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Anything I have written on the topic is primarily testimony as to how important I

consider it. | J.A. Wheeler, private correspondence.

ABSTRACT

Inspired by the work of Wheeler among others, we have studied the

problem of quantum measurements of space-time distances by applying the

general principles of quantum mechanics as well as those of general relativ-

ity. Contrary to the folklore, the minimum error in the measurement of a

length is shown to be proportional to the one-third power of the length it-

self. This uncertainty in space-time measurements implies an uncertainty

of the space-time metric and yields quantum decoherence for particles heav-

ier than the Planck mass. There is also a corresponding minimum error in

energy-momentum measurements.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/475609497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We start by recalling the fundamental nature of space-time distance measurements.1�4

In quantum mechanics one speci�es a space-time point simply by its coordinates, without

bothering to give a prescription as to how these coordinates are to be measured. However,

general relativity ordains that coordinates do not have any meaning independent of observa-

tions; in other words, according to relativity, a coordinate system is de�ned only by explicitly

carrying out space-time distance measurements. We will pay heed to this dictum of general

relativity, and will follow Salecker and Wigner1 to use clocks and light signals to measure

distances.5[f1]

Suppose we want to measure the length between two spatially separated points A

and B. The measurement can be carried out in the following way. A clock is put at point

A. Set the clock to read zero when a light signal is sent from A towards B where a mirror is

stationed to reect the light signal back to A. From the reading of the clock, to be denoted

by t, when the light signal arrives at A, one deduces that the length AB is given by ` = ct=2

where c denotes the speed of light. There are two major sources of errors in the length

measurement: one comes from the uncertainty principle of quantum mechanics, and the

other is due to spacetime curvature e�ects.

First we note that the clock is not absolutely stationary, its spread in speed being

given by the uncertainty principle of quantum mechanics,

�v =
�p

m
>�

1

2

�h

m�`QM
; (1)

where m is the mass of the clock. Since the clock is the agent in measuring the length, that

[f1] Our work has some overlap with that of Ref. 6.
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it is not stationary implies an uncertainty in the length measurement given by, at time t,

�`QM (t) = t�v >�
1

2

�h

m�`QM (0)
t =

1

m

�h

�`QM (0)

`

c
; (2)

where in the last two steps we have used Eq.(1) and t = 2`=c respectively. Next we minimize

�`QM (0) + �`QM (t) so that the uncertainty in the length measurement due to quantum

mechanical e�ects is given by

(�`QM )2 >�
�h`

mc
: (3)

But the uncertainty in the position of the clock cannot be made arbitrarily small by

making the clock very massive as that would disturb the spacetime curvature.7 If one assumes

the clock to be spherically symmetric, and to have a radius (to be denoted a) larger than

the Schwarzschild radius r� = ( 2Gm
c2

) where G is the gravitational constant, �`c, the error in

the length measurement caused by the curvature, may be calculated from the Schwarzschild

solution. The result is r� multiplied by a logarithm involving r�
a
and r�

a+`
. For a � r� one

�nds �`c =
1
2
r� `n a+`

a
, hence

Gm

c2
<� �`c : (4)

The combined error in the length measurement, �` = �`QM + �`c, , due to quantum

mechanical and curvature e�ects, can be minimized by adjusting m. Using Eqs. (3) and (4)

we �nd

�` >� (` `2P )
1=3 ; (5)

where `P =
�
�hG
c3

�1=2
is the Planck length.[f2] We expect the presence of the mirror at point

B to contribute an error of comparable magnitude. We can also deduce the minimum error

[f2] Carrying out the measurement at non-zero temperature results in an additional error.
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in time interval measurements by using the same experimental set-up:

�t >� (t t2P )
1=3 ; (6)

where tP = `P =c is the Planck time. These errors in spacetime measurements induce an

uncertainty in the spacetime metric. Noting that �`2 = `2�g and using Eqs. (5) and (6) we

readily get

�g�v >�
�
`p

`

�2=3

�
�
tp

t

�2=3

: (7)

Our results (Eqs. (5)-(7)) should be contrasted with those according to the canonical8

viewpoint. The derivation of the latter goes as follows. The vacuum functional for the theory

of pure gravity has roughly the form

Z �
Z
D[g] exp

(
ic3

�hG

Z �
@g

@x

�2

d4x

)
: (8)

Thus if one is making measurements in a spacetime region of volume `4, contributions to

the Feynman integral are more or less in phase until variations in the gravitational �eld

amplitudes from their classical values become as large as

�g >� (�hG=c3)1=2=` = lP =` : (9)

These represent the quantum uctuations of the gravitational �elds. They give rise to errors

in spacetime measurements which are constants:

�` >� `P ; �t >� tP : (10)

Let us see how reasonable the canonical results (Eqs.(9) and (10)) are in the light

of the analysis given above for our actual experimental set-up involving a clock, a mirror,

and light signals. There, to obtain the canonical results instead of Eqs. (5) - (7), all one
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has to do is to replace Eq. (4) by the requirement Gm
c2

<� `. But this requirement is trivially

true, for otherwise the mirror would be required to be inside the Schwarzschild radius of the

clock, a nonsensical situation. One would think one could impose a more restrictive (but

still physically sensible) requirement to arrive at a more useful and better bound for the

minimum errors in spacetime measurements (such as those given by Eq. (5) - (7)).

Two more comments on the results Eq. (5) - (7):

(1) Mathematically it is not surprising that the uncertainty in the length ` involves the

two lengths in the problem: ` and `P . There is an analogous result which is actually

relevant for long thin rulers. A quantum mechanical calculation for a 1-dimensional

chain of N ions with a spring of constant k between successive ions gives in the high

temperature limit, for the uncertainty in the length, [f3]

�` =
1

�

q
N�x2i =

1

�

s
Nb

�x2i
b

=
1

�

s
`
�x2i
b

;

where b is the distance between two successive ions when the spring is relaxed, and

where �x2i = 1
2
kBT
k
, i.e., the mean square displacement of a mass on a spring of

force constant k. Thus, for a long thin ruler, the uncertainty in the length depends

on both the length ` itself and the lattice constant b. Note that �` is proportional

to `1=2. [In the zero temperature limit, one �nds �` to be proportional to
q
log `

b
.]

This is one of the reasons that long thin rulers are not the best tools to measure

distances. In addition, being macroscopic objects, rulers will inuence other objects

in the measurement process through their gravitational attraction. The Lorentz

contraction of rulers will also complicate matters.

[f3] This result is originally due to E.P. Wigner (in response to a question raised by one

of us (HvD),) private communication. Details of the calculation will appear elsewhere.
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(2) Because the Planck length is so small, even for the universe [f4] for which ` =

1010light-years, �` is only 10�13 cm long, the size of a nucleus, which is quite small,

but in principle is there.

As a simple application of Eqs. (5)-(7), we deduce the minimum error in momentum-

energy measurements. Imagine sending a particle of momentum p to probe a certain structure

of spatial extent ` so that

p � �h

`
: (11)

Consider the coupling of the metric to the energy-momentum tensor of the particle,

(g�� + �g��)t
�� = g��(t

�� + �t��) ; (12)

where we have noted that the uncertainty in g�� can be translated into an uncertainty in

t�� . Eqs. (7) and (12) can now be employed to give

�p >� p

�
`P

`

�2=3

; (13)

which, with the aid of Eq. (11), yields

�p >� p

�
p

mP c

�2=3

; (14)

where mP = (�hc=G)1=2 is the Planck mass.

[f4] Since this conference is held in honor of Prof. J.A. Wheeler, it may not be out of

place here at the mentioning of the word \universe" to quote him (private correspondence):

`[I recall] the well-known statement of Rutherford, \When a student of mine uses the word

\universe", I tell him it is time for him to leave." But maybe that's why so many of us live

in America!'
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[An alternative derivation of Eq. (14) is provided by considering �p, the "uncer-

tainty" of the momentum operator p = �h
i

@
@x
, associated with �x = (x`2P )

1=3 (Eq. (5)). For

any function f(x), (�p)f is given by

(�p)f =
�h

i

�
�x

@2f

@x2
+
@f

@x

@�x

@x

�
:

Taking the function f(x) to be the linear momentum eigenstate f = exp(ipx=�h), one gets

���(�p)e ipx�h ��� = �h
����i p2

�h2
`
2=3
P x1=3 +

1

3

p

�h
`
2=3
P x�2=3

�
e
ipx
�h

��� :
The minimum value of j�pj is attained at x � 2

3
�h
p
yielding Eq. (14).]

The analogous statement for the minimum error in energy measurements is

�E >� E

�
E

mP c2

�2=3

: (15)

For energy-momentum near the Planck scale, the error is not negligible; for example, at the

Grand uni�cation scale � 1016 GeV, the error is of order 1%. In analyzing a high-energy

experiment an experimentalist should keep in mind that energy-momentum conservation

holds only up to the errors given by Eqs. (14) and (15). In passing, we mention that the

minimum errors in measurements given by Eq.(6), (7), (14) and (15) are �xed by dimensional

analyses once the minimum error in spatial distance measurements is found given by Eq.

(5).

As another application of the above results Eqs. (5)-(7), let us consider the quantum

(de)coherence phenomenon for a scalar particle of mass m moving slowly. Let us assume

that the particle satis�es the Schr�odinger-Klein-Gordon type equation,

i�h
@

@t
 =

�
� �h

2m

@2

@x2
+ V (x; t) + g00mc2

�
 ; (16)
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where we have kept only the most important term involving g�� . We are interested here in

the e�ects caused by the uncertainty in the metric given by Eq. (7). Obviously �g induces

a multiplicative phase factor in the wave-function

 ! ei�' ; (17)

where

�' =
1

�h

Z t

mc2�g00dt0 : (18)

For consistency the integral should be fairly insensitive to the lower integration limit as long

as t� tP . If one is making measurements in a short time interval, contributions to the phase

of the wave-function from the di�erent time elements in this time interval will be more or

less in phase (i.e. �'� 1) until the time interval reaches the decoherence time tD when �'

becomes sizable, i.e.,

1 � 1

�h

Z tD

0

mc2
�
tP

t0

�2=3

dt0 � mc2

�h
t
2=3
P t

1=3
D = `

2=3
P `

1=3
D =�c ; (19)

where �c =
�h
mc

is the Compton wave-length of the particle of mass m, and `D = ctD is what

we will call the decoherence length. The system can be treated classically if the decoherence

length is less than the Compton wave-length, in other words, if

`D � �c ;

or, via Eq. (19),

m >� mP : (20)

Therefore, due to the uncertainty of the space-time metric, it su�ces to give a particle

heavier than the Planck mass a classical treatment.
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