
optimization algorithm. In many cases, however, one must use a simulator
that was not necessarily designed with optimization in mind and is difficult to
modify. The “black box” approach treats w alone as the optimization variable.
With this approach, any optimization method can be applied and simulators
can easily be changed, even when the optimization is in progress. One scenario
for the black box approach is if stand-alone flow and transport simulators are
combined to track contaminant transport, producing an objective function
value that is given to the optimizer. The flow, transport, and optimization
codes can be completely arbitrary and need not be developed simultaneously.
Moreover, the flow and transport models can be changed as the optimization
progresses.

4.2 Deterministic Sampling Methods

Sampling methods for solving optimization problems have been developed
primarily over the last decade in the applied mathematics community, but
rarely have been applied to subsurface flow and transport problems. Sampling
methods avoid local minima by examining the function at arrays of points,
adjusting the size of the array in response to the progress of the optimization.
In this way local minima can be “stepped over” when the points in the array
are widely spaced and, as the optimization continues and the spacing becomes
tighter, global minima can be accurately resolved. Sampling algorithms have
performed well for problems with multiple local minima in a variety of ap-
plications, [86, 28, 21, 142, 131]. Battermann et al. [21] solved a problem in
control of subsurface temperature with such a sampling method.

Many problems with multiple local minima, nonconvexity, hidden constraints,
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and nonsmoothness can be most efficiently addressed with sampling meth-
ods. Unlike simulated annealing or genetic/evolutionary methods, we consider
methods which are specifically designed to solve problems with difficult, but
not violently oscillatory, optimization landscapes, such as those in Figure 2.

Figure 2 (a) [131, 67] is a graph of the negative of the maximum power-added
efficiency of an amplifier as a function of the real and imaginary parts of the
second harmonic load impedance. The simulator for this work had internal
iterations that required varying numbers of iterations away from the optimal
point, leading to the rough surface at the peak. The model smoothed out near
the optimal point.

Figure 2 (b) [21] is a graph of the response of a simulation of subsurface tem-
perature to the pumping rates of two control wells. The nonsmoothness comes
from the thermal dispersion tensor in the flow and temperature simulation.
There are no internal iterations in the simulator, and therefore the surface is
smoother than that in Figure 2 (a).

Fig. 2. Optimization Landscapes
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By a sampling algorithm we mean one which uses only evaluations of the func-
tion to be minimized in the optimization. Sampling methods converge slowly,
and when gradient information is available, conventional methods perform
far better at resolving local minima to high precision. Therefore, sampling
methods are usually applied to difficult problems with complex optimization
landscape and to problems for which derivative information is not available
[131, 54, 68, 28, 86, 27|.
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One can improve coordinate search by changing either the stencil or by using
the stencil values in more subtle ways. Methods like Hooke-Jeeves [77] or MDS
only examine the stencil until a better point is found and then either move to
that point (MDS) or use the new, better, point as a base for further exploration
of the search space. Implicit filtering [85, 67] and Hooke-Jeeves also use the
values of f at the stencil points to look for new, promising, points to evaluate
f- In the case of implicit filtering, the new point may not be on the current
grid.

When applied to smooth functions or small perturbations of smooth func-
tions, stencil-based methods are supported by a rich convergence theory [85,
135, 136, 67, 35, 17, 15]. The results in Audet and Dennis [18] require only
smoothness at a limit point to prove that that limit point is stationary in
a generalized sense. In practice these methods perform well for problems far
more difficult than those covered by the theory. These methods have been
applied to problems with both hidden [42, 28, 34] and explicit [88, 16, 15]
constrains. New methods for problems with categorical variables have all been
developed [17, 86].

Two examples of stencil-based methods are implicit filtering and the mixed-
variable-programming method. Implicit filtering [67, 85, 33] is a finite-difference
projected quasi-Newton algorithm in which the difference increment is varied
as the optimization progresses. In this way local minima that are artifacts
of low-amplitude noise do not trap the iteration and the noise is implicitly
filtered out. The method was designed for problems with objective functions
that are small perturbations of smooth functions.

The MVP (Mixed Variable Programming) method [17] is an approach to cate-
gorical variables that extends the pattern in the categorical variables by using
application-specific knowledge about what “nearby” means for the categorical
variables. If we were attacking convex problems so that a global solution was
a reasonable goal, then even this would not be required. The user notion of
“nearby” is used to put a metric on the mixed space of continuous and cat-
egorical variables and hence define a local optimizer. In this way the search
and can be managed in a similar way as for the continuous variable case, and
any method can be used to obtain improvement in the continuous variables.
A simple pattern search method of the type described in Torczon [136] was
used to improve the continuous variables in an application [86].

Exceptions to the stencil-based paradigm are the Nelder-Mead [109] and DI-
RECT [81] methods, where the sampling is less structured. The Nelder-Mead
algorithm adjusts the shape of the sampling pattern to respond to the relative
values of the best few points. In this way the method seeks to follow paths of
decreasing function values. When working well, the Nelder-Mead method is
very effective. However, it can fail on very easy, smooth problems [85].
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The DIRECT (DIviding RECtangles) method partitions the design space into
hyperrectangles, sampling at the centers, and subdividing those rectangles
that, based on their size and the function values at the centers, show promise.
The rules for subdivision vary [81, 59, 60, 19, 20] depending on the number of
the design variables and the bias toward local or global search.

4.8 Stochastic Solution Methods

Routine use of stochastic solution approaches will be necessary to produce
mature solutions to many subsurface design problems. This is so because of
the inherently spatially variable nature of subsurface systems. While we ad-
vocate approaches such as the comprehensive coupled approach of Freeze and
co-workers [58, 94, 127, 57, 121], significant challenges remain that will re-
quire new approaches. Chief among these are alternatives to expensive high-
resolution Monte Carlo solutions to assess the effect of uncertainty in model
parameters on model predictions. While relatively few Monte Carlo simula-
tions have provided useful information in some cases [134, 13], accurate rep-
resentation of high reliability designs requires high resolution simulations to
resolve the tails of the probability density function. Such high reliabilities are
of interest if the penalty for non-compliance is high [121]. However, Smalley
et al. [126] used a noisy genetic algorithm to show that this is not necessarily
the case.

Alternatives to Monte Carlo analysis are possible [87], but resolution remains
an issue. For example, evolving analytical methods for assessing the cross-
covariance between hydraulic conductivity and heads [38, 39, 111, 37] provide
possible alternative approaches. Another interesting notion worth exploring is
the use of stochastic finite element approaches, which provide a means to assess
the probability density function of the model output in terms of the proba-
bility density function of model input parameters using series expansions for
both model inputs and outputs. When effective, such approaches can greatly
reduce the computational effort needed compared to Monte Carlo methods.
These methods have received relatively little attention in the water resources
literature [65, 64, 63]. Thus, the ability of these methods to adequately resolve
model output tails from a density function remain an open issue.

Another stochastic optimization approach, second order cone optimization
(SOCO) [24], has been used recently by Ndambuki et al. [108] to consider the
effects of uncertainty on optimal groundwater management policies. SOCO
transforms the stochastic optimization problem into uncertainty ellipsoids that
are functions of the uncertain parameters (in this case, the transmissivity
field). Ndambuki et al. [108] formulated a multi-objective problem where the
objective of maximizing pumping rates in a water supply system was pitted
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against maximizing reliability of the design. Solutions were obtained using
the multiple scenario approach (a variant of the Monte Carlo approach) and
SOCO and it was found that SOCO was more robust for a given number of
scenarios. It was also noted that SOCO works especially well when recourse
is considered, since SOCO requires that only a relatively small part of the
problem must be re-executed when new parameter information is provided.
Drawbacks of SOCO are that the method requires convex objective function
surfaces and linear (or linearized) relationships between the decision variables
and the uncertain parameters.

Evolving approaches, such as the Bayesian Maximum Entropy (BME) ap-
proach [36, 26, 125], provide a means to incorporate multiple source of hard
and soft information and physical laws in an information processing frame-
work that is not restricted to traditional Gaussian approximations [138, 87].
The BME method is well-suited to the complex, multistage information pro-
cessing task needed to advance more effective design approaches in the light
of uncertainty, but much work remains to be done to realize this potential.

Regardless of the numerical solution approach used, high-resolution distributed
parameter models will continue to stretch our available computational re-
sources for the foreseeable future. It will be necessary to take advantage of
the state-of-the-art computational facilities to affect the most satisfying solu-
tions. Currently, this means massively parallel, distributed memory comput-
ers. While it may be trivial to get high performance for a Monte Carlo-based
approach on such a computational architecture, this situation is certainly not
the case for individual model simulations and evolving analytical and semi-
analytical methods.

4.4 Multi-objective Solution Methods

Evolutionary algorithms are attractive for solving multi-objective problems,
but at least three challenges remain to be resolved. First, EMO’s can be com-
putationally burdensome, due to the requirement of performing many (hun-
dreds to more than tens of thousands) of objective function evaluations. This
problem can be ameliorated by exploiting the easy parallelization of the ob-
jective function evaluations, within each generation. In addition, the field of
EMO’s is expanding rapidly. For example, the micro-GA of Coello Coello and
Pulido [41] and the recent version of the non-dominated sorting GA (NSGA-
I, [49]) have shown significant decreases in the computational effort required
for convergence to a Pareto optimal solution. Second, the algorithms’ perfor-
mance depends on heuristic parameters (e.g. population size, crossover rate,
niche size, etc.) for which the optimal values are unknown. Attempts are being
made to resolve this problems. Reed et al. [115] and Erickson et al. [51] have
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proposed guidelines for selecting optimal values of the heuristic parameters
associated with variants of the GA.

The third challenge is to develop performance metrics that can be used to
define convergence and for comparisons among Pareto solutions generated by
different EA’s. In addition to computational efficiency, there are two general
performance metrics multi-objective EA’s: the Pareto optimality of the solu-
tions and the portion of the Pareto front found by the algorithm. Since the
“true” Pareto front is usually unavailable for a typical subsurface remediation
problem, these metrics can only be applied in a comparative sense.

The MO approach can be expanded to include uncertainty implicitly, where
the objective functions values are based on model equations g that are stochas-
tic. In this case, the solutions to the MO problem are expressed as values of
the decision variables that correspond to a set of probability density functions
(pdf) for the objective functions. For example, we could formulate the problem
as in the following:

find w such that min f°* = min f*![w, @(g(w))] (16)
max f’clean — max fclean[w’ ﬁ(g(w))] (17)
and u,w € €, (18)

Here, the solution, w, is the vector of decision variable values that would
produce a given pdf of cost (f¢°**) and cleanup performance (f<¢*") and meet
the constraints. In other words, the solution gives values of the decision values
where there is an associated probability that given level of cost or cleanup will
occur.

This approach has been taken in Figure 3, which shows a tradeoff curve “en-
velope” for a PAT design problem. In this problem, we are attempting to find
the least cost solutions for a given cleanup target, which is expressed as the
maximum concentration remaining in the aquifer at the end of a fixed reme-
diation period. The hypothetical problem involves applying PAT to remediate
a conservative contaminant plume in a homogeneous aquifer. The aquifer hy-
draulic conductivity is a stochastic variable, with a uniform, logarithmic prob-
ability distribution ranging over approximately four orders of magnitude. We
use steady-state groundwater flow and transient transport simulators based
on eqns (9) and (10). The decision variables are the static extraction rates
for two wells that are located in the center of the plume. The cost objective
function includes nonlinear pumping lift costs and nonlinear treatment costs,
based on treatment by granular activated carbon. More detail on the simu-
lators, the cost objective function, the hypothetical aquifer configuration and
the multi-objective optimization method can be found in Erickson et al. [51].
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The envelopes in Figure 3 represent the 95% confidence intervals around an
expected value (bold line). The envelope was generated by randomly sampling
the distribution of hydraulic conductivity values and finding the corresponding
Pareto optimal sets of pumping rates, with respect to cost and contaminant
mass remaining in the aquifer. One of the interesting, but not entirely unex-
pected, results indicated in Figure 3 is the significant increase in the width of
the envelope as the cleanup target becomes more restrictive.

Fig. 3. Cost vs. mass remaining tradeoff curve for 95% most probable cost and mass
remaining

Alternatively, uncertainty can enter the problem implicitly via the constraints,
or explicitly, via an objective function such as

max f* = max f*[w, G(g(w))] (19)

where f# is a measure of reliability. Reliability can measured, for example by
determining the probability that a certain cleanup level, at a certain cost can
be achieved. The Pareto optimal set of w and associated values of ff, feost
and fee would form a surface, where tradeoffs between cost, reliability, and
cleanup performance could be viewed.

An alternative approach to solving for the entire Pareto front or tradeoff curve
is to determine weights, or user preferences, and solve for example eqn (15).
This approach has been applied to surface water optimization problems, but
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has not been applied to subsurface remediation problems to our knowledge.
The weights A = [a1,as,...ak], can be determined a priori by developing
utility functions that describe the decision-maker’s preferences with regard
to tradeoffs among multiple objectives [130]. Other a priori methods include
lexicographic ordering and goal programming.

Yet another approach is taken with interactive methods, which do not as-
sume prior knowledge of decision-maker preferences, but act to guide the
decision-makers towards their preferences among or ordering of objective func-
tions. These methods are iterative and begin with some initial guess as to the
decision-maker’s preferences. For example, the multi-objective problem could
be formulated as in (15) and the initial guess could be an equal set of weights
(e.g. ar, = 1/ny for all k). The corresponding optimal solution is found (with
the appropriate single-objective optimization method) and the decision-maker
determines whether the solution is appropriate. If not, a new set of weights is
chosen, and procedure continues until the preferable set of weights is found.

There are several interactive methods in the decision analysis literature [100];
some of these methods, such as ELECTRE [120], have been applied in multi-
objective, surface water quality management problems [50]. Most of the meth-
ods are based on the concept that determining the decision-maker’s preferences
is an optimization problem in itself. Thus, as the preferences become better
known, iteration by iteration, a value (or preference or utility) function can
be fitted to the prior results and used to predict the decision-maker’s final
or near-final results. For example, a steepest descent method can be used
to determine the step-size and direction to be taken for the weight vector
(A = [a1,ag,...ak]) solution at the next iteration level (as in the GDF
method, [62]). The choice of an appropriate iterative method depends on
the quantitative and qualitative characteristics of the underlying optimiza-
tion problem, such as the differentiability of the objective functions and the
decision-maker’s experience in stating their preferences among the objective
functions.

5 COMMUNITY PROBLEMS

While resolution of the challenges in subsurface optimal design will take con-
siderable time and effort, we believe that the community will benefit imme-
diately from a framework for comparison among methods. In this section, we
outline the general principles and details needed to define a systematic set
of test problems and a basis for comparing competing methods. We advocate
several general principles to guide the design of a set of community problems:

(1) the problems should be indicative of real-world problems and should cover
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a range of anticipated difficulties in finding a solution, i.e. non-convexity,
non-smoothness, and multiple local minima;

(2) the problems should be specified in complete detail, allowing easy repli-
cation of the solution by any investigator;

(3) the problems should have multiple uses, including numerical and opti-
mization method development, testing, and comparisons, and education
and community training;

(4) the problem specifications should be intended to encourage, not restrict,
innovation in all areas of optimal design and subsurface science; and

(5) guidelines should be developed to allow fair and accurate comparisons
among competing methods.

We outline in the following a range of applications, physical models, objective
functions, and constraints that together make up a set of test problems consis-
tent with the principles outlined above. The units associated with each variable
follow the m-kg-s system; these units can be assumed in cases where they are
not specifically mentioned. In order to conserve space, complete details of all
aspects of the community problems have been included in the supplemental in-
formation (SI) section of this paper (http://www.elsevier.com/locate/advwatres).
We outline in the text that follows the general nature of these problems.

5.1 Applications

A set of four applications is listed in Table 2 along with corresponding entries
for possible choices of domains, model formulations (g), objective functions
(f), and constraints (2,), the details of which are included in the sections
that follow. The applications considered are: a well-field design, well-field de-
sign with seawater intrusion, the capture of a contaminant plume, and PAT
remediation of a contaminant plume(s). The domains include a range of homo-
geneous and heterogeneous systems. The models include mathematical repre-
sentations of fluid flow and contaminant transport in confined and unconfined
aquifers. The objective of all problems is to minimize the cost of the installa-
tion and operation of a set of wells. In addition, the PAT application includes
a treatment cost component. Decision variables include the number (n), lo-
cation (x;,¥;, 2;;4 = 1,n), and pumping rates (Q);) for all wells. Constraints
include bounds on individual and total pumping rates and heads.

The problem specifications are outlined so as to allow latitude in approaching
the design problem. For example, well locations and numbers can be arbitrary
or selected from a specified candidate set. Further, pumping rates can be taken
as constant, constant over intervals, or follow some user-specified function. By
leaving aspects of the problem solution to the modeler, we encourage creativity
and method evolution to deal with the most general, and demanding, designs.
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Table 2
Community Application Designs

Application | Description Domains | Models | Objectives | Constraint
Equations
I well-field A-E 1&2 |a (52)—(54)
II well-field/ sea- | A-E 3 a (52)—(55)
water intrusion
II1 capture zone A-E 2 a (52)—(54),
(56), (*)
v pump-and- A-E 4&5 |b (52)—(54),
treat (56), (57)

* capture constraint is specified by initial plume configuration

Table 3
Problem Domains
Domain | Description Hlog K ‘7120g K | NzTys72
A homogeneous -4.3 NA NA
B layered -4.3 1 NA
C random field I -4.3 1 5,5,0.75
D random field IT | -4.3 2 5, 5, 0.75
random field III | -4.3 1 50, 50, 7.5

Note: log refers to logig

5.2 Domains

Five domains are summarized in Table 3 according to a general description
and properties of a scalar K, which distinguishes these domains. The spatial
domain for all cases is © € [0, 1000] x [0, 1000] x [0, 30] m.

The medium properties are homogeneous for Domain A, with K = 5.01 x107
m/s. For Domain B, the domain consists of 10 layers of equal thickness with K
described as uniform in each layer, log-normally distributed, and uncorrelated
in space. The K distribution for Domain B can be downloaded by following
the instructions given at the end of the web page. For Domains C-E, K is
a correlated random field following a normal distribution in log-transformed
space where po5 x and 0120g x are the mean and variance of K in log;y space.
K is spatially correlated according to the exponential covariance model

2 2 2
cov(v) = o, x €XP (—J TN ) (20)

noomy o m:
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where v, v,, v, and v, are spatial coordinates and 7, 7,, and 7, are spatial
correlation scales in the z, y, and z directions. Domains C and D differ from
each other in the value of log K variance, afog k- Domains C and E differ from
each other in the value of the correlation scales 7, 1,, and 7,.

5.8 Mathematical Models

A variety of mathematical models with varying degrees of sophistication may
be applied to approximate the applications outlined in Table 2. Table 4 sum-
marizes the mathematical models detailed below. We specify the models in
mathematical form only, so as not to preclude a given simulator, which might
stifle advancement of the development of improved simulators. We anticipate
comparing among solution methods that share a common set of simulators
along with methods with different simulators.

Model 1 follows eqn (9), as applied to confined single-phase flow. The auxiliary
conditions for Model 1 are

oh oh| _ Oh
%:O_ 8y . =3, :0_0,t>0 (21)
g.(z,y, 2 = 30, i> 0)=—1.903 x 10~% (m/s) (22)
h(z = 1000,y, z,t > 0) =50 — 0.001y (m) (23)
h(z,y = 1000, z,t > 0) =50 — 0.001z (m) (24)
S(z,y,2,t>0)=0.0 (25)
h(z,y,z,t=0)=hs (26)

where ¢, is the Darcy flux out of the domain, h, represents the steady-state
solution to the flow problem in the absence of additional sources and sinks
provided by a specified design, and Sy = 107 (1/m).

Model 2 is similar to Model 1 but applies eqn (9) to an unconfined flow system
with the auxiliary conditions given as

Oh Oh Oh
9|, 8_y azo_o,wo (27)
¢ (7, y,2=h,t > 0) —1.903 x 1078 (m/s) (28)
h(x = 1000,y,z,t > 0) =20 — 0.001y (m) (29)
h(z,y = 1000, z,¢ > 0) =20 — 0.001z (m) (30)
S(z,y,2,t>0)=0.0 (31)
h(z,y,z,t=0)=hs (32)
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where S; = 2 x 107" (1/m), representing the specific yield of the unconfined
aquifer. In Models 1 and 2, it is assumed that water is released from storage
instantly with a change in head.

Model 3 is appropriate for simulating seawater intrusion, and involves un-
confined flow, eqn (9), and conservative species transport, eqn (10). Density
dependence is considered via a concentration-dependent expression

p=po+ Ccr =Gy (33)

80‘(

where py is the density of freshwater at the reference temperature, which is
assumed to be time and space invariant, dp/0C" is the change in density with
respect to solute concentration, and Cj is the background concentration of
solute in the freshwater, taken as C} = 0. The specific storage in eqn (9) is
adjusted for changes in density by a linear approximation: Sy = [2x107(p/po)]

(1/m).

The auxiliary conditions for Model 3 are

NN
[a)

O _ Onp _Oh g (34)
0z |,_, 0|, 1000 0%,
p(z,y=0,2,t > 0)=pswgz (35)
¢y (7, y = 1000, z,t > 0) = —1.282 x 107° (m/s) (36)
h(z,y,z,t=0)=hs (37)
oC :80 :80 _00 —0.¢>0 (38)
9z |,y 0% |, 0z |,_ 0z |,
C(z,y=0,2t>0)=C"",t>0 (39)
(40)
(41)

0
)=

C*(z,y = 1000, 2,t > 0) =0, t>0
)=Cs(z,y, 2)

H~
—_

C'(z,y,2,t =0

where py,, is the density of seawater, C}, is the concentration of solute in
seawater (C', = 35 kg/m?), and C} represents the steady-state solution to
the solute transport problem in the absence of additional sources and sinks
provided by a specified design.

Models 4 and 5 are appropriate for species transport as described by eqn (10)
and the auxiliary conditions given as

oC _oC _oC _oC —0.t>0 (42)
ox o0 oy y=0 0z 0 0z —h

C*(z = 1000,y, 2,t > 0)= C*(x,y = 1000,2,t > 0) =0 (43)

C'(z,y,2,t =0)=Cj(z,y, 2) (44)

37



where C§(x,y, z) is the initial contaminant distribution. The unperturbed (no
pumping) flow fields for Models 4 and 5 are provided by the unconfined flow
Model 2 applied to a choice from the set of possible Domains A-E. Appli-
cations III and IV require initial contaminant plumes that are expected to
be captured or remediated. The initial concentration field, C§j, may be gener-
ated by simulating plume development from a finite source for ¢ € [—t;, 0]; for
additional details see the SI.

In Model 4, a single, conservative species (¢« = ¢) is considered, such that
7¢ =0 and R°¢ = 0. This model is used to generate the plume to be captured
in Application III and remediated in Application IV.

In Model 5, a conservative (¢« = ¢) and a sorbing (¢ = r) species are considered,
C° and C7, respectively. Model 5 is to be used with Application IV. For the
sorbing species, aqueous-solid phase mass exchange is described by a first-order
rate model

T =0 p'ky (W — ) (45)

where the Freundlich equilibrium model describes the relationship between
the solid phase mass fraction and the fluid phase concentration at equilibrium

W' = K (CT)™ (46)

where 7 is a species qualifier for the sorbing species, k; is a first-order mass
transfer rate coefficient, w”€ is the solid-phase mass fraction in equilibrium
with the fluid-phase concentration, w™ is the solid-phase mass fraction, Ky is
a Freundlich capacity coefficient, and n is an exponent related to the sorption
energy. A separate mass balance equation for the mass fraction of the species
sorbed to the solid phase must be solved,

aw’l‘s

ot

— k,f (wrse _ wrs) (47)

in addition to solving the solute species mass balances.

5.4 Objective Functions

The objective function for each application is indicated in Table 2 and in-
cludes a capital cost f¢ and an operational cost f° which depends upon
time. The generic objective is to minimize the sum of f¢ 4 f°. The ob-
jective function for all applications and models depends upon the number,
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Table 4

Model Formulations

Model | Description Model Equa-
tions
1 confined flow (9), (21)-(26)
2 unconfined flow (9), (27)—(32)
3 unconfined, density-dependent flow/conservative | (9)—(11), (27)-
species transport (41)
4 unconfined flow/conservative species transport (9)-(11), (27)-
(32), (42)-(44)
5 unconfined flow/conservative and retarded species | (9)—(11), (27)-
transport (32), (42)-(47)

location, and extraction/injection rate of all wells. This amounts to spec-
ification of Q;(x;,t), ¢ = 1,...,n. The set of {Q} are ordered such that
the extraction rates are ); < 0, ¢ = 1,...,n° and the injection rates are
Q; >0, i=n°+1,...,n, where n® is the number of extraction wells, and the
number of injection wells is n* = n — n®.

The capital cost for a well includes the well construction and, for the case of an
extraction well, the cost of a pump. Injection wells are assumed to discharge
under gravity feed conditions. The functional form for the capital cost is

fe= Z codi-’o + Z 01|Q;n‘bl(zgs — hmm)be (48)
i=1 i=1
and the operational cost is
ty ne n
= / (Z CQQi(hZ - ng) + Z C3Qi) dt (49)
o \i=1 i=ne+1

where b; and c; are coefficients and exponents of the cost model, respectively;
d; is the depth of the well below ground surface, ()" is the design pumping
rate, zys is the ground surface elevation, A™" is the minimum allowable head,
iy is the total time of operation, h; is the hydraulic head in each well.

For the PAT application, the objective function includes not only the well
construction and operation costs but also capital and operational costs related
to treatment. We base our treatment cost functions on a cost model for air
stripping resulting in the capital cost function

fo = fdtaZ (50)
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Table 5
Objective Functions

f forms | Description Equations

a installation + extraction + injection fao = fo+ f2
(48), (49)

b installation + extraction + injection + treatment o = £+ 1
(50), (51)

and the operational cost function

ty
fo=fo+ / 7 (c5 — c6@S) dt (51)
0

where Z is the total height of the stripping tower required, and Q% = ?;1 Q;
is the total extraction rate.

5.5 Constraints

The objective functions listed in Table 5 are constrained by hydraulic and
solute mass constraints. For Applications I and II there are constraints on the
total extraction rate due to the well-field demand, the extraction and injection
rate at each well, and the aquifer drawdown

Qr < Qp™ (52)
QT < Q; < QM* j=1,...,n (53)
h™® > h; > h™r i =1,...,n (54)

where Qr = Y, Q; is the net pumping rate, Q7" is the minimum total
extraction rate, Q™ is the maximum extraction rate at any well, Q™% is
the maximum injection rate at any well, /%" is the maximum allowable head,

and A™"™ is the minimum allowable head.

For Application II an additional constraint is specified for the maximum solute
concentration in the extraction wells
Ct

C;ZHSFS“’ i=1,...,n° (55)

where C} is the solute concentration at extraction well 7, and Fj,, is the max-
imum allowable normalized solute concentration.
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For Application III, we also constrain the total net extraction rate

Y Qi > QF™ (56)
=1

where Q7" is the maximum total extraction rate. The plume capture con-
straint is specified by the boundary of the initial contaminant distribution
for each model domain. We leave it to the modeler to choose the physical
and mathematical representation of the constraint (e.g. advective control vs.
gradient control).

Application IV requires a constraint specifying the aquifer cleanup perfor-
mance. To provide a common metric, we constrain the maximum global frac-
tion of mass that may remain in the system at a time ¢y, which is possible
to do for the numerical studies of interest here but difficult to measure in
practice. The fractional mass remaining constraint is

gacb + 03 was _ dQ
fn( Y )t_tf <M (57)
o (69C + 0 ppar),_, A2

where M is the maximum fractional mass remaining at time ¢y. When ¢ = c the
solute mass on the solid-phase contribution is identically zero. However, when
L = r sorption to the solid phase must be accounted for when computing the
fractional mass remaining in the system. In practice, remediation constraints
are often based upon concentrations, but such simulated values are affected
by many factors, such as numerical discretization details, screened intervals of
a well, etc., that we wish to avoid.

5.6 Comparative Principles

Comparison among competing solution methods for optimal design is not triv-
ial. In general, two types of criteria are of interest: (1) the objective function
value achieved at the termination of the optimization and (2) the computa-
tional effort expended. Care is necessary in achieving and documenting with
scientific certainty both of these criteria. One problem when comparing among
different methods is that, since the termination criteria varies from method
to method or even from user to user, comparisons of objective function values
and computational effort are not straightforward.

We suggest the following principles as general guidance to facilitate compar-
isons among competing methods:
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(1) computational algorithms should be reported in sufficient detail to repro-
duce the results directly or with reference to a peer-reviewed publication;

(2) the computational platform should be fully specified including make,
model, processor type and speed; RAM, operating system and release;
language(s) used; compiler make, release, and switches; and complete de-
tails of any third-party or public domain software used including release
details;

(3) objective function values should be confirmed by accurate, grid-independent
numerical solution of the specified problem;

(4) non-deterministic solution methods should include a measure of the error
in the objective function value returned;

(5) claims of a global minimum solution should be supported by results from
multiple approaches with multiple starting locations, and where feasible
with a grid search-—a more realistic goal is a significant improvement in
the best previously obtained optimal solution for a given problem;

(6) optimization results depending upon free parameters should report on the
values of those parameters, the sensitivity of results to those parameters,
and ideally on methods to estimate good values of all free parameters;

(7) computational effort should be reported in terms of the number, CPU
time, and operations of all types and levels of function evaluations and
approximate evaluations; the optimization algorithm; and all other sig-
nificant uses of CPU time;

(8) the scalability of the optimization with regard to the number of decision
variables, i.e., the relationship of CPU time to the number of decision
variables should be investigated and reported; and

(9) if a parallel solution approach is used, scalability of the results in terms of
total CPU time required as a function of the number of processors used
in the solution should be reported.

5.7 Summary

The combinations of models, objective functions, constraints, and model do-
mains described in the previous sections will pose many of the difficulties
anticipated in solving real-world problems:

(1) The objective functions and constraints include integer terms that de-
pend on the decision variables and on nonlinear relationships between
the constraints and the decision variables.

(2) Evaluation of the objective function is based on solving model equations,
especially the transport equation, that are difficult to solve accurately
and quickly.

(3) The combination of flow boundary conditions and hydraulic conductivity
distributions gives rise to extremely complex relationships between the
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objective function, the decision variables, the constraints, and the state
variables.

(4) The number and range of decision variables is potentially enormous, re-
quiring either very fast solutions or judicious narrowing of the decision
space.

There are several directions in which these test problems can be extended.
In general, we advocate the continued evolution of community test problems
that are increasingly more realistic in terms of our representation of the phys-
ical and chemical characteristics of the subsurface environment, contaminant
sources, and remediation approaches. We also advocate coupling data collec-
tion for stochastic systems with assessments of the value of information, con-
sidering multi-objective problems, and implementing strategies with recourse.

6 CONCLUSIONS

We have reviewed critically the literature in the subsurface hydrology field
related to optimal design. While significant work has been done, much re-
mains to be done before a mature level of understanding is achieved. Based
upon our review of the literature we draw several conclusions: (1) optimization
problems of central importance are nonlinear and usually have multiple local
minima; (2) models used to represent subsurface systems are usually stochastic
in nature and expensive to solve, especially when highly resolved; (3) optimal
decisions often involve multiple, competing objective functions; (4) conven-
tional approaches used to solve optimal subsurface design problems often lack
efficiency and robustness; and (5) in-depth comparisons among methods are
lacking.

We have suggested several new approaches for solving subsurface optimiza-
tion problems. We describe a class of optimization methods, deterministic
sampling methods, that have only recently been used in the subsurface op-
timization community, but are promising with regard to general properties
and encouraging results that have been obtained in many other challenging
scientific fields. We describe alternative approaches for solving stochastic opti-
mization problems, such as techniques for assessing cross-covariances between
uncertain parameters and state variables, stochastic finite element methods,
second order cone optimization, and Bayesian maximum entropy methods. Fi-
nally, we suggest a range of approaches to apply to multi-objective optimiza-
tion problems, with a focus on incorporating maximizing design reliability as
an objective and utilizing decision analysis techniques to determine prefer-
ences among multiple objectives. We strongly advocate the adoption of both
stochastic and multi-objective frameworks for the optimal design of subsurface
flow and transport systems.
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We end the paper with a detailed set of optimization problems for the commu-
nity to consider for benchmarking among the various optimization approaches.
The problems consider the following design applications: well field design, well
field design under the influence of seawater intrusion, hydraulic capture of a
contaminant plume, and pump-and-treat remediation of a two-species contam-
inant plume. The applications are specified in terms of the decision variables,
the physical domains, the governing flow and transport problems to be solved,
the objective functions, and the constraints on state and decision variables.
We consider the size and complexity of the problems to be more realistic than
those typically considered to date.
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