
A Viscous Paint Model for Interactive Applications

William Baxter, Yuanxin Liu, and Ming C. Lin
Department of Computer Science

University of North Carolina at Chapel Hill
{baxter,liuy,lin}@cs.unc.edu

http://gamma.cs.unc.edu/viscous

We present a viscous paint model for use in an interactive painting system based on the well-known Stokes’ equations for
viscous flow. Our method is, to our knowledge, the first unconditionally stable numerical method that treats viscous fluid with a
free surface boundary. We have also developed a real-time implementation of the Kubelka-Munk reflectance model for pigment
mixing, compositing and rendering entirely on graphics hardware, using programmable fragment shading capabilities. We
have integrated our paint model with a prototype painting system, which demonstrates the model’s effectiveness in rendering
viscous paint and capturing a thick, impasto-like style of painting. Several users have tested our prototype system and were
able to start creating original art work in an intuitive manner not possible with the existing techniques in commercial systems.

Keywords: Non-photorealistic rendering, Painting systems, Simulation of traditional graphical styles

1 Introduction

For centuries, artists have used traditional media and tools to express their thoughts and feelings creatively. Recently there has been a
growing interest in non-photorealistic rendering and in simulating artists’ traditional media and tools.

In painting, each paint medium has its own characteristics. Viscous paint media, such as oils and acrylics, are popular among artists
for their versatility and ability to capture a wide range of expressive styles. However, it is a challenge to design an interactive model that
correctly captures the physical behavior of viscous paint, because of the complex underlying set of partial differential equations that govern
that motion.

With the increasing trend to use simulation techniques to automatically generate physically-based, realistic special effects, the modeling
of fluid-like behavior has recently received much attention. Most of this attention, however, has been focused on the animation of very
low-viscosity fluids such as water or air. But many fluids that we encounter on a daily basis are of a more viscous nature. Familiar examples
include honey, glue, mud, ketchup, and thick paints. A method for simulating such media interactively must be capable of treating both the
high viscosity and the complex free-surface boundary conditions with unconditional stability.

In addition to focusing on the plausible physical behavior of viscous paint, we are also aiming at providing an expressive vehicle for the
users to interactively create original works using computer systems. This set of dual goals introduce strict constraints and new challenges
on the design and implementation of a computational model for a viscous paint medium.
Main Contributions: In this paper, we present an interactive method for modeling very viscous paint media based on a novel stable
solver for the viscous Stokes equations, particularly tailored for use in painting simulation. The solver can compute 3D flow throughout the
fluid medium and allows realistic mixing of material properties (e.g. pigmentation) internally. It uses a Volume-of-Fluid (VOF) / level set
technique to track the free surface and is completely stable based on our observation and user’s experiences. It further supports an intuitive,
physically-based interaction paradigm for emulating traditional painting settings [1].

Our main goal is to create a paint model that simulates and renders viscous paint, such as oil or acrylic paint, for interactive appli-
cations. To more accurately recreate the non-linear chromatic behavior of real paint blending, we have also implemented color mixing
and compositing based on the Kubelka-Munk (K-M) model. In order to achieve real-time performance, this is implemented in graphics
hardware using programmable fragment shading capabilities. This approach allows for both real-time calculation of the K-M reflectances
and dynamic lighting of the paint surface which would otherwise be difficult to attain on a desktop PC.

We have augmented a prototype painting system, which demonstrates the capabilities of our viscous paint medium with real-time
Kubelka-Munk mixing and compositing, and several users have created paintings using the system. By manipulating the virtual brush

1

naturally the user can build up layers of paint and paintings in a thick, impasto style. The multiple layers are then rendered using K-M
optical composition on graphics hardware. Together with the physically-based modeling of the 3D deformable brushes, our viscous paint
model allows the artists to express their creativity freely and paint naturally through a more familiar 3D painting interface than the typical
2D mouse and widgets.
Organization: The rest of the paper is organized as follows. We provide a brief survey of related work in Sec. 2. We present an overview
of the interactive painting system and the user interface in Sec. 3. We describe our method for modeling viscous fluid in Sec. 4. Section 5
briefly discusses our Kubelka-Munk implementation. Finally, we discuss other implementation issues and demonstrate the performance of
our model in Sec. 6.

2 Previous Work

A number of researchers have investigated paint and fluid simulation, and also paint rendering. We present a brief summary of related work
below.

2.1 Fluid and Paint Simulation

[2] used the linearized shallow-water equations to simulate surface waves. The method is fast, stable and interactive, but cannot handle
viscous flow, and only simulates the surface height. Internal flow is not computed. [3] combined a particle system with shallow-water
equations to simulate splashing of low viscosity fluid.

[4] used 2D Navier-Stokes equations, taking the pressure to be proportional to height to get the third dimension. The method is interactive
though the physical justification for interpreting pressure as height is questionable. Also, since the method is fundamentally 2D, the internal
flow and mixing are unknown.

[5] used an explicit marker-and-cell (MAC) method based on [6] to simulate low viscosity free-surface liquid. Being an explicit method,
it was subject to the so-called CFL and viscosity timestep restrictions (∆t < O(∆x), and ∆t < O(∆x2), respectively), making it
unsuitable for use in interactive applications.

[7] introduced the first unconditionally stable solver for the Navier-Stokes equations to the graphics community. The solver’s use of
implicit backwards-Euler integration for viscosity allows for high viscosity fluids, but the method does not address the complications or
stability issues introduced by the presence of a free surface boundary condition.

Recently, [8, 9] presented convincingly accurate particle level set methods for low-viscosity free surface flow, but these methods are
quite computationally intensive, requiring minutes per frame for simulation.

[10] presented simulations of melting and flowing of high-viscosity fluids based on the MAC method. While their method treats viscosity
implicitly, advection is still performed explicitly, making it subject to the CFL timestep restriction. Also their method for handling the free
surface boundary conditions is not clear and likely subject to a timestep restriction. [11] and [12] present cellular-automata models for
viscous fluid and paint, respectively, which are interactive, but neither is based on the actual physical equations that describe viscous fluid.

[13] used a form of the shallow water equations in their watercolor simulation. Their explicit formulation is subject to timestep restric-
tions and is inappropriate for very viscous or very thick layers of fluid.

2.2 Paint Rendering

Alvy Ray Smith’s original “Paint” program [14] perhaps offered one of the first 2D methods for simulating the look of painting. A paint
rendering model that offers the look of thick, viscous paint with bump-mapping can be found in [12].

[15, 16, 17] presented the Kubelka-Munk (K-M) equations to accurately approximate the diffuse reflectance of pigmented materials like
paint given descriptions of their constituent pigments and their concentrations.

In computer graphics, [18] demonstrated the utility of the K-M equations for rendering and color mixing in both interactive and offline
applications, including a simple “airbrush” painting tool. [19] used K-M layer compositing to accurately model the appearance metallic
patinas. [13] also used the K-M equations for optically compositing thin glazes of paint in their watercolor simulation. None of these
implementations offers the real-time rendering desired for interactive applications.

3 Overview

In this section we give a brief overview of our painting system and its user interface design.
In order to test the effectiveness of our viscous paint model, we have created an enhanced interactive painting system based on our

previous prototype called dAb [1]. Unlike the earlier prototype system, the new dAb system allows the user to choose between a haptic
stylus (SensAble’s PhantomTM) or a tablet interface (Wacom’s Intuos2TM), either of which serves as a physical metaphor for the virtual

2

brush (see Fig. 1). The brush head is modeled with a spring-mass particle system skeleton and a subdivision surface. It deforms as expected
upon contact with the virtual canvas. A wide selection of common brush types is made available to the artist.

Figure 1: A Prototype Painting System Using PHaNTOMTM(left) or WacomTMtablet (right) with the Graphical User Interface, the Virtual
Canvas and the Brush Rack.

Our novel viscous paint medium supports important new features, such as impasto-like strokes and the ability to build up many layers
of paint, both wet and dry, gouging effects from brush marks, per-pixel lighting effects, rendering of paint bumps, etc. The surfaces of the
brush, palette, and canvas are coated with paint using this model. A schematic diagram illustrating how various system components are
integrated is shown in Fig. 2.

Figure 2: System Architecture

4 Interactive Paint Simulation

In this section, we describe a physically-based paint model based on interactive, stable viscous fluid simulation. Our numerical solver for
fluid simulation offers the following characteristics:

• Stable implicit viscosity solver;
• Hybrid linear system solver combines incomplete Cholesky preconditioned conjugate gradient (PCG) with successive over-relaxation

(SOR).
• Stable, semi-Lagrangian update of surface and color;
• Stable treatment of the free-stress surface boundary conditions;

We simulate the viscous fluid behavior using the 3D incompressible Stokes equations:

∂u

∂t
= ν∇2u−∇p + F; ∇ · u = 0, (1)

where u is the velocity of the fluid, ν the kinematic viscosity, and p is the pressure. F represents externally applied forces. We assume
constant density, since most familiar viscous materials are homogeneous. The second part of Eq. 1 is the equation of continuity, which
enforces incompressibility and the conservation of mass. The Stokes equation is a simplification of Navier-Stokes applicable for highly
viscous flows. The simplification arises from the observation that the contribution of the advection term which appears in Navier-Stokes,
(u · ∇)u, is negligible for viscous fluids with low Reynolds number flows. This can be understood as the velocity field diffusing so rapidly
throughout the fluid that the fluid’s inertia does not have time to exert influence on the flow.

4.1 Numerical Method

We use a standard staggered 3D grid as in [6, 5, 20] and others, with the vector components such as velocity stored on cell edges and scalar
quantities (including color channels) stored at cell centers.

3

The numerical method used to solve the fluid flow equations is an operator splitting method like many previous, e.g. [5, 7, 10]. We first
compute a provisional velocity field, u∗, that captures the effect of the viscous term, ν∇2u, and any externally applied body forces, F.
This step uses a stable backwards-Euler integration step. We then solve a Poisson problem to find a pressure field, p, that will make u∗

discretely satisfy the compressibility constraint, Eq. 1. Once obtained, the new pressure, p, is used to compute the final divergence-free
velocity field, u.

The above three-step temporal discretization scheme can be written succinctly as follows:

u∗ = un + ∆t[ν∇2u∗ + F] (2)

∇2p = ∇ · u∗/∆t (3)

un+1 := u∗ −∆t∇p (4)

where n refers to the time step at which the variables are to be evaluated.
We model forces applied by the user using boundary conditions rather than the forcing term, F, and choose to model a fluid viscous

enough that gravity is not a significant influence. Thus, we typically set F to zero. For less viscous fluid where advection is important, the
first step (Eq. 2 can be preceded by a velocity self-advection step as in [7].

To model and track the evolution of the free surface – the interface between the fluid and air – we use a Volume-of-Fluid (VOF) method
[21] in which every cell in the computational domain is assigned a scalar value between 0 and 1 denoting the fraction of the cell which is
fluid. For the purpose of placing boundary conditions on the simulation, a cell is treated as fluid if its VOF value is greater than one half.
The precise location of the surface is taken to be the vof = 0.5 isosurface, though this is used only for rendering. The method for extracting
the isosurface is discussed in Sec. 4.6. Unlike previous free surface methods, each step of our numerical method is stable, allowing us to
take large time steps and maintain interactivity.

4.2 Viscosity

As can be seen from Eq.2, we solve for the effect of viscosity using an implicit Euler update, which is unconditionally stable [7, 10]. The
spatial discretization of Eq. 2 leads to a system of equations, Ku∗ = un,where K = I−ν∆t∇2

D and ∇2
D is the standard 7-point Laplacian

stencil in matrix form. The system is actually three independent systems of equations, one for each velocity component, u∗, v∗, and w∗.
Expanding the compact matrix notation above out into its constituent linear equations, the system of equations for the u∗ component is:

Kcu
∗
i,j,k + Kx(u∗i−1,j,k + u∗i+1,j,k) + Ky(u∗i,j−1,k + u∗i,j+1,k) + Kz(u

∗
i,j,k−1 + u∗i,j,k+1) = un

i,j,k (5)

where
Kc = 1 + 2ν∆t(1/∆y2 + 1/∆x2 + 1/∆z2); Kx = −ν∆t/∆x2; Ky = −ν∆t/∆y2; Kz = −ν∆t/∆z2

Written as a matrix, K is a D3 ×D3 matrix, where D is the number of samples on each dimension of the 3D grid, but the matrix is very
sparse, containing only O(D3) non-zero entries, making it amenable to solution with the conjugate gradient method. We use the conjugate
gradient method with an incomplete Cholesky preconditioner. Pseudo-code algorithms for the conjugate gradient method as well as the
preconditioner can be found in [22].

4.3 Pressure Solver

Given the tentative velocity field, u∗, we must find a pressure field such that the divergence of u∗−∆t∇p is near zero by solving the Poisson
problem (Eq. 3). For low viscosity flows, inertial forces dominate (i.e., advection) so there is much temporal coherence in the velocity field.
Consequently, a small number of iterations of successive overrelaxation (SOR) per timestep is sufficient to yield realistic-looking results
[5]. However, in very viscous flow, momentum spreads out quickly, creating large accelerations and low temporal coherence. Thus it
is necessary to use more solver iterations to enforce incompressibility as viscosity increases. After experimenting with several different
schemes, we have found a particularly effective approach to be a combination of both conjugate gradient (CG) and SOR. Our SOR solver
steps are identical to those in [5, 20]. We use between 10-15 iterations of CG with an incomplete Cholesky preconditioner, followed by 3
or 4 iterations of SOR. The residual after applying CG tends to have a fair amount of high frequency content since CG is a “rougher” [23].
A few iterations of SOR applied after CG is particularly effective since SOR acts as a “smoother”. In our tests, the CG/SOR combination
was quantitatively more effective per CPU second than either technique alone. Comparisons were made by calculating convergence ratios
for each technique given the same initial conditions and dividing the result by the computational time required.

4

4.4 Boundary Conditions

Each stage of the numerical method must be coupled with appropriate boundary conditions. For the diffusion step we use the no-slip
Dirichlet velocity boundary condition, u = 0, at wall boundaries, and set the free velocities on the fluid-air interface to discretely satisfy
the continuity equation (1). We enforce the boundary conditions by setting the value of “ghost cells”, which lie just outside the domain.
For Dirichlet boundary conditions the ghost values on an edge along the interface are simply set to zero. Values just off the interface are set
so that (ughost + uneighbor)/2 = 0. Please see [20] for further details on implementing boundary conditions.

For the pressure Poisson equation, Neumann boundary conditions are required, ∂p/∂n = 0, where n is the boundary normal. These are
implemented by copying the pressure value just inside the domain to the ghost cell just outside, before every CG or SOR iteration. Thus
on the face of a boundary cell in the positive x direction we have, for example, (pinside

− pghost)/∆x = 0, which is the finite difference
approximation to the above boundary condition.

4.5 Interaction

Rather than adding forcing terms to the Stokes equations to implement interaction with the fluid, we can achieve greater control of the fluid
by setting Dirichlet velocity boundary conditions at the fluid surface. The velocities of surface cells adjacent to the brush are simply set to
the brush’s velocity. This is similar to the approach used for interaction with smoke in [24].

4.6 Free Surface

Unlike previous approaches, our method for handling the free surface of the fluid is stable even at high viscosity. As noted, we represent
the surface implicitly as the level set of a fluid fraction function, f(i, j, k), with the interface defined to lie on the f = 0.5 isosurface.
Insofar as we define the surface using the level set of an implicit function, this approach is similar to that of [8, 9], but the specific implicit
functions used are different.

For rendering, we need to compute an approximation of the isosurface and its normals. The VOF technique represents the true 3D
structure of the fluid; however, for use as a paint model a height field representation is acceptable, and it is much less costly to extract.
We obtain a height field from the VOF values in a straightforward manner by computing one height value for each column of cells in the
grid. We use a simple linear search to find the uppermost fluid cell then interpolate to estimate the isosurface location to sub-cell accuracy.
Searches on successive columns can be greatly accelerated by starting the search at the height computed for the previous column.

The surface normals can be computed from the extracted height field surface, but more accurate normals can be obtained by directly
computing the gradient of the VOF field. The normal is simply n = ∇f/|∇f |, which can be computed with second order central
differences. The two normals computed at the cell centers closest to the fluid surface are interpolated.

To update the surface location, we advect the VOF values using the velocity u computed from Eqns. 2,3, and 4. The advection is
described in Sec. 4.7.

In order to maintain a well defined and continuous surface, it is desirable to perform some additional filtering on the VOF values. There
are two competing reasons to filter: first, excessive smearing of the interface introduced by advection leads to an ill-defined surface; and,
second, sharp discontinuities in the VOF values lead to inaccurate normals. Essentially we desire the VOF field to always approximate a
smoothed step function. To achieve this, we perform curvature-driven smoothing to reduce sharp features, and gradient-driven steepening
to force flat regions towards either 0 or 1.

Mean curvature can be computed directly from the VOF values as the divergence of the normals, κ = ∇ · n [25], which can be written:

κ = (f2
xfyy − 2fxfyfxy + f2

y fxx + f2
xfzz − 2fxfzfxz + f2

z fxx + f2
y fzz − 2fyfzfyz + f2

z fyy)/|∇f |3, (6)

where subscripts denote partial derivatives. The standard discretization of this equation using central differencing is second-order accurate.
For smoothing, we use a seven-point blurring kernel which updates each VOF value as a weighted convex combination of itself and its

six neighbors:

f ′(i,j,k) =
f(i,j,k) + cs

∑
(l,m,n)∈neighbors

f(l,m,n)

1 + 6cs
,

where cs is the smoothing amount. We have found a good choice to be cs = clamp((|κ| − 80)/100, 0, 1/6).
To repair smearing artifacts, we push VOF values toward the extremes of 0 and 1 using a function of the form: f ′ := f+(f−0.5)∗cp. We

have found a good choice for the push factor in conjunction with the above smoothing function to be cp = max((200− |∇f |2)/2000, 0).
Note that because of the choice of thresholds, this steepening operation will only operate on the smooth regions of the field, while the
smoothing operation above only operates on very steep regions, so that neither undoes the work of the other.

The filtering reduces visual artifacts and serves to recreate some of the effects of surface tension, which is not included in our formal
numerical model.

5

The free surface should also obey the no-stress conditions, which state that no momentum can be transferred across the interface [26, 27,
20]:

p− 2ν(∂un/∂n) = 0; ν(∂un/∂m + ∂um/∂n) = 0; ν(∂un/∂b + ∂ub/∂n) = 0 (7)

where n,m, and b are the surface normal, tangent and binormal, and uq is the directional derivative of u in the q direction, ∇u · q. These
terms have the effect of slowing down surface waves [26, 27]. This retardation of propagation speed increases with increasing viscosity.
At very high viscosity, the free stress forces essentially damp out surface waves instantly. If the free stress conditions are ignored, as in
[5], fluids of high viscosity will move unrealistically because the surface cells will tend to retain too much momentum. [26, 27] and others
incorporated the above free stress terms by solving them for pressure and enforcing that value as a boundary condition on the free surface.
However, this approach is unstable for high viscosities.

The source of the instability can be seen by writing out the finite difference approximations for the equation above on surface cell edges.
For example, the typical discretization for a surface cell with only one empty cell in the positive x direction is pi,j = ν(ui,j −ui−1,j)/∆x

[20], where the p value is located at the center of the cell and the u values are on the right and left edges. the As viscosity, ν, becomes large,
it is clear that any small fluctuation in velocity values will be magnified into a large positive or negative pressure boundary value. The large
pressure in turn leads to a large velocity adjustment in the next time step, resulting in an unstable feedback loop.

Fortunately we have come upon a simple solution. Instead of explicitly incorporating the above free-stress equations, or omitting them
entirely, we approximate their effect for very viscous fluid by simply zeroing out the surface velocities at the end of every time step. This
is a reasonable approximation for the type of fluid we are interested in, and it does not suffer from instability. With the exception of this
important modification, our handling of the free surface boundary conditions is just as in [5, 20].

4.7 Scalar Advection

After solving for the velocity field u = (u, v, w), we advance both the VOF values and the color values on the 3D grid using the advection
equation for a scalar, s:

∂s

∂t
= −(u · ∇)s.

We advect using the stable semi-Lagrangian method presented in [7]. Specifically, we update the 3D scalar fields by tracing characteristics
with an Euler integration step backwards in time:

x∗ ≡ x−∆t[u(x)]; fn+1(x) = fn(x∗).

In general, the source location, x∗ = (x∗, y∗, z∗), will not lie at the center of a cell, so the result is computed using trilinear interpolation
of the eight nearest cells. If in backtracking we cross a boundary, the value of the scalar at the boundary is used.

4.8 Summary of Method

Here we present a compact summary of all the steps from beginning to end of one time step.
1. Set boundary velocities to zero (viscous stress approximation)
2. Compute u∗ from the implicit diffusion equation
3. Set pressure boundary values according to Neumann boundary condition.
4. Solve pressure Poisson equation
5. Set surface boundary velocities using continuity equation
6. Advect the VOF values and color/pigments.
7. Extract surface mesh from VOF, and compute surface normals.

5 Paint Rendering

In this section, we briefly describe our realization of the Kubelka-Munk model for paint rendering, which uses modern graphics hardware
programmability.

The Kubelka-Munk (K-M) model was developed around 1950 as a simple way to model and predict the diffuse reflectance of pigmented
materials, such as paint, based on the constituent pigments and their concentrations in a neutral medium such as oil [17]. The model
computes reflectance, R, and transmittance, T , through a layer of material as a function of pigment concentrations, c, and each pigment’s
per-wavelength absorption and scattering coefficients, K and S.

For efficient hardware implementation, first we have started by limiting the number of pigments to either four or eight in our prototype,
so that the pigment concentrations can be stored in one or two standard four-component RGBA textures. From these four or eight pigments,
any arbitrary mixture can be made. If the initial primary pigments are widely separated in the colorspace, a large gamut of colors can be
generated. In fact, the number of pigments and pigment textures is not the computational bottleneck in the hardware shader, so it is quite
possible to expand the number of primary pigments somewhat beyond eight, with negligible performance penalty.

6

Figure 3: Some images hand-painted using our paint model.

6 Results

We have implemented our viscous paint model on a 2.5GHz Pentium IV machine. Please see the video at our project website:

http://gamma.cs.unc.edu/viscous

for demonstrations of interaction with the paint model. When used for two-dimensional flow, our viscous free surface simulation runs at
64 × 64 resolution at over 70 frames per second with rendering of tracer particles. In three dimensions we can compute the flow on a
32 × 32 × 16 grid at 20 frames per second. Since the method is stable, the time step does not need to be reduced even when the fluid
undergoes rapid motion. In contrast, a simulation restricted by the CFL or viscosity timestep conditions would not be able to keep the
simulation synchronized with wall clock time, since it would have to take many smaller substeps when fluid velocity is large.

We have integrated our paint model with a prototype painting system to simulate an

Figure 4: Thick strokes created with our vol-
umetric paint model.

oil-paint-like medium. We provide the user with a large canvas, then window the fluid
simulation to calculate flow only in the immediate vicinity of the brush. This optimization
is reasonable since a very viscous paint medium essentially only moves in regions in which
it is agitated. We render the results by extracting a height field and normal map from the
paint fluid as described in Section 4.6. For the rendering we have implemented the Kubelka-
Munk reflectance model [17] using fragment programs on an NVIDIA GeForceFX graphics
board. This gives the paint medium more realistic color mixing than is obtained from simple
additive RGB blending. For more details, please see our technical report at the project
website mentioned above.

Fig. 4 shows an example of the type of effect produced by our fluid model. Several
images created by the users of our prototype painting system are shown in Fig. 3. Most
of the paintings were created by amateur artists within a couple of hours, without much

training or elaborate instruction. The footage in the supplementary video demonstrates the interactive performance of our solver and the
stable behavior of the viscous fluid generated by our paint model.

7 Summary and Conclusion

In this paper, we presented a novel viscous paint model for interactive applications. In the future we are interested in investigating fast
methods for accurately enforcing conservation of volume, which the current model does not do. Further work is also necessary to more
accurately model the fluid-surface interface, especially in the case of a porous surface like canvas. Finally, the current model’s relatively

7

coarse resolution makes it unsuitable for very thin layers of material. We believe there is potential to combine our model with 2D methods
to more accurately simulate of a wider variety of media.

Acknowledgements

We are thankful to Eriko Baxter, John Holloway, Haolong Ma, and Andrea Mantler for using our system to create original artwork shown
in the paper and at the project website. This project is supported in part by Intel Corporation, Army Research Office, National Science
Foundation and Office of Naval Research. William Baxter is also supported by fellowships from the Link Foundation and NVidia.

References
[1] William V. Baxter, Vincent Scheib, and Ming C. Lin. Dab: Interactive haptic painting with 3d virtual brushes. In Eugene Fiume, editor, SIGGRAPH

2001, Computer Graphics Proceedings, pages 461–468. ACM Press / ACM SIGGRAPH, 2001.

[2] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer graphics. In Proceedings of the ACM SIGGRAPH symposium on Computer
animation, pages 49–57. ACM Press, 1990.

[3] J. F. O’Brien and J. K. Hodgins. Dynamic simulation of splashing fluids. In Computer Animation ’95, pages 198–205, 1995.

[4] J. Chen and N. Lobo. Toward interactive-rate simulation of fluids with moving obstacles using navier-stokes equations. Graphical Models and Image
Processing, pages 107–116, March 1995.

[5] Nick Foster and Dimitri Metaxas. Realistic animation of liquids. Graphical models and image processing: GMIP, 58(5):471–483, 1996.

[6] Francis. H. Harlow and J. Eddie Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Physics
of Fluids, 8(12):2182–2189, December 1965.

[7] Jos Stam. Stable fluids. In Alyn Rockwood, editor, Siggraph 1999, Computer Graphics Proceedings, pages 121–128, Los Angeles, 1999. Addison
Wesley Longman.

[8] Nick Foster and Ronald Fedkiw. Practical animations of liquids. In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages
23–30. ACM Press / ACM SIGGRAPH, 2001.

[9] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and rendering of complex water surfaces. In Proceedings of the 29th annual
conference on Computer graphics and interactive techniques, pages 736–744. ACM Press, 2002.

[10] Mark Carlson, Peter J. Mucha, III R. Brooks Van Horn, and Greg Turk. Melting and flowing. In Proceedings of the ACM SIGGRAPH symposium on
Computer animation, pages 167–174. ACM Press, 2002.

[11] W. Li X. Wei and A. Kaufman. Interactive melting and flowing of viscous volumes. Proc. of Computer Animation and Social Agents, 2003.

[12] T. Cockshott, J. Patterson, and D. England. Modelling the texture of paint. Computer Graphics Forum (Eurographics’92 Proc.), 11(3):C217–C226,
1992.

[13] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and David H. Salesin. Computer-generated watercolor. In Proceedings of
the 24th annual conference on Computer graphics and interactive techniques, pages 421–430. ACM Press/Addison-Wesley Publishing Co., 1997.

[14] Alvy Ray Smith. Paint. TM 7, NYIT Computer Graphics Lab, July 1978.

[15] P. Kubelka and F. Munk. Ein beitrag zur optik der farbanstriche. Z. tech Physik, 12:593, 1931.

[16] P. Kubelka. New contributions to the optics of intensely light-scattering material, part i. J. Optical Society, 38:448, 1948.

[17] P. Kubelka. New contributions to the optics of intensely light-scattering material, part ii: Non-homogenous layers. J. Optical Society, 44:p.330, 1954.

[18] Chet S. Hasse and Gary W. Meyer. Modeling pigmented materials for realistic image synthesis. ACM Trans. on Graphics, 11(4):p.305, 1992.

[19] Julie Dorsey and Pat Hanrahan. Modeling and rendering of metallic patinas. In Holly Rushmeier, editor, SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 387–396. ACM SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana, 04-09 August 1996.

[20] Michael Griebel, Thomas Dornseifer, and Tilman Neunhoeffer. Numerical Simulation in Fluid Dynamics: A Practical Introduction. SIAM Mono-
graphcs on Mathematical Modeling and Computation. SIAM, 1990.

[21] C. W. Hirt and B. D. Nichols. Volume of fluid (vof) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1):201–225,
1981.

[22] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1983.

[23] J. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMUCS-TR-94-125, Carnegie Mellon
University, 1994. (See also http://www.cs.cmu.edu/ quake-papers/painless-conjugate-gradient.ps.).

[24] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke. In Eugene Fiume, editor, SIGGRAPH 2001, Computer Graphics
Proceedings, pages 15–22. ACM Press / ACM SIGGRAPH, 2001.

[25] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences. Springer-Verlag, 2002.

[26] C. W. Hirt and J. P. Shannon. Surface stress conditions for incompressible-flow calculations. Journal of Computational Physics, 2:403–411, 1968.

[27] B. D. Nichols and C. W. Hirt. Improved free surface boundary conditions for numerical incompressible-flow calculations. Journal of Computational
Physics, 8:434–448, 1971.

8

