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Abstract

Monitoring of toxicity is often conducted in Phase II trials in oncology to avoid an excessive 

number of toxicities if the wrong dose is chosen for Phase II. Existing stopping rules for toxicity 

use information from patients who have already completed follow-up. We describe a stopping rule 

that uses all available data to determine whether to stop for toxicity or not when follow-up for 

toxicity is long. We propose an enrollment rule that prescribes the maximum number of patients 

that may be enrolled at any given point in the trial. Key words: Delayed outcome, Phase II 

oncology trial, Pocock boundary, Stopping rule, Enrollment rule.
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1. Introduction

Many oncology Phase II trials implement a stopping rule for toxicity. This is because the 

toxicity profile of a drug or a drug combination used in a Phase II trial might not be well 

understood by the time the trial commences. A number of stopping rules for toxicity have 

been proposed for use in a single-arm trial. Ivanova, Qaqish and Schell (2005) argued for the 

use of the Pocock type (Pocock, 1977) stopping boundary; Geller et al. (2005) proposed a 

Bayesian stopping rule. Both argued that a continuous stopping rule, a rule that can be 

applied after any number of patients have completed follow-up for toxicity, provides the 

best protection against observing an excessive number of toxicities and therefore is 

preferable to two or three-stage stopping rules. A continuous stopping rule is a multistage 

rule where the number of stages is the same as the number of patients in the trial. The 

continuous Pocock boundary is routinely used in Phase II oncology trials conducted by the 

Lineberger Comprehensive Cancer Center (LCCC).

In some oncology trials the follow-up for toxicity is long compared to the accrual rate. This 

was the case in a Phase II study of a novel B-Raf inhibitor administered together with a 
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monoclonal antibody in patients with active melanoma brain metastases. The observation 

period for dose limiting toxicity (DLT) was 12 weeks. The Pocock boundary was in place to 

monitor the DLT rate. To use the Pocock boundary one needs to have full follow-up data on 

all already enrolled patients. If investigators in this study wait for all patients to be fully 

followed before the next patient is enrolled, the length of the trial with 30 patients will be 

over 7 years. Is it possible to make the trial shorter without increasing the number of patients 

potentially exposed to unsafe treatment? The problem can be solved 1) by developing a 

stopping boundary that utilizes all data available including data from patients still in follow-

up, and 2) by guiding the accrual rate to the trial so that future enrollment decision is 

determined by the observed toxicity pattern in the previous enrolled patients. The problem 

of conducting studies with long follow-up arises in Phase I oncology trials as well (Cheung 

and Chappell, 2000, Bekele et al., 2008). In order to utilize the partial data in a Phase I dose-

finding trial, Cheung and Chappell (2000) used an assumption about the distribution of time 

to toxicity in (0, t*) given toxicity occurs in (0, t*), where t* is the length of follow-up for 

toxicity. Bekele et al. (2008) suggested halting enrollment to a Phase I trial when there is not 

enough data to select a safe dose for the next patient. We extend these ideas to a single arm 

Phase II oncology trial. Our first contribution is the method of deciding whether to stop the 

trial or not based on all available data, including data from patients still in follow-up. The 

main challenge here is to maintain the pre-specified probability of stopping the trial under 

various true toxicity rates, in particular, maintaining the desired type I error rate and power, 

when partial data are used. Our second contribution is an enrollment rule that prescribes, 

based on current data, when to enroll a patient, how many to enroll, and when to wait. In this 

paper, in Section 2 we develop a continuous stopping rule for toxicity based on partial data. 

Enrollment strategy is described in Section 3, and a simulation study is presented in Section 

4. We give a real trial example in Section 5 and present conclusions in Section 6.

2. Stopping for toxicity based on partial data

In a Phase II study each patient is followed for toxicity for a fixed period time of t*. Let n be 

the number of patients enrolled in the study so far. Let Ui be the random variable denoting 

the time to toxicity for the ith patient and let θ = P(Ui ≤ t*) be the probability of toxicity. 

Denote Yi,n the indicator that the ith patient has experienced toxicity by the time just prior to 

the entry of the (n+1)th patient, i = 1,…,n, then  is the random variable 

denoting the total number of toxicities observed at that time.

In a trial where all patients are fully followed for toxicity when the next patient is assigned, 

Yi,n does not depend on n and follows a Bernoulli(θ) distribution and Xn ~ binomial(n, θ). 

Ivanova et al. (2005) considered such trials and argued that the Pocock boundary is the most 

suitable boundary for monitoring toxicity in a Phase II oncology trial as it allows stopping 

early with high probability and therefore reduces the expected number of toxicities. Let K be 

the sample size planned for a Phase II study and let θ0 be the acceptable probability of 

toxicity. The Pocock boundary can be defined through a point-wise probability α, such that 

the trial is stopped if, at each interim analysis, the null hypothesis θ = θ0 is rejected at level 

α in favor of the one-sided alternative θ > θ0. The value of α is chosen so that the overall 

probability of stopping the trial, ϕ, is equal to a specified value, usually ϕ = 0.05, if the 
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toxicity rate is θ0. In another words, the type I error is controlled at level ϕ. We refer to the 

boundary that allows stopping the study at any point as a continuous boundary, because the 

trial can stop after any number of patients are accrued and their results observed. Let the 

constants bk, k = 1,…,K, be the smallest integer such that P[Xk ≥ bk] ≤ α, then such a 

boundary can be described through (b1, b2, …, bK). If the number of toxicities in the first k 

patients is equal to or higher than bk, the trial is stopped. Another way of implementing this 

boundary is to compute a one-sided p-value to test the null hypothesis θ = θ0 versus one-

sided alternative θ > θ0 after each patient’s outcome is observed. The trial is stopped if the p-

value is less than α. In fact, it is sufficient to apply the boundary only when a patient 

experiences toxicity. This is because, if the trial has not been stopped before, it can only be 

stopped if more toxicities are observed.

We now explain how to use data from partially followed patients to implement a sequential 

boundary. We will compute the p-value to test the null hypothesis θ = θ0 versus the one-

sided alternative θ > θ0 based on all information available using assumption on the 

distribution of time to toxicity in (0, t*).

Now consider the case when not all n patients are fully followed for toxicity at the time just 

prior to the entry of the (n+1)th patient. Let ti,n be time elapsed from the start of treatment 

for the ith patient at the time just prior to the entry of the (n+1)th patient. Following Cheung 

and Chappell (2000), for ti,n < t*, we have

In other words, a weight wi,n = P(Ui < ti,n | Ui ≤ t*) is assigned to the ith patient and the 

probability that the ith patient experiences toxicity when treated for a length of ti,n is wi,nθ. 

This is equivalent to assuming that the time to toxicity given that toxicity occurs in (0, t*) 

follows a uniform distribution on the interval (0, t*). This and other weighting options were 

described in Cheung and Chappell (2000) and Yin (2012). The weight wi,n is set to 1 for 

patients who have already experienced toxicity and patients who have completed follow-up. 

At the time just prior to the entry of the (n+1)th patient, the number of patients who 

completed the trial without toxicity is  and the number of 

patients still under follow-up is , Xn + Sn + Rn = n. Let x, s and r 

denote the observed Xn, Sn and Rn respectively. The one-sided p-value for testing the null 

hypothesis θ = θ0 versus θ > θ0 is the probability of Xn ≥ x.

For example, if n = 3, x = 2, s = 1 and r = 0, then all weights are equal to 1 and the p-value is 

calculated as P[X3 ≥ x] = P[X3 ≥ 2] = 0.104, where X3 is a binomial random variable with 

parameters n = 3 and θ0 = 0.2, X3 ~ binomial(3,0.2). As another example, if the counts right 

before enrolling the fourth patient are n = 3, x = 2, s = 0 and r = 1 with the first two patients 

fully followed and time t3,3 = t*/2 and hence w3,3 = 1/2 for the patient still in follow-up, then 

X3 = Y1,3 + Y2,3 + Y3,3, where Yi,3 ~ Bernoulli(θ0) for i = 1,2 and Y3,3 ~ Bernoulli(θ0 / 2). 

Therefore
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We illustrate the ability of this rule to stop the trial via simulations. Consider an example of 

a Phase II trial with K = 30. To yield the overall probability of stopping of 0.05 when θ0 = 

0.2, we need to use α = 0.0164 at each step. The continuous Pocock boundary (Pocock, 

1977) for this trial is shown in Table 1. In our simulations study t* = 12 weeks and a new 

patient is enrolled every week. In reality, time to toxicity might not follow uniform 

distribution on (0, t*). Time to toxicity can be more generally modelled using Weibull 

distribution with corresponding survival function S(t) = e−λtγ. When the shape parameter γ is 

1, it is the same as exponential distribution. When γ > 1, toxicity is more likely to occur at 

the end of the interval. Table 2 contains results for the proposed stopping rule when time to 

toxicity is distributed according to uniform, exponential (γ = 1) and Weibull distribution 

with γ = 2. For comparison, we also present data for a trial with instantaneous toxicity 

outcome, t* = 0, and for a trial with t* = 12 weeks where only data from patients who were 

fully followed (i.e., full follow up time t* passed from the initiation of treatment for all 

patients irrespective of their outcome) is used in a stopping rule. As seen from Table 2, our 

rule allows to stop the trial earlier and to observe less toxicity on average, especially when 

toxicity rate is high. The rule based on partial data yields slightly lower type I error rate (i.e. 

stops less frequently when the true toxicity rate is low) and power (i.e., stops less frequently 

when the true toxicity rate is high), however the decrease is not substantial. Even though the 

proposed stopping was based on the assumption that time to toxicity follows uniform 

distribution, it performs well when the true distribution of time to toxicity is exponential or 

Weibull. The method is robust towards the distribution of time to toxicity because 

eventually each patient completes their follow-up for toxicity and their toxicity outcome 

becomes known. The imputation based on uniform distribution works fine for those patients 

who eventually complete the follow-up and slightly loses accuracy for those patients do not 

complete the follow-up. If needed, one can use a more flexible model for time to toxicity 

(Cheung and Chappell, 2000).

3. Enrollment rule to prevent excessive number of toxicities

If many patients are enrolled at once, the stopping rule described in the previous section will 

not prevent assigning too many patients to a regimen that may not be safe. Often, many 

patients are enrolled at the very beginning of the trial which might lead to excessive 

toxicities. An enrollment rule informs investigators about how many patients may be 

enrolled at the beginning of the trial and guides further accrual based on the information 

about toxicity in the trial.

Consider the boundary in Table 1. Initially we may enroll 3 patients as it is not possible to 

stop the trial before 3 patients complete follow-up. If none of these patients experience 

toxicity in (0, t*), one may enroll as many as 5 more patients, since there is a possibility to 

cross the boundary by observing 5 toxicities out of 8 patients, and it is not possible to cross 

the boundary if less than 5 additional patients are enrolled. More formally, the trial can 

enroll m new patients such that r + x + m ≤ bn+m, r + x + m − 1 < bn+m−1 and n + m ≤ K. The 
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assumption here is the worst case scenario, i.e., the toxicity rate is θ = 1 and therefore every 

patient in the follow-up will experience toxicity. This assumption was referred to as the 

conservative plan in Schmegner and Baron (2004) who considered it in the context of 

sequential planning of experiments. This is the most conservative enrollment rule and the 

number of toxicities we observe will be very similar compared to the trial with instantaneous 

toxicity response. However, this rule can lead to a rather long trial if t* is long. We propose a 

way to relax this rule.

Let M be the design parameter fixed in advance. One can think of M as the maximum 

number of extra toxicities we are willing to allow in order to make the trial shorter. The 

maximum number of new patients to enroll, m, is determined by r + x + m ≤ bn+m + M, r + x 

+ m − 1 < bn+m−1 + M and n + m ≤ K. That is, at any time the maximum number of patients 

experiencing toxicity cannot exceed the number allowed by the Pocock boundary plus M. As 

before we assume the worst case scenario that all patients will experience toxicity and allow 

M extra toxicities beyond what is allowed by the Pocock boundary. When M = 0, the rule is 

equivalent to the conservative enrollment plan from Schmegner and Baron (2004). The 

maximum number of patients to enroll in the trial initially is b* + M, where b* is the 

minimum number k such that k ≥ bk. In the example in Table 1, we can enroll at most 3 + M 

patients initially. If M is as large as M ≥ K − b*, all patients can be enrolled in the beginning 

of the study. This strategy has a clear interpretation as allowing at most M additional 

toxicities over what is allowed by the stopping rule. We will refer to this strategy as “+M 

enrollment rule” in the remainder of the paper.

As mentioned earlier, using just the stopping or just the enrollment rule will not prevent the 

trial from possibly seeing excessive toxicity. The algorithm below describes how to apply 

both the stopping rule from Section 2 and the +M enrollment rule described in this Section 

in a clinical trial.

i. Initial enrollment is b* + M. For example, in Table 1, b* = 3.

ii. When toxicity is observed, calculate the p-value as described in Section 3.3. If p-

value is less than α, stop the trial.

iii. When there is a toxicity or a patient reached the end of follow-up t* without 

toxicity, if x + r ≥ bx+s+r + M, no new patients may be enrolled. If x + r < bx+s+r + 

M and the enrollment limit has not been reached, find the smallest integer m̃ that 

satisfies m̃ = bx+s+r+m̃ + M − (x + r). If m̃ > x + r + s, then enroll K − (x + r + s) 

patients, otherwise, enroll m̃ patients.

4. Simulation results and discussion of design parameters

In this section we present a simulation study investigating the performance of the +M 

enrollment rule for various values of M in conjunction with the stopping rule described in 

Section 2. We used the example from Section 2 with K = 30 and θ0 = 0.2. Figures 1–3 show 

the expected number of toxicities, expected number of patients enrolled and expected length 

of trial (in units of t*) for some values of M across the range of true toxicity rate. When M = 

0 the probability of stopping the trial is almost the same as ϕ. As M increases, assuming that 

patients are always available to enroll in the trial, the probability of stopping the trial 
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decreases slightly. At the same time, the expected number of toxicities is increasing, mostly 

because many more patients are enrolled before the trial is stopped and not because the 

probability of stopping gets slightly lower compared to when M = 0. On the other hand, as M 

increases the trial gets shorter. Note that when M = 27 all patients may be enrolled at the 

beginning of the trial.

To choose an appropriate M for a trial, we notice that for a given M, the expected number of 

toxicities rises as the true toxicity rate increases. If toxicity rate θ = 1, the increase in 

expected toxicity compared to a sequential trial with instantaneous response is M. For θ < 1 

the expected increase will never exceed θM. Furthermore, because a stopping rule is in 

place, the expected increase is smaller than θM. One can estimate the expected increase in 

toxicity for each stopping and enrollment rule combination and t* by simulations. Consider 

the example in Table 1 and assume that the true toxicity rate cannot be higher than θ = 0.6. 

Simulations show that if we chose M = 5 in the +M enrollment rule, we will see at most one 

extra expected toxicity when θ ≤ 0.6. Therefore M = 5 is a good choice of parameter value in 

the +M enrollment rule if we are willing to allow at most one extra toxicity.

5. Real trial example

The proposed methodology is used in ongoing LCCC pharmacokinetic study of patients 

with high risk myelodysplasia and acute leukemia. Dose limiting toxicity outcomes (yes or 

no) were defined as non-relapse mortality or one of the following toxicities observed during 

the first 8 weeks from the start of treatment: grade 3 non-hematologic toxicity lasting greater 

than 7 days, grade 4 non-hematologic toxicity with the exception of drug-related fever, or 

grade 3/4 hematologic toxicity lasting greater than 42 days. The total number of patients in 

the study was 22. The probability of stopping the trial was set to 0.05 when the true dose 

limiting toxicity rate is equal to the tolerable rate of 0.2. The investigators preferred the most 

conservative approach to enrollment and therefore M was set to 0 in the +M enrollment rule. 

This enrollment rule allowed enrolling 3 patients in the beginning of the study. There were 

no dose limiting toxicities in the first 3 patients, therefore 5 more patients could be enrolled 

at once. After enrolling the first three patients the accrual has slowed down. The study is 

ongoing.

6. Conclusions

We propose a frequentist sequential stopping rule for toxicity that utilizes all available data 

in the trial. To control the number of toxicities in the study, we recommend using the 

stopping rule with an enrollment strategy. The parameter to use in the enrollment strategy 

can be chosen based on the maximum number of extra toxicities or to yield a desired trade-

off between the length of the trial and an increase in expected number of toxicities. The 

continuous sequential boundary (Ivanova et al., 2005) can be generated by using software 

available at http://cancer.unc.edu/biostatistics/program/ivanova/.
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Figure 1. 
Expected number of toxicities plotted versus true toxicity rate for different values of M in a 

trial with K = 30, θ0 = 0.2 and ϕ = 0.05.
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Figure 2. 
Expected number of patients enrolled in the trial versus true toxicity rate for different values 

of M in a trial with K = 30, θ0 = 0.2 and ϕ = 0.05.
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Figure 3. 
Expected length of study versus true toxicity rates for several values of M in a trial with K = 

30, θ0 = 0.2 and ϕ = 0.05.
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