
ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.1 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 1

Computational Geometry ••• (••••) •••–•••
www.elsevier.com/locate/comgeo

Polygonal path simplification with angle constraints

Danny Z. Chen a,1, Ovidiu Daescu b,∗,2, John Hershberger c, Peter M. Kogge a,
Ningfang Mi b, Jack Snoeyink d,3

a Department of Comp. Sci. and Eng., University of Notre Dame, Notre Dame, IN 46556, USA
b Department of Comp. Sci., Univ. of Texas at Dallas, Richardson, TX 75083, USA
c Mentor Graphics, 8005 S.W. Boeckman Road, Wilsonville, OR 97070, USA

d Department of Comp. Sci., Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Received 7 April 2004; received in revised form 18 September 2004; accepted 18 September 2004

Communicated by T. Asano

Abstract

We present efficient geometric algorithms for simplifying polygonal paths in R2 and R3 that have angle con-
straints, improving by nearly a linear factor over the graph-theoretic solutions based on known techniques. The
algorithms we present match the time bounds for their unconstrained counterparts. As a key step in our solutions,
we formulate and solve an off-line ball exclusion search problem, which may be of interest in its own right.
 2004 Elsevier B.V. All rights reserved.

Keywords: Path simplification; Angle constraint; Computational geometry; Off-line search

* Corresponding author.
E-mail addresses: dchen@cse.nd.edu (D.Z. Chen), daescu@utdallas.edu (O. Daescu), john_hershberger@mentor.com

(J. Hershberger), kogge@cse.nd.edu (P.M. Kogge), nxm024100@utdallas.edu (N. Mi), snoeyink@cs.unc.edu (J. Snoeyink).
1 Chen’s research was supported in part by the National Science Foundation under Grants CCR-9623585 and CCR-9988468.
2 Daescu’s research was supported in part by the National Science Foundation under Grant CCF-0430366.
3 Snoeyink’s research was supported in part by the National Science Foundation under Grants CCF-9988742 and ITR-
0076984.

0925-7721/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2004.09.003

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.2 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 2

2 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

1. Introduction

We consider a common problem of simplifying a polygonal path or chain P in R2 or R3 by another
polygonal path P ′ formed by an ordered subsequence of the vertices of P such that P ′ remains “close
to” P . We add the additional constraint that any two consecutive line segments of P ′ are subject to some
angle constraint. This constraint arises in general cartographic simplification, and in simplification that is
specific to applications of robotics and vehicle routing. The question was first raised to us in the setting of
airplane routing, in order to simplify flight paths without introducing sharp turns (limiting the maximum
turn angle). On the other hand, one of the general simplification heuristics is to eliminate vertices with
gradual turns (limiting the minimum turn angle). Below in this section, we first precisely define the
problems considered, survey related work, and outline our results.

1.1. Problem definition

We define the turn angle for two consecutive segments phpi and pipk of P ′ as follows: let ray(b|a)
be the ray that extends the line segment ab from b to infinity and does not contain ab. That is, ray(b|a)
is collinear with ab but extends from b away from a. The turn angle between phpi and pipk is defined
as the minimum angle one needs to rotate ray(pi |ph) around pi to overlap with the line segment pipk .
For a line segment ab and a real number ε ! 0, called the tolerance, we define the error tolerance

region Rε(ab) as the set of points whose Euclidean distance from ab is at most ε. Based on these defi-
nitions, we formulate two problems, depending on whether small or large turn angles are disallowed on
P ′.
Given an arbitrary polygonal path P = (p1,p2, . . . , pn) of n vertices, in R2 or R3, where any two

consecutive vertices pi,pi+1 on P are connected by the line segment pipi+1, for 1 " i < n, find an-
other polygonal path P ′ = (p1 = pi1 ,pi2, . . . , pim = pn) of m vertices (m < n), satisfying the following
conditions:

(1) The integer indices satisfy 1= i1 < i2 < · · · < im−1 < im = n.
(2) For every j = 1,2, . . . ,m − 1, the subpath Pij ,ij+1 = (pij , pij +1, . . . , pij+1) of P is entirely

contained in the error tolerance region Rε(pij pij+1), for a given tolerance ε ! 0.
(3.min) The turn angle for any two consecutive line segments phpi and pipk on P ′ is at least a specified

value δ, with 0" δ(phpi) < π/2. This is the min turn angle case as illustrated in Fig. 1 for R2.
(3.max) The turn angle for any two consecutive line segments phpi and pipk on P ′ is at most a specified

value δ, with π/2" δ(phpi) < π . This is the max turn angle case.

The problem version of limiting the min turn angle models the situation in which turns of small
angles are eliminated—this gives simplifications that better preserve the character of the original line by
making sure that all turns are justified or make all course corrections for a vehicle be greater than a given
mechanical accuracy. The problem version of limiting the max turn angle models the situation in which
a robot or vehicle cannot make a very sharp turn (e.g., a car or airplane). It will become clear later on
that the two problem versions are related to each other so that the solution for one version also solves the
other. Hence, we mainly discuss the min turn angle problem.
The problem is a generalization of a well-studied polygonal path simplification problem [2,4,5,7,8,

11–13,16,20–26], in which neither of the third condition above is considered. Our algorithms report a

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.3 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 3

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 3

Fig. 1. Illustrating the angle constraint condition for the min turn angle case in R2: (a) edges phpi and pipk can be consecutive
in the path P ′ , and (b) edges phpi and pipk cannot be consecutive in P ′.

path satisfying the angle constraints, if one exists, or otherwise report that no such path exists. (Although
the input path P always satisfies the first two constraints, it need not satisfy the third one.)
A path simplification problem has two coupled parameters: m, the number of vertices of P ′, and ε,

the tolerance. When ε is made smaller, then m tends to become larger, and ε tends to be larger when m is
made smaller. This trade-off between m and ε gives rise to two different optimization problems that we
will consider:

(1) Min-# problem: Given a polygonal path P and a real number ε > 0, find an ε-simplification path P ′

with the smallest number of vertices (given ε, minimize m).
(2) Min-ε problem: Given a polygonal path P and an integer m < n, find a simplification path P ′ with

at most m vertices that minimizes the error ε between P ′ and P .

Different error criteria have been used for simplifying polygonal paths (e.g., see [7,8,11]). The error
criterion used in [20,22,23] and this paper, called the tolerance zone criterion [7], is one of the most
natural definitions. Under this criterion, if a subpath Pij ,ij+1 = (pij , pij +1, . . . , pij+1) of P is completely
contained in the ε-tolerance region of the line segment Rε(pij pij+1), then we say that pij pij+1 is an ε-
simplifying line segment for Pij ,ij+1 . The path P ′ is an ε-simplification of P if each line segment pij pij+1
of P ′ is an ε-simplifying line segment for Pij ,ij+1 , for j = 1,2, . . . ,m − 1.
Other commonly used error criteria include the infinite beam criterion [11,16,22,26] and the uniform

measure criterion [4]. Under the infinite beam criterion, the ε-tolerance zone of a line segment pipj

is the region consisting of the set of points that are at distance no larger than ε from the line L(pipj)

supporting pipj . In R2, for monotone paths, under the uniform measure criterion, the simplification
error between a line segment pij pij+1 of P ′ and the corresponding subpath Pij ,ij+1 of P is defined as
max{d(pk,pij pij+1) | ij " k " ij+1}, where d(pk,pij pij+1) denotes the vertical distance between pk and
pij pij+1 .

1.2. Previous work

A number of results for the polygonal path simplification problem, under various error criteria, have
been presented by Imai and Iri [20–22], Melkman and O’Rourke [23], and Toussaint [26]. Imai and
Iri [22] formulated the problem in terms of graph theory: construct a model of an unweighted directed
acyclic graph for path simplification, and then use breadth-first search to compute a shortest path in this

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.4 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 4

4 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

graph. This has later been exploited by most of the algorithms devoted to the problem [4,7,8,11,16].
A notable exception, for the planar case, is the work of Agarwal and Varadarajan [4], which uses a divide
and conquer approach to achieve an O(n4/3+δ) time and space complexity, where δ > 0 is an arbitrarily
small constant. However, their algorithms work only for the L1 distance metric and do not extend to
higher dimensions. The most popular heuristic method that is used in path simplification, the recursive
simplification heuristic of Douglas and Peucker [14], can be implemented in O(n log∗ n) time in R2 [19],
but does not guarantee an optimal solution. If the vertices of the simplifying path are not required to be a
subset of the vertices of the input path, then faster algorithms are possible [17,18,21]. Approximate solu-
tions for the min-# problem have also been considered. In [2], near-linear time algorithms are proposed
for computing a simplifying path with vertices among those of P . Other somewhat related problems
(e.g., off-line ball inclusion testing [7], off-line range searching [9]) have been studied recently.
Solutions to some subdivision simplification problems are also based on polygonal path simplification.

In [13], polygonal path simplification has been used to simplify a planar subdivision S with N vertices
andM extra points in O(N(N +M) logN) time. If a minimum size simplification is sought, the problem
becomes NP-hard [17]. Unless P = NP, one cannot obtain in polynomial time a simplification within a
factor of n1/5−δ of an optimal solution, for any δ > 0 [15].

1.3. Our results

While there are known results on polygonal path simplification in R2 and R3, without angle constraints
(e.g., [7,11]) or on curvature-constrained geometric paths (mainly in R2, e.g., [1]), we are not aware of
any published work on the specific problems we consider. However, one may use known graph-theoretic
techniques [21] to reduce the problem to that of computing shortest paths in a graph with O(n2) vertices
and O(n3) edges.
We present efficient algorithms for solving the polygonal path simplification problem with angle con-

straints in R2 and R3, with time bounds matching those of the best known path simplification algorithms
without angle constraints [7,8,11]. The algorithms we present improve by nearly a linear factor in the
time bound over the possible solutions based on graph-theoretic techniques mentioned above.
The running times of our min-# algorithms are O(n2) in R2 and O(n2 logn) in R3. The time bounds

of our min-# algorithms crucially depend on how fast we can solve some special instances of a certain
1-dimensional (for R2) or 2-dimensional (for R3) off-line search problem which we refer to as the off-line
ball exclusion search (OLBES) problem (more on the OLBES problem in Section 2).
We develop efficient data structures that solve the general 1-dimensional and 2-dimensional OLBES

problems in O(n logn) time. We also show that for the special instance of the 1-dimensional OLBES
problem that results from the R2 version of the path simplification problem with angle constraints, we
can reduce the time bound from O(n logn) to O(n). Our OLBES data structures can also handle on-line
point queries in O(logn) time each. Further, our solutions can be easily extended to other types of objects
(such as bounded convex objects with boundary described by a constant number of polynomial functions
of maximum degree bounded by a small constant), and can be applied to a class of geometric paths and
other related problems.
Using techniques similar to those for the unconstrained case [7,11], the min-ε problem in R2 and R3

can be solved in time O(n2 logn) and O(n2 log3 n), respectively.
The rest of the paper is organized as follows. In Section 2 we show how to reduce the min-# problem

to solving O(n) OLBES problems. In Sections 3 and 4 we develop efficient data structures and discuss

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.5 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 5

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 5

our algorithms for solving the R2 and R3 OLBES problems, respectively. In Section 5 we give some
remarks on the on-line query version. We conclude the paper in Section 6.

2. Algorithmic paradigm: reduction to OLBES

In this section, we explain our algorithmic approach for angle-constrained path simplification. To solve
the unconstrained polygonal path simplification problems in R2 and R3, the known solutions [7,8] build
a directed acyclic graph GP = (VP ,EP) for P , where VP is the vertex set of P and the O(n2) edges
of EP are all valid simplifying segments for their corresponding subpaths of P , and compute a shortest
path from p1 to pn in GP . For the angle-constrained versions, the main difficulty is how to compute the
desired shortest paths in GP .

2.1. Overview of the algorithmic approach

As the previous algorithms for the unconstrained min-# problem (e.g., [7,8]), we divide the min-#
problem into two subproblems, as follows:

(1) Build an O(n2) size directed acyclic graph GP = (VP ,EP) for P , such that EP consists of all ε-
simplifying segments.

(2) Compute a shortest path from p1 to pn in GP , satisfying the angle constraint, if such a path exists,
or otherwise report that no solution exists.

We solve the first subproblem by applying the best known iterative min-# algorithms for the uncon-
strained version. Those algorithms compute the set of ε-simplifying segments in O(n2) time in R2 [8,11]
and O(n2 logn) time in R3 [7].
To compute a shortest p1-to-pn path inGP , we use dynamic programming as the main technique. This

enables us to formulate as a key subproblem a special off-line range search problem: Given n weighted
balls of arbitrary radii and n points, for each point p find the minimum-weight ball that does not contain
p. One can use standard circular range search techniques to solve this problem (e.g., in R2 using range
search queries would result in O(n1+ε) time algorithms, where ε > 0 is an arbitrarily small constant [3]).
We exploit the special properties of this range search problem to achieve better time bounds:

OLBES (Off-Line Ball Exclusion Search): Given a sequence E = (e1, e2, . . . , en) such that each ei ,
i = 1,2, . . . , n, is either a ball Bi of arbitrary radius or a point pi , for every point pk ∈ E , find the
smallest-index ball Bj ∈ {e1, e2, . . . , ek−1} such that pk /∈ Bj , or report no such ball exists.

As we will see later, for path simplification in two dimensions, the OLBES balls are arcs on S1. For
path simplification in three dimensions, the balls are disks on S2.

2.2. The reduction

Suppose we are given a polygonal path P = (p1,p2, . . . , pn) in R2 or R3 and an error value ε > 0,
and we want to find a minimum size path P ′ = (pi1 = p1,pi2, . . . , pim = pn) which satisfies the angle

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.6 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 6

6 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

constraint condition under the tolerance zone criterion. As mentioned earlier, we first construct an O(n2)

size directed acyclic graph GP = (VP ,EP) for P that contains all valid simplifying segments for the
unconstrained problem, by using the algorithms in [7,11]. Note that it is fairly straightforward to compute
an angle-constrained shortest path in GP in O(n3) time by applying the same idea used in computing
shortest paths with turn penalties [6]: construct the dual graph G′

P of GP in which the edges of GP

become nodes and two nodes of G′
P are connected by an edge in G′

P if they correspond to a possible
turn in GP . It is easy to see that the dual graph G′

P is also a directed acyclic graph and that it has O(n2)
vertices and O(n3) edges. The dual graph has no turn penalties and shortest paths in G′

P can be computed
by standard techniques.
To obtain a faster solution, we compute an angle-constrained shortest p1-to-pn path in GP by a dy-

namic programming algorithm. Let ACSPj (k) denote the angle-constrained shortest path from p1 to pk

in GP , with 1 < k " n, such that the last edge of ACSPj (k) is pjpk . Suppose at the end of iteration i
(i ! 1), ACSPj (k) is available for every j = 1,2, . . . , i and every k = 2,3, . . . , n such that j < k. For
example, in Fig. 2, there are two available shortest paths ACSPj (k) and ACSPj ′(k) with the last edges
pjpk and pj ′pk , respectively. At iteration i + 1, from the available ACSPj (i + 1)’s, j = 1,2, . . . , i, we
compute ACSPi+1(k) for every k = i + 2, i + 3, . . . , n. Dynamic programming enables us to compute
ACSPi+1(k), for k = i + 2, i + 3, . . . , n, using batched off-line computation.
At iteration i +1, we have (at most) i available shortest paths ACSPj (i +1), with the last edge pjpi+1,

where j < i + 1 and pjpi+1 is an incoming edge to pi+1 in GP . To decide if an outgoing edge pi+1pk

of pi+1, where i + 1 < k, can succeed pjpi+1 to extend an angle-constrained path in GP , we should

Fig. 2. An example of two available shortest paths ACSPj (k) and ACSPj ′ (k).

Fig. 3. The cone Cone(j, i + 1) when (a) δ(pjpi+1) < π
2 and (b) δ(pj pi+1) ! π

2 .

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.7 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 7

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 7

Fig. 4. Illustrating the reduction to the OLBES problem.

check if the turn angle between pjpi+1 and pi+1pk is no smaller (or no larger) than the specified value δ.
Based on our definition of the angle constraint condition, the set of directions at pi+1 which make an
angle δ defines a cone of directions at pi+1. For the min turn angle constraint, angle δ < π/2 is acute,
as depicted in Fig. 3(a). We define the cone Cone(j, i + 1) as the cone of directions at pi+1, and then
pi+1pk can succeed pjpi+1 if and only if ray(pi+1pk) is not contained in the cone Cone(j, i + 1). For the
max turn angle constraint, angle δ ! π/2 is obtuse, and we can derive the same constraint on an opposite
ray. Consider the set of directions that do not satisfy the angle constraint. These directions define a cone
Cone′(j, i + 1) with an acute angle at pi+1. Cone(j, i + 1) is the cone of directions that are the opposite
of the directions in Cone′(j, i + 1). Then, pi+1pk can succeed pjpi+1 if and only if ray(pi+1|pk) is
not contained in the cone Cone(j, i + 1). It should be clear now that, after this slight modification, an
algorithm for solving the min turn angle case also solves the max turn angle case of the problem. Thus,
we discuss only the min turn angle case in what follows.
Let Si+1 denote the unit sphere (S1 or S2) with center at pi+1 and let Dj denote the disk on Si+1

obtained by intersecting Cone(j, i + 1) with Si+1. We associate with Dj a weight wj equal to the length
of the shortest path ACSPj (i + 1) along the corresponding incoming edge pjpi+1 to pi+1. At iteration
i + 1, by intersecting each cone Cone(j, i + 1) (j < i + 1) with Si+1, we have (at most) i weighted disks
Dh of different radii. Let qk be the intersection point of Si+1 with ray(pi+1pk). At iteration i + 1, by
intersecting Si+1 with the ray corresponding to an outgoing edge pi+1pk of pi+1 (i + 1 < k), we have
(at most) n − i − 1 points qr on Si+1. For every qr , we then find the minimum weight disk Dh such that
qr /∈ Dh (see Fig. 4 for an example in R3).
The problem above can be reduced to a special case of the OLBES problem. We first sort the (at most)

i disks Dh in the order of nondecreasing weights and place the ordered disk sequence into an initially
empty set E . We then attach the (at most) n − i − 1 points qr at the end of E . Thus, we obtain a sequence
E = (e1, e2, . . . , en) of disks and points such that the first i objects of the sequence are disks ordered
by their weights and the remaining objects of the sequence are points. For a point qr ∈ E , finding the
minimum weight disk not containing that point corresponds to finding the smallest index disk Dh ∈ E
such that qr /∈ Dh.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.8 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 8

8 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

Lemma 1. For min or max turn angle constraints, an angle-constrained p1-to-pn shortest path in GP

can be computed in O(nT (n)) time, where T (n) is the time for solving a special OLBES problem of size
O(n).

Proof. This is done by using the above dynamic programming algorithm for computing the angle-
constrained p1-to-pn shortest path in GP . Since the algorithm has O(n) steps and in each step we have a
special OLBES problem, there are O(n) OLBES problems to solve, each of which is of size O(n). !

Thus, in order to obtain the claimed time bounds for the path simplification problem with angle con-
straints, it remains to show how to efficiently solve the corresponding instances of the OLBES problem.

3. The 1-dimensional OLBES problem

In Section 2, we have reduced the problem of simplifying a polygonal path with angle constraints to
the problem of solving n − 1 individual instances of the off-line ball exclusion search problem. In this
section, we discuss the solution for the 1-dimensional OLBES problem.

Theorem 1. Given a sequence E of n 1-dimensional disks and n query points on the real line, we can
determine the OLBES answers for all the query points in E in O(n logn) time.

Proof. We build a complete binary tree T such that each leaf of T is associated with a disk Dj in E
(the first leaf for D1, the second leaf for D2 and so on). Note that each 1-dimensional disk is an interval
on the real line. We go up the tree T in a bottom-up fashion, and at each internal node v we compute
and store the common intersection of the intervals associated with all leaf descendants of v. Since the
common intersection at v can be computed in constant time from the common intersections associated
with v’s left and right children, the overall computation in T takes O(n) time. Obviously, the common
intersection at the root of T may be empty.
We sort the points (real values) in E increasingly and then search for the desired disks for all the O(n)

query points qk at once, starting at the root of T . At the root u of T , we select the query points that do
not fall in the interval stored at the root. We partition these points into two sets, based on inclusion in
the interval stored at the left child ul of the root: the points that do not fall in this interval are placed in
the subset left(u), for ul (the root of the left subtree); a point that falls in the interval is placed in the
subset right(u), for the right child ur of the root (the root of the right subtree), if its index is larger than
the index of the rightmost leaf of the subtree rooted at ul , otherwise it is dropped (since it is inside all
disks in E preceding it). The index of the rightmost leaf of the subtree of T rooted at v, for all v ∈ T , can
be computed in O(n) time by a simple traversal of T . Obtaining right(u) (and then left(u)) reduces to
extracting a sorted subsequence from a sorted sequence. Thus, the computation at each level of T can be
performed in O(n) time and the 1-D OLBES problem can be solved in O(n logn) time. !

Lemma 2. For a sequence E of n 1-dimensional disks and n query points on the real line, such that (i) the
left and right endpoints of the disks form sorted sequences and (ii) the points appear after all the disks
in E and are sorted by their values, we can find the answers for all the points in E in O(n) time.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.9 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 9

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 9

Proof. We solve this special instance of the OLBES problem in a different way. To find the minimum
index disk that does not contain the point qk , for each of the points qk ∈ E , we use the following trans-
formation to a value-index coordinate system. Each endpoint of an interval Ij is mapped to a point with
coordinates (xj ,wj) where xj is the value of the endpoint on the real axis and wj is the index of the
interval in E . Each point qk ∈ E is mapped to a point (xk,0) in the value-index plane. Thus, we obtain
three sets of points in value-index coordinates, each of which is sorted by the value coordinate: the set Lj

for the left endpoints, the set Rj for the right endpoints, and the set Qj corresponding to the points in E .
For a point qk ∈ Qj let min_right(qk) denote the minimum value of the indices of the endpoints in

Rj which are on or to the left of the vertical line at qk . We set min_right(qk) to zero if there is no right
endpoint to the left of qk . Then, min_right(qk), for each qk ∈ Qj , can be computed in O(n) time by first
merging the two sequences corresponding to the value coordinates of the points in Rj and Qj and then
performing a left-to-right scan on the resulting sequence. Similarly, let min_left(qk) denote the minimum
value of the indices of the endpoints in Lj which are on or to the right side of the vertical line at qk .
We set min_left(qk) to zero if there is no left endpoint to the right of qk . Then, min_left(qk), for each
qk ∈ Qj , can be computed in O(n) time by first merging the two sequences corresponding to the value
coordinates of the points in Lj andQj and then performing a right-to-left scan on the resulting sequence.
A minimum index disk that does not contain qk corresponds to min{min_left(qk),min_right(qk)}. If the
value is zero then there is no disk. !

We next outline some properties of the reduction to the OLBES problem for the special case when we
have the same angle constraint for all incoming edges at pi+1, which gives equal-radius disks on Si+1.

Lemma 3. Consider the iteration i + 1 of the dynamic programming algorithm, for any i such that
1 " i < n − 1, and assume that the incoming edges and the outgoing edges of GP at pi+1 form two
sorted sets, respectively. Assume also that all incoming edges at pi+1 have the same angle constraint
with respect to the outgoing edges. Then:

(1) the points corresponding to the outgoing edges appear in sorted order on the boundary of Si+1, and
(2) the endpoints of the disks on Si+1 form two sorted sequences.

Proof. Since the outgoing edges at pi+1 are sorted, their intersections with Si+1 appear in the same
sorted order. The 1-dimensional disks on Si+1 have centers at the intersection points of Si+1 with the
rays through pi+1 corresponding to incoming edges. Since these edges are sorted around pi+1, the center
points are also sorted on the boundary of Si+1. Then, the left and right endpoints of the disks, respectively,
form two sorted sequences on Si+1. !

From Lemma 3, it follows that by requiring the same angle constraint for all incoming edges at pi+1,
the sorted order of the left and right endpoints of the disks corresponds to the sorted order of the centers
of the disks. Since GP can be viewed as a planar geometric graph, the sorted order of the incoming
and outgoing edges for all vertices in GP can be obtained in O(n2) time by standard line arrangement
traversal (of the dual line arrangement of the points pi , i = 1,2, . . . , n). Once the incoming edges at
pi+1 are sorted, the sorted order of the centers of the disks (and thus the sorted order of their left and
right endpoints, respectively) can be obtained in linear time. For the rest of this section, for the OLBES

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.10 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 10

10 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

problem at pi+1, we assume that the incoming and outgoing edges are available in sorted order around
pi+1.
In what follows, we describe our solution for the special instance of the 1-dimensional OLBES prob-

lem. Suppose that at iteration i + 1, we have i cones Cone(j, i + 1) and n − i − 1 points pk , where each
cone Cone(j, i + 1) is defined by two rays emanating from pi+1 and it is weighted by the length of the
corresponding shortest path ACSPj (i + 1). For each cone Cone(j, i + 1), we obtain a circular arc Aj by
intersecting Cone(j, i + 1) with the circle Ci+1 with the center point pi+1 (the planar correspondent of
Si+1). The circular arc Aj is associated with the weight ACSPj (i + 1). For each point pk , we obtain a
query point qk by intersecting the ray emanating from pi and going through pk with the circle Ci+1. As
discussed above, these circular arcs and points form the sequence E . We sort the circular arcs by weight.
Since there are at most i weight values, each of which is an integer no larger than i, the circular arcs
can be sorted by weight in O(i) time. The circular arcs, in sorted order of weight, followed by the query
points (sorted by the angle at pi+1) form the sequence E .

Lemma 4. At iteration i, 1" i < n, we can find an angle-constrained shortest path ACSPi(k) for every
k > i in O(n) time.

Proof. We build a complete binary tree Ta such that each leaf of Ta is associated with a circular arc
Aj in E , as in the proof of Theorem 1. Since by the definition of the angle constraint no circular arc is
larger than an open semicircle, the common intersection of any two arcs is either empty or consists of
one circular arc. Then, the computation in Ta requires O(n) time. We also build a balanced binary search
tree Tq on the set of points in E , based on their angle value around pi . In the query procedure, we use
an arc in Ta as a query input. We start with the arc stored at the root of Ta and use the endpoints of this
arc to form two search paths in Tq that isolate the points qk ∈ Tq that are on the arc. These points are
eliminated from Tq . Since each search path has length O(logn), this computation can be performed in
O(logn) time. We next partition the points in Tq into two subtrees, based on inclusion in the interval Al

stored at the left child ul of the root. The points that do not fall in the interval Al are placed in the tree
Tul
, for ul . The other points are placed in the tree Tur , for the right child ur of the root. Tul

and Tur are
obtained from Tq in O(logn) time. Note that the points in one of these two trees may be initially available
in two subtrees (see Fig. 5). To obtain a single tree we treat this case as a standard delete operation at the
root of a balanced binary search tree.
Let k be the number of points in Tul

and let n−k be the number of points in Tur . We proceed recursively
by querying the points in Tul

with the arc stored at the left child of ul and querying the points in Tur with
the arc stored at the left child of ur . We now analyze the running time of this procedure. We perform
O(n) queries, corresponding to the arcs in Ta . A query can be performed in O(log(|Tq |)) time, where |Tq |
denotes the number of points in Tq . After the first query, the points are placed in Tul

and Tur , of size k
and n − k, respectively. Then, the time to query Tul

and Tur is log k + log(n − k) which is maximized
when k = n

2 . This gives the recurrence T (n) = 2T (n
2) +O(logn) whose solution is T (n) =O(n). !

Theorem 2. The min-# problem with angle constraints in R2 can be solved in O(n2) time using O(n2)
storage.

Proof. There are O(n) iterations in the dynamic programming algorithm and in each iteration we spend
O(n) time to compute ACSPj (i + 1)’s, as specified in Lemma 4, resulting in a total of O(n2) time. !

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.11 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 11

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 11

Fig. 5. (a) Querying Tq with an arc Aj ∈ Ta and (b) the resulting trees Tul and Tur .

Theorem 3. The min-ε problem with angle constraints in R2 can be solved in O(n2 logn) time using
O(n2) storage.

Proof. The solution is similar to that for the unconstrained version. The set of O(n2) possible simplifica-
tion errors can be computed in O(n2 logn) time [11]. By using binary search on the set of O(n2) possible
simplification errors, at each step of the search running the (angle-constrained version of the) min-# al-
gorithm, the min-ε problem with angle constraint in R2 can be solved in O(n2 logn) time, matching the
best bound for the unconstrained version. !

4. The 2-dimensional OLBES problem

Recall that the 2-dimensional OLBES problem that results from our modeling of the min-# problem
with angle constraints is a special case of the general 2-dimensional OLBES problem. In this special
instance the points in E appear after all the disks in E . Specifically, if E has k disks and n− k points, then
the first k elements of E are disks and the remaining n − k elements of E are points. Also, recall that the
disks of E are spherical disks on S2. However, since each disk is less than a semi-sphere we can treat the
problem as one on disks in R2 (details on this treatment are provided in [7]).
Clearly, the min-# problem with angle constraints in R3 can be solved in O(n2 logn) time if we can

solve the 2-dimensional OLBES problem in O(n logn) time. In what follows we first prove how to solve
this special case and then show how to modify the solution to handle the general case.
We build a complete binary tree T such that each leaf of T is associated with a disk Dj in E (the

first leaf for D1, the second leaf for D2 and so on). We go up the tree T in a bottom-up fashion, and at
each internal node v we compute and store the common intersection of the disks associated with all leaf
descendants of the subtree of T rooted at v. Using the algorithm in [7], we can compute I (v) for each
node v in T in a total of O(n logn) time. Essentially, the algorithm in [7] uses merge-like operations to
compute the common intersection at v from the common intersections stored at the two children of v.
Clearly, since the intersection of disks is a convex region, the upper and lower chains can be maintained
in sorted order and the merging at each level can be performed in linear time, resulting in O(n logn) time

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.12 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 12

12 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

Fig. 6. Illustrating T and I (v
j
i) for the 2-D OLBES problem.

over the O(logn) levels. If I (v
j
i) denotes a representation of the common intersection stored at internal

node v
j
i , e.g., I (vi

1) represents the common intersection of {D1,D2, . . . ,Di} and I (vn
i+1) represents the

common intersection of {Di+1,Di+2, . . . ,Dn}, then the common intersection of all the disks is denoted
by I (vn

1) and it is stored at the root of the tree T (see Fig. 6). Obviously, I (vn
1) may be empty.

We sort the points in E by x-coordinate and then search for the desired disks for all the O(n) query
points qr at once, starting at the root of T . Observe that the searching for the smallest-index disk Dh

that does not contain a query point qr traverses a root-to-leaf path in T . At the root of T , we select the
query points that do not fall inside the common intersection stored at the root. We partition those points
into two sets, based on inclusion in the common intersection at the left child of the root. With the points
that are not in the common intersection at the left child of root we proceed on the left subtree of the
root; with the remaining points we proceed on the right subtree. Since the computation at each level of T
can be done altogether in O(n) time, by merge-like operations, this special 2-D OLBES problem can be
solved in O(n logn) time. To solve the general 2-D OLBES problem we observe that we only need the
following simple change. For each internal node v ∈ T , store the index in E of the rightmost leaf of the
subtree rooted at v, which can be done in O(n) time by a bottom-up traversal of T . If a point in the set
for the right subtree has its index smaller than the index in E of the rightmost leaf in the left subtree, then
we drop this point (since it is inside all disks preceding it).

Theorem 4. Given a sequence E of n disks and n query points, we can determine the OLBES answers
for all query points in E in O(n logn) time.

Combining the dynamic programming approach and the reduction to 2-D OLBES problem in Section 2
with the solution for the 2-D OLBES problem, we obtain:

Theorem 5. The min-# problem with angle constraints in R3 can be solved in O(n2 logn) time using
O(n2) storage.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.13 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 13

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 13

Proof. There are O(n) iterations in the dynamic programming algorithm and in each iteration we spend
O(n logn) time to compute ACSPj (i + 1)’s, as it follows from Theorem 4, for a total of O(n2 logn)
time. !

Theorem 6. The min-ε problem with angle constraints in R3 can be solved in O(n2 log3 n) time using
O(n2) storage.

Proof. The solution is again similar to that for the unconstrained version. We apply the parametric search
approach used in [7] for the unconstrained version. The only difference is that, in the decision step of the
parametric search, the sequential algorithm for the unconstrained min-# problem is replaced with that for
the angle-constrained version. Since the two min-# algorithms have the same time bounds we obtain the
claimed time. !

5. Remarks

We can modify our solutions for the OLBES problem to solve the on-line (query) version: given a
sequence E = (e1, e2, . . . , en) of balls in R1 or R2, preprocess E such that for a query point q, one can
efficiently find the smallest index ball in E that does not contain q.
We have the following results.

Theorem 7. A sequence E of n 1-dimensional balls can be preprocessed inO(n) time into a data structure
of size O(n), so that for a query point q, one can find in O(logn) time the smallest index ball in E that
does not contain q.

Proof. Follows from the proof of Theorem 1. !

Theorem 8. A sequence E of n 2-dimensional balls can be preprocessed in O(n logn) time into a data
structure of size O(n logn), such that for a query point q, one can find in O(logn) time the smallest index
ball in E that does not contain q.

Proof. Consider the data structure designed for the 2-D OLBES problem. Traversing a root-to-leaf path
in the tree T to identify the leftmost disk that does not contain the point q seemingly would take O(log2 n)
time: there are O(logn) levels and at each visited node v on the path we spend O(logn) time to decide if
q lies or not in the disk intersection I (v) stored at v.
To reduce the query time to O(logn), we use the fractional cascading technique [10] on T . Given

a directed graph G = (V ,E) such that each node v contains a sorted list L(v), the fractional cascading
problem is to construct an O(n) space data structure, where n = |V |+|E|+∑

v∈V |L(v)|, such that given
a path {v1, v2, . . . , vm} inG and an arbitrary element x, one can locate x efficiently in each L(vi). In [10],
Chazelle and Guibas give an O(n) time algorithm to construct a fractional cascading data structure, from
a graph G as above, with a search time of O(logn +m logd(G)), where d(G) is the maximum degree of
any node in G.
In our case, we let T correspond to the graph G. We maintain each I (v) like in [7]. An internal node

v can be described as a vertical visibility map: a collection of intervals on the x-axis, each enhanced with
pointers to the two circles that contribute the arcs bounding I (v) above and below.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.14 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 14

14 D.Z. Chen et al. / Computational Geometry ••• (••••) •••–•••

Consider first the location structure L(v) for the map at node v. We build a simple balanced tree on the
endpoints of the (x-axis) intervals at v; at a leaf of this tree, we know the interval and we can compare
the point with the two arcs associated with the interval to decide if it is in the intersection I (v).
Fractional cascading is performed only on comparisons with x-coordinates, which allows us to easily

pass subsets of x-coordinates up the tree T and insert them in the structures L(v). This is the easiest form
of fractional cascading (there is a single comparison in a single linearly ordered space), so that the first
lookup takes O(logn) time to get the interval, but each lookup afterwards takes O(1) time apiece, for a
total of another O(logn) time.
We have

∑
v∈T |L(v)| = O(n logn), m = O(logn) and d(T) = O(1). Thus, we obtain the claimed

space and preprocessing and query times. !

6. Conclusions

We have presented efficient algorithms for solving the polygonal path simplification problem with
angle constraints in R2 and R3, whose time bounds match those of the best known path simplification
algorithms without angle constraints [7,8,11]. Our algorithms improve by nearly a linear factor in the
time bound over the possible solutions based on standard graph-theoretic techniques.
To solve the problem, we have formulated an interesting (more general) off-line search problem re-

ferred to as the off-line ball exclusion search (OLBES), and have developed efficient data structures that
solve the OLBES problem in O(n logn) time. Our solutions can be easily extended to other types of
objects, and can be applied to a class of geometric paths and other related problems.

Acknowledgement

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] P.K. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, S. Whitesides, Curvature constrained shortest paths in a convex
polygon, in: Proc. 14th ACM Symp. on Comp. Geom., 1998, pp. 392–401.

[2] P.K. Agarwal, S. Har-Peled, N. Mustafa, Y. Wang, Near-linear time approximation algorithms for curve simplification, in:
Proc. of 10th Annual European Sympos. Algorithms, 2002, pp. 29–41.

[3] P.K. Agarwal, J. Matoušek, Dynamic half-space range reporting and its applications, Algorithmica 13 (1995) 325–345.
[4] P.K. Agarwal, K.R. Varadarajan, Efficient algorithms for approximating polygonal chains, Discrete Comput. Geom. 23

(2000) 273–291.
[5] H. Alt, J. Blomer, M. Godau, H. Wagener, Approximation of convex polygons, in: Proc. 10th Coll. on Autom., Lang. and

Prog. (ICALP), 1990, pp. 703–716.
[6] J. Anez, T. De La Barra, B. Perez, Dual graph representation of transport networks, Transportation Res. B 30 (3) (1996)

209–216.
[7] G. Barequet, D.Z. Chen, O. Daescu, M.T. Goodrich, J. Snoeyink, Efficiently approximating polygonal paths in three and

higher dimensions, Algorithmica 33 (2) (2002) 150–167.
[8] W.S. Chan, F. Chin, Approximation of polygonal curves with minimum number of line segments or minimum error,

Internat. J. Comput. Geom. Appl. 6 (1) (1996) 59–77.

ARTICLE IN PRESS
S0925-7721(04)00139-7/FLA AID:777 Vol.•••(•••) [DTD5] P.15 (1-15)
COMGEO:m2 v 1.32 Prn:21/01/2005; 13:33 cgt777 by:Gi p. 15

D.Z. Chen et al. / Computational Geometry ••• (••••) •••–••• 15

[9] B. Chazelle, Lower bounds for off-line range searching, Discrete Comput. Geom. 17 (1997) 53–65.
[10] B. Chazelle, L.J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (3) (1986) 133–162.
[11] D.Z. Chen, O. Daescu, Space-efficient algorithms for approximating polygonal curves in two dimensional space, Internat.

J. Comput. Geom. Appl. 13 (2) (2003) 95–112.
[12] L.P. Cordella, G. Dettori, An O(n) algorithm for polygonal approximation, Pattern Recogn. Lett. 3 (1985) 93–97.
[13] M. de Berg, M. van Kreveld, S. Schirra, Topologically correct subdivision simplification using the bandwidth criterion,

Cartography and GIS 25 (1998) 243–257.
[14] D.H. Douglas, T.K. Peucker, Algorithms for the reduction of the number of points required to represent a digitized line or

its caricature, Canadian Cartographer 10 (2) (1973) 112–122.
[15] R. Estkowski, J.S.B. Mitchell, Simplifying a polygonal subdivision while keeping it simple, in: Proc. 17th ACM Sympo-

sium on Computational Geometry, 2001, pp. 40–49.
[16] D. Eu, G.T. Toussaint, On approximation polygonal curves in two and three dimensions, CVGIP: Graphical Models and

Image Processing 56 (3) (1994) 231–246.
[17] L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, J.S. Snoeyink, Approximating polygons and subdivisions with minimum

link paths, Internat. J. Comput. Geom. Appl. 3 (4) (1993) 383–415.
[18] S.L. Hakimi, E.F. Schmeichel, Fitting polygonal functions to a set of points in the plane, CVGIP: Graphical Models and

Image Processing 53 (2) (1991) 132–136.
[19] J. Hershberger, J. Snoeyink, Cartographic line simplification and polygon CSG formulae in O(n log∗ n) time, in: Proc. 5th

International Workshop on Algorithms and Data Structures, 1997, pp. 93–103.
[20] H. Imai, M. Iri, Computational-geometric methods for polygonal approximations of a curve, Computer Vision, Graphics

and Image Processing 36 (1986) 31–41.
[21] H. Imai, M. Iri, An optimal algorithm for approximating a piecewise linear function, J. Inform. Process. 9 (3) (1986)

159–162.
[22] H. Imai, M. Iri, Polygonal approximations of a curve-formulations and algorithms, in: Computational Morphology, North-

Holland, Amsterdam, 1988, pp. 71–86.
[23] A. Melkman, J. O’Rourke, On polygonal chain approximation, in: Computational Morphology, North-Holland, Amster-

dam, 1988, pp. 87–95.
[24] B.K. Natarajan, On comparing and compressing piecewise linear curves, Technical Report, Hewlett Packard, 1991.
[25] B.K. Natarajan, J. Ruppert, On sparse approximations of curves and functions, in: Proc. 4th Canadian Conference on

Computational Geometry, 1992, pp. 250–256.
[26] G.T. Toussaint, On the complexity of approximating polygonal curves in the plane, in: Proc. IASTED International Symp.

on Robotics and Automation, Lugano, Switzerland, 1985.

