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Abstract

Identifying relevant clauses before attempting a proof may lead to more efficient automated
theorem proving. Relevance is here defined relative to a given set of clauses S and one or more
distinguished sets of support T . The role of a set of support T can be played by the negation of
the theorem to be proved or the query to be answered in S which gives the refutation search goal
orientation. The concept of relevance distance between two clauses C and D of S is defined using
various metrics based on the properties of paths connecting C to D. This concept is extended to
define relevance distance between a clause and a set (or multiple sets) of support. Informally, the
relevance distance reflects how closely two clauses are related. The relevance distance to one or
more support sets is used to compute a relevance set R, a subset of S that is unsatisfiable if and only
if S is unsatisfiable. R is computed as the set of clauses of S at distance less than n from one or
more support sets; if n is sufficiently large then R is unsatisfiable if S is. If R is much smaller than
S, a refutation from R may be obtainable in much less time than a refutation from S. R must be
efficiently computable to achieve an overall efficiency improvement. Different relevance metrics are
defined, characterized and related. The tradeoffs between the amount of effort invested in computing
a relevance set and the resulting gains in finding a refutation are addressed. Relevance sets may be
utilized with arbitrary complete theorem proving strategies in a completeness-preserving manner.
The potential of the advanced relevance techniques for various applications of theorem proving is
discussed
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Relevance; Relevance metrics; Theorem proving; Sorted inference

* Corresponding author.
E-mail addresses: plaisted@cs.unc.edu (D.A. Plaisted), yahya@ee.birzeit.edu (A. Yahya).
URL address: http://www.birzeit.edu/eng/enee/yahya (A. Yahya).

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0004-3702(02)00368-5



60 D.A. Plaisted, A. Yahya / Artificial Intelligence 144 (2003) 59–93

1. Introduction

Many applications can be presented as theorem proving tasks. Among those are proving
mathematical theorems, query answering in deductive databases under different semantics,
hardware verification tasks, nonmonotonic reasoning tasks and many others. The standard
automated deduction technique to prove a theorem is to show that the set of clauses
representing the given axioms and theorem negation is unsatisfiable. In many theorem
proving applications the vast majority of data does not participate in the refutation. This is
a result of a small subset of the theory being unsatisfiable. Irrelevant data may be dragged
into the computation resulting in inefficient proof search. It is of interest to determine
the set of clauses that are necessary for a refutation, a fact that can result in substantial
computational savings. Clauses needed for the refutation are relevant to the theorem
proving process. The selection of nonrelevant clauses in the theorem proving process
was recognized as a significant source of inefficiency for many theorem provers. This is
especially so in the presence of large amounts of data such as in query answering in large
databases. To rectify this, relevance testing techniques were suggested for incorporation
into theorem provers to improve their efficiency [6–8,14,18,20,23].

The goal of this paper is to allow for more efficient automated deduction through the use
of relevance. Often it is the case that one or more clauses of the theory are distinguished:
e.g., the negation of the query in deductive databases, the negation of the theorem in
mathematical theorem proving and the goal in other tasks. If a refutation exists, some
of the distinguished elements must contribute to this refutation. Any of these may be
distinguished as a set of support (SOS) and one is generally interested in refutations that
include the set of support. This is because the original theory (database, axiom set) is
(assumed to be) consistent and it may become inconsistent only after adding the set of
distinguished elements. Therefore one may attempt to find clauses that contribute to the
refutation that involve the set of support. Relevance is defined relative to a given support set
which serves as the seed for propagating relevance. This set of relevant clauses is referred
to as the relevance set for the given theory and support set.

The relevance set is a subset of the original set of clauses sufficient to generate a
refutation if the original theory is inconsistent. The smaller this set, the better, with the
limit being the minimally unsatisfiable set with minimal cardinality.

The relevance of a clause to the support set can be parameterized by a distance function
that defines how many intermediate clauses are needed to connect a given clause to the
support set. The concept of related clauses can be defined in terms of links; two clauses are
linked if they have two complementary literals the underlying atoms of which unify. This
definition can be further refined to exclude more clauses from being declared relevant, thus
decreasing the size of the relevance set. However, finding a compact relevance set can be
costly. The tradeoffs between the costs of computing the relevant set and the gains achieved
from working exclusively with the relevance set during the refutation search phase have to
be considered.

Certain theorem proving strategies such as model elimination [12,13] and the set of
support restriction of resolution [12] already restrict the search to clauses that are closely
related to a single support set. A study presented in [24] gives evidence for the superiority
of such goal-sensitive strategies. However, methods presented here permit the search to
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be restricted to clauses that are closely related to multiple sets of support simultaneously,
giving a more wholistic strategy. Also, goal-sensitive strategies such as model elimination
and set of support are often difficult to reconcile with efficient equality strategies such as
paramodulation. The methods of this paper permit one to make arbitrary complete theorem
proving strategies such as resolution goal sensitive, retaining completeness, by applying
them to the relevant set of clauses. Even for a single set of support, relevance strategies have
a different behavior from model elimination and the set of support restriction of resolution.
Relevance strategies permit one to find deep proofs involving clauses closely related to
the goal, whereas model elimination and the set of support strategy cannot generate deep
proofs without also selecting clauses that are only distantly related to the goal.

Relevance is appealing because it corresponds to “associations” between facts that
humans use in problem solving. Facts that are associated with a problem to be solved are
the ones most likely to be used in the attempted solution, as well as facts that are associated
in turn with these.

The rest of the paper is organized as follows: Section 2 presents some definitions and
background material. Section 3 defines relevance and relevance distance using links and
paths. Section 4 presents relationships between relevance distance and proof complexity, as
well as giving algorithms for finding relevant clauses. Section 5 presents other definitions
of paths and discusses their impact on the concept of relevance. Section 6 discusses
relationships between alternative path definitions and proof complexity. Section 7 discusses
general relevance metrics and especially the incorporation of sorts into relevance measures.
Section 8 discusses practical applications of relevance measures. Section 9 compares
the relevance measures presented here with other approaches in the literature. Finally,
Section 10 presents some conclusions.

2. Definitions and background

We adopt the standard notation as, e.g., in [5,12,17]. A first-order language L with
function symbols is assumed. The symbols →, ∧, and ∨ denote implication, conjunction,
and disjunction, respectively.

A literal is an atom or negated atom. If L is a literal then by Atm(L) we denote the atom
occurring in L. Given a set of literals A by Atm(A) we denote the set of atoms occurring
in A. A literal is negative if it is preceded by a ¬, else it is positive. The literals L and ¬L

are complementary.
A clause C is a disjunction of literals, often written as a set.
A theory S is a set (conjunction) of clauses. We assume that no clause has two

complementary literals.
A literal L is pure in a set of clauses S if all occurrences of L in S have the same polarity

(all are positive or all are negative).
A term or formula in which no variables occur is said to be ground.
The Herbrand base of L is the set of ground atoms over L.
An interpretation I is a (possibly infinite) set of literals in which each element of the

Herbrand base occurs once either positively or negatively. All elements of I are assigned
the truth value true.

https://www.researchgate.net/publication/220689498_Symbolic_Logic_and_Mechanical_Theorem_Proving?el=1_x_8&enrichId=rgreq-15b83edb04adfec6f257c7d5da903336-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU0NjgyNTtBUzoxNzk2ODI0MjMwOTEyMDJAMTQxOTg1MTAzNjU4NQ==
https://www.researchgate.net/publication/245573029_Automated_Theorem_Proving_A_Logical_Basis?el=1_x_8&enrichId=rgreq-15b83edb04adfec6f257c7d5da903336-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU0NjgyNTtBUzoxNzk2ODI0MjMwOTEyMDJAMTQxOTg1MTAzNjU4NQ==
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An interpretation I satisfies a clause C if the intersection of the sets of literals of I and
C is nonempty. Otherwise C is falsified (violated) in I .

An interpretation I is a model of a set of clauses S if it satisfies all clauses of S. If S has
a model it is satisfiable, else it is unsatisfiable.

Occasionally, as is common in the literature, we may refer to an interpretation as the
set of atoms it assigns true with the remaining atoms assigned false. Clearly, set inclusion
defines a partial order on interpretations defined in this manner. A model M of S is minimal
in the set inclusion sense if no proper subset of M is a model of S.

Two special atoms are used: � and ⊥ expressing truth and falsity, respectively. � is
satisfied in every interpretation, but no interpretation satisfies ⊥.

A substitution θ is a finite set of the form {x1/t1, x2/t2, . . . , xn/tn} where xi are distinct
variables, and each ti is a term with no occurrences of xi . If S is a set of clauses containing
only variables in θ and all ti are ground then θ is a grounding substitution for S. If ti are
all distinct variables then θ is a renaming substitution. An empty substitution is called the
identity substitution.

Given an expression (term, literal) E and a substitution θ , Eθ is the result of substituting
each xi by ti in E. Eθ is called an instance of E.

Given a set of clauses S then by grnd(S) we denote the set of (possibly infinite) ground
instances of S.

Given a clause C and a set Σ of substitutions, Σ is compatible on C if there is an
instance C′ of C such that for all σ ∈ Σ , C′ is an instance of Cσ .

Given two substitutions θ and σ , the composite substitution Eθσ is the result of
applying σ to Eθ . That is, (Eθ)σ .

These definitions can be extended to sets of expressions and formulae, in the obvious
way.

Two atoms L1 and L2 are unifiable if and only if there is a substitution σ such that
L1σ = L2σ . σ is a unifying substitution (unifier). Unifiers for sets of terms, atoms or
literals are defined similarly. A unifier θ is a most general unifier (mgu) for a set S if θ is a
unifier for S and for every unifier σ for S there is a substitution λ such that Sθλ = Sσ .

Two clauses C1 and C2 not sharing variables resolve if and only if there are two
literals L1 ∈ C1 and L2 ∈ C2 and substitution σ such that L1σ = ¬L2σ . If σ is the mgu
of L1 and ¬L2 then the resolvent of these clauses on L1 and L2, Res(C1,C2,L1,L2),
is (C1 \ {L1})σ ∪ (C2 \ {L2})σ . The literals L1 and L2 are called the literals of the
resolution, σ is called the substitution of the resolution, and (σ,σ ) is called the pair of
substitutions of the resolution. If C1 and C2 share variables, then Res(C1,C2,L1,L2)

is defined as Res(C1θ,C2,L1θ,L2) where θ renames variables of C1 so that no
variables are shared with C2. In this case, if (σ,σ ) is the pair of substitutions of the
resolution Res(C1θ,C2,L1θ,L2) then (θσ,σ ) is the pair of substitutions for the resolution
Res(C1,C2,L1,L2). If L1 and L2 are obvious then Res(C1,C2,L1,L2) may be written as
Res(C1,C2).

Definition 2.1. A resolution proof of clause C from a set of clauses S is a sequence of
clauses C1,C2, . . . ,Cn where Cn is C and each Ci is either in S or a resolvent of two
clauses Cj and Ck , and j, k < i . A refutation (of S) is a proof of the empty clause ✷. n is
the length of the proof (refutation if C = ✷).
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Definition 2.2. Given a set of clauses S then T ⊂ S is a set of support (SOS) for S if S \ T
is consistent.

T is a support class for S if T = {T1, . . . , Tn} and Ti is a SOS for S for i ∈ {1, . . . , n}.

3. Relevance basics

Relevance is meant to filter out clauses that do not contribute to the refutation. Generally
relevance is defined relative to a set of clauses S and a distinguished set of support T . The
role of T may be played by the (negation of the) query or the theorem to be proved.

The idea of relevance is to find a subset R of S, or a subset R of the instances of elements
in S, such that R preserves the refutational properties of S with respect to T . If such an R

exists then a refutation may be sought in R rather than in S. Minimality of R is important
as one would like to search for a refutation in a set with the least number of clauses. It
is also important that the effort in computing R should be small relative to the effort in
finding a refutation directly from S.

The concept of related clauses can be defined through unification (for resolution). Two
clauses C1 and C2 are linked (related) if they resolve with each other. Clauses may be
related indirectly through links to intermediate clauses. Therefore one may talk about
relevance distance between two clauses C1 and C2. To emphasize that the relevance
distance between C1 and C2 depends on the underlying set S, we denote such a distance
by dS(C1,C2). We drop the S subscript and use d(C1,C2) when the context is clear.

Two clauses are directly linked if they resolve. The literals on which they resolve are
called link literals. Two clauses may resolve on more than one pair of literals and therefore
may have more than one direct link. Examples are C1 = a ∨ ¬b,C2 = ¬a ∨ b linking on
both a and b; and C3 = P(a) ∨ Q(b),C4 = ¬P(x) ∨ ¬Q(x) linking on both P(a) and
Q(b). The following definition formalizes these concepts.

Definition 3.1. Given a set of clauses S:

• Let C1 and C2 be two clauses of S and suppose that there is a resolvent Res(C1,C2,L1,

L2). Then (C1,C2,L1,L2) is called a link between C1 and C2. We say that C1 and C2
are directly connected (linked) through L1 and L2. There may be more than one link
between C1 and C2; for example, there are two links between {p,q} and {¬p,¬q}.

• A path1 between clause C and clause D in S is a sequence C1,C2, . . . ,Cm of clauses
in S, such that C1 = C, Cm = D and there are links (Ci,Ci+1,Li,Mi+1) between Ci

and Ci+1 for all i , 1 � i < m. m− 1 is the length of the path.
• The (relevance) distance between clauses C and D in S, dS(C,D), is the length of

the shortest path between C and D in S. Thus dS(C,C) = 0 for any clause C in S.
dS(C,D) = ∞ if no path exists between C and D.

• If T is a set of clauses in S then the distance between T and clause C is the
minimal distance between C and a clause in T . dS(C,T ) = min({dS(C,D) | D ∈

1 In [20] the path is defined through the connection graph of S . The correspondence between the two
definitions is evident. Note that multiple paths may exist between two clauses.
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T }). Additionally, because dS(C,C) = 0 for any clause C we have dS(C,T ) =
0 if C ∈ T . If {T1, . . . , Tn} is a set of subsets of S, then dS(C, {T1, . . . , Tn}) =
max({dS(C,T1), . . . , dS(C,Tn)}).

Example 1. Consider S = {C1,C2,C3,C4,C5,C6,C7,C8,C9} where C1 = a,C2 = ¬a ∨
b∨ c,C3 = ¬b,C4 = ¬c∨ e,C5 = ¬a ∨ e∨ f,C6 = ¬e∨ r,C7 = ¬r,C8 = ¬s ∨ f,C9 =
s ∨ f .

• Clearly C1 is directly connected to C2 through (a,¬a).
Note that C9 is not connected to C5. f has the same polarity in both.

• d(C1,C2)= 1. d(C2,C3) = 1. d(C2,C4)= 1.
C3 is not directly connected to any clause besides C2.

• The following are the paths from C1 to C6:
C1,C2,C4,C6 and the path length is 3.
C1,C5,C6 and the path length is 2.
No path exists between C1 and C9 and therefore d(C1,C9)= ∞.

• In view of the previous item the distance from C1 to C6 is 2: d(C1,C6) = 2.
• Let T1 = {C1,C9}.

d(C6, T1)= min({d(C6,C1), d(C6,C9)})= min({2,∞})= 2.
• Let T2 = {C2,C5}. d(C6, T2)= min({d(C6,C2), d(C6,C5)})= min({2,1})= 1.

d(C6, {T1, T2})= max({2,1})= 2.

Convention. Given a set of clauses S = {C1,C2, . . . ,CN } and a support class T =
{T1, T2, . . . , TK} we will write S = ⋃N

i=1{Ci(d
i,1, di,2, . . . , di,K)}, where di,j = dS(Ci, Tj )

for all 1 � i � N , 1 � j � K . That is, in parentheses after clause C we list the distances of
C from each element of the support class T1, T2, . . . , TK in that order.

4. Relevance distance and refutations

Given a large set of clauses S we would like to utilize the clause distance from the
support set to compute a subset of S, say R, in which to perform the search for a refutation.
The idea is that the sum of the cost of a refutation search in the relevance set R and the
cost of computing R may be less than the cost of the search for the refutation in S.

Definition 4.1. Given an unsatisfiable set of clauses S, the Herbrand complexity of S is
the minimum integer n such that there is an unsatisfiable set of n ground instances of the
clauses in S.

Actually, for purposes of relevance it is generally not the size of the unsatisfiable set
that matters but its diameter, that is, the smallest bound d such that for some unsatisfiable
set G of ground instances, any two elements of G are at distance d from one another. This
diameter may be much smaller than the number of elements in G.
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Definition 4.2. A function fn(S) from nonnegative integers n and sets S of clauses to sets
R of clauses is a relevance (bounding) function if

(1) every clause in fn(S) is an instance of some clause in S and
(2) if S is unsatisfiable and n is the Herbrand complexity of S then fn(S) is unsatisfiable.

Definition 4.3. A set R of clauses is a relevance (bounding) set if R is fn(S) for some
relevance function f .

The idea is that any clause not needed for a refutation is not relevant. If n is the Herbrand
complexity of S, clauses not in fn(S) are not needed for the refutation. The function
f is called a relevance bounding function because clauses that are included need not be
relevant, but clauses that are excluded are irrelevant. A number of relevance functions will
be presented.

Relevance functions may be used together with arbitrary complete theorem proving
strategies. However, relevance functions require a value n for the estimate of Herbrand
complexity. Since the computation of the Herbrand complexity is as hard as testing
satisfiability, it is better not to attempt to compute the Herbrand complexity in advance
but rather to use an iterative procedure in which the value of n is gradually increased.

Let proof_search(R,b) be a procedure that applies some complete theorem proving
strategy to a set R of clauses with a bound b on the effort performed. The quantity
b may bound the time spent, the number of inferences performed, or the depth of the
search, for example. Assume that this procedure returns “unsat” to indicate that R is
unsatisfiable, and that unsatisfiability was detected within the effort bound b. Assume
that if R is unsatisfiable and b is sufficiently large, then proof_search(R,b) returns
“unsat”. For efficiency purposes, assume also that if proof_search(R1, b1) is called and then
proof_search(R2, b2) is called, and R1 ⊆ R2 and b1 � b2, then the total search performed
is the same as if only proof_search(R2, b2) had been called, but the inferences performed
during the call to proof_search(R1, b1) are not repeated.

A relevance function f and a complete theorem proving strategy “proof_search”
implicitly define a complete theorem proving strategy, which we call the relevance theorem
proving strategy for f and “proof_search,” as follows:

procedure relevance_strat(S, δ, γ );
for j = 1,2,3, . . . do

for k = 1,2,3, . . . , j do
if proof_search(fkδ(S), jγ ) returns “unsat”
then return “unsatisfiable” fi;

od;
od;

end relevance_strat;

Theorem 1. If δ > 0 and γ > 0 then the procedure relevance_strat(S, δ, γ ) returns
“unsatisfiable” iff S is unsatisfiable.
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Proof. If the procedure returns “unsatisfiable”, then S is unsatisfiable because every clause
in fn(S) is an instance of some clause in S. If S is unsatisfiable, then for some integer n,
fn(S) is unsatisfiable, so in some finite effort bound a complete theorem proving strategy
will detect this. Since δ > 0 and γ > 0, there are j and k such that unsatisfiability of fkδ(S)
can be detected within an effort bound of jγ . Therefore the procedure relevance_strat will
eventually return “unsatisfiable”. ✷

A relevance filter may also be used to delete clauses that are generated during the
calls to proof_search, while maintaining the completeness of the procedure relevance_strat.
However, a consideration of this topic is beyond the scope of this paper.

Path length may be used to define a relevance function, as follows:

Definition 4.4. A set R of clauses is minimally unsatisfiable if R is unsatisfiable but any
proper subset of R is satisfiable.

It is necessary to show that minimally unsatisfiable sets of clauses are connected by
paths.

Theorem 2. Suppose S is an unsatisfiable set of clauses and R is a minimally unsatisfiable
subset of S. Then for every pair C, D of clauses in R, dR(C,D) < ∞.

Proof. Pick C ∈ R and let RC be the set of D in R such that dR(C,D) < ∞. If RC = R

we are done. Suppose RC is a proper subset of R. Since R is minimally unsatisfiable, RC

is satisfiable. Also, R \RC is satisfiable. Let M1 be a model of RC and M2 be a model of
R \RC . Since there are no links between RC and R \RC , we can construct a model M that
satisfies both RC and R \RC by letting M agree with M1 on ground instances of atoms in
RC and letting M agree with M2 elsewhere. This implies that M |= R, which contradicts
our assumption that R is unsatisfiable. ✷
Theorem 3. Let S be a set of clauses. If S has Herbrand complexity n and T is a set of
support for S then there exists an unsatisfiable set of clauses R with the following relevance
properties:

For every clause C in R, dS(C,T )� n− 1.

Proof. Since S has Herbrand complexity n, there is an unsatisfiable set G of n ground
instances of clauses in S. Let G be a minimally unsatisfiable set. Let R be a minimal
subset of S such that every clause in G is an instance of some clause in R. Then R is also
minimally unsatisfiable. Therefore R is connected, by Theorem 2. Also, R has at most n
clauses in it, and R must contain at least one element D of T because R is unsatisfiable.
Therefore for all C in R, dR(C,D) <∞. Since R has at most n clauses, dR(C,D) < n for
all C ∈ R. ✷
Corollary 1. The function fn(S) = {C ∈ S: dS(C,T ) � n− 1} is a relevance function for
S if T is a set of support for S. Also, fn(S) is computable in time polynomial in S.
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Proof. fn(S) is computable in polynomial time using well-known shortest path algorithms
on graphs. ✷
Example 2. Given the set of clauses, S =

{
P(a)∨Q(b) ¬P(b)

¬P(x)∨ P(f (x))∨Q(f (x)) ¬P(f (x))

¬Q(x)∨ P(x)∨R(x) ¬P(x)∨ ¬Q(f (x))

¬R(x)∨ ¬Q(x) Q(c)
}

Let T = {¬P(b)}, n = 7.
The minimally unsatisfiable set G is given below, where the number in parentheses after

a clause defines the distance of that clause from T . G= {P(a)∨Q(b)(2),¬Q(b)∨P(b)∨
R(b)(1),¬P(b)(0),¬R(b)∨¬Q(b)(2),¬P(a)∨P(f (a))∨Q(f (a))(3),¬P(f (a))(4),
¬P(a)∨ ¬Q(f (a))(3)}.

G is a minimally unsatisfiable set. It has 7 clauses. Each two clauses in this set are
connected and the maximum distance of an element in G from T is 4 confirming the
results of the last two theorems. Note that dS(Q(c), T )= 2 but Q(c) is not in the minimally
unsatisfiable set.

R = f7(S) =
{
P(a)∨Q(b)(2) ¬P(b)(0)

¬P(x)∨ P(f (x))∨Q(f (x))(3) ¬P(f (x))(4)

¬Q(x)∨ P(x)∨R(x)(1) ¬P(x)∨ ¬Q(f (x))(3)

¬R(x)∨ ¬Q(x)(2) Q(c)(2)
}

4.1. Fully matched sets and refutations

Definition 4.5. A set of clauses S is fully matched if ∀C1 ∈ S ∀L1 ∈ C1 ∃C2 ∈ S ∃L2 ∈ C2
[L1 and ¬L2 are unifiable].

Clearly, a clause C ∈ S is not fully matched in S if and only if a literal L of C is pure
in S.

Theorem 4. If S is a set of clauses then there is a maximal (possibly empty) subset S′ of S
such that S′ is fully matched.

Proof. The union of an arbitrary collection of fully matched sets is fully matched.
Therefore the union of all fully matched subsets of S is the maximal fully matched subset
of S. ✷
Lemma 1. Let R be a minimally unsatisfiable set of clauses. Then R is fully matched.

Proof. Suppose R is not fully matched. Then there is a clause C ∈ R and a literal L1 ∈C

such that there is no link (C,D,L1,L2) for any clause D in R. Now, R \ {C} is satisfiable
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because R is a minimally unsatisfiable subset of S. Let M be a model of R \ {C}. Since
there is no link (C,D,L1,L2) in R, we can modify M to satisfy all the ground instances
of L1 without contradicting any new clauses of R. Let M ′ be M modified in this way.
Then M ′ |= L1 hence M ′ |= C. Since M |= R \ {C}, M ′ |= R \ {C}. Thus M ′ |= R. This
contradicts the assumption that R was unsatisfiable. ✷
Lemma 2. Let S be a set of clauses. Let S′ be the maximal fully matched set of S. S is
unsatisfiable if and only S′ is unsatisfiable.

Proof. One direction is straightforward.
Assume that S is unsatisfiable.
Let R be a minimally unsatisfiable subset of S. By Lemma 1, R is fully matched. Since

S′ is the maximal fully matched set of S, R ⊆ S′. Therefore S′ is unsatisfiable. ✷
Note that the maximal fully matched set may contain multiple refutations as well as

elements that are not part of any refutation.

Example 3. Let S be {C1,C2,C3,C4,C5,C6,C7,C8} where C1 = a ∨ b,C2 = ¬a ∨ c ∨
d,C3 = ¬b ∨ c∨ d,C4 = ¬b ∨ ¬d,C5 = ¬a ∨ ¬c,C6 = ¬a ∨ e,C7 = ¬b ∨ e,C8 = ¬e.

S is the maximal fully matched set. {C1,C6,C7,C8} is the minimally unsatisfiable
subset and all other clauses have no contribution to the refutation despite being fully
matched.

Clearly the union of S and any other fully matched (and unsatisfiable, maybe with no
links to S) set is fully matched.

Theorem 5. Suppose S is unsatisfiable and has Herbrand complexity n. Let T be a support
set for S. Let R be the maximal subset of S such that R is fully matched and such that for
all C ∈R, dR(C,T ∩R)� n− 1. Then R is unsatisfiable.

Proof. Let G be a minimally unsatisfiable set of n ground instances of S. Then G is fully
matched by Lemma 1. Also, for all C,D in G, dG(C,D) < n by Theorem 3. Let R′ be
the set of clauses in S having a ground instance in G. Then R′ ∩ T �= φ because T is
a support set and R′ is unsatisfiable. Thus R′ ⊆ S is fully matched and for all C ∈ R′,
dR′(C,T )� n− 1. Therefore the maximal such subset R of S is also unsatisfiable. ✷
Corollary 2. If T is a support set for S then fn(S) is a relevance function for S, where
fn(S) is the maximal subset R of S such that R is fully matched and such that for all
C ∈ R, dR(C,T ∩R) � n− 1. Also, fn(S) is computable in time polynomial in S.

Proof. An algorithm to compute f in polynomial time is given below. This algorithm
requires a number of iterations bounded by the number of clauses in S, and each iteration
is also polynomial by straightforward arguments. ✷

It is desirable to compute a set R as in the theorem and search for refutations from R

instead of S. However, computing R is not trivial and will be discussed in the next section.
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4.2. Computing a fully matched relevance set

The relevance theorem proving strategy is generally expected to find a refutation, if one
exists, that involves less clauses than the entire set S and will favor shallower refutations
(shorter proofs) within a smaller distance from the support set, though it may not be able
to find the shortest proof.

The number of clauses that get selected in the computation can vary depending on the
relevance distance metric used. Better performance generally results from computing the
relevance set based on refined metrics that tend to maximize the distance between clauses
because this may render more clauses outside of the given distance bound and therefore
prevent them from participating in the computation. We will investigate some possible
refinements later in this paper.

Another approach to reducing the size of the relevance set is to have a possibly larger
than needed estimate of n and to successively refine the set of clauses in R by imposing
additional restrictions on clauses that may be included in the refutation process. The
removal of clauses not obeying these restrictions may make certain clauses “out of reach”
(at distance more than n− 1) from T and therefore will allow them to be removed as well.
We can iterate the process until a fixed point is reached. That is, the process halts when an
iteration produces no changes to the current relevance set.

As an example2 we consider using full-matching to refine the set R. This is based on
the observation that only fully matched clauses can contribute to a refutation (Lemma 2).
The following is a simple way to compute R, where T is a support set for S:

Let R1 = {C ∈ S: ∃D ∈ T s.t. dS(C,D) � n− 1}.
Let R2 be the maximal fully matched set of R1.
Let R3 = {C ∈ R2: ∃D ∈ T ∩R2 s.t. dR2(C,D) � n− 1}.
Let R4 be the maximal fully matched set of R3 and so on until RN+2 = RN for some

integer N .
The complete formal algorithm for the computation is as follows:

Algorithm 1 (Computing relevance set refined through full matching). Given a set of
clauses3 S, an estimate n on the Herbrand complexity of S, and a set of support T for S.

Let i = 0, R0 = S.
Repeat

{
Ri+1 = {C ∈Ri : ∃D ∈ T ∩Ri s.t. dRi (C,D) � n− 1}.
Let Ri+2 be the maximal fully matched subset of Ri+1.
i = i + 2.
}

Until Ri−2 =Ri .

2 Other possible refinements include the removal of tautological clauses and subsumed clauses.
3 Or the maximal fully matched subset of S .
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Ri+1 ⊆ Ri for all i . The sequence of sets Ri is monotone decreasing relative to the
partial order induced by set inclusion. The process always has a fixpoint[8,11]. It terminates
in finite time for finite n because in this case R1 is a finite set.

Clearly, if n is chosen properly (say at least as large as the Herbrand complexity of
S) then S is unsatisfiable if and only if R∞ is. The convergence (speed) of the fixpoint
computation depends on the set S and the support set T , and the value of n.

Example 4. Consider the set of clauses S and T1 = {C1}. (The number in parentheses after
the clause number is its distance from the set of support T1 relative to the set in which the
clause is listed).

S = {C1(0),C2(1),C3(2),C4(2),C5(1),C6(2),C7(3),C8(4),C9(∞)} where C1 = a,

C2 = ¬a∨b∨c,C3 = ¬b,C4 = ¬c,C5 = ¬a∨e∨f,C6 = ¬e∨r∨c,C7 = ¬r∨e,C8 =
¬s ∨ r ∨ t,C9 = ¬s ∨ v ∨ t .

Since the first 4 clauses constitute an unsatisfiable set, we see that n= 4.
R1 = {C1(0),C2(1),C3(2),C4(2),C5(1),C6(2),C7(3)}.
No links on f exist. Clause C5 is not fully matched and can be deleted.
R2 =R1 \ {C5} = {C1(0),C2(1),C3(2),C4(2),C6(3),C7(4)}.
Note the change to the distances of C6 and C7 from T in R2. In particular, C7 is at

distance 4 and therefore will be deleted in computing R3.
R3 = {C1(0),C2(1),C3(2),C4(2),C6(3)}.
No links on e exist in R3. Clause C6 is not fully matched and can be deleted.
R4 = {C1(0),C2(1),C3(2),C4(2)}.
R4 is the fixpoint (R4 =R∞).
If T2 = {C3} = {¬b} then:
S = {C1(2),C2(1),C3(0),C4(2),C5(3),C6(3),C7(4),C8(5),C9(∞)}.
R1 = {C1(2),C2(1),C3(0),C4(2),C5(3),C6(3)}.
R2 = {C1(2),C2(1),C3(0),C4(2)}.
The convergence is faster than in the previous case.

Given T and a distance bound n, the process of computing the relevance set consists
of iterating between finding a fully matched set of clauses Ri and computing the distance
between elements of T in Ri and other clauses of Ri and removing any clause at distance
more than n− 1 to get Ri+1. The process stops after the iteration in which no clauses are
removed.

4.3. Multiple sets of support

So far we considered cases when the refutation was sought relative to a single set of
support. The choice of the set of support can influence the computation of the relevance
set.

It is possible that more than one support set is available and one may want to utilize that
for more efficient computations.

By its nature, elements of each set of support have to be included in all possible
refutations. We have the following analogue of Theorem 5.

https://www.researchgate.net/publication/287182580_Implementation_of_an_improved_relevance_criterion?el=1_x_8&enrichId=rgreq-15b83edb04adfec6f257c7d5da903336-XXX&enrichSource=Y292ZXJQYWdlOzIyMDU0NjgyNTtBUzoxNzk2ODI0MjMwOTEyMDJAMTQxOTg1MTAzNjU4NQ==
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Theorem 6. Suppose S is unsatisfiable and has Herbrand complexity n. Let T =
{T1, T2, . . . , Tk} be a support class for S. Let R be the maximal subset of S such that
R is fully matched and such that for all C ∈ R, for 1 � i � k, dR(C,Ti ∩R) � n− 1. Then
R is unsatisfiable.

Proof. Let G be a minimally unsatisfiable set of n ground instances of S. Then G is fully
matched by Lemma 1. Also, for all C,D in G, dG(C,D) < n by Theorem 3. Let R′ be the
set of clauses in S having a ground instance in G. Then for all i , 1 � i � k, R′ ∩ Ti �= φ

because R′ is unsatisfiable and the Ti are support sets for S. Thus R′ is fully matched and
for all C ∈ R′, for 1 � i � k, dR′(C,Ti) � n− 1. Therefore the maximal such subset R of
S is also unsatisfiable. ✷

This theorem may give a smaller set R than Theorem 5 because clauses at distance n

or more from any of the sets of support in T are removed. The resulting relevance set is at
most as large as the smallest relevance set for the individual components of T . Actually it
is in the intersection of all relevance sets of the individual components of T .

Corollary 3. Suppose S is a set of clauses and T = {T1, T2, . . . , Tk} is a support class
for S. Then f is a relevance function, where fn(S) is defined as the largest subset R of S
such that R is fully matched and for all C ∈ R, for 1 � i � k, dR(C,Ti ∩R) � n− 1. Also,
fn(S) is computable in time polynomial in S and k.

Another possible way to define the relevance function is the largest subset R of S such
that R is fully matched and for all C ∈ R, (1/k)

∑
1�i�k dR(C,Ti)� n− 1. This average

relevance function is more sensitive to each distance and may give better results.
The complete formal algorithm for the computation of the relevance set using multiple

sets of support is as follows:

Algorithm 2 (Computing relevance set refined through full matching for T ). Given a
set of clauses S, an estimate n of the Herbrand complexity of S, and a support class
T = {T1, T2, . . . , Tk} for S.

Let i = 0, R0 = S.
Repeat

{
Ri+1 = {C ∈Ri | ∀ Tj ∈ T dRi (C,Tj ∩Ri)� n− 1}.
Let Ri+2 be the maximal fully matched set of Ri+1.
i = i + 2.
}

Until Ri−2 =Ri .

The computation of Ri+1 can be done more efficiently as follows:

Ri+1 ←Ri; for j = 1,2, . . . , k

do Ri+1 ← {
C ∈ Ri+1: dRi+1(C,Tj ∩Ri+1)� n− 1

}
.
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This can be further sped up by choosing T1 so that a small number of clauses are at small
distances from it.

Consider the following example which is an extension of Example 4 to work with two
support sets.

Example 5. Consider the set of clauses S and T = {T1, T2} where T1 = {a} and T2 = {¬b}.
S = {C1,C2,C3,C4,C5,C6,C7,C8,C9} where C1 = a,C2 = ¬a ∨ b ∨ c,C3 =

¬b,C4 = ¬c,C5 = ¬a ∨ e ∨ f,C6 = ¬e ∨ r ∨ c,C7 = ¬r ∨ e,C8 = ¬s ∨ r ∨ t , and
C9 = ¬s ∨ v ∨ t .

Using n = 4 we get (the pair of numbers in parentheses gives clause distance from T1
and T2 in that order).

R1 = {C1(0,2),C2(1,1),C3(2,0),C4(2,2),C5(2,3),C6(2,3)}.
Note that C7(3,4) is not included in R1 here because the distance from T2 is greater

than 3.
Removing clauses that are not fully matched we get R2 = {C1(0,2),C2(1,1),C3(2,0),

C4(2,2)}. R2 is the fixpoint.
The result coincides with the case for T2 alone.

The following example demonstrates that the result of multiple support sets may not be
achievable by a single support set. It also demonstrates that the algorithm need not compute
a minimally unsatisfiable set as the fixpoint.

Example 6. Consider the set of clauses S and T = {T1, T2} where S = {C1,C2, . . . ,C11}
and T1 = {C1} and T2 = {C3}. and C1 = a,C2 = ¬a ∨ b ∨ c,C3 = ¬b,C4 = ¬c,C5 =
¬b∨¬c∨a,C6 = ¬e∨b,C7 = ¬e∨f,C8 = ¬f ∨e,C9 = ¬a∨g,C10 = ¬g∨h,C11 =
¬h∨ g.

The set {C1,C2,C3,C4} is unsatisfiable and using n= 4 we get (the pair of numbers in
parentheses gives clause distance from T1 and T2 in that order).

R0 = {C1(0,2),C2(1,1), C3(2,0),C4(2,2),C5(2,2), C6(3,1),C7(5,3),C8(4,2),
C9(1,3),C10(2,4),C11(3,5)}.

Removing clauses at distance 4 or more from T1 or T2 yields:
R1 = {C1(0,2),C2(1,1),C3(2,0),C4(2,2),C5(2,2),C6(3,1),C9(1,3)}.
C6 and C9 are not fully matched as ¬e and g, occurring in C6 and C9 respectively, are

pure.
R2 = {C1(0,2),C2(1,1),C3(2,0),C4(2,2),C5(2,2)}.
R2 is the fixpoint. Note that clause C5 is not in the minimally unsatisfiable subset of S.
Let superscripts denote which supports sets are used in the computation.
For T1, RT1∞ = {C1(0),C2(1),C3(2),C4(2),C5(2),C9(1),C10(2),C11(3)}.
For T2, RT2∞ = {C1(2),C2(1),C3(0),C4(2),C5(2),C6(1),C7(3),C8(2)}.
For {T1, T2}, RT1,T2∞ = {C1(0,2),C2(1,1),C3(2,0),C4(2,2),C5(2,2)} =R

T1∞ ∩R
T2∞ .

The following example shows how two support sets can lead to a substantial reduction
in the search space.

Example 7. Let S be the following set of clauses:
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(1) at(ci, s) → at(cj , g(cj , s)) for various i, j . (One can go directly from ci to cj in any
situation s. g(cj , s) is the action taken.)

(2) at(c0, s0). (The starting situation.)
(3) ¬at(cm, s). (The goal is to get to city cm.)

The variable s represents a “situation”. Define the action distance between two cities
as the number of actions needed to get from one city to the other. Thus if at(ci, s) →
at(cj , g(cj , s)) then the action distance between ci and cj is at most one. Now, the last two
clauses are each a support set because both are needed for the proof. If these clauses are
each used as a separate support set in the relevance computation, and n is the estimate of
Herbrand complexity, then the relevance set essentially contains clauses mentioning only
the cities at action distance n − 1 or less from c0 and cm. (The full matching requirement
may delete even some of these clauses.) If we put both of these clauses in one support
set, then the relevance set will contain clauses mentioning only cities at action distance
n− 1 or less from c0 or cm, which can potentially be a much larger set, especially if there
are thousands or hundreds of thousands of assertions. If we put these last two clauses in
separate support sets but use the average relevance function defined earlier in this section,
then the relevance set is the set of clauses mentioning only cities whose average action
distance from c0 and cm is less than n − 1. Of course, if one knows in advance that the
problem has this structure, one can use efficient graph-based algorithms, but one wants
a general mechanism because one may not understand the structure of the problem in
advance.

For an example where many support sets may be useful, consider the following problem:

Example 8.

(1) at(a, ci, s) → at(a, cj , g(a, cj , s)) for various i, j . (Any individual a can go directly
from ci to cj in situation s. g(a, cj , s) is the action taken.)

(2) at(ai, ci, s0),1 � i � k. (The starting situation. Individuals a1, . . . , ak are at cities
c1, . . . , ck , respectively.)

(3) ¬at(a1, c, x1) ∨ ¬at(a2, c, x2) ∨ . . .¬at(ak, c, xk). (The goal is to get all individuals
to some city c.)

The problem is to find a city reachable from k specified cities. Each of the k cities can
be made into a support set, as above. Then if n is the estimate of Herbrand complexity,
the relevance set will essentially contain clauses mentioning only cities at action distance
n− 1 or less from all k cities (again, some of these may be removed by the full matching
requirement). No smaller number of support sets can achieve the same reduction in search
space. If there are thousands or hundreds of thousands of assertions, this could result in a
significant reduction in search space. In general, if one is proving a theorem and several
assertions are all known to be essential for the proof, then each of these assertions can be
made into a support set to make the relevance computation more effective than for a single
support set.

One may question whether the computation of relevance sets can be efficient for large
knowledge bases S containing hundreds of thousands of clauses. In some cases, the size of
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the knowledge base does not have much influence. If n is small, then a relevance set can be
computed using breadth-first search for each support set without even looking at most of
the clauses in S. Only clauses at a small distance from the support sets need to be examined.
This assumes that the set of links involving a clause C in S may be computed efficiently. If
S is stored in a discrimination net, then the links involving C can often be obtained with a
small amount of effort. In addition, the effort to update the discrimination net when a new
clause is added to S is often likewise small. This permits some large knowledge bases to be
used repeatedly for various queries at a small cost per query in updating the discrimination
net and computing the relevance set. Of course, the efficiency of computing relevance sets
will depend on the structure and size of the knowledge base. Not all large knowledge bases
will be suitable for this approach.

5. Various path-based definitions of relevance

So far the relevance metric considered was based on the lengths of paths, possibly
refined by the restriction to fully matched clause sets. One can clearly see other possible
refinements such as using sort information to disallow certain potential links for having no
contribution to the refutation. There may be many relevance metrics:

Definition 5.1.

(1) A relevance metric r on a set S of clauses is a function from pairs of clauses in S to
nonnegative integers.

(2) A relevance metric r for S, is complete if for all support sets T for S, {C ∈ S: ∃D ∈
T s.t. rS(C,D) � ∞ for some D in T } is unsatisfiable if S is unsatisfiable.

(3) A relevance metric r ′ is stricter than r if for any two clauses C1 and C2 of S,
r ′
S(C1,C2)� rS(C1,C2).

Additional relevance metrics may be defined by modifying the definition of a path given
in Definition 3.1. Recall especially the definition of the length of a path given there.

Definition 5.2. Given a set of clauses S:

• If the literals L1 and L2 are complementary then the link (C1,C2,L1,L2) is a basic
link.

• If (Ci,Ci+1,L1,L2) is a link in a path P = C1, . . . ,Cn then L1 is called an exiting
literal of the pair (Ci,Ci+1) in P and L2 is called an entering literal of the pair
(Ci,Ci+1) in P . (Think of an arrow from C1 to C2 with L1 at the start and L2 at
the end.) These literals may not be unique.

• If C1,C2, . . . ,Cm is a path and Θ1, . . . ,Θm is a sequence of substitutions, then
the sequence C1Θ1,C2Θ2, . . . ,CmΘm of clauses is called an instance of the path
C1,C2, . . . ,Cm. Note that instances of paths need not be paths.

• If C1,C2, . . . ,Cm is a path and for all i,1 � i < m, there is a basic link between
Ci and Ci+1, then this path is called a basic path. If this path has an instance
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C1Θ1,C2Θ2, . . . ,CmΘm that is a basic path, then C1,C2, . . . ,Cm is called a
compatible path. If for all i < m there are links (Ci,Ci+1,Li,Mi+1) such that for
all i , 1 < i < m, Li and Mi are distinct literals of Ci (that is, an entering literal of
(Ci−1,Ci) and an exiting literal of (Ci,Ci+1) are distinct), then this path is called an
alternating path.

• The basic distance dbS(C,D) between C and D in S is the length of the shortest basic
path between C and D in S. The compatible distance dcS(C,D) between C and D in
S is the length of the shortest compatible path between C and D in S. The alternating
distance daS (C,D) between C and D in S is the length of the shortest alternating path
between C and D in S. These notations can be combined, as in d

a,c
S (C,D), indicating

that only alternating compatible paths are to be considered.
• If C is a clause and T is a set of clauses then da(C,T ) = Min({da(C,D) | D ∈ T })

and similarly for basic and compatible paths.

For example, {¬p,q}, {¬q, r}, {¬r, s} is a basic alternating path. The path {¬p,q},
{¬q, r}, {q, s} is basic but not alternating because ¬q in the second clause is used for links
in both directions. The path {p(a)}, {¬p(x), q(x)}, {¬q(b)} is alternating but not basic or
compatible. The path {p(a)}, {¬p(x), q(x)}, {¬q(a)} is alternating and compatible but not
basic.

Intuitively, the smaller the relevance distance between clauses the more closely
related they are. It is possible to prove the following obvious relations between these
distance measures: dbS(C,D) � dS(C,D), dcS(C,D) � dS(C,D), daS (C,D) � dS(C,D),

d
b,c
S (C,D) = dbS(C,D), db,aS (C,D) � dbS(C,D), db,aS (C,D) � daS (C,D), da,cS (C,D) �

daS (C,D), da,cS (C,D) � dcS(C,D), and d
b,a,c
S (C,D) = d

b,a
S (C,D). Also, if S is a set of

ground clauses, then dcS(C,D) = dbS(C,D) = dS(C,D), and d
c,a
S (C,D) = d

b,a
S (C,D) =

daS (C,D).

5.1. Relevance based on resolution proofs

In this section we define a path and relevance distance based on resolution and show the
relationship between the newly introduced metric and the ones discussed so far.

Definition 5.3. A linear resolution proof involving C1,C2, . . . ,Cn is a sequence
D1,D2, . . . ,Dn of clauses, where D1 is C1 and Di is a resolvent of Ci and Di−1 for
1 < i � n. The length of such a proof is n− 1. Such a proof is said to connect C1 and Cn

in S if all Ci are in S.

For example, a linear resolution proof involving {q}, {¬q, r}, {¬r, s} is the proof
{q}, {r}, {s}. This proof connects the clauses {q} and {¬r, s}. However, there is no linear
resolution proof involving the clauses {q(a)}, {¬q(x), r(x)}, {¬r(b), s(b)} because the
substitutions involved are incompatible.

Definition 5.4. The resolution distance drS(C,C
′) between C and C′ is the minimal length

of a linear resolution proof that connects C and C′ in S.
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For example, if S = {{q}, {¬q, r}, {¬r, s}} then the resolution distance drS({q}, {¬r, s})
is 2, which is also the value of da,cS ({q}, {¬r, s}).

In Definition 5.4 we require the compatibility of substitutions for the sequence of links.
The latter definition is stricter and generally results in greater distances between clauses
than for ordinary links.

We now show how resolution distance relates to the other distance measures.

Lemma 3. Suppose G is a set of ground clauses. Then for all clauses C,D in G,
drG(C,D) � daG(C,D).

Proof. Suppose daG(C,D) = m − 1. Let C1,C2, . . . ,Cm be an alternating path from C

to D. Then for 1 < i < m we can write Ci as Ei ∪ {Li} ∪ {¬Li+1} where Li is the
entering literal of the pair (Ci−1,Ci) and ¬Li is the exiting literal of the pair (Ci,Ci+1).
Also, C1 = E1 ∪ {¬L2} and Cm = Em ∪ {Lm}. Then we can obtain the resolvents Di

defined by Di = E1 ∪ E2 ∪ · · · ∪ Ei ∪ {¬Li+1} as required by Definition 5.4. Thus
drG(C,D) � m− 1. ✷
Theorem 7. Suppose S is a set of clauses. Then for all clauses C,D in S, drS(C,D) �
d
a,c
S (C,D).

Proof. Suppose da,cS (C,D) =m− 1. Let C1,C2, . . . ,Cm be a compatible alternating path
from C to D. Then there must exist ground clauses C′

1,C
′
2, . . . ,C

′
m that are instances

of C1,C2, . . . ,Cm, respectively, such that C′
1,C

′
2, . . . ,C

′
m is an alternating path, because

the path is compatible. By Lemma 3, drG(C
′
1,C

′
m) � m− 1 where G = {C′

1,C
′
2, . . . ,C

′
m}.

Therefore there is a linear resolution proof involving C′
1,C

′
2, . . . ,C

′
m. This can be lifted to

a linear resolution proof involving C1,C2, . . . ,Cm. Therefore drS(C,D) � m− 1. ✷
We now show the other direction of these inequalities.

Definition 5.5. The set of clauses used in a resolution proof C1,C2, . . . ,Cn is the smallest
set R such that (a) Cn ∈ R and (b) if Ci ∈R and Ci is a resolvent of Cj and Ck for j, k < i ,
then Cj ∈ R and Ck ∈R.

Lemma 4. Suppose C1,C2, . . . ,Cn is a resolution proof from a set S of clauses. Suppose
R is the set of clauses in S that are used in this proof. Then there is a set R′ of instances of
R and a set L of links involving clauses in R′ such that

(1) every literal L of Cn appears in some clause C of R′ such that L is not a link literal
of C,

(2) every pair of clauses of R′ are connected by a basic alternating path in which all links
appear in L.

Proof. By induction on the length of the resolution proof. Suppose Cn ∈ S. Then we can
let R = R′ = {Cn}. Otherwise, suppose Cn is a resolvent of Ci and Cj for i, j < n. Then
Ci and Cj are proved by resolution from S by shorter proofs. We can therefore assume
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by induction that the theorem is true for Ci and Cj . Let R′
i be the set of instances as in

the theorem for Ci , and let R′
j be the set for Rj . Suppose Cn is Res(Ci,Cj ,L,M) and

suppose the pair of substitutions for this resolution is (θ, σ ). Let R′ be R′
i θ ∪ R′

j σ . Then
by the definition of resolution, every literal of Cn appears in some clause of R′. Also,
(Ciθ,Cjσ,Lθ,Mσ) is a basic link. Now, by induction, L appears in some clause in R′

i ,
but not in one of the links, and M appears in some clause of R′

j , but not in one of the
links. Therefore Lθ and Mσ both appear in some clauses of R′. Suppose Lθ ∈ DL and
Mσ ∈ DM . Then (DL,DM,Lθ,Mσ) is a basic link connecting two clauses in R′. The
clauses in R′

i (hence in R′
i θ ) are already connected by basic alternating paths, as are the

clauses in R′
j σ . Since DL ∈ Riθ and DM ∈ Rjθ , all clauses in R′ are connected by basic

paths. These paths are alternating because no link literals appear in Cn. ✷
We also observe that if the resolution proof is linear, then the construction of the lemma

yields a set R′ having at most n clauses.

Theorem 8. Suppose S is a set of clauses. Then for all clauses C,D in S, drS(C,D) �
d
a,c
S (C,D).

Proof. Suppose drS(C,D) = n − 1. Then there is a linear resolution proof from
C1,C2, . . . ,Cn where C = C1 and D = Cn. By Lemma 4 and the immediately following
observation about linear proofs, there is a set R of instances of {C1,C2, . . . ,Cn} that is
connected by basic alternating paths. Thus there is a basic alternating path connecting an
instance of C and an instance of D. The length of this path is at most n − 1 because
{C1,C2, . . . ,Cn} contains only n clauses. Each clause on this path is an instance of some
clause in {C1,C2, . . . ,Cn}, and this is a subset of S. Therefore, by the definition of a
compatible path, there is a compatible alternating path from C to D of length at most
n− 1. Thus da,cS (C,D) � n− 1. ✷
Corollary 4. Suppose S is a set of clauses. Then for all clauses C,D in S, drS(C,D) =
d
a,c
S (C,D).

6. Various path-based distance definitions and refutations

There are some relationships between the path-based definitions of relevance from
Section 5 and the Herbrand complexity of a set of clauses.

Theorem 9. Let S be a set of clauses. If S has Herbrand complexity n and T is a set of
support for S then there exists an unsatisfiable set of clauses R with the following relevance
properties: For every clause C in R, dcR(C,T )� n− 1.

Proof. Since S has Herbrand complexity n, there is an unsatisfiable set G of n ground
instances of clauses in S. Let G be a minimally unsatisfiable set. Let R be a minimal set
of clauses in S such that each element of G is an instance of a clause in R. Then R is also
minimally unsatisfiable. Therefore R is connected, by Theorem 2. Also, R has at most n
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clauses in it, and R must contain at least one element D of T because R is unsatisfiable.
Therefore for all C in R, dR(C,D) <∞. Since R has at most n clauses, dR(C,D) < n for
all C ∈R. To obtain the bound on dc, we can find a basic path in G of length n− 1 or less
between an instance of C and an instance of D because G is an unsatisfiable set of ground
clauses. By lifting this path to a path in R and choosing the link substitutions to yield the
corresponding clauses of G, we obtain links with compatible substitutions. ✷
Corollary 5. Let S be a set of clauses. If S has Herbrand complexity n and T is a set of
support for S then there exists an unsatisfiable set G of ground instances of clauses in S

with the following relevance properties: For every clause C in G, there is a clause D in G

such that D is an instance of some clause in T and dbG(C,D) � n− 1.

Proof. The proof is obtained by applying the theorem to the unsatisfiable set G of ground
instances of clauses in S, noting that because G is ground, dbG(C,D) = dG(C,D). ✷

Consider the following example:

Example 9. Given the set S =
{
P(a)∨Q(b) ¬S(b)

¬P(x)∨ P(f (x))∨Q(f (x)) ¬P(f (x))

¬Q(x)∨ P(x)∨R(x) ¬P(x)∨ ¬Q(f (x))

¬R(x)∨Q(x) ¬R(x)∨ S(x)
}

Let T = {¬P(x)∨ S(x)}.
The minimally unsatisfiable set G is given below, where the number in parentheses after

a clause defines the distance of that clause from T , where D = ¬P(b)∨ S(b).
G = {¬P(b)∨S(b)(0),P (a)∨Q(b)(3),¬Q(b)∨P(b)∨R(b)(2),¬S(b)(1),¬R(b)∨

¬Q(b)(3),¬P(a)∨ P(f (a))∨Q(f (a))(4),¬P(f (a))(5),¬P(a)∨ ¬Q(f (a))(4)}.
G is a minimally unsatisfiable set. It has 8 clauses. Thus n = 8. Each two clauses in this

set are connected and the maximal distance of an element in G from T is 4 confirming the
results of Theorem 9 and Corollary 5.

R =
{
P(a)∨Q(b)(3) ¬S(b)(1)

¬P(x)∨ P(f (x))∨Q(f (x))(4) ¬P(f (x))(5)

¬Q(x)∨ P(x)∨R(x)(2) ¬P(x)∨ ¬Q(f (x))(4)

¬R(x)∨ ¬Q(x)(3) ¬P(x)∨ S(x)(0)
}

We now develop bounds for alternating paths.

Lemma 5. Suppose C1,C2, . . . ,Cn is an alternating path. Suppose 1 < i < j < n and
Ci and Cj are identical and an entering literal of the pair (Ci−1,Ci) is distinct from an
exiting literal of the pair (Cj ,Cj+1). Then C1,C2, . . . ,Ci,Cj+1,Cj+2, . . . ,Cn is also an
alternating path.
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Proof. The shorter path still satisfies the definition of an alternating path. ✷
Lemma 6. Suppose C1,C2, . . . ,Cn is an alternating path. Suppose 1 < i < j < k < n and
Ci , Cj , and Ck are identical. Then either

• An entering literal of (Ci−1,Ci) is distinct from an exiting literal of (Cj ,Cj+1) or
• An entering literal of (Cj−1,Cj ) is distinct from an exiting literal of (Ck,Ck+1) or
• An entering literal of (Ci−1,Ci) is distinct from an exiting literal of (Ck,Ck+1).

Proof. Suppose the first two conditions fail. Then all entering literals of the pair (Ci−1,Ci)

are identical to all exiting literals of the pair (Cj ,Cj+1) and all entering literals of the
pair (Cj−1,Cj ) are identical to all exiting literals of the pair (Ck,Ck+1). Since the path
is alternating, an entering literal of the pair (Cj−1,Cj ) is distinct from an exiting literal
of the pair (Cj ,Cj+1). Thus an exiting literal of the pair (Ck,Ck+1) is distinct from an
entering literal of the pair (Ci−1,Ci). ✷
Example 10. Consider the alternating path P = {C1,C2, . . . ,C9} where C1 = a,C2 =
¬a ∨ b,C3 = ¬b ∨ c,C4 = ¬c ∨ a,C5 = ¬a ∨ b,C6 = ¬b ∨ f,C7 = ¬f ∨ ¬b,C8 =
¬a ∨ b,C9 = a ∨ g.

Let i = 2, j = 5, k = 8. Ci = Cj = Ck = ¬a ∨ b.
We have the resolvent (C1,C2, a,¬a)= b with the entering literal ¬a and (C5,C6, b,

¬b)= ¬a∨f with the exiting literal b. ¬a �= b and the shortened path P ′ = C1 = a,C2 =
¬a∨b,C6 = ¬b∨f,C7 = ¬f ∨¬b,C8 = ¬a∨b,C9 = a∨g is alternating as is suggested
by Lemma 5.

This observation also confirms the result of Lemma 6.
Note that we have the resolvent (C4,C5, a,¬a) = ¬c ∨ b with the entering literal ¬a

and (C8,C9,¬a, a)= b ∨ g with the exiting literal ¬a.

Theorem 10. Let S be a set of clauses. If S has Herbrand complexity n and T is a set
of support for S then there exists an unsatisfiable set of clauses R ⊆ S with the following
relevance properties:

For every clause C in R, da,cR (C,T )� 2n− 1.

Proof. In [19] and above in Lemma 4, we showed that if G is a minimally unsatisfiable
set of ground clauses, then there is an alternating path between any two clauses in G. This
shows that a path exists, but it may be very long. The problem is to show how to obtain
a shorter path without violating the alternation condition. If an alternating path has length
larger than 2n − 1, then some clause C of G must appear at least 3 times in the path. If
one of these occurrences is at the beginning of the path then the path can be shortened
by deleting everything before the second occurrence. If one of these occurrences is at the
end of the path then a similar shortening can be done. Otherwise, by Lemma 6, there will
be at least two of these three occurrences of C such that an entering literal for the first
occurrence differs from an exiting literal of the second occurrence. Therefore everything
in between these two occurrences of C can be deleted, yielding a shorter alternating path.
By repeating this operation we obtain a path with at most two occurrences of any clause,
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and the length of the path is at most 2n − 1. Applying this argument to G yields that
d
a,b
G (C,T ) � 2n− 1 because all links in G are basic links. Lifting this argument to R as

before and using compatible substitutions, da,cR (C,T )� 2n− 1. ✷
It is an open question whether the 2n− 1 bound can be reduced to n− 1.

Corollary 6. Let S be a set of clauses. If S has Herbrand complexity n and T is a set of
support for S then there exists an unsatisfiable set G of ground instances of clauses in S

with the following relevance properties:
For every clause C in G, there is a clause D in G such that D is an instance of some

clause in T and d
b,a
G (C,D) � 2n− 1.

Proof. The proof is obtained by applying the theorem to the unsatisfiable set G of ground
instances of clauses in S, noting that because G is ground, db,aG (C,D) = dG(C,D). ✷
6.1. Computing relevance sets based on various distance measures

Analogous to Theorem 5, one can define relevance sets based on the various distance
measures given above. These results can also easily be extended to multiple sets of support,
as before. However, because the results are fairly straightforward, they are omitted.

7. Other relevance refinements

In this section we discuss ways to refine the definition of relevance and related concepts
that may result in smaller relevance sets. The basic idea behind these refinements is the fact
that link properties underlying the various relevance definitions are not strict enough: they
allow declaring relevant too many clauses that have no contribution to the refutation. We
already noticed this fact by refining the relevance set through the full-match criterion. This
is based on the realization that only fully matched clauses have the potential to contribute
to a refutation. One can easily see that not every fully matched clause contributes to the
refutation (as, e.g., in Examples 6 and 9).

The ideal refinement would achieve a relevance set that includes only clauses in the
minimally unsatisfiable set. However, computing such a set is probably as hard as testing
unsatisfiability.

Therefore one must be aware of the tradeoffs involved in defining the relevance set. On
the one hand the computation needs to be efficient so that it doesn’t dominate the refutation
search. On the other hand it must be effective in the sense that it generates a small enough
relevance set to be used to generate the refutation. Ideally the relevance set should exclude
enough clauses to speed up the overall test for satisfiability.

So far we defined several relevance metrics based on different types of links between
clauses and investigated the relationships between distances induced by theses metrics.
These metrics have been strengthened by requiring links to be between elements of the
maximal fully matched subset of S, which will generally result in smaller relevance
sets. Other tightenings are possible. Next we discuss other possible refinements such as
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using sort information to disallow certain potential links for having no contribution to the
refutation and using a reduced support set.

7.1. Sorts and relevance

In general, the smaller the number of clauses in the relevance set the better. This number
generally depends on the way the distance metric is defined. Metrics that maximize the
distance between clauses (stricter metrics) while still complete are preferable. Such metrics
ensure that distant clauses are not included in the computations until no set of closer clauses
is proved unsatisfiable. The more distant the clause, the less chance it has to be selected in
the computation for a given relevance bound. One way to achieve such a distance metric is
to utilize sorts.

For sorts, one assumes a finite or infinite set S whose elements are called sorts, and
a signature Σ = 〈S,F , τ 〉 where F is a set of function and predicate symbols and τ is
a function associating a set of arities with each function and predicate symbol. An arity
is of the form s1, s2, . . . , sn → s or s1, s2, . . . , sn → ◦; the former indicates a function
f (x1, . . . , xn) in which the arguments x1, . . . , xn may have sorts s1, . . . , sn, respectively,
and in this case f returns a result of sort s. The arity s1, s2, . . . , sn → ◦ indicates a predicate
P(x1, . . . , xn) in which the arguments x1, . . . , xn may have sorts s1, . . . , sn, respectively.
Variables are also assigned sorts. The first-order language includes only the well-sorted
terms; these are terms in which the arguments of functions and predicates have the correct
sorts.

For example, suppose that there is a unary function symbol f , a constant symbol 0,
and a unary predicate P . Then we can obtain a sort structure from an interpretation of
these symbols. If we specify the domain of the interpretation to be {0,1}, interpret f as
incrementation modulo 2, and interpret 0 as 0, then we naturally obtain the arities 0 → 1
and 1 → 0 for f and the arity → 0 for 0. The arities for P can be chosen as 0 → ◦ and
1 → ◦. In general, one can obtain sort structures from interpretations in this way.

Sorts permit a much improved treatment of equality, because the equality predicate
x = y can be given an arity restricting x and y to have the same sort. This permits sort
information to propagate across equations in the relevance computation, whereas in the
absence of sorts, no constraint relating x and y will be enforced.

In the following sections, we only sketch how sorts may be combined with relevance.

7.1.1. Sorts for stricter links
A factor that may generate smaller relevance distance is “unreal” links between clauses.

Examples are syntactic links that can be excluded on closer examination, for example
because of incompatible substitutions, as we have seen already. However, keeping track
of compatibility appears to require exponential time. Sorts give some of the advantages of
compatibility with less cost.

An example where sorts or compatibility is needed is the equality axioms. An equality
axiom of the form x = y∧y = z → x = z will link to any clauses with equality in the head
or the body. (The head of a clause C is the set of positive literals in C and the body is the
set of atoms appearing in negative literals of C.) So any clauses with equality in the body
are linked with clauses with equality in the head (directly and through other clauses). It is
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very likely that this equality axiom will also be fully matched when sort incompatibilities
between terms are ignored.

The following is an example where equality is a factor even in the absence of the
equality axioms.

Example 11.

office(x, o1)∧ sameproject(x, y)∧ office(y, o2) → o1 = o2 ∨ neighbor(x, y).

(Workers on the same project have the same or adjacent offices.)

studentyear(x, y1)∧ studentyear(z, y2)∧ y1 = y2 → samefloor(x, z).

(Same year students are located on the same floor.)
The clauses have a link resulting from unifying the equality predicates with the

substitution {y1/o1, y2/o2}, though the underlying sorts (year and office, respectively) are
not compatible.

Sorts can be incorporated into the relevance process to disallow the inclusion of certain
clauses into the computation. The way to do that is to give sorts to terms and to prohibit
connections (links) between clauses when the sorts of the terms are not compatible. The
disqualified links will generally increase the distance between clauses and may disallow
certain clauses from being fully matched resulting in smaller relevance sets.

Therefore, sorted unification can replace simple unification in the definition of relevance
(and full matching). Only sort compatible unification can influence relevance. A relevance
bound of n gives a set of sorted clauses that are unsatisfiable if there is a proof having n

ground instances. Then one performs sorted inferences on this set of sorted clauses and
this will generate a contradiction if they are unsatisfiable. Sorted inference prevents certain
instantiations and unifications which violate sortedness, so it reduces the search space.
Thus sorted relevance reduces the search both by reducing the set of starting clauses, and
also by reducing the set of inferences possible among them.

Two clause instances C1σ and C2σ are linked iff there exist two complementary literals
L1 ∈ C1 and L2 ∈C2 such that L1σ =s ¬L2σ . =s means equality with compatible sort for
all terms of L1 and L2. In this case we say that ds(C1,C2)= 1. ds(C1,C2)= ∞ if no such
links exists. In general, ds(C1,C2) � d(C1,C2) where ds is the sorted distance between
clauses and d is the non-sorted distance between clause.

7.1.2. Sorts and relevance distance
In the same spirit as using relevance distance to relate clauses to the support set and

therefore select clauses that may contribute to a refutation one may utilize sorts and links
between them for the same purpose. One may achieve different behavior by moving be-
tween the two extremes of declaring all constants to have the same sort and therefore pay
no attention to sorts at all (as has been our treatment until the current subsection) and the
other extreme of declaring each individual constant as a unique sort by itself. Recalling that
sorts can be obtained from interpretations, an interpretation with a small domain will lead
to a small number of sorts. A large domain leads to a large number of sorts, which gives
a more refined relevance measure at an increased cost. Probably the optimal solution is to
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deal with a limited number of sorts and to check for sort compatibility between terms rang-
ing over these sorts. Here we only argue that different sort selections can result in different
relevance/sort behavior that may contribute in different ways to the refutation search.

For a human, it is more natural to think of a specific example (interpretation) and to think
of relevance as relating the objects in this interpretation rather than the clauses. It would be
interesting to study relevance measures on the sorts themselves, that is, relevance distances
between sorts, and see how they relate to the relevance distances on clauses presented so
far. One might say, for example, that two sorts are linked if they occur in a common clause.
Then the distance between two sorts could be defined in terms of the shortest path of links
between them.

The following example modified from Example 7 shows how sorts can lead to better
behavior even than compatible paths:

Example 12. Let S be the following set of clauses:

(1) d(ci, cj ) for various i, j , indicating that one can drive directly from city i to city j .
(2) ¬at(x, s)∨ ¬d(x, y)∨ at(y, g(y, s)). (One can go from city x to city y in situation s

if d(x, y). g(y, s) is the action taken.)
(3) at(c0, s0). (The starting situation.)
(4) ¬at(cm, s). (The goal is to get to city cm.)

If one does not use sorts, then d
a,c
S (at(c0, s0),¬at(cm, s)) = 2 because the path

at(c0, s0),¬at(x, s)∨ ¬d(x, y)∨ at(y, g(y, s)),¬at(cm, s) is alternating and compatible.
The problem is that the substitution for this path binds x to c0 and y to cm and with
this binding, the middle clause is not fully matched because there is no link involving the
literal ¬d(x, y) (unless d(c0, cm) is asserted). With sorts, one can specify that each city is
a separate sort, but all situations are the same sort. Then the clause ¬at(x, s)∨ ¬d(x, y)∨
at(y, g(y, s)) has m2 sorted versions, in which x and y have as sort one of the m cities. All
of these sorted clauses fail to be fully matched except those corresponding to the clauses
d(ci, cj ). This gives a more realistic distance between the last two clauses and a better
relevance function. Even adding equality axioms to this example would not hinder the
effectiveness of a relevance filter, because of the use of sorts. As in Examples 7 and 8,
the use of sorts with two support sets can lead to a substantial reduction in search space,
especially for very large sets of assertions.

It is also of interest in this example that for a human, it is more natural to think
of distances between cities than distances between clauses. Since cities are sorts in this
example, it is natural to investigate how relevance measures involving distances between
sorts relate to the clause-based relevance measures described in this paper.

The following example also illustrates how sorts can be helpful for very large sets of
assertions:

Example 13. Let S be the following set of clauses:

(1) p(ai, aj ) for various individuals i, j , indicating that individual ai is the parent of
individual aj .
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(2) s(ai, aj ) for various individuals i, j , indicating that individual ai is the spouse of
individual aj .

(3) ¬p(x, y), r(x, y). (Parents and children are related.)
(4) ¬s(x, y), r(x, y). (Spouses are related.)
(5) Reflexivity, symmetry, and transitivity of the “r” relation.
(6) ¬r(a0, am). (The goal is to show that individuals a0 and am are related.)

In this example, sorts are needed for a good relevance function, as above. One can let
each individual be a separate sort. Two support sets can be specified, one containing all
p and s assertions involving a0 and one containing all p and s assertions involving am.
Then the relevance set consists of clauses mentioning only individuals that are closely
related to both a0 and am; some of these clauses may be removed by the full matching
requirement. This use of two support sets can result in a substantial reduction in search
space as compared to specifying just one set of support, especially for knowledge bases
containing thousands or hundreds of thousands of facts.

A problem with this use of sorts is that the number of sorted versions of a clause can
be very large. If a clause C has three variables and each one can have m sorts, then the
number of sorted versions of C is at least m3. For large knowledge bases where m is large,
this large number of sorted clauses makes this approach impractical. This problem can be
reduced by only generating sorted clauses as they are needed, and also by representing
large sets of sorted clauses by sort constrained clauses (C,A) where C is an unsorted
clause and A is a constraint on the sorts of the variables in C. The sort constrained
clause (C,A) represents the set of sorted versions of C that satisfy the constraint A. Thus
(C[x, y, z], sort(x) ∈ {c1, c2}) represents the set of sorted versions of C in which the sort of
x is either c1 or c2, but the sorts of y and z may be arbitrary. The computation of relevance
sets can be adapted to the use of sort constrained clauses, but a detailed discussion of this
is beyond the scope of this paper.

7.2. Reduced support set

Reducing the size of the set of support will generally have the effect of increasing the
distances of clauses in S. Assuming a constant Herbrand complexity n one may try to
minimize the size of T to achieve better performance by generating smaller relevance
sets.

One common choice of the support set is the all positive clauses of S or all the negative
clauses of S. Both are correct choices in the sense that the remaining clauses are never
unsatisfiable (for a refutation one always needs some positive and some negative clauses).

Rather than selecting the entire set of clauses with the given polarity (positive or
negative) one may want to select T to be a subset of the positive (respectively negative)
clauses of S that are still a support set. This information may be readily available by the
nature of the task being performed. For example, on proving a theorem, one may take the
set of support to be the negative clauses corresponding to the negation of the theorem but
that includes no negative clauses of the original theory. In answering a positive query Q

against a database DB, one may select T = {Q → ⊥} and not include in T any negative
clauses of DB. The large support set problem (in the form of taking T to be the set of all
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negative clauses of S) was recognized as a source of inefficiency for the relevance based
approach of [14] and was rectified using an approach based on restricted initial relevance
in [15].

Consider the following example:

Example 14. Consider the set of clauses S = {C1,C2, . . . ,C9} and T1 = {C5} and T2 =
{C5,C6, C7, C8, C9} where the clauses C1,C2, . . . ,C9 are as follows: (Recall that the
numbers in parentheses give the distance of a clause from T1 and T2 in that order.)
C1(1,1)=Q∨a,C2(∞,1)= e∨f,C3(∞,1)= d ∨f,C4(2,1)= ¬a∨b∨c,C5(0,0)=
Q → ⊥,C6(2,0) = ¬a ∨ ¬b,C7(2,0) = ¬a ∨ ¬c,C8(∞,0) = ¬f ∨ ¬d,C9(∞,0) =
¬e ∨ ¬d . Because the clause set {C1,C4,C5,C6,C7} is unsatisfiable we take n = 5.

Let R1 be the set of clauses at distance 4 or less from a support set. Clearly, R1 = S for
T2 while R1 = {C1,C4,C5,C6,C7} for T1. The saving resulting from selecting the smaller
T1 is substantial.

The approach can be easily extended to the case of multiple support sets.
However, one may want to consider the cost of selecting a minimal support set as

opposed to selecting just a support set. The latter may be computationally efficient as it
is generally based on syntactic criteria such as clause polarity, while the former may be
computationally expensive as it may involve some sort of minimization. A middle ground
may be the optimal choice. For example, given a set of axioms (a database DB) select as T
the set of the negative clauses representing the theorem (query) negation. This T is known
to contribute to the refutation, if one exists, as the original theory is known to be consistent.
T however, may not be a minimal support set in the sense that T ′ ⊂ T may also be a support
set. Another possibility is to choose a collection {I1, I2, . . . , Ik} of interpretations of S and
let Ti be the set of clauses of S that are not satisfied by Ii . Then {T1, T2, . . . , Tk} is a support
class for S. Each Ii can be chosen as an interpretation with a finite domain, for example,
so that it is decidable for a clause C of S whether Ii |= C.

7.3. Combined criteria

Each of the restrictions discussed above resulted in stricter metrics than the original.
Further refinements can be achieved by combining the discussed approaches to achieve
still stricter metrics. One possibility is to limit the resolution based definition of distance
only to clauses that are members of the fully matched set. Only such clauses are allowed
in defining links and therefore distances. The same can be done with sorting. Only links
(resolutions) that are applied to compatible sorts need to be taken into account in defining
links. Links with incompatible sorts can be ignored. Another option to use multiple sets of
support each of which is minimal.

However, we have always to keep in mind that the amount of time spent on relevance
testing should be offset by the gains resulting from seeking a refutation in the computed
set of relevant clauses as opposed to that of performing the refutation search in the entire
input set.
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8. Applications

There have been a number of implementations of relevance techniques. One relevance
filter was implemented [8] and obtained good results for two knowledge bases of over
100 clauses each. This approach produced small unsatisfiable subsets of the input clauses
for several queries. Veroff [25] implemented another relevance filter that helped on some
theorem proving problems with fairly deep proofs; this approach computes the relevance
distance of each symbol from a single set of support using a resolution distance measure, a
paramodulation distance measure, and a combined measure, and uses the distances of the
symbols in a clause to assign a weight to the clause. This means that clauses containing
symbols that are closely related to the theorem, are more likely to participate in the search.
The weighting is performed on clauses generated by resolution and paramodulation, as well
as input clauses. Veroff [26] obtained good results overall on set theory problems in this
way, and sometimes was able to obtain proofs with relevance techniques that could not be
obtained otherwise. Other approaches discussed in the next section also employ relevance
concepts, although not using the same formalism as developed in the current paper, and
achieve improved performance [7,14,15,18,23,27].

Relevance methods appear most promising for large sets of assertions and small
refutations. In contrast, typical test problems for theorem provers have relatively small
clause sets and moderate sized refutations, and therefore may not benefit significantly from
relevance filters. However, such small clause sets often give theorem provers an unrealistic
advantage. Human mathematicians generally do not know which axioms are necessary to
prove a theorem until a proof is found. If a theorem prover attempts to find a proof using all
potentially relevant mathematical knowledge without some kind of a relevance filter, the
proof attempt would be hopeless. For such problems, a relevant set of clauses is generally
chosen by the user in advance before attempting the problem on a theorem prover. For
some problems involving abstract algebra, abstract logic, and equality, the relevant axioms
are known in advance and are relatively few in number. Set theory axioms are somewhat
more numerous but have many common predicates such as “member” and “subset” that
connect the clauses closely together. This appears to make set theory problems unsuitable
for relevance techniques, but Veroff [25,26] was able to obtain significant improvements
on such problems using relevance nonetheless. Even for problems involving equality and
large axiom sets, relevance with sorts can be effective in reducing the search space, as
mentioned in Examples 11 and 12.

Relevance techniques also appear promising for other kinds of problems that are
currently not suitable for automatic theorem provers. Problems of this type include many
mathematical theorems without a pre-selected relevant set of input clauses. This also
includes problems in expert systems, natural language understanding, and common sense
reasoning, in which the deductions are often simple but the knowledge base can be very
large, often including many thousands or hundreds of thousands of assertions. One example
of this is the Cyc project [9] for common sense reasoning in which there are currently
over a million assertions stored in predicate logic. Another example with many assertions
and simple deductions is the proposed semantic web [3]. It is reasonable to believe that
relevance techniques, especially with multiple sets of support, could lead to a systematic
method for choosing small, relevant sets of assertions for these applications. This would
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probably entail some preprocessing of the large knowledge bases to enable efficient
relevance computations. The human mind also efficiently selects relevant assertions from
a huge knowledge base, and may use some kind of a relevance filter for this purpose.

A number of applications naturally generate multiple sets of support for a relevance
filter. A concrete example will help to illustrate the potential of a relevance filter with
multiple sets of support. Suppose that a concept hierarchy is formalized by assertions
∀x(P (x) → Q(x)) specifying that every instance of concept P is also an instance of
concept Q. Suppose that the concept hierarchy has a tree structure, so that each concept
P appears in at most one such assertion. Suppose that there are also assertions of the
form P(a) for concepts P and individuals a. The clause ¬P1(x) ∨ ¬P2(x) ∨ · · · ∨
¬Pn(x) expresses the query of finding an individual that is an instance of a collection
P1,P2, . . . ,Pn of concepts. To apply relevance techniques to this query, each Pi can be
made into a set of support Ti including all assertions mentioning Pi . Applying relevance
with the support class {T1, T2, . . . , Tn} can significantly reduce the search. Suppose n = 3
and P1, P2, and P3 each have 1000 subconcepts, but only one individual a is a common
instance of subconcepts of P1, P2, and P3. Suppose for concreteness that Q1(a), Q2(a),
and Q3(a) are true, where Qi are subconcepts of Pi by a hierarchy of length 10, and a

is not an instance of any other concepts. Then a relevance filter with sorts corresponding
to individuals will choose about 30 relevant clauses, much reduced from the over 3000
assertions in the knowledge base.

A different concept hierarchy problem is to show that some object a is an instance of
P if one only knows that a is an instance of one of the concepts Q1,Q2, . . . ,Qn, that is,
Q1(a)∨Q2(a)∨· · ·∨ Qn(a). Then each Qi can be made into a set of support Ti including
all clauses mentioning Qi , and P can be made into a support set T0, and a relevance filter
with the support class {T0, T1, T2, . . . , Tn} leads to similar reductions in search space size.
In general, many description logic problems [1] with large knowledge bases may benefit
from a relevance filter, as well as other problems containing a large number of predicate
symbols.

Many planning problems can benefit from relevance techniques. For planning problems
involving n movable objects, there can be 2n support sets, obtained from the starting and
finishing locations of each object. Suppose one wants to push n objects to the right end of
a one dimensional track, where the objects all start at the same location in the middle of
the track. Then a situation can be formalized as a tuple of integer locations of each object.
The effects of actions can be formalized by assertions of the form Can(e1) → Can(e2)

where Can(s) means that situation s is achievable and e1 and e2 are terms representing
situations such that situation e2 is reachable from situation e1 by an action. Relevance
techniques will at least show that it does not help to push any object to the left, which can
substantially reduce the search space. If one can push all objects at the same time, then
relevance techniques using the average relevance function of Section 4.3 can reduce the
search space to the optimal plan, which is to push all objects to the right together. If the
track has length t , then the relevance filter reduces the search space to size O(t) for this
latter problem, while an unrestricted search would have size O(tn) or more. Of course,
specialized techniques can do as well, but there may be advantages to using uniform proof
procedures in some cases.
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Some queries to databases can benefit from relevance techniques. A disjunctive query
a1 ∨ a2 ∨ · · · ∨ an, when negated, results in the clauses ¬a1,¬a2, . . . ,¬an. If no simpler
disjunction is provable, then each ¬ai clause can be a set of support for a relevance filter,
yielding n sets of supports in all. If a query Q fails, and some clauses T are added and
the query is attempted again, then both Q and T can function together as sets of support
for a relevance filter. This also applies to checking the violation of integrity constraints
for deductive databases after an update. Deductive databases in general provide a class
of problems with a large number of clauses and query processing and integrity constraint
checking tasks solvable within a small relevance bound, and are therefore good candidates
for the relevance approach.

Relevance techniques can help even when the final proofs are large. This can happen
when simple connectedness criteria are sufficient to choose a small, relevant clause set.
Veroff [25,26] obtained significant improvements using relevance on some problems with
fairly complex proofs. For some applications, it may be desirable to let the cost of links
vary, so that some links are much cheaper than others for relevance computations. This
may also help to find relevant sets of clauses when the proofs are large.

9. Other approaches

Relevance as an approach to improving the efficiency of theorem provers is an early
paradigm[8,20]. The dominance of irrelevant clauses was recognized as the source of
inefficiency of theorem provers based on model generation [14,23]. Relevance was
suggested as a possible remedy. The approach of [23] is based on partial relevance
and was refined to total relevance in [14] that is in the spirit of limiting consideration
to a modification of fully matched sets. Using the terminology of the current paper,
both approaches are based on declaring all the negative clauses to be the support set
and propagating relevance to other clauses through the (auxiliary) relevance checking
component of the procedure. Only clauses passing the relevance test are employed in the
main computation. Realizing that the potential large size of the support set may drag many
essentially irrelevant clauses into the computation, the approach of [15] uses a reduced
support set that represents the negation of the query as the seed for relevance, resulting in
more compact computation for the proper class of theories. While some systems [14,23,
27] have a specific component to deal with relevance, the most common approach is to
integrate the relevance checking into the deduction process by specifying clause selection
functions that always pick (or at least give preference to) clauses linked to the top clause
or to clauses already participating in the proof.

Regarding the specification of support set, some of the approaches in the literature
avoid that altogether and allow the user to start from any clause and all clauses are
eventually considered until a refutation is found. This is the approach in the original
resolution and tableaux methods [5]. Other approaches give the set of support implicitly, by
specifying an initial interpretation and selecting for expansion clauses that are violated in
that interpretation [22]. Clearly, a careful choice of this interpretation has a major impact on
the resulting gains. A common choice is the selection of the all positive interpretation [2,16]
and the all negative interpretation [27]. One advantage is that such a specification will result
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automatically in the starting clauses constituting a set of support and no additional testing
for that is needed. The approach of [15] assumes the database to be consistent. It specifies
a limited set of negative clauses, corresponding to the query negation and therefore known
to constitute a set of support, as the source of relevance.

A common feature of all the mentioned approaches is that they don’t explicitly utilize
the concept of the relevance distance in the computation. Clauses are introduced once they
are shown to be relevant and no clear relevance distance bounds are employed. However,
some of these proof procedures use the fact that giving preference to clauses with certain
relevance distance properties may result in specific properties of the search mechanism.
For example, preferring increased distance may give the computation a depth-first flavor
while exhausting clauses at a certain distance before moving to the next value has a breadth
first flavor.

One may be able to relate relevance concepts advanced here to efficiency enhancement
techniques in theorem proving discussed under various titles. Here are some examples:

(1) As is common in model generation theorem proving [2,4,16], one may select the
positive clauses as the set of support, say by choosing the initial interpretation to be
empty. This is possible as the remaining clauses will be negative and mixed and thus
satisfiable. Only a clause (instance) with matched body atoms, is allowed to participate
in the computation. Such clauses constitute a superset of fully matched clauses. The
body of a positive clause is trivially matched. The tree expansion can be viewed as a
way of propagating relevance. Relevance is propagated to a new clause if all the body
atoms are matched. The process is terminated by negative clauses with no head atoms
to link to. An atom that is not linked can serve as a cause for dropping that clause
(instance) from the expansion set as it is not fully matched (locally). This (level cut) is
a common approach to reducing the search space in model generation theorem proving.
Note that finding relevant clauses and computing the refutation are interleaved.

(2) Alternatively, one may select the negative clauses as the set of support. This is possible
because the remaining clauses constitute a satisfiable set. Only clauses with matched
heads are used in the computation. The tree expansion can be viewed as a way of
propagating relevance to a new clause if all its head atoms are matched. Once all
head atoms are matched, the body atoms are expanded and a link is sought for them.
Any expanded atom that is not linked can serve as a cause for dropping that clause
(instance) from any further consideration in the current branch. In the terminology of
this paper, it is not (locally) fully matched.

(3) Other choices of the support set are possible and can be given interpretations along the
above lines [15,22].

The relevance computation as discussed here is a general approach that can be used
in conjunction with many existing theorem provers without major modifications to the
systems. The computed relevance set preserves the refutational properties of the original
set. To utilize relevance it is sufficient to have the computation of the relevance set R as a
preprocessing step in the prover.

Additionally, many theorem provers use unification. Among these are the tableaux
methods: Disconnection Tableaux, First Order Davis Putnam and others [2,4,10]. If sorted
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unification is used instead certain unifications will not be applicable thus reducing the
search space.

10. Conclusions, comparisons and future work

We presented an approach to introduce relevance into theorem proving. The goal is
to allow a theorem proving system to operate on a restricted subset of clauses related
to a given support set rather than the entire set of input clauses. Since many theorem
proving tasks have high computational complexity, one would expect that the reduction
in the clause set size will influence the time it takes to find a refutation. This gain can
be especially large when one deals with a huge number of clauses only a small portion
of which is relevant to any individual task the system is asked to perform. An example
is query answering in very large (possibly distributed) databases where relevance may
result in reductions of many orders of magnitude in the size of the input set for the
theorem prover. Another example is the case of mathematical theorem proving in the
presence of many noise clauses representing axioms that have nothing to do with the
theorem being proved. A third example is the case of theorem proving based diagnostics
where an error is local to a certain components that constitutes a small fraction of the
otherwise correctly functioning circuit. Several examples (Examples 7, 8, 12, and 13) have
been presented in which relevance functions together with multiple support sets can result
in substantial reductions in search space over other known theorem proving strategies,
especially for knowledge bases having thousands or hundreds of thousands of assertions.
Theorem proving strategies that are not goal sensitive will probably generate huge search
spaces on such large knowledge bases. Existing goal-sensitive strategies such as model
elimination only restrict the search to clauses that are closely related to a single support
set. Because relevance strategies can restrict the search to clauses that are closely related to
multiple support sets simultaneously, they should be considerably more efficient on large
knowledge bases.

Relevance testing as a way for improving performance has been a topic of research
since the early days of automated deduction. While much of the work did not explicitly
refer to relevance, the exclusion of irrelevant clauses can be viewed as an instance of
the relevance testing approach. Several techniques such as pure literal rule applications,
set of support/input resolution strategy, semantic hyper-tableaux and many others can
be interpreted as relevance incorporation methods. Relevance as presented here can be
viewed as an elaboration and extension of the results reported in [8,20]. In contrast to the
latter, we considered several refinements to the relevance concept that included the use
of sorts, manipulating the support set, and using stricter links to define relevance metrics.
The resulting relevance set is generally smaller though at the expense of a higher cost of
computing relevance.

The relevance distance bound which is generally based on the Herbrand complexity of
the theory played an important role in the computation of the relevance set. The nature of
this bound can influence the characteristics of the refutations found. The shortest proofs are
always retained [7]. However, if the bound is based on the length of a proof then all proofs
of lesser sizes are guaranteed to be found in the computed relevance set. Longer proofs
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may be missed. This may be a drawback in cases when one is interested in all possible
proofs, such as when one wants to compute all possible answers to a given query.

We considered several refinements to the link condition underlying the relevance
distance discussed in the paper. Clearly, others can be devised to further refine the link
concept and consequently reduce the relevance set. On the other hand one may want to
relax some of the definitions to get quick though rough estimates on the relevance set. For
example, rather than computing the fully matched set as a basis for relevance one may want
to compute the fully matched set that results from replacing all arguments of predicates by
the same variable and seeking full-matching in the resulting set. Clearly, this may declare
relevant, clauses that are not really so but may exclude many irrelevant clauses at a low
cost. At least this can serve as a first estimate on the relevance set. A point that one should
keep in mind is the trade-offs between the cost of the relevance computation and the gains
to the refutation search.

On the other hand, the relevance approach as outlined here may be considered as
orthogonal to many popular search space reduction techniques employed in the literature
such as tautology removal and clause subsumption processing.

The approaches in [14,23] are based on explicitly computing relevant clauses through
the concept of a relevant atom. The partial relevance as defined in [23] and total relevance
as defined in [14] and the related concept of nonhorn magic sets of [18] do not utilize the
concept of relevance distance. The relevance there is used in a forward chaining model
generation procedure and is based on the negative clause set which plays the role of the
support set in the current paper. While the relevance approach discussed in the current
paper defines relevant clauses globally, that is in relation to the entire set of support,
the approaches of [14,15] do that in a more localized fashion: the relevant clauses are
computed relative to the current state of the computation and change as the refutation
search advances. This may result in recognizing certain clauses as irrelevant at the current
stage while they would be declared relevant by the approach of the current paper. One can
adopt that approach here by refining the relevance computation to give it a local character.
However, one should take into account the computational cost of this refinement which can
be substantial under unfavorable conditions.

Another difference (or way to look at things) is that the approach of this paper is static
in the sense that the computation of the relevance set precedes the refutation search (in
the computed relevance set) while the approach of [14] is dynamic in the sense that the
relevance computation is done in the changing environment of the search. It is not difficult
to see that the approaches can be combined: a relevance of [14] style can be applied to the
relevance set computed using the (static) approach of this paper.

The works [6,7] offer approaches to computing relevance that are in the line of the
current work. They are classified as heuristic and exact. In that spirit, the relevance
discussed here is an exact one in the sense that it is based on strong results regarding the
(non)contribution of irrelevant clauses to the proofs sought. Our approach deals directly
with the given clause set rather than with their abstractions [21] as detailed in [7].
Additionally, the approach of [6] is integrated into a tableaux construction process and
therefore has the ability to take local (branch) considerations into account when testing
relevance. This can result in more refined relevance. The fact that the relevance approach
as defined in this paper is static makes it generic in the sense that it is not geared towards
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any particular theorem prover or theorem proving strategy [6,14]. It can be incorporated
into existing theorem provers, though clearly one can further refine the approach to exploit
the properties of the system into which it is integrated. However, relevance has a global
nature and as such may include clauses that have no contribution to the refutation or those
whose contribution has already been exploited.

One topic that merits attention is the presence of equality in S. A straightforward
treatment of equality requires that the equality axioms be included in the relevance
computation. Sorts help in this respect, but it might be preferable to eliminate the equality
axioms altogether and define relevance concepts directly related to paramodulation. This
seems to require an approach in which subterms can be linked with other subterms having
the same sort. A detailed treatment of paramodulation is beyond the scope of the current
paper but may be a topic of future research.

The detailed treatment of sorts and the relationship to relevance is another topic for
further research.
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