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Viral delivery of superoxide dismutase gene reduces cyclospo- nephrotoxicity of CsA remain unclear; however, vita-
rine A-induced nephrotoxicity. min E attenuates CsA-induced lipid peroxidation and

Background. Cyclosporine A (CsA) increases free radical for- nephrotoxicity [3], consistent with the hypothesis thatmation in the kidney. Accordingly, this study investigated
oxidative stress is responsible, at least in part, for itswhether gene delivery of superoxide dismutase (SOD) reduced
nephrotoxicity. Indeed, free radicals detected in urineradical production and nephrotoxicity caused by CsA.

Methods. Rats were given adenovirus (Ad) carrying lacZ or were increased dramatically after CsA treatment [4].
Cu/Zn-SOD genes three days prior to CsA treatment. Histol- Oxidative stress leads to formation of superoxide radi-
ogy, glomerular filtration rates (GFRs) and free radical adducts cals that, in turn, are converted to hydroxyl radicals viain urine were assessed.

H2O2 or ONOO2. Methyl radicals derived from hydroxylResults. SOD activity was increased 2.5-fold three days after
radical attack on dimethyl sulfoxide (DMSO) representviral infection and remained at 2- and 1.6-fold higher 10 and

17 days later. Treatment with CsA for seven days decreased approximately 65% of radicals detected in urine but only
GFR by 70% in rats infected with Ad-lacZ as expected; how- 15% of radicals detected in bile [5], consistent with the
ever, the decrease was diminished significantly in rats receiving

clinical observation that the kidney is the major targetAd-SOD. CsA treatment for two weeks caused a loss of brush
organ of CsA toxicity. Dietary glycine, which blocks hy-border and dilation of proximal tubules, necrosis, and increased

leukocyte infiltration into the kidney; these effects were mini- droxyl radical production most likely by minimizing renal
mized by SOD. Dimethyl sulfoxide (DMSO) was attacked by nerve-dependent hypoxia-reoxygenation, prevents neph-
the hydroxyl radical to produce a methyl radical. Indeed, ad- rotoxicity caused by CsA [5].
ministration of CsA with 12C-DMSO in rats infected with Ad-lacZ

Superoxide dismutase (SOD), a potent antioxidant en-produced a radical adduct with hyperfine coupling constants
zyme, has been shown to minimize a variety of oxidativesimilar to 4-POBN/methyl radical adduct and another un-

known radical adduct. CsA given with 13C-DMSO produced injuries in vitro and in vivo [6–11]. If oxidative stress
a 12-line spectrum, confirming the involvement of hydroxyl plays a role in CsA-induced nephrotoxicity, increased
radicals. Free radical adducts detected in urine were increased SOD in the kidney via gene delivery should be protec-approximately fivefold by CsA, an effect blocked completely

tive. Three major isoforms of SOD are found in mamma-by SOD.
lian species [12], namely cytosolic (Cu/Zn-SOD), mito-Conclusions. CsA increases free radical formation. Gene

delivery of SOD blocks formation of free radicals, thereby chondrial (Mn-SOD), and extracellular (Cu/Zn-SOD)
minimizing nephrotoxicity caused by CsA. SOD. The Cu/Zn-SOD form accounts for approximately

95% of SOD activity in the kidney [12]. Accordingly, this
study was designed to test the hypothesis that gene deliv-

Cyclosporine A (CsA), a widely used immunosuppres- ery of cytosolic Cu/Zn-SOD can minimize CsA-induced
sive agent, causes moderate to severe renal dysfunction nephrotoxicity by blocking free radical formation.
in approximately 30% of patients [1, 2]. Mechanisms of

METHODS
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N-tert-butylnitrone (4-POBN) were obtained from Sigma On the day of sacrifice, the kidneys were rinsed with
10 mL normal saline and were perfusion fixed with 10%Chemical Co. (St. Louis, MO, USA), and ascorbate oxi-

dase paddles were obtained from Boehringer Mannheim buffered formaldehyde. Sections were stained with he-
matoxylin eosin and were analyzed microscopically.Inc. (Indianapolis, IN, USA). 12C-dimethyl sulfoxide

(DMSO; containing 1.1% natural abundance 13C) and 13C2-
Detection of b-galactosidaseDMSO (containing minimum 99 atom percentage 13C)

were obtained from Isotech, Inc. (Miamisburg, OH, USA). Approximately 100 mg of kidney tissue were homoge-
nized in 500 mL of buffer containing 40 mmol/L Tris,

Animals 140 mmol/L NaCl, and a protease inhibitor cocktail, in-
cluding aprotinin, leupeptin, phenylmethylsulfonyl fluo-Male Sprague-Dawley rats (200 to 250 g) were fed a

semisynthetic powdered diet (AIN 76A) beginning three ride (PMSF), and dithiothreitol (pH 7.6) [23]. The ho-
mogenate was centrifuged at 10,000 3 g for 10 minutesdays prior to infection with virus. Recombinant adenovi-

rus containing the transgene for either Cu/Zn-SOD at 48C, and the supernatant was collected. The activity
of b-galactosidase in the supernatant was quantitated(Ad-SOD) or b-galactosidase (Ad-lacZ) was prepared

by the UNC vector core as described elsewhere [13, 14]. by the cleavage of O-nitrophenyl-b-D-galactopyranoside
(ONPG) to nitrophenol, which was determined spectro-Briefly, the plasmid shuttle vector pAd5.CMV.lacZ was

constructed by standard cloning protocols as described photometrically at 420 nm as described elsewhere [24].
Protein was measured by the Bio-Rad Protein Assayby Sambrook et al and Graham and Prevec [15, 16].

The adenoviral shuttle plasmid was transfected into the (Bio-Rad, Hercules, CA, USA).
permissive HEK 293 host cell line to generate recombi-

Western blotting for superoxide dismutasenant Ad-lacZ adenovirus. The virus isolates were plaque
purified and propagated in HEK 293 cells, isolated, con- Kidneys were perfused with 10 mL of normal saline

and frozen in liquid nitrogen. Samples were homoge-centrated, and titered by plaque assay. Recombinant ad-
enovirus containing the transgene for human Cu/Zn- nized in a buffer containing 40 mmol/L Tris, 140 mmol/L

NaCl, and the protease inhibitors (pH 7.6), and wereSOD (Ad-SOD) was received as a seed stock from Dr.
John Engelhardt of the University of Iowa (Iowa City, centrifuged at 900 3 g for 10 minutes at 48C. The super-

natant was analyzed for SOD using Western blottingIA, USA) [17] and propagated in a similar manner as
Ad-lacZ. Purified virus (1 3 109 pfu) was diluted in 1 as described elsewhere [24]. Protein concentration was

determined by the Bio-Rad Protein Assay (Bio-Rad).mL normal saline and injected intravenously. Three days
after viral infection, rats were treated with CsA (25

Activity of superoxide dismutasemg/kg, orally) in olive oil or an equivalent volume of
vehicle daily for 14 days. Previous studies showed that Kidneys were homogenized in a buffer containing

40 mmol/L Tris, 140 mmol/L NaCl, protease inhibitorsCsA at doses ranging from 25 to 50 mg/kg causes nephro-
toxicity in the rat characterized by reduced glomerular (aprotinin, leupeptin, and PMSF, pH 7.6) and dithio-

threitol, and were centrifuged at 10,000 3 g for 10 min-filtration rates (GFRs), increased serum creatinine and
pathological changes involving proximal tubular cell utes at 48C. Superoxide dismutase SOD activity in the

supernatant was measured by inhibition of the reductionswelling and necrosis, infiltration of macrophages, and
interstitial fibrosis [2, 18–20]. All animals received hu- of ferricytochrome c [25]. Supernatant (10 mL) was

added to a solution containing 50 mmol/L K2HPO4,mane care in compliance with institutional guidelines,
and viral experiments were approved by the Institutional 0.1 mmol/L Na2EDTA, 0.5 mg/mL cytochrome c, and

0.25 mg/mL xanthine. Generation of superoxide was ini-Biosafety Committee.
tiated by the addition of 0.004 units of xanthine oxidase.

Glomerular filtration rates and histology After a 10-minute incubation at room temperature, the
absorbance at 550 nm was measured. Superoxide dismu-To estimate GFRs, animals were placed in metabolic

cages, and urine was collected daily. Creatinine levels in tase activity was estimated based on a standard curve
generated using purified bovine erythrocyte SOD (Boeh-urine and serum were determined using commercially

available kits (Sigma). GFRs were calculated from the ringer Mannheim, Mannheim, Germany). Uric acid in
kidney homogenates was measured using a commerciallyratio of creatinine in the urine/blood and the volume of

urine produced in 24 hours and were corrected for body available kit from Sigma, and uric acid production in
the presence of renal tissue, exogenous xanthine andweight [21]. In some experiments, inulin was infused

intravenously, and inulin in urine and blood was mea- xanthine oxidase was monitored by absorbance changes
at 290 nm as described elsewhere [26]. Tissue contentssured as described elsewhere [22]. Glomerular filtration

rates calculated from inulin (data not shown) and creati- of uric acid were minimal and were similar in all groups
studied (data not shown). In addition, uric acid produc-nine clearance were nearly identical under these condi-

tions. tion rates were not different among the Ad-lacZ and
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Ad-SOD groups as expected [26]. Therefore, the effect
of uric acid on the assay for SOD activity, if any, is the
same for both the Ad-lacZ and Ad-SOD groups.

Detection of free radical adducts

To assess free radical formation, powdered CsA
(25 mg/kg) was dissolved in 0.2 mL 12C- or 13C-DMSO
and administered by oral gavage. Three hours after CsA
treatment, the spin trapping reagent a-(4-pyridyl 1-oxide)-
N-tert-butylnitrone (4-POBN; 1 g/kg body weight) was
dissolved in 2.0 mL normal saline and injected slowly into
the tail vein. The urinary bladder was always emptied
because of handling. Urine was collected into 30 mmol/L
dipyridyl (50 mL) to prevent ex vivo radical formation.
At the end of three hours of urine collection, all rats
were sacrificed, and the lower abdomen was opened.
Urine in the bladder was aspirated using a syringe and
pooled with other urine samples. Samples were kept at
2808C until analysis. Urine was placed in a quartz elec-
tron spin resonance (ESR) flat cell and bubbled with
oxygen for 10 minutes followed by nitrogen for 5 min-
utes. After the ESR spectrum was obtained, an ascorbate Fig. 1. Activity of b-galactosidase in the kidney. Recombinant adeno-

viral vectors (Ad) containing lacZ (1 3 109 pfu) diluted in 1 mL normaloxidase paddle was inserted into the sample, and the gas
saline or an equal volume of vehicle were injected intravenously. Threetreatment was repeated. These treatments oxidize the days after viral infection, rats were sacrificed, and b-galactosidase in

ascorbate to dehydroascorbate, an ESR-silent substance, kidney homogenates was detected by cleavage of O-nitrophenyl-b-D-
galactopyranoside as described in the Methods section. Values areand the ESR-silent, reduced hydroxylamine form of the
means 6 SEM (ANOVA, N 5 4 in each group). *P , 0.05 compared

free radical adducts to the ESR-active nitroxide. Free with saline; †P , 0.05 compared with Ad-lacZ (Student-Newman-Keuls
post hoc test).radical adducts were detected with a Bruker 200 ESR

spectrometer. Instrument conditions were as follows:
20 mW microwave power, 0.63 G modulation amplitude,
and 80 G scan range [27]. Spectral data were stored on mal saline or Ad-SOD. (Fig. 1). These results indicate
an IBM compatible computer and were analyzed for that adenovirus can effectively infect kidney cells,
ESR hyperfine coupling constants by computer simula- thereby delivering genes of interest.
tion [28]. The magnitude of the ESR signal was measured Three days after infection, human SOD (19 kD) pro-
at the low-field line (the first line from left) at identical tein was detected in kidney from rats infected with Ad
gains and expressed in arbitrary units (1 unit 5 1 cm containing the SOD gene but not in kidney from rats
chart paper). receiving Ad-lacZ or saline (Fig. 2A). Moreover, three

days after viral infection, SOD activity in kidney homog-
Statistical analysis enates was approximately threefold higher in rats receiv-

ing Ad-SOD than rats receiving normal saline and aboutFor all statistics, analysis of variance (ANOVA) and
2.5-fold greater compared with rats receiving Ad-lacZthe Student-Newman-Keuls post hoc tests were used.
(Fig. 2B). SOD activity was twofold higher 10 days andP , 0.05 was selected prior to the study to indicate
1.6-fold 17 days later. Therefore, it is clear that viralsignificance.
gene delivery significantly increases SOD protein expres-
sion and enzyme activity in the kidney.

RESULTS
Effects of cyclosporine A and superoxide dismutase

Expression of b-galactosidase and superoxide on glomerular filtration rates
dismutase in the kidney Glomerular filtration rate, a classic indicator of renal

Three days after infection with recombinant adenovi- function, was approximately 0.65 mL/min/100 g body wt
ral (Ad) vectors containing lacZ, b-galactosidase, which in controls and was not altered by adenoviral infection.
is encoded by lacZ, was increased approximately twofold GFR in rats receiving Ad-lacZ declined by about 70%

after seven days of treatment with CsA as expected andin the kidneys compared with the groups receiving nor-
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Fig. 3. Glomerular filtration rates (GFRs). Rats were given adenoviral
vectors (Ad) containing lacZ (d) or SOD (s; 1 3 109 pfu) diluted in
1 mL normal saline intravenously three days prior to CsA treatment.
Rats were treated with CsA (25 mg/kg, orally) or an equivalent volume
of olive oil (., Ad-lacZ) daily for 14 days. Urine samples were collected

Fig. 2. Superoxide dismutase (SOD) expression (A) and activity (B) using metabolic cages, and GFRs were calculated from the ratio of
in the kidney. Recombinant adenoviral vectors (Ad) containing lacZ creatinine in the urine/blood, the volume of urine produced in 24 hours,
or SOD (1 3 109 pfu) diluted in 1 mL normal saline were injected and the body weight. Values are means 6 SEM (analysis of variance,
intravenously. Three days after viral infection, rats were sacrificed, and N 5 4 in each group). *P , 0.05 compared with Ad-lacZ; †P , 0.05
the kidney was homogenized in a buffer containing 40 mmol/L Tris, compared with Ad-lacZ 1 CsA group (Student-Newman-Keuls post
140 mmol/L NaCl, and protease inhibitors. SOD protein in the superna- hoc test).
tant was detected by Western blotting, and activity was measured by
the inhibition of reduction of ferricytochrome c. (A) Representative
image of Western blotting for SOD. (B) Activity of SOD. Values are
means 6 SEM (ANOVA, N 5 4 in each group). *P , 0.05 compared
with saline; †P , 0.05 compared with Ad-lacZ (Student-Newman-Keuls Free radical formation
post hoc test).

A previous study from this laboratory showed that
CsA causes hypoxia and hydroxyl radical formation in
the kidney [4]. To detect hydroxyl radical formation,

reached a new steady-state level in approximately two DMSO was given to rats along with CsA. Because hy-
weeks (Fig. 3). Delivery of the SOD gene significantly droxyl radicals attack DMSO, producing a methyl frag-
blunted decreases in GFRs caused by CsA (Fig. 3) [20]. ment readily trapped by 4-POBN leading to a stable

adduct, DMSO significantly increases the sensitivity of
Histology detection of hydroxyl radicals with spin-trapping re-

The histology of the kidney cortex after two weeks of agents [29].
CsA treatment from this study is shown in Figure 4. The ESR signal of free radicals was minimal in urine
Figure 4A depicts a kidney cortex with normal renal from rats that were infected with virus but did not receive
architecture from a rat infected with Ad-lacZ that re- CsA (Fig. 5A, B). When CsA was administered with
ceived olive oil. CsA caused loss of brush border and 12C-DMSO, a six-line ESR spectrum due to 4-POBN
dilation of the proximal tubules, swelling, necrosis, and radical adducts was detected in urine (Fig. 5C) and was
white blood cell infiltration, as has been reported pre- reduced significantly by Ad-SOD (Fig. 5D). Computer
viously (Fig. 4B) [1, 20]. These pathological changes were simulation of the spectrum demonstrated two free radical

species. Hyperfine coupling constants of species I (20%largely blocked by delivery of the SOD gene (Fig. 4C).



Fig. 5. Effects of cyclosporine A (CsA) and superoxide dismutase
Fig. 4. Effects of cyclosporine A (CsA) and superoxide dismutase (SOD) on electron paramagnetic resonance (ESR) spectra of free radi-
(SOD) on renal histology. The conditions are the same as in Figure 3. cal adducts in urine. After pretreatment with CsA for seven days,
Rats were treated with CsA (25 mg/kg, orally) or an equivalent volume powdered CsA was dissolved in 0.2 mL 12C- or 13C-DMSO and given
of olive oil daily for 14 days. Data represent typical images of hematoxy- to the rat by oral gavage. Three hours after the last dose of CsA, the spin-
lin eosin-stained sections of perfusion-fixed kidneys. Original magni- trapping reagent a-(4-pyridyl 1-oxide)-N-tert-butylnitrone (4-POBN;
fication 3200. (A) Section from animals infected with Ad-lacZ and 1 g/kg body weight) was dissolved in 2.0 mL normal saline and injected
olive oil. (B) Section from animals infected with Ad-lacZ and treated slowly into the tail vein. Urine was collected using metabolic cages for
with CsA. (C) Section from animals infected with Ad-SOD and treated three hours. Free radical adducts in urine were detected with a Bruker
with CsA. ESP 200 ESR spectrometer. Typical spectra: (A) rat received Ad-lacZ

and 12C-DMSO; (B) Ad-SOD and 12C-DMSO; (C ) Ad-lacZ and CsA
in 12C-DMSO; (D) Ad-SOD and CsA in 12C-DMSO; (E) Ad-lacZ and
CsA in 13C-DMSO; (F ) computer simulation of the radical adduct
spectrum of “E”; (G) Ad-SOD and CsA in 13C-DMSO.
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of total radicals) are aN 5 15.68 G and aH
b 5 2.61 G,

which are identical to the unknown radical found in
the urine from CsA-treated rats [4]. Hyperfine coupling
constants of species II (80%) are aN 5 15.96 G and
aH

b 5 2.74 G. Previously, a study showed that ex vivo
formation of hydroxyl radicals initiated by the Fenton
reaction with 12C-DMSO and 4-POBN in urine produced
a six-line radical signal with coupling constants of aN 5
15.96 G and aH

b 5 2.74 G [5], identical to species II
detected in the urine of CsA/12C-DMSO-treated rats.
Proof that the radical adduct was DMSO derived was
confirmed using 13C-DMSO. In vivo administration of
CsA with 13C-DMSO yielded urine samples that pro-
duced a 12-line ESR spectrum (Fig. 5E, F; species I, aN 5
15.68 G and aH

b 5 2.61 G; species II, aN 5 15.96 G,
aH

b 5 2.74 G and aC-13
b 5 4.95 G) as expected [5]. The

doubling of the number of ESR lines indicates the pres-
ence of a magnetic C-13 in the radical adduct, which
in this case could arise only from the 13C-DMSO [30],
confirming hydroxyl radical formation in the kidney. Im-
portantly, in rats treated with Ad-SOD and CsA/
13C-DMSO, this methyl adduct indicative of hydroxyl
radicals could not be detected above basal levels (Fig.
5G). In addition, the unknown species was also reduced

Fig. 6. Effects of superoxide dismutase (SOD) on average free radicalsignificantly. Overall, free radical formation caused by
production caused by CsA. The conditions are the same as in FigureCsA was almost totally blocked by delivery of the Cu/Zn 5. The magnitude of the ESR signal was measured at the low-field line

SOD gene (Fig. 6). (the first line from left) at identical gains and is expressed in arbitrary
units (1 unit 5 1 cm chart paper). Relative radical adduct production
was calculated by multiplying the magnitude by the volume of urine
collected during a three-hour sampling interval. Values are means 6DISCUSSION
SEM (ANOVA, N 5 4 to 5 in each group). *P , 0.05 compared with

Cyclosporine A causes oxidative stress in the kidney Ad-lacZ controls. †P , 0.05 compared with the Ad-lacZ 1 CsA group
(Student-Newman-Keuls post hoc test).Cyclosporine A, a hydrophobic cyclic peptide pro-

duced by the fungus Tolypocladium inflatum gams [31],
is an immunosuppressant that is critical in organ trans-
plantation and is used in a variety of immune disorders, metabolism of CsA by cytochrome P450 could directly

lead to free radicals. In addition, cytochrome P450 couldincluding rheumatoid arthritis and psoriasis [31–34]. Pa-
tients must take this drug over their lifetime, and unfortu- be a source of iron that could be involved in conversion

of hydrogen peroxide to hydroxyl radicals. However, anately, CsA causes severe nephrotoxicity [1]. This injury
is characterized by diminished renal blood flow and GFR recent study using the spin-trapping technique and ESR

has shown that administration of 12C- or 13C3-CsA resultsas well as proximal tubular cell swelling, necrosis, and
infiltration of neutrophils and macrophages [1]. If the in only a six-line ESR spectrum in urine and bile, indicat-

ing that free radials are not derived directly from thedose of cyclosporine is not reduced, renal dysfunction
and failure of the kidney will occur in approximately CsA molecule [5]. In contrast, a methyl radical produced

from the attack of hydroxyl radical on DMSO is detected30% of patients [1, 2].
Mechanisms of CsA nephrotoxicity remain unclear; in urine after CsA (Fig. 5) [5], providing direct physical

evidence for oxidative stress since the methyl fragmenthowever, increasing evidence suggests that oxidative
stress is involved [3, 35, 36]. CsA treatment increases arises from the attack of hydroxyl radical on DMSO [29].

Previous studies showed that CsA increases the activitythe oxidized glutathione/glutathione sulfhydryl (GSSG/
GSH) ratio, malondialdehyde, and conjugated dienes in of the renal nerves [40] and causes vasoconstriction [18].

Hydroxyl radical production caused by CsA can be mini-the kidney [3, 36] as well as urinary excretion of F2-
isoprostanes [37]. Generation of superoxide and hydro- mized by renal denervation [5], suggesting that CsA causes

oxidative stress by inducing vasoconstriction, which leadsgen peroxide by isolated glomeruli is also enhanced by
CsA treatment [38], indicating oxidative stress. CsA in- to hypoxia reoxygenation. In support of this idea, vita-

min E, N-acetylcysteine, and lazaroids attenuate CsA-creases malondialdehyde, a product of lipid peroxida-
tion, in isolated hepatic microsomes [39], suggesting that induced nephrotoxicity in rats [3, 41, 42]. Glycine, which
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decreases renal nerve activity and blocks free radical that CsA causes renal injury, at least in part, by increas-
ing reactive oxygen species. Importantly, this study dem-production, also minimizes kidney injury caused by CsA

[5, 20]. These data support the hypothesis that CsA onstrated that this injury can be prevented by delivery
of the SOD gene.causes oxidative stress leading to nephrotoxicity. How-

ever, kidney injury is probably not totally due to oxida-
tive stress since overexpression of SOD, which largely ACKNOWLEDGMENT
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Oxidative stress causes formation of superoxide radi-
cals, which, in turn, are converted to highly reactive APPENDIX
hydroxyl radicals through H2O2 in the presence of transi-

Abbreviations used in this article are: Ad, adenovirus; CsA, cyclo-
tion metals [43]. However, in biological systems, catalase sporine A; DMSO, dimethyl sulfoxide; GFR, glomerular filtration

rate; ESR, electron spin resonance spectroscopy; 4-POBN, a-(r-pyridylis highly effective at rapidly degrading H2O2; therefore,
1-oxide)-N-tert-butylnitrone; SOD, superoxide dismutase.accumulation of H2O2 is unlikely. Superoxide radicals

can also react with nitric oxide (NO) to form ONOO2,
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