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Summary

SiZer (SIgnificant ZERo crossing of the derivatives) and SiNos (SIgnificant NOnSta-

tionarities) are scale-space based visualization tools for statistical inference. They are

used to discover meaningful structure in data through exploratory analysis involving sta-

tistical smoothing techniques. Wavelet methods have been successfully used to analyze

various types of time series. In this paper, we propose a new time series analysis approach,

which combines the wavelet analysis with the visualization tools SiZer and SiNos. We use

certain functions of wavelet coefficients at different scales as inputs, and then apply SiZer

or SiNos to highlight potential non-stationarities. We show that this new methodology

can reveal hidden local non-stationary behavior of time series, that are otherwise difficult

to detect.

Key words: Internet Traffic, Long–range dependence, Nonstationarity, Scale-space method,

SiNos, SiZer, Time Series, Wavelet coefficients.

1 Introduction

1.1 Background

In a complicated time series, it can be challenging to detect underlying structure. For exam-

ple, Internet traffic data typically have long–range dependence properties, see Leland, Taqqu,

Willinger, and Wilson (1994), and even nonstationary behavior, see Hernandez-Campos et

al (2004). In this context and in general, it is difficult to distinguish between long–range

dependence and nonstationarity. Some work in this direction includes Teverovsky and Taqqu

(1997), Dang and Molnár (1999), Mikosch and Stǎricǎ (2000), Rondonotti and Marron (2001),

Giraitis, Kokoszka and Leipus (2001) and Stoev, Taqqu, Park, Michailidis and Marron (2004).

In this paper, we propose a new method to detect hidden nonstationary behavior of time

series which may possess long–range dependence. An important advantage of this method

is that it can be used to identify stationary segments of the process as well as localized

nonstationary fluctuations. By using this procedure, one may be able to better understand

and possibly explain the observed behavior in nonstationary regions of the process. The

methodology is potentially useful in many applications, including financial mathematics,

climatology, speech recognition, imaging and Internet traffic data. In this paper, we illustrate

our methods in the Internet traffic context.

Many tools have been developed for the analysis of the long–range dependence structure
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of a time series. Some of the most popular ones are, for example, the aggregation of variance

method, see Beran (1994), or Teverovsky and Taqqu (1997), the periodogram based Whittle

method, see Robinson (1995), or Taqqu and Teverovsky (1997), and the wavelet based method,

see Abry and Veitch (1998), or Feldmann, Gilbert, Huang, and Willinger (1999), Doukhan,

Oppenheim, and Taqqu (2003). Among these, the wavelet methods have been very popular

since they allow us to visualize the scaling behavior of the data (e.g. Internet traffic) as well as

to obtain estimates of the Hurst long–range dependence parameter see Stoev, Taqqu, Park,

and Marron (2004). The Hurst parameter quantifies the degree of long–range dependence of

a time series (see, for example, Berran (1994)).

SiZer (SIgnificant ZERo crossing of the derivatives), which was originally proposed by

Chaudhuri and Marron (1999), combines the scale-space idea of simultaneously considering

a family of smooths with the statistical inference that is needed for exploratory data analysis

in the presence of noise. It brings an immediate insight into a central scientific issue in

exploratory data analysis: which features observed in a smooth of data are “really” there?.

Dependent SiZer, see Rondonotti and Marron (2001) and Park, Marron, and Rondonotti

(2004) extends SiZer to dependent data and the latter paper provides a goodness of fit test

of the underlying model. This can be done by adjusting the statistical inference using an

autocovariance function of the supposed model. Dependent SiZer is particularly useful in the

analysis of Internet traffic data. Indeed, it provides not only visual insights in the structure of

these data but also involves statistical tests for significance of the visually observed features

against those in an assumed noise model.

In addition to the scale-space methods mentioned above, we utilize the SiNos method,

developed by Olsen and Godtliebsen (2003), to extract information from the wavelet coeffi-

cients. SiNos simultaneously looks for significant changes in the mean, variance, and the first

lag autocorrelation of the observed time series under the null hypothesis that the process is

stationary.

1.2 Motivating examples

Figure 1 about here.

Figure 1 (a) displays a time series of binned packet counts in Internet traffic coming into

the University of North Carolina, Chapel Hill (UNC). They were measured at the link of

UNC on April 11, Thursday, from 1 p.m. to 3 p.m., 2002 (Thu1300). This time series,
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which is the number of packets arriving at the link every 10 milliseconds, can be written

as Y = {Y (i), i = 1, 2, . . . , 726000}. The plot shows several spikes shooting up and down.

Figure 1 (b) displays what we call the wavelet spectrum of the Thu1300 time series. Here,

the wavelet spectrum shows signal power obtained by wavelet coefficients (discussed in more

detail in Section 2.1) at each scale. See Abry and Veitch (1998), or Stoev, Taqqu, Park,

and Marron (2004) for more details on the wavelet spectrum. We used Daubechies wavelets,

see for example, Daubechies (1992), with three zero moments for all wavelet spectra in this

paper. Details of this plot are explained in Section 2.1. The wavelet spectrum of this time

series shows a bump at the scale j = 11. Since the y–axis of the spectrum corresponds to

the energy of the signal at a given scale, this bump suggests a unusual behavior at j = 11.

This has a serious impact on the estimation of the Hurst parameter (see Stoev, Taqqu, Park,

and Marron (2004) for more details). A serious weakness of the wavelet spectrum statistics is

that they fail to provide information about the time location of the unusual behavior, because

they involve an average through time.

Since Internet traffic data are known to exhibit the self-similar property as well as long–

range dependence, see Leland, Taqqu, Willinger, and Wilson (1994), Fractional Gaussian

Noise (FGN) has been a useful model of Internet traffic behavior. Figures 1 (c) and (d)

display the dependent SiZer of the Thu1300 time series. The data are tested against a

null hypothesis of FGN where the Hurst parameter, H, and the variance are 0.9 and 485.6

respectively (see Section 2.2 for the choice of the parameters). The goal is to see whether

FGN can model the data at large time scales, and if not, to see how far the data are from

FGN. Because FGN is a stationary series, significant features discovered in the dependent

SiZer analysis can be considered as nonstationarities.

The thin blue curves in Figure 1 (c) display a family of smooths of the Thu1300 time

series. These are kernel regression estimates of the underlying curves. The curve estimates

are obtained from the observations, some of which are displayed as jittered green dots in

Figure 1 (c). The blue curves correspond to different levels of smoothing, i.e. bandwidths.

The goal of dependent SiZer is to determine which features of the blue curves are different

from those features one would expect to get by the assumed FGN model in this example.

Observe that a sharp valley appears around x = 2500 (seconds). Figure 1 (d) displays the

SiZer map of the data. The horizontal locations in the SiZer map are the same as in the top

panel, and the vertical locations correspond to the same logarithmically spaced bandwidths

that were used for the family of smooths (blue curves) in the top panel. Blue (red) colors

in the SiZer map indicate that the blue curves in Figure 1 (c) are significantly increasing
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(decreasing, respectively), at the point indexed by the horizontal location and the bandwidth

corresponding to that row, compared to FGN. Purple colors mean that the trend shows no

increase or decrease that is significantly different from those typical of FGN at that particular

location. We will revisit the details in Section 2.2. The SiZer map in Figure 1 (d) suggests that

the valley around x = 2500 is different from FGN with the given parameters at fine scales.

This indication is not strong in the sense that there are only a few bandwidths (scales) and

locations in the SiZer map where the valley around x = 2500 is flagged as significant. Since

dependent SiZer provides both location and scale information simultaneously, it is very useful

to find nonstationary behavior when a stationary model for the noise is assumed. However,

it sometimes fails to locate nonstationarities that have short durations. Furthermore, the

model must be specified before analyzing the data. Hence, estimation of parameters in the

autocovariance function of the specified FGN model for the noise is needed.

Nonstationary behavior in the data can be further explored by zooming in on the region

of the nonstationarity. Because we have evidence of unusual behavior in the Thu1300 time

series from Figure 1, one can split the full time series into several subtraces and apply the

wavelet method and dependent SiZer to the subtraces.

Figure 2 about here.

Since the wavelet spectrum in Figure 1 (b) provides only scale information aggregated

over the full time series, we use these subtraces of the data to find more local information

about the nonstationarities. The full time series is divided into 12 subtraces, each of which

is 600 seconds long. Figure 2 (b) shows the wavelet spectra of subtraces of the Thu1300 time

series. Each spectrum is obtained from one of the subtraces. The spectrum with vertical gray

lines corresponds to the full time series. The spectrum with the thick black line corresponds

to the subtrace marked by red vertical lines in Figure 2 (a), and this subtrace includes the

location where nonstationary behavior was flagged in the dependent SiZer plot in Figures 1

(c) and (d). The wavelet spectrum corresponding to the red window in Figure 2 (a) shows

that the bump at the scale j = 11 of the full time series comes from this particular subtrace.

Figures 2 (c) and (d) display the dependent SiZer plot for this subtrace. The data is tested

on FGN with the same parameters as in Figures 1 (c) and (d). This strongly confirms that

the valley is significantly different from FGN with the given parameters.

Figures 1 and 2 show that by combining a zoomed view with the wavelet spectrum and

dependent SiZer, we can find locations where the time series has strong nonstationary be-
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havior. However, there are serious practical limitations to this approach, caused by the lack

of location information in the wavelet spectrum, by the need to choose the length of sub-

traces, by the need to specify an assumed model for the data, and by the need for parameter

estimation in dependent SiZer.

Motivated by the idea of combining the wavelet spectrum and dependent SiZer, and by

overcoming the difficulties that they cause, we propose a new visualization tool, entitled

wavelet SiZer. This tool combines wavelet coefficients with the original SiZer. Wavelet

SiZer uses functions of wavelet coefficients at different scales as inputs. Next, SiZer is used to

determine where and how they are significantly different from what one would have expected,

had the data been stationary. By doing so, wavelet SiZer considers not only the wavelet

coefficients at all scales, but also adds location information at each scale obtained from

SiZer. One advantage, compared to applying dependent SiZer on the raw time series, is

that conventional SiZer can be used on the wavelet coefficients because they are essentially

uncorrelated (see Section 2.1). This removes the burdens of model specification and parameter

estimation.

Figure 3 about here.

Figure 3 shows the wavelet SiZer of the Thu1300 time series. The top panel displays

the family of smooths of the full time series. When SiZer is applied directly to the wavelet

coefficients, very few features are typically found. It turns out, however, that by applying

SiZer to functions of the wavelet coefficients, interesting features in the underlying time series

can be found. In particular, the squared wavelet coefficients are useful for finding features

of interest. This is illustrated in the remaining rows of Figure 3, where a SiZer analysis is

applied to the squared wavelet coefficients. Section 3 further explores this point. We used

Daubechies wavelets with three zero moments for all wavelet SiZer plots in this paper. The

second row displays the family of smooths and the SiZer map of the square of the wavelet

coefficients at the scales j = 1 (the first and the second column) and j = 2 (the third and

the fourth column). In the same way, the other rows display SiZer plots of the square of the

wavelet coefficients from j = 3 to j = 10. The larger scales are not presented here because

they do not provide further useful information. The SiZer plots in Figure 3 at different scales

are mostly dominated by four major spikes, labelled as 1, 2, 3, and 4 in the family of smooths

at scale j = 7. Spike 1 appears from j = 1 to j = 5, which are fine scales. Spike 2 comes

up at j = 5 and lasts until j = 10, a relatively coarse scale. Note that this spike matches

the location that dependent SiZer had found in Figures 1 and 2. Spikes 3 and 4 appear from
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j = 2 to j = 9, which cover both fine and coarse scales. Note that spikes 1, 3, and 4 could

not be observed in Figures 1 and 2, but the wavelet SiZer is able to reveal these hidden local

nonstationarities.

Figure 4 about here.

However, the SiZer maps do not confirm the significance of all four spikes. For example,

spike 2 is not significant for all j = 5, . . . , 10 according to the SiZer maps although the

smoothing families clearly show the sharp peak. Another scale-space visualization tool which

can be combined with wavelet coefficients is SiNos. This methodology explores potential

nonstationarities in a stochastic process, see Olsen and Godtliebsen (2003). We describe more

details of this methodology in Section 2.3. Here, we simply show a plot of the significant

changes detected in the variance of the wavelet coefficients, which is related to the second

power wavelet SiZer, at scale j = 9 for the Thu1300 data set. In the upper panel of Figure

4, each curve represents an estimate for the variance of the time series. Different curves

correspond to different degrees of smoothing. The lower panel of Figure 4 shows the feature

map for the variance of the time series. This feature map is entitled a Variance SiNos plot.

Black, white and gray colors means increasing, decreasing and no change in the variance

respectively. Light gray shows areas where no inference can be done. This shows the added

value of SiNos, because both peaks are flagged as significant, while they were not flagged by

wavelet SiZer in the lower left part of Figure 3.

Figure 5 about here.

Having found these 4 regions of strong local nonstationarity, it is natural to investigate

more deeply. To do so, we zoom into the original time series. The four regions highlighted

in red in Figure 5 (a) correspond to the locations of the four spikes flagged as significant

by wavelet SiZer in Figure 3. Figures 5 (b), (c), (d), and (e) show the zoomed time series

corresponding to the four red windows in Figure 5 (a), respectively. Figure 5 (b) shows that

there is a dropout (absence of signal) for a duration about 0.1 second perhaps caused by a

short router pause, which is a clear type of nonstationarity. Since this dropout is quickly over

with, the spike appears only at fine scales in wavelet SiZer. Figure 5 (f) displays the wavelet

spectrum for the full time series with this subtrace (shown in Figure 5 (b)) removed and the

remaining two parts concatenated. This does not look different from the original spectrum

in Figure 1 (b), suggesting that this feature did not cause the j = 11 bump in the spectrum.
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Figure 5 (c) shows a long dropout for about 8 seconds, again a strong local nonstationarity.

Since this dropout is much longer, the spike appears at much coarser scales in wavelet SiZer

in Figure 3. The spike appears at a number of scales because the signal power of a jump

discontinuity is spread across a range of wavelet scales. Figure 5 (g) displays the wavelet

spectrum of the full time series with the subtrace (shown in Figure 5 (c)) removed as for

Figure 5 (f), and the bump at j = 11 in Figure 1 (b) disappears. This suggests that this

feature plays an important role in causing the j = 11 bump. Figures 5 (d) and (e) show

two unusual drops in both subtraces. Because the sizes of drops are about half of the size

of the signal, this could be caused by one of two routers pause. Since some of them are

short and some are long, and since they are located relatively close to each other, the wavelet

coefficients feel the effect over many scales from fine to coarse in Figure 3. Although Figures

5 (h) and (i) display the wavelet spectra of the full time series with the subtraces (shown in

Figure 5 (d) and (e) respectively) removed as above, they are not different from the original

spectrum. It is interesting to see that all spikes in wavelet SiZer come from valleys in the full

time series, rather than upward spikes. We conclude that the long dropout in Figure 5 (c)

causes the bump at j = 11 in the original wavelet spectrum in Figure 1 (b) by comparing

the original spectrum with the one in 5 (g) because the bump disappears. Also, additional

hidden nonstationarities were found by wavelet coefficient based visualization tools.

This example suggests that the idea of combining wavelet coefficients and scale-space

methods is a powerful technique for detecting hidden local nonstationary behavior of time

series. In fact, the new tools enable us to easily find underlying structures in the original time

series that would have been hard to find by simply examining wavelet coefficients. Although

we have focused on Internet traffic data in this paper, the described methodology is also

applicable and useful for other types of time series with potential local nonstationarities.

Section 2 describes the details of the wavelet spectrum and scale-space methods. Details

and issues about wavelet coefficient based scale-space methods are provided in Section 3.

Additional real data analysis and the proposal of a new graphical device summarizing scale

information are presented in Section 4. This new graphical device greatly reduces the number

of plots that must be studied to find significant features, which is very convenient for exploring

multiple time series. Section 5 provides some concluding remarks.
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2 Wavelets and scale-space inference

This section describes the wavelet method proposed by Abry and Veitch (1998), and the

SiZer method proposed by Chaudhuri and Marron (1999) and Park, Marron, and Rondonotti

(2004). In addition, a description of SiNos, proposed by Olsen and Godtliebsen (2003), is

given.

2.1 Wavelet spectrum

Here, we briefly review the notion of wavelet spectrum of a time series. We discuss its

interpretation and sketch its use for the estimation of the Hurst long–range dependence

parameter. More details and deeper insights can be found in the seminal works of Abry and

Veitch (1998, 1999) (see also Abry, Flandrin, Taqqu, and Veitch (2003)).

Consider a discrete time series Y = {Y (i), i = 1, . . . , N}. Using Mallat’s fast discrete

wavelet transform algorithm one obtains the set of transformation coefficients of Y :

{dj,k, k = 1, . . . , Nj}, j = 1, . . . , J,

where Nj ≈ N/2j and J ≈ log2 N . These coefficients are computed efficiently in O(N)

operations. The coefficients dj,k can be represented as:

dj,k =
∫

R
Ỹ (t)ψj,k(t)dt, (2.1)

where ψj,k(t) := 2−j/2ψ(2−jt − k), j, k ∈ Z and where Ỹ (t), t ∈ R is a suitable continuous-

time approximation of the time series Y .

The function ψ involved in (2.1) is called an orthonormal mother wavelet. It is chosen so

that the set of dyadic dilations and integer translations ψj,k(t) = 2−j/2ψ(2−jt− k), j, k ∈ Z
of ψ becomes an orthonormal basis of the space L2(dt). The class of Daubechies wavelets

ψ is particularly useful in practice. These wavelets have compact support and a number of

other important properties. For more details on the discrete wavelet transform and Mallat’s

algorithm see, for example, Ch. 6 in Daubechies (1992).

In view of (2.1), the coefficient dj,k captures features of the signal Ỹ (t), which match the

time-location (≈ 2jk) and the time-scale (≈ 2j) of the basis function ψj,k. Therefore, the

indices j and k of the dj,k’s are typically called scale and location, respectively. For large j,

the support of ψj,k is wide and consequently the dj,k’s extract coarse scale or low frequency
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features of Ỹ (t). Conversely, the wavelet coefficients at small scales j contain fine scale or

high frequency details of the signal.

Suppose now that Y = {Y (i)}i∈Z is a second order stationary random time series. The

wavelet coefficients dj,k of Y reflect naturally its self–similarity and long–range dependence

properties. Indeed, for all j, the time series dj,k, k ∈ Z is stationary and, as j →∞, one has

that

log2

(
Ed2

j,k

)
∼ j(2H − 1) + C, (2.2)

where C does not depend on j and where H denotes the Hurst long–range dependence expo-

nent of the time series Y . Furthermore, even though the Y (i)’s can be strongly dependent,

in practice, for each fixed scale j the wavelet coefficients dj,k are essentially uncorrelated in

k (see Abry and Veitch (1998) and, for example, Stoev, Taqqu, Park, and Marron (2004)).

Using this fact one can estimate well the mean energy Ed2
j,k of the wavelet coefficients on

scale j by using sample statistics. Namely, let

Sj := log2

( 1
Nj

Nj∑

k=1

d2
j,k

)
− gNj (j),

where gNj (j) ≈ 1/(ln(2)Nj) is a suitable first order bias correction term (for more details

see, Abry and Veitch (1998)). The statistics Sj are asymptotically unbiased estimators of the

quantities log2(Ed2
j,k).

The set of statistics Sj , j = 1, . . . , J is called the wavelet spectrum of the time series

Y (i), i = 1, . . . , N . The wavelet spectrum can be related to the classical Fourier spectrum

of the time series (see Abry and Veitch (1998) and, for example, Stoev, Taqqu, Park and

Marron (2004)). Large scales j correspond to low frequency features in the spectral density

of Y and therefore the statistics Sj represent the long–range dependence properties of the

data (see (2.2), above). The statistics Sj for small scales j, however, capture high-frequency

features pertinent to the short term dependence structure of the time series.

In view of (2.2) one can use the wavelet spectrum to estimate the Hurst parameter H.

Indeed, let 1 ≤ j1 < j2 ≤ J and set

Ĥ :=
( j2∑

j=j1

wjSj + 1
)
/2,

where
∑j2

j=j1
wj = 0 and

∑j2
j=j1

jwj = 1. Using such weights wj , the estimator Ĥ is obtained

from the slope 2Ĥ − 1 of a weighted linear regression fit of Sj against j over the range of
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scales j1, j1 + 1, . . . , j2. Since (2.2) holds for large j, when estimating the Hurst parameter

H, one focuses on the largest scales of the wavelet spectrum. These scales, however, involve

fewer wavelet coefficients and hence the statistics Sj have greater variability. The choice of

the range of scales [j1, j2] is a subtle problem in the estimation of H. It is partly addressed in

Veitch, Abry and Taqqu (2003). More details on the asymptotic statistical properties of Ĥ

and other related wavelet-based estimators of the Hurst parameter can be found in Bardet,

Lang, Moulines, and Soulier (2000), see also Pipiras, Taqqu and Abry (2001) and Bardet,

Lang, Oppenheim, Philippe, Stoev, and Taqqu (2002) and the references therein.

While the Hurst parameter is important, it is not the only parameter of interest. The

whole range of the wavelet spectrum can carry useful information about the data. In Stoev,

Taqqu, Park and Marron (2004), the strengths and the limitations of the wavelet spectrum

in Internet traffic context are explored. As indicated in Section 1.2, one major limitation of

the statistics Sj is that they can average out important time location information contained

in the wavelet coefficients dj,k. To obtain a richer picture, which captures interesting local

nonstationarity features in of time series, one should analyze in detail the time series of wavelet

coefficients dj,k. This is done in the following section using natural scale-space smoothing

tools such as SiZer and SiNos.

2.2 SiZer and dependent SiZer

SiZer analysis is a visualization method which enables statistical inference for discovery

of meaningful structure within the data, while doing exploratory analysis using statistical

smoothing methods. In particular, SiZer addresses the question of “which features observed

in a smooth are really there?”, meaning representing important underlying structure, not

artifacts of the sampling noise.

SiZer is based on scale-space ideas from computer vision, see Lindeberg (1994). Scale-

space is a family of kernel smooths indexed by the scale, which is the smoothing parameter or

bandwidth h. SiZer considers a wide range of bandwidths which avoids the classical problem

of bandwidth selection. Furthermore, the target of a SiZer analysis is shifted from finding

features in the “true underlying curve” to inferences about the “smoothed version of the

underlying curve”, i.e. the “curve at the given level of resolution”. The idea is that this

approach contains all the information that is available in the data at each given scale.

SiZer visually displays the significance of features over both location x and scale h, using

a color map. It is based on confidence intervals for the derivatives of the underlying curve
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and it uses multiple comparison level adjustment. Each pixel shows a color that gives the

result of a hypothesis test for the slope of the smoothed curve, at the point indexed by the

horizontal location x, and by the bandwidth corresponding to the row h. At each (x, h),

if the confidence interval is above (below) 0, which means that the curve is significantly

increasing (decreasing), then that particular map location is colored blue (red, respectively).

On the other hand, if the confidence interval contains 0, which means that the curve is not

significantly increasing or decreasing, then that map location is given the intermediate color

of purple. Finally, if there are not enough data points to carry out the test, then no decision

can be made and the location is colored gray.

Let us consider a regression problem with a fixed design setting. Given the data (xi, Y (i))

where xi = i/N, for i = 1, . . . , N , a regression problem is described as

Y (i) = g(xi) + σεi, (2.3)

where g is a regression function, σ > 0, and the εi’s are identically and independently dis-

tributed with E(εi) = 0 and V ar(εi) = 1 for all i. A time series setting can be viewed as a

regression setting in (2.3) with xi = i. The other difference is that the εi’s are not generally

independent.

SiZer applies the local linear fitting method, see e.g. Fan and Gijbels (1996), for obtaining

a family of kernel estimates and derivatives of a regression function. Precisely, at a particular

point x0, they are obtained by minimizing

N∑

i=1

{Y (i)− (β0 + β1(x0 − xi))}2Kh(x0 − xi) (2.4)

over β = (β0, β1)′, where Kh(·) = K(·/h)/h. K is called a kernel function which is usually

a symmetric probability density function. By Taylor expansion, it is easy to show that

β0 ≈ g(x0), and β1 ≈ g′(x0), thus the solution of (2.4) provides estimates of a regression

function and its first derivatives for different bandwidths. From this solution, we can construct

the family of smooths and the confidence intervals that underlie the SiZer analysis. The

details can be found in Chaudhuri and Marron (1999). Hannig and Marron (2003) have

recently suggested a procedure, using advanced distribution theory, to improve the multiple

comparison tests. We use the original version of SiZer in this paper because the main lessons

are the same for both procedures.

SiZer is a useful tool to find meaningful structures in the given data, but its usefulness

can be diminished in the case of dependent data because it assumes independent errors
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and compares against a white noise null hypothesis. In cases of dependent data, significant

features in SiZer are often generated as dependence artifacts. Examples for this issue were

presented in Park, Marron, and Rondonotti (2004). This motivates the need for distinguishing

trends due to dependence. Rondonotti and Marron (2001) extended SiZer to time series.

That method finds features of the underlying trend function, while taking into account the

dependence structure.

Dependent SiZer has a slightly different goal from SiZer for time series. The dependent

SiZer, proposed by Park, Marron, and Rondonotti (2004), uses a true autocovariance function

of an assumed model instead of estimating it from the observed data. By doing so, a goodness

of fit test can be conducted and we can see how different the behavior of the data is from

that of the assumed model. The only difference between original SiZer and dependent SiZer

is that the latter compares the data with the specified model rather than with white noise.

Implementation of dependent SiZer requires estimation of the parameters involved in the

autocovariance function. The autocovariance function of FGN, γ(·) is given by

γ(l) = τ2((l + 1)2H + (l − 1)2H − 2l2H)/2, l = 0, 1, 2, . . . ,

where H is the Hurst parameter and τ2 is the variance parameter. Thus, one needs to

estimate H and τ2 to conduct a goodness of fit test using dependent SiZer. This parameter

estimation is important and detailed discussion of this issue can be found in Park, Marron,

and Rondonotti (2004), and Hernandez-Campos et al (2004). In these papers, they used

richer data sets to obtain good estimates of the two parameters.

2.3 SiNos

SiNos (SIgnificant NOnStationarities) is a scale-space method based on the idea that we esti-

mate and check for local nonstationarity in terms of the mean (µ), variance (σ2), and lag one

autocorrelation (ρ) of a time series. This methodology is designed to handle both dependent

and independent data (see Olsen and Godtliebsen (2003)), using model assumptions of the

type used by dependent SiZer.

Different window widths M are used to explore changes on different scales. The basic

idea is : First, we compare two consecutive independent estimates êstr and êstl, where r and

l denote right and left and êst is an estimate of µ, σ2 or ρ. Second, we evaluate whether they

are significantly different. The result (for each of the three parameters) is reported through
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a family plot and a feature map as is done by SiZer. With each window (relabelling the data

inside as Y (1), . . . , Y (M)), the estimators for the three parameters are :

µ̂ = Y =
1
M

M∑

i=1

Y (i)

σ̂2 =
1
M

M∑

i=1

(Y (i)− Y )2

ρ̂ =
∑M−1

i=1 (Y (i + 1)− Y )(Y (i)− Y )∑M−1
i=1 (Y (i)− Y )2

These estimators are generally asymptotically normally distributed for time series de-

fined in terms of linear combinations of an underlying sequence of white noise variates. See

Shumway and Stoffer (2000) for a detailed set of conditions under which this holds. A “rule of

thumb” for the number of observations needed to get a mean value approximately normally

distributed is to use at least 30 observations. Hence, smaller window widths than 30 are

never used.

The time series is divided into windows of M observations and µ, σ2 and ρ are estimated

for each window width using a moving window. If we compare two consecutive segments of

observations, the two compared estimates will be correlated. To simplify the calculations we

choose the distance between êstr and êstl large enough to assume that the two estimates

are independent. A simple choice for this distance can be found by assuming that the au-

tocorrelation of the process follows an AR1 model. Since, the lag m autocorrelation of an

AR1 process is given by Corr(Y (l + m), Y (l)) = ρm, the distance m0 between two compared

segments is large enough for them to be considered “independent” when ρm ≤ 0.05, i.e. when

m0 ≥ ln(0.05)/ ln(ρ̂).

Some experimentation revealed that the variance part of SiNos is frequently the most

powerful for detecting features in the wavelet coefficients. Hence, we focus here on how the

variance of the estimated σ̂2 is found. For a stationary process,

Var(σ̂2) =
2
M

[
σ2 + 2

M∑

m=1

(
1− |m|

M

)
R(m)2

]
(2.5)

where R(m) is the autocovariance of the process at lag m. The autocovariances are in practice

estimated by

R̂(m) =
1
M

M−m∑

i=1

(Y (i + m)− Y )(Y (i)− Y )
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By plugging this into (2.5), an estimate of Var(σ̂2) is found. Estimated variances of Y and ρ̂

are found in an analogous way.

To test for changes in the estimated parameters we use the fact that the estimates are

asymptotically normally distributed. The test is given by

∣∣∣∣∣∣
êstr − êstl√

2Var(êst)

∣∣∣∣∣∣
> uα′/2 (2.6)

where uα′/2 is a suitable Gaussian quantile. The significance level, α′, for each test is chosen

by the number of independent blocks approach developed in SiZer by Chaudhuri and Marron

(1999). More details about the choice of α′ is given in Olsen and Godtliebsen (2003).

In this paper we apply SiNos, not to the original data which can have long–range depen-

dencies, but to the wavelet coefficients which, under common assumptions, are essentially

uncorrelated.

3 Wavelet coefficient based scale-space methods

As pointed out in Section 1, using both the wavelet spectrum and dependent SiZer can

provide information about nonstationary behavior. However, the wavelet spectrum lacks

location information and dependent SiZer needs specification of a model and estimation of

the parameters of the autocovariance function in the assumed model. Wavelet coefficient

based scale-space methods combine wavelet decompositions and scale-space tools to provide

deeper insights. First, the time series is decomposed in the wavelet domain and then SiZer

or SiNos are applied to each wavelet scale.

The results of statistical inference are indexed by a location parameter k, which is related

to a location in the original time series, and by two scale parameters which are j (frequency)

and h (bandwidth in SiZer) or M (window width in SiNos).

Figure 6 about here.

In wavelet SiZer, any function f , for example f(x) = |x|p, p > 0, of the wavelet coefficients

{dj,k} in (2.1) of the data can be used as an input for a SiZer analysis. Because wavelet coeffi-

cients are short–range dependent even when the original time series is long–range dependent,

as indicated in Section 2.1, it is possible to apply the conventional SiZer to f({dj,k}). Figure
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6 shows the wavelet SiZer of FGN with H = 0.9 and sample size N = 720, 000. In this case,

the square of the wavelet coefficients (second power), i.e. {d2
j,k}, are displayed. In principle,

wavelet coefficients are available at scales j = 1, . . . , [log2(N)] where [log2(N)] means the

greatest integer that does not exceed log2(N). However, only 10 scales are presented in this

paper because coarser scales usually do not provide further information and the very coarse

scales contain only a few data points. The shape of the family of smooths looks stationary

at all scales, and almost all SiZer maps show purple, which confirms that the second power

wavelet coefficients of FGN are not different from white noise. This is a great advantage com-

pared to applying dependent SiZer because it does not require the specification of a model

to the original time series and the estimation of parameters even if the original series has

long–range dependence properties. Thus, we can use the regression model in (2.3) by slightly

modifying it:

f(dj,k) = g(k) + σjεj,k, k ∈ Z, (3.1)

where σj is the standard deviation of f(dj,k) for all j = 1, . . . , [log2(N)].

We typically use f(x) = x2 in this paper because it captured the hidden nonstationary

behavior very well in the examples we considered. This choice is also comparable to the

wavelet spectrum which also involves the squared wavelet coefficients. Sometimes the fourth

power of the wavelet coefficients can be useful because it captures very fine scaling behavior

of the time series. An example will be presented in Figure 11 in Section 4.

In SiNos, the raw wavelet coefficients, {dj,k}, are used for Variance SiNos, which is related

to the second power wavelet SiZer. SiNos was also applied to the wavelet coefficients of a FGN

series. To save space, the plots are not presented in this paper, but almost no features were

found. This indicates that SiNos and SiZer methods flag no features beyond those naturally

generated by a FGN process.

Figure 7 about here.

However, we do not recommend using the raw wavelet coefficients (first power) for wavelet

SiZer, or Mean SiNos. Figure 7 shows the first power wavelet SiZer of the Thu1300 time series.

Although we observed strong local nonstationary behavior for this time series in Section 1,

this plot does not show any indication of nonstationarities. To save space, the plots for Mean

SiNos are not presented in this paper, but the results are similar, that is they do not show

significant features.
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The last issue in wavelet coefficient based scale-space methods is the choice of wavelets.

Daubechies wavelets are usually used because they have compact support and good regu-

larity properties. We use three zero moments in this paper. Different wavelets with dif-

ferent zero moments result in slight differences in the wavelet SiZer and Variance SiNos

analyses, but they do not change the main conclusions we draw from the plots. To save

space, we do not report the results in this paper, but they are posted at http://www-

dirt.cs.unc.edu/net lrd/wavesizer.html with many different packet counts traces.

4 Real data analysis

4.1 Wavelet SiZer and Variance SiNos results

The Thu1300 time series was used to illustrate the effectiveness of wavelet SiZer and Variance

SiNos in Section 1. In this subsection, we analyze additional traces.

Figure 8 about here.

The top left plot in Figure 8 displays a time series of packet counts in Internet traffic

coming into the UNC, which were measured every 10 millisecond at the link of UNC on April

12, Saturday, 2003, from 3 p.m. to 4 p.m. (Sat1500). This time series can be written as

Y = {Y (i), i = 1, 2, . . . , 366000}. The series looks rather flat and has less spikes than the

Thu1300 time series in Figure 1 (a). The rest of the plot shows the second power wavelet

SiZer of the Sat1500 time series. It shows increasing trends which correspond to blue colors

from j = 1 to j = 5, and a dominant spike extending across scales j = 5 to j = 10.

Figure 9 about here.

To explore the possible generators of the phenomena discovered by wavelet SiZer in Figure

8, we generated a simulated example, which is displayed in Figure 9. The top left plot in

Figure 9 shows the simulated time series. The underlying trend is a sine curve with amplitude

increasing in time with two short lower frequency, which is overlayed in white. The time series

is this trend plus FGN with H = 0.8. The trend function is given by

g(xi) = (1 + 0.1xi) sin(0.2πNxi) + sin(0.02πNxi) I(0.5 < xi ≤ 0.507)

+ sin(0.1πNxi) I(0.927 < xi ≤ 0.933),
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where xi = i/N for i = 1, . . . , N and N = 300000 is the length of the simulated series. In

other words, the simulated data has a sinusoidal component with increasing amplitude and

two coarse scale bursts around xi = 0.5 and xi = 0.93. The increasing amplitude creates

increasing trends in the wavelet sizer, which are present at the scale j = 2 and 3. Since these

variations have high frequency, their effect appears at fine scales. The effect of the two bursts

in the trend appears as two spikes at the scales j = 4 and 6 in the wavelet SiZer. Since the

first burst has lower frequency, it appears at the coarser scale j = 6, and the second burst has

higher frequency, it appears at the finer scale j = 4. Thus, the increasing fine scale trends

in Figure 8 could be explained by this type of increasing magnitude periodic component and

the spikes in the wavelet SiZer could be caused by local bursts with particular frequencies

that match the scale locations.

Figure 10 about here.

Going back to Figure 8, note that the SiZer map does not flag some large spikes as

significant, as observed in Section 1. Variance SiNos is better than SiZer at detecting apparent

peaks at large scales for this data set as well. In particular, as illustrated in Figure 10,

Variance SiNos shows that the peak around k = 9500 for scale j = 5 is significant. A similar

situation (not shown here) occurs for scale j = 9 where again Variance SiNos detects the

peak while SiZer does not.

Figure 11 about here.

In Figures 8 and 10, the spike around x = 3000 (seconds) has a similar pattern as the

Thu1300 time series in Figure 5. The first red window in Figure 11 (a) corresponds to the

spike in Figure 8 lasting from j = 5 to j = 9. Similar to Figure 5, two drops are observed

in the window and these are displayed in Figure 11 (b). Thus, we confirm that this kind of

drop causes a spike in the second power wavelet SiZer.

Sometimes, other choices of the function f in (3.1) can provide additional insight. Figure

11 (c) shows the SiZer plot of the scale j = 1 with the fourth power, i.e. f(x) = x4, in

wavelet SiZer. Compared to the second power wavelet SiZer in Figure 8, it clearly shows that

there is a spike at the end of the series at j = 1. The second red window in Figure 11 (a)

corresponds to this spike and Figure 11 (d) displays the zoomed series corresponding to that

window. An apparent burst behavior is observed in this window. It is of very short duration

and is now flagged as significant because the size of its variation is magnified by taking the
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fourth power.

We analyzed many different packet count traces collected from the UNC link in 2002 and

2003, but we do not report the other results here to save space. However, all results are

displayed and summarized at http://www-dirt.cs.unc.edu/net lrd/wavesizer.html.

4.2 Summary graphic

Figure 12 about here.

Finally, we propose a new visualization tool for combining inference into a single plot. We

have seen from the presented figures that a major problem with this methodology is that

the user has to analyze and interpret numerous plots for each time series under study. This

can, to some extent, be mitigated by the following approach. In Figure 12, we present a

compressed plot of the information in Figure 3. The upper panel is, as for SiZer, a family

plot of the smooths. In the lower panel we have, however, tried to summarize the important

information of the feature maps in Figure 3. The horizontal axis shows time while the vertical

axis represents the ten scales j = 1 to j = 10. For one particular scale and time, e.g. j = 1

and a specific location on the horizontal axis, we plot the number of times a significant feature

appears for this time location in the feature map for j = 1 in Figure 3. If there are many

(few) significant features for this scale and time in Figure 3, a dark (bright) point is plotted.

By examining the plot in Figure 12, we see that it tells much of the same story as we obtain

from all the maps in Figure 3. Of course, it does not give a detailed description of what

is going on, but it certainly indicates that there are local nonstationarities for many scales

and time points. This plot reveals that it is worthwhile to create and view the detailed plots

shown in Figure 3 to learn more about the underlying structure in this data set. We have also

applied this idea to the FGN data set used in Figure 6. The compressed plot (not shown here

to save space) was in this case essentially white, indicating that it is not necessary to create

and view all the feature maps presented in Figure 6. The idea of this summary plot approach

is simply to disregard automatically those data sets with no statistically significant behavior.

This is an important issue in situations where many data sets are to be analyzed. In addition,

it gives an informative snap shot of the times and scales where potential nonstationarities

are present.
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5 Discussion

Our main aim in this paper has been to develop tools that, in an objective way, use the

wavelet spectrum and wavelet coefficients to detect important features in a time series.

We have seen that the wavelet spectrum can give helpful information about the scales

where unusual behavior appears. Combined with dependent SiZer, it also shows, to some

extent, where in the time series the nonstationarities take place.

We have adapted two existing scale-space methods to the problem of objectively detecting

significant features in (functions of) the wavelet coefficients. An important lesson is that

most of the features found show up in the squared wavelet coefficients. For FGN both SiZer

and SiNos are seen to do a good job since none of the methods detect any features from

the wavelet coefficients. In the Sat1500 data set, the two methods give comparable results

with the exception that SiNos detects some peaks that SiZer does not detect. The same

phenomenon is observed for some peaks in the Thu1300 data set. We believe that this is due

to the way the present version of SiZer estimates the variance of the test statistic. Preliminary

results (see Hannig and Lee (2003)), using a robust estimator for the variance of this test

statistic, seem promising in the sense that peaks become easier to detect. In our future

research, we plan to develop a robust SiZer version and test how it performs on the data sets

used in this paper.

An advantage of SiZer is that it is computationally faster than SiNos. For long time

series, this is an important issue. We view this as additional motivation for developing a

robust version of SiZer in future research.
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Figure 1: (a) Time series plot of packet counts measured every 10 milliseconds at the link of

University of North Carolina, Chapel Hill (UNC) on April 11, Thursday, from 1 p.m. to 3

p.m., 2002 (Thu1300). Several spikes are shooting up and down. (b) The wavelet spectrum

of the Thu1300 time series. There is a bump at the scale j = 11. (c) and (d) display the

dependent SiZer of the Thu1300 time series.
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Figure 2: (a) Time series plot of the Thu1300 time series. The red vertical lines are the

boundaries of the 600 second window between x = 2400 and x = 3000 (seconds). (b)

Overlays of the wavelet spectra for each 600 seconds window. The spectrum with vertical

lines (gray) corresponds to the full time series, which is the same as (b) in Figure 1. (c) and

(d) display the dependent SiZer plot of the 600 second window between the red lines in (a).

The subtrace is tested against FGN with H = 0.9 and the variance 485.6.

24



1000 2000 3000 4000 5000 6000 7000

280

300

320

1 2 3

x 10
5

500

600

700

log
10

(h)

0 1 2 3

x 10
5

3.5

4

4.5

5

5.5

5 10 15

x 10
4

600

800

1000

1200

log
10

(h)

0 5 10 15

x 10
4

3

4

5

2 4 6 8

x 10
4

1000

1500

2000

2500

log
10

(h)

0 2 4 6 8

x 10
4

3

4

5

2 4

x 10
4

1000

2000

3000

4000

5000

log
10

(h)

0 2 4

x 10
4

2.5

3

3.5

4

4.5

0.5 1 1.5 2

x 10
4

2000

4000

6000

log
10

(h)

0 1 2

x 10
4

2

3

4

200040006000800010000

2000

4000

6000

8000

10000

log
10

(h)

0 5000 10000

2

3

4

10002000300040005000

5000

10000

15000

1 2 3 4

log
10

(h)

0 2000 4000
1.5

2

2.5

3

3.5

5001000150020002500
0

2

4

x 10
4

log
10

(h)

0 1000 2000

1.5

2

2.5

3

3.5

200400600800100012001400
0

5

10

15

x 10
4

log
10

(h)

0 500 1000

1

2

3

200 400 600
0

5

10
x 10

5

log
10

(h)

200 400 600
0.5

1

1.5

2

2.5

Figure 3: Wavelet SiZer plots of the Thu1300 time series. The top panel shows the family

of smooths of the time series. The second row displays the family of smooths and the SiZer

map of the second power wavelet coefficients at the scales j = 1 and j = 2. In the same

way, the other rows display SiZer plots of the second power wavelet coefficients from j = 3

to j = 10. The SiZer plots at different scales are mostly dominated by four spikes, which are

numbered at the j = 7 family of smooths.
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Figure 4: Upper panel is a family plot of Variance SiNos for scale j = 9 of the wavelet

coefficients obtained from the Thu1300 data. The curves show estimated variance of the

wavelet coefficients for various levels of smoothing. In the lower panel, a feature map showing

significant changes in the variance of the wavelet coefficients, is given. Black and white

means increasing and decreasing variance respectively. Gray is used to indicate that no

significant changes are found while light gray is used in areas where no inference is being

done. Combining the information in the family plot and the feature map, we conclude that

there are significant changes in the variance at k = 500 and k = 1100 for this scale of the

wavelet coefficients.
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Figure 5: (a) Time series plot of the Thu1300 time series. The four intervals hightlighted

by the vertical red lines correspond to the significant spikes of the wavelet SiZer in Figure

3. (b), (c), (d), and (e) show the subtraces corresponding to the four red windows in (a),

respectively. (f), (g), (h), and (i) are corresponding wavelet spectra when each red window is

excluded from the full time series and the remaining two parts are concatenated. This shows

that the j = 11 bump in the spectrum was caused by the dropout shown in (c).
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Figure 6: Wavelet SiZer plots of a simulated FGN with H = 0.9. At all scales, the shapes

of the family of smooths look similar. Almost all SiZer maps show purple, which means the

second power wavelet coefficients are not different from the white noise.
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Figure 7: Wavelet SiZer plots of the Thu1300 time series with the first power wavelet coeffi-

cients. No significant features are found.
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Figure 8: Wavelet SiZer plots of packet counts measured every 10 millisecond at the link of

University of North Carolina, Chapel Hill (UNC) on April 12, Saturday, from 3 p.m. to 4

p.m. (Sat1500), 2003. The left of the top panel displays the original time series and the right

displays its family of smooths. The wavelet SiZer shows increasing trends which correspond

to blue colors from j = 1 to j = 5, and a spike from j = 5 to j = 10.
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Figure 9: The wavelet SiZer of the simulated data. The left of the top panel displays the

simulated time series. The sine curve with increasing variations and two twists is added to

FGN with H = 0.8. This deterministic curve is overlayed in white. The simulated data

create increasing trends at finer scales (j = 2 and 3) and two spikes at coarser scales (j = 4

and 6.
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Figure 10: The upper panel is a family plot of Variance SiNos for scale j = 5 of the wavelet

coefficient obtained from the Sat1500 data. In the lower panel a feature map, showing

significant changes in the variance of the wavelet coefficients, is given. Note that a peak

around k = 9500 is detected for a broad range of window widths.
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Figure 11: (a) Time series of the Sat1500 time series. The first red window corresponds to

the spike in wavelet SiZer in Figure 8. (b) shows the subtrace corresponding to the first red

window in (a). There are two drops, which is similar to a pattern in the Thu1300 time series.

(c) shows the SiZer plot of scale j = 1 of the fourth power wavelet coefficients. There is a

spike at the end and this corresponds to the second red window in (a). (d) shows the subtrace

corresponding to the second red window in (a). A short burst is observed.
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Figure 12: The upper panel is a family plot of the observed time series. The lower plot

is a feature map summary for scales j = 1, 2, . . . , 10 and time points. See text for more

explanation about interpretation of this feature map.
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