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Abstract
In planning a study, the choice of sample size may depend on a variance value based on
speculation or obtained from an earlier study. Scientists may wish to use an internal pilot design to
protect themselves against an incorrect choice of variance. Such a design involves collecting a
portion of the originally planned sample and using it to produce a new variance estimate. This
leads to a new power analysis and increasing or decreasing sample size. For any general linear
univariate model, with fixed predictors and Gaussian errors, we prove that the uncorrected fixed
sample F-statistic is the likelihood ratio test statistic. However, the statistic does not follow an F
distribution. Ignoring the discrepancy may inflate test size. We derive and evaluate properties of
the components of the likelihood ratio test statistic in order to characterize and quantify the bias.
Most notably, the fixed sample size variance estimate becomes biased downward. The bias may
inflate test size for any hypothesis test, even if the parameter being tested was not involved in the
sample size re-estimation. Furthermore, using fixed sample size methods may create biased
confidence intervals for secondary parameters and the variance estimate.
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1. Introduction
1.1 Motivation and Literature Review

In designing a study, researchers want to collect a sample large enough to detect a specified
effect for a given test size (αt) and target power (Pt). Scientists often rely on an educated
guess or variance estimate of uncertain validity to conduct a power analysis and choose a
sample size. Wittes and Brittain (1990) introduced the concept of an internal pilot study for
the two sample t-test, in which some fraction of the planned observations are used to re-
estimate error variance but not the effect of interest. Using the new variance estimate in a
fixed sample power calculation then modifies the final sample size. Wittes and Brittain
suggested ignoring the randomness of the final sample size for testing.

Coffey and Muller (1999) extended the idea to any General Linear Univariate Model
(GLUM) with fixed predictors and Gaussian errors. They derived an exact algorithm for
computing test size and power of the primary hypothesis. They also illustrated the strong
dependence of test size inflation on interactions among a number of study features.
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Many important questions remain unanswered. Carefully evaluating the analytic properties
of the approach will greatly help in determining the impact of using an internal pilot design.
In particular, 1) detailed knowledge of analytic properties of the random variables in the test
statistic would allow characterizing the inflation. 2) Additional results are needed for the
general GLUM setting to allow testing secondary hypotheses other than the one upon which
sample size re-estimation was based. 3) The ability to provide a defensible confidence
interval for the variance observed in a study would aid researchers planning similar studies
in the future.

1.2 Notation
Indicate the cumulative distribution function (CDF) of a random variable, U, with

parameters α1 to αk, as FU(u; α1…αk), with pth quantile , and density fU(u;
α1…αk). Let χ2(ν, ω) indicate a noncentral χ2, χ2(ν) a central χ2, and F(ν1, ν2, ω) a
noncentral F variable (Johnson, Kotz, and Balakrishnan, 1995, Chapters 29 and 30). Also,

let  indicate a doubly truncated central χ2 with lower truncation point l and upper
truncation point u (Coffey and Muller, 2000).

We consider the same model as in Coffey and Muller (1999), which includes the two sample
t-test as a special case. For a specified design, write a GLUM with fixed predictors and
Gaussian errors as

(1)

with partitioning corresponding to the internal pilot and second samples. Table 1 contains
four categories of notation: 1) design parameters, which are properties required for any
sample size calculation, 2) sample size allocation rules, which determine the size of the
internal pilot sample and limit the final sample size, 3) unknown fixed parameters, and 4)
random variables to be observed. Let Es(Xj) represent the matrix created by deleting any
duplicate rows from Xj (Helms, 1988). We require that Es(X1) = Es(X2), with the possible
exception that a “block” effect may be added, which indicates whether the observation was
collected in the internal pilot or second sample. We also impose the restriction that all
possible observed samples differ by a multiple of a fixed number of observations, m. It
follows that n1, N2, and N+ will be multiples of m. For example, consider increasing sample
size by always taking two control subjects for each experimental one (m = 3).

In testing H0: θ = θ0, with θ = Cβ, we assume C to be an a × q matrix with a = rank(C).
Without loss of generality assume θ0 = 0 (Coffey and Muller, 1999). The unadjusted testing
method computes F(n+), the fixed sample size F statistic and rejects H0 if

.

1.3 Known Results
Wittes and Brittain (1990) considered using an internal pilot design with no adjustment to

testing. A fixed sample power calculation determines the random N+ as a function of .
They used simulations to evaluate test size, power, and expected sample size for a t-test
involving roughly 100 total observations.
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Wittes, Schabenberger, Zucker, Brittain, and Proschan (1999) derived exact test size in this
setting. They also showed that σ̂2(N+) is biased downward, but did not provide an expression
for the bias.

Coffey and Muller (1999) provided a number of exact results for the more general GLUM
setting. For a specified value of n+, define ωt(n+) to be the solution to Pt = 1 − FF[fF; a, ν+,
ωt(n+)]. Hence

(2)

equals the largest value of  which leads to a final sample size of n+ or smaller. Also define

(3)

which equals the largest value of SSE1/σ2 leading to a sample size of n+ or smaller. Hence
the probability of a particular random final sample size is

(4)

Note that  and . In theory, n+, max may
be infinite. However, budgetary and time constraints often restrict n+, max to some small
multiple of n0. Coffey and Muller (1999) used a double conditioning argument to describe
an algorithm for computing the power of the unadjusted test, for any θ:

(5)

with

(6)

In practice, the results of Coffey and Muller (1999) and the new results in this paper do not
require determining N+ with a fixed sample calculation. The rule for choosing sample size

need only determine {σ2(n+)} in a way that maps regions of  into values of N+. Changing
the rule merely changes the corresponding truncation regions.

2. New Analytic Results
2.1 Error Bound for Power and Test Size Algorithm

Even without a finite upper limit on N+ (allowing n+,max = ∞), practical computations
require truncating the distribution of N+ at a value beyond which the probability of a sample
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size more extreme is negligible. Indicate the error due to this truncation by PE(γ, θ). Let NL

be the lower truncation point, i. e., the largest value of N+ such that . Let
NU be the upper truncation point, i. e., the smallest value of N+ such that

. Truncating at NL and NU leads to an error of

(7)

with

(8)

Replacing FQ(·) with 1 gives an upper bound on the error in the last equation:

(9)

If only one end requires truncation the bound reduces to ∊.

2.2 The Likelihood and Related Properties
Using an internal pilot study causes N+ to be random. In a Bayesian framework, the stopping
rule does not affect inference and the likelihood principle is not affected by this randomness
(Jennison and Turnbull, 2000, p.338). Thus it seems intuitive that the maximum likelihood
estimates and likelihood ratio test statistic for internal pilot and fixed sample designs
coincide. Nevertheless, our interest in a wide range of scenarios compelled us to provide a
formal proof.

Use conditioning arguments to write the likelihood for the GLUM as

(10)

The marginal likelihood of the first sample, ℒ(β, σ2; y1) equals that of a random sample of
n1 observations from a Gaussian population. The likelihood of the second sample
conditional upon N+, ℒ (β, σ2; y2|N+, y1), equals that of a random sample of n2 observations
from a Gaussian population. Hence the total likelihood differs from that for a fixed sample
with n+ = n1 + n2 observations only through ℒ(β, σ2; N+ | y1). Observe that N+ is discrete
and write

(11)

in which I(·) represents an indicator function with a value of 1 if the expression is true. In
turn, write the joint likelihood under an internal pilot design as
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(12)

Since the value of the indicator function does not depend on any unknown parameter, we
may ignore it in estimation. Therefore the sufficient statistics and maximum likelihood
estimates for σ2, β, and θ, coincide with those from a fixed sample size analysis. Let σ̃2(n+)
represent the maximum likelihood estimate of σ2. In a fixed sample design we often prefer
the unbiased estimate,

(13)

However, both σ̂2(n+) and σ̂2(N+) have bias, as detailed in §2.5.

Coincidence of the maximum likelihood estimates implies the coincidence of the likelihood
test statistics. However, F(n+) will not follow an F distribution under an internal pilot
design. In order to characterize the distribution of F(n+), we examine each component
separately in the sections which follow.

2.3 The Distribution of SSH(n+)
Conditional on N+ = n+, the numerator of the likelihood ratio test statistic has the same
distribution as for a fixed sample design. To see this, observe that β̂(n+) equals a linear
combination of β̂1 and β̂2(n+), the independent estimates from the internal pilot and

additional samples. The randomness of N+ depends only on  which is independent of β̂1,
β̂2(n+), and, in turn, β̂(n+). Hence the conditional distributions of β̂(n+), θ̂(n+), and SSH(n+)
coincide with the corresponding distributions for a fixed sample size design with n+
observations. Incidentally, if Es(X+) has full rank then β̂(n+) will be unbiased.

Unconditionally, the numerator of the likelihood ratio test statistic for an internal pilot
design has the same distribution as for a fixed sample design under the null, but not under
the alternative. To see this, observe that if θ ≠ 0 then the CDF of SSH(N+)/σ2 equals a
weighted sum of the conditional CDF's, with the weights corresponding to the probability of
observing a specific n+:

(14)

Under the null, ω(n+, γ, 0) = 0, the conditional distribution does not depend on n+, and
SSH(N+)/σ2 ～ χ2(a). Hence any effect on test size due to using an internal pilot does not
depend on the numerator of the test statistic.

2.4 The Distribution of SSE(n+)
With a fixed n+, SSE(n+)/σ2 ～ χ2(ν+). However, with an internal pilot, the dependence of n+

on  complicates the distribution. Following Coffey and Muller (1999), write SSE(n+) as
the sum of two independent quadratic forms:

(15)
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with SSE1(n+) the error sum of squares from the internal pilot sample. Coffey and Muller
(1999) proved that SSE*(n+)/σ2 ～ χ2(n2). However, conditional upon observing a specific
n+, SSE1 is restricted to the possible range of values which would have led to that final
sample size. Therefore

(16)

The characteristic function of SSE(n+)/σ2 has a simple form. Define

(17)

and assume t ∈ [0, 1/2). A result in Coffey and Muller (2000) allows writing the
characteristic function of SSE1(n+)/σ2 as

(18)

In turn, the independence of SSE1(n+) and SSE*(n+) implies

(19)

Thus the characteristic function of SSE(n+)/σ2 under an internal pilot design equals the
product of the characteristic function under a fixed design and a factor which accounts for
truncation. Ignoring the randomness of N+ and approximating the distribution with the fixed
sample result ignores the factor.

The CDF of SSE(n+)/σ2 may be computed by inverting the characteristic function.
Alternatively, a method similar to the one used by Coffey and Muller (1999) for the CDF of
the test statistic may be used. Condition on SSE1(n+)/σ2 and integrate numerically over its
range of values:

(20)

Compute the unconditional CDF via the law of total probability:

(21)

Truncating the sum will lead to the same size error as in §2.1 for computing the CDF of the
test statistic (error < 2∊, with ∊ chosen as the truncation value).
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2.5 The Bias of σ̂2(n+)
Wittes, et al. (1999) showed that ε[σ̂2(N+)] ≤ σ2 (for the t-test), but did not provide an
expression for the bias. The importance of the bias arises from the fact that test size inflation
varies directly with it. Using the standard result for the moment generating function of a
linear transformation of a random variable,

(22)

Taking the first derivative and setting t = 0 gives the conditional bias:

(23)

Applying Lemma 1 from Coffey and Muller (2000),

(24)

Recall that χ2(ν1 + 2) has a single mode at ν1 (for ν1 ≥ 2, as always true here). Hence σ̂2(n+)

is (conditionally) biased in a direction depending on whether  is greater than or less than
σ2. The law of total probability allows obtaining the unconditional expectation:

(25)

Factoring like terms and finding common denominators leads to

(26)

Hence ε[σ̂2(N+)] ≤ σ2. Furthermore, from (26) it is clear that large values of either n1 or n+
insure negligible bias. However, the dependence of N+ on many of the parameters in Table 1
complicate any discussion of large sample properties. In general, any combination of
parameters which leads to large values of n1 or N+ will reduce bias in σ̂2(N+). Finally,
observing that fχ2(t; ν1 + 2) has a single mode at t = ν1, allows bounding the unconditional
bias:

(27)

The origin of the bias may be characterized further. Obviously . Define

 and note that
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(28)

Therefore σ̂2(N+) equals a linear function of two unbiased estimators:

(29)

This form has three important implications. First, the randomness of the weights creates
bias. Second, as n2/n1 increases, the second term in (29) dominates. Third, although neither
of the two unbiased estimates uses all of the data, any combination of the estimates using
fixed, positive weights that sum to one would create an unbiased estimate of σ2 that uses all
of the data.

2.6 Characteristic Function of a 1-1 Function of the Test Statistic
Let FF(n+) (f; γ;, θ) represent the conditional CDF of the internal pilot test statistic computed
at an arbitrary point f. For example, letting f = fF allows computing the conditional power
under an internal pilot design using the unadjusted approach for testing. The results in §2.3
and §2.4 imply that F(n+) differs from F(f; a, ν+) only through the denominator. With c(n+,
f) = ν+/fa, express FF(n+) (f; γ;, θ) as

(30)

Hence we may compute the CDF of F(n+) at the point f via the CDF of S(n+, f) evaluated at
zero. Davies' (1980) algorithm inverts the characteristic function to compute the CDF of a
weighted sum of χ2's. Since S(n+, f) contains a doubly-truncated χ2, Coffey and Muller
(1999) computed the CDF by first conditioning on the doubly-truncated random variable,
then applying Davies' algorithm to compute the CDF of the remaining sum of two χ2's. The
approach leads to a double numerical integral. Alternatively, we could directly invert the
characteristic function of S(n+, f), which requires only one integration. Using standard
results about characteristic functions gives:

(31)

The term in braces equals the characteristic function for the weighted sum which would
arise in the fixed sample case, with n+ observations. In turn, the factor D(−it)/D(0) accounts

for the truncation of .
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3. Numerical Examples
We illustrate the relationship between the bias in estimating the variance and inflation of test
size with two examples. Although our results apply far more generally, for simplicity of
exposition the examples correspond to the two sample setting. In each case, we assume αt =
0.05, Pt = 0.90, and no finite bound on the size of the final sample (n+,max = ∞). Example
A, described by Wittes and Brittain (1990), centers on detecting a mean difference of θ* = 1

with , n0 = 86, n1 = 44, and n+,min = n0 = 86. Example B, described by Coffey and

Muller (1999), centers on detecting a mean difference of θ* = 1.6 with , n0 = 20, n1 =
10 and n+,min = n1 = 10. This allows the sample size to be reduced if the variance was
originally overstated (γ < 1).

For γ ∈ {0.5, 0.75, 1, 1.5, 2}, Table 2 displays ε [σ̂2 (N+)/σ2] and the true test size for the
examples. Bias was computed in SAS IML® with equation 24, while test size was
calculated using the algorithm in Coffey and Muller (1999). Note how the amount of test
size inflation closely tracks the amount of bias in σ̂2 (N+)/σ2. Wittes and Brittain (1990)
showed that, in Example A, an internal pilot can provide much better power than a fixed
design while providing a negligible increase in test size. Table 2 illustrates that we have
little bias in estimating σ̂2 (N+)/σ2 as well. However, Example B can lead to test size as large
as 0.065 and ε [σ̂2 (N+)/σ2] as small as 0.89. At least for the highly constrained design in
Example A, with moderate to large sample sizes, an internal pilot design causes little worry
about test size inflation or bias in estimating σ2. However, the test size and bias are of much
greater concern in small samples.

Coffey and Muller (1999) showed that the degree of test size inflation was highly dependent
upon the choice of design parameters and sample size allocation rules. The examples
illustrate the correlation in the bias of σ̂2(N+)/σ2 with test size inflation. This implies that
there are combinations of design parameters and sample size allocation rules which cause
nonignorable bias in σ̂2(N+)/σ2. Hence the possibility of bias should at least be examined
before using the variance estimate from an internal pilot study to make inference or plan a
future study.

4. Implications of the New Results
4.1 Testing

Any inflation of test size arises solely from a change in the distribution of the variance
estimate, rather than a change in the distribution of the parameter estimate itself. In the
GLUM setting, a test of any secondary parameter involves the variance estimate. For
example, consider testing for a “block” effect in order to insure that there were no
differences between the internal pilot and second samples with regards to the outcome. The
biased estimate of σ2 may inflate test size. Hence researchers must be wary of inflation even
for hypothesis tests about secondary parameters that were not involved in the sample size re-
estimation.

4.2 Confidence Regions for θ
The same complication that biases test size also biases confidence interval coverage.
Inverting a test statistic and naively computing a 100(1 − p)% confidence region for θ with
standard fixed sample size linear models theory gives coverage less than or equal to the
desired level. As with test size, the true coverage depends upon the unknown parameter γ.
Furthermore such bias occurs with any secondary parameter.
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4.3 Confidence Intervals for σ2

An appropriate confidence interval for the variance observed in a particular study can be
invaluable in planning future studies. Furthermore, in the fixed sample size case, computing
confidence intervals for σ2 allows computing confidence intervals for power and
noncentrality (Taylor and Muller, 1996; Muller and Pasour, 1997). However, since SSE(n+)/
σ2 does not follow a χ2 distribution under an internal pilot design, forming a confidence
interval for σ2 using fixed sample size methods may not provide the desired coverage. As
with confidence regions for θ, the true coverage depends on γ. However, confidence
intervals for σ2 may have more or less coverage than desired.

5. Conclusions
The following conclusions apply to any univariate linear model with fixed predictors and
Gaussian errors.

1. Coffey and Muller's (1999) algorithm for power involves the distribution of N+.
With n+,max = ∞, the calculations require truncation of the distribution. The
truncation region can be defined to insure a specified upper bound on error.

2. The likelihood ratio test statistic under an internal pilot design coincides with the
statistic for a fixed sample design. However, the statistic does not follow an F-
distribution because the variance estimate is not a scaled χ2.

3. The distributions of θ̂(n+) and SSH(n+)/σ2 coincide with those from a fixed sample
analysis with n+ observations.

4. SSE(n+)/σ2 equals the sum of a χ2(n2) and a doubly-truncated χ2(ν1), in contrast to
the fixed sample result of χ2(n2 + ν1). This leads to ε [σ̂2(N+)] ≤ σ2. Bias in test size
and coverage of confidence intervals varies directly with the bias of the final
variance estimate.

5. Random predictors (Sampson, 1974), greatly complicate the problem. Our results
apply only conditional upon the observed value of (random) X+, at the conclusion
of the study. Even with a fixed sample size, only limited results are available for
power calculations with random predictors. The introduction of an internal pilot
complicates the problem because X2 is random at the re-estimation stage. Clearly,
further research is needed for such studies.

6. Fast, accurate approximations for computing power and test size would ease the
burden of planning a study with an internal pilot design.

7. Methods for controlling test size merit future research.
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Table 1
Internal Pilot Study Notation

Symbol Definition

Design Parameters

αt Target test size

Pt Target Power

θ* “Scientifically Important” value of θ

Variance value used for planning

n0

Pre-planned sample size based on αt, Pt, θ*, 

Sample Size Allocation

π Proportion of n0 used in internal pilot

n1 Internal pilot sample size; size of first sample, πn0

ν1 Internal pilot error degrees of freedom, n1 − rank(X1)

n+,min Minimum size of final sample

n+,max Maximum size of final sample

Fixed, Unknown Parameters

σ2 True error variance

γ

Ratio of true variance to variance used for planning, σ2/ 

θ True value of secondary parameter, Cβ, a × 1 vector

Random Variables

Internal pilot variance estimate, 

N2 Size of second sample, with particular value n2

N+ Final sample size, n1 + N2, with particular value n+

ν+ Final sample error df, N+ − rank(X+)

β̂(n+)

θ̂(n+) Final estimate of secondary parameter, Cβ̂(n+)

SSH(n+)

Final hypothesis SS, 

σ̂2(n+)

Final variance estimate, 

F(n+) Test statistic, [SSH(n+)/a]/σ̂2(n+)
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Table 2
Bias in Estimating γ and the Relationship with Test Size Inflation

Example A Example B

Gamma ε[σ̂2(N+)/σ2] α ε[σ̂2(N+)/σ2] α

0.5 1.000 0.050 0.909 0.055

0.75 0.998 0.050 0.891 0.062

1.0 0.990 0.051 0.896 0.065

1.5 0.985 0.052 0.916 0.065

2 0.988 0.052 0.931 0.062
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