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Abstract

We propose a connection between global physics and local galactic dynamics via

quantum gravity. The salient features of cold dark matter (CDM) and modified Newto-

nian dynamics (MOND) are combined into a unified scheme by introducing the concept

of MONDian dark matter which behaves like CDM at cluster and cosmological scales

but emulates MOND at the galactic scale.
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1 Introduction

The vexing problem of ”missing mass” has been with us ever since Zwicky found that the

individual galaxies in the Coma cluster were zipping around too fast for gravity to hold them

together in a cluster. This problem started to get the attention of the scientific community

after Rubin and her collaborators discovered that the clouds of hydrogen gas in several

distant galaxies were orbiting the center of their galaxies at a speed far exceeding what

could be accounted for by the gravitational pull due to the mass of visible baryonic matter.

This mass mismatch has since been astoundingly confirmed from dwarf galaxies to galaxy

groups. A simple but bold solution would be to postulate the existence of dark (invisible)

matter that makes up the mass difference [1].

This apparent need for dark matter at the galactic scale is even more urgent at larger

scales. Dark matter is needed to account for the correct cosmic microwave background

spectrum shapes (including the alternating peaks). It is also needed to yield the correct large-

scale structures and elemental abundances from big bang nucleosynthesis. (Supercomputer

simulations suggest that the cosmos would look very different if dark matter did not exist.)

Dark matter also provides the correct gravitational lensing. One of the most prominent

examples pointing to the existence of dark matter is the Bullet Cluster, a pair of merging

galaxy clusters. In this system, the gravitational lensing of background galaxies indicates

that the mass is offset from the X-ray plasma, suggesting that dark matter has shifted the

center of gravity elsewhere. The consensus in the cosmology community appears to be that

dark matter exists! By now all this has been canonized in the concordant ΛCDM model

of cosmology according to which cold dark matter accounts for about 23% of the energy

and mass of the universe, 5% resides in ordinary matter, and dark energy in the form of

cosmological constant has the lion’s share, accounting for the remaining 72% (numerically

the cosmological constant is related to the current Hubble parameter as Λ ∼ 3H2.)

But there is a fly in the ointment. At the galactic scale, dark matter can explain the

observed asymptotic independence of orbital velocities on the size of the orbit only by fitting

data (usually with two parameters) for individual galaxies. It can do no better in explaining

the observed baryonic Tully-Fisher relation [2, 3], i.e., the asymptotic-velocity-mass (v4 ∝M)

relation. Another problem with dark matter is that it seems to possess too much power on

small scales (∼ 1 − 1000 kpc) [4]. While cold dark matter works spectacularly well at the

cluster and cosmic scales, it had been found to be somewhat wanting at the galactic scale.

This is in stark contrast to another paradigm that goes by the name of modified New-

tonian dyanmics (MOND) [5, 6], due to Milgrom, which stipulates that the acceleration of

a test mass m due to the source M is given by a = aN for a ≫ ac, but a =
√
aN ac for

a ≪ ac, where aN = GM/r2 is the magnitude of the usual Newtonian acceleration and the

critical acceleration ac is numerically related to the speed of light c and the Hubble scale H

as ac ≈ cH/(2π) ∼ 10−8cm/s2. With only a single parameter MOND can explain easily and

rather successfully the observed flat galactic rotation curves and the observed Tully-Fisher
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relation [7]. But there are problems with MOND at the cluster and cosmological scales. The

reason may be due to the lack of a fundamental relativistic theory of MOND.

Obviously it is desirable to combine the salient successful features of both CDM and

MOND into a unified scheme. This essay describes our effort in that endeavor. Succinctly,

by making use of a novel quantum gravitational interpretation of (dark) matter’s inertia

our scheme [8] indicates that dark matter emulates MOND at the galactic scale. This work

embraces a recurring theme at the current gravity research frontiers: the relationship between

gravity and thermodynamics.

2 Entropic Gravity and Critical Galactic Acceleration

We start with the recent work of E. Verlinde [9, 10, 11, 12] in which the canonical Newton’s

laws are derived from the point of view of holography. Using the first law of thermody-

namics, Verlinde proposes the concept of entropic force Fentropic = T ∆S
∆x
, where ∆x denotes

an infinitesimal spatial displacement of a particle with mass m from the heat bath with

temperature T . He then invokes Bekenstein’s original arguments concerning the entropy S

of black holes [13] by imposing ∆S = 2πkB
mc
~
∆x. Using the famous formula for the Un-

ruh temperature, kBT = ~a
2πc
, associated with a uniformly accelerating (Rindler) observer

[14, 15], he obtains Fentropic = T∇xS = ma, Newton’s second law (with the vectorial form
~F = m~a, being dictated by the gradient of the entropy).

Next, Verlinde considers an imaginary quasi-local (spherical) holographic screen of area

A = 4πr2 with temperature T . Then, he assumes the equipartition of energy E = 1

2
NkBT

with N being the total number of degrees of freedom (bits) on the screen given by N =

Ac3/(G~). Using the Unruh temperature formula and the fact that E = Mc2, he obtains

2πkBT = GM/r2 and recovers exactly the non-relativistic Newton’s law of gravity, namely

a = GM/r2. But this is precisely the fundamental relation that Milgrom is proposing to

modify so as to fit the galactic rotation curves. Therefore it is now natural to ask whether

there is an entropic [13] or holographic [16, 17, 18, 19] interpretation behind Milgrom’s

modification of Newton’s second law.

We first have to recognize that we live in an accelerating universe (in accordance with the

ΛCDM model). This suggests that we will need a generalization [8] of Verlinde’s proposal

[9] to de Sitter space with a positive cosmological constant (which, we recall, is related to

the Hubble parameter H by Λ ∼ 3H2). The Unruh-Hawking temperature as measured by a

non-inertial observer with acceleration a in the de Sitter space is given by
√

a2 + a20/(2πkB)

[20, 21], where a0 =
√

Λ/3 [16]. Consequently, we can define the net temperature measured

by the non-inertial observer (relative to the inertial observer) to be T̃ = [(a2 + a20)
1/2 −

a0]/(2πkB).
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We can now follow Verlinde’s approach.4 Then the entropic force, acting on the test mass

m with acceleration a in de Sitter space, is given by Fentropic = T̃ ∇xS = m[(a2+a2
0
)1/2−a0].

For a ≫ a0, the entropic force is given by Fentropic ≈ ma, which gives a = aN for a test

mass m due to the source M . But for a ≪ a0, we have Fentropic ≈ ma2/(2a0) which,

upon equated with maN , yields a ≈
√
2aN a0. Thus we have derived Milgrom’s scaling or

MOND with the correct order of magnitude for the (observed) critical galactic acceleration

ac = 2a0 ∼
√

Λ/3 ∼ H ∼ 10−8cm/s2! 5 From our perspective, MOND is a (successful)

phenomenological consequence of quantum gravity.

Having derived MOND we can now write the entropic force, in the regime a ≪ a0, as

Fentropic ≈ m a2

2 a0
= FMilgrom ≈ m

√
aNac implying that a = ( 4 aN a

2
0
ac )

1

4 = ( 2 aN a
3
0
/π )

1

4 .

Numerically, it turns out that 2πac ≈ a0, and so we set ac = a0/(2π) for simplicity. The flat

galactic rotation curves as well as the Tully-Fisher relation can be easily recovered by using

Fcentripetal = m a2

2 a0
= mv2

r
to solve for the terminal velocity v.

3 MONDian Dark Matter

To see how dark matter can behave like MOND at the galactic scale, let us continue to

follow Verlinde’s holographic approach. Invoking the imaginary holographic screen of radius

r, we can write6 2πkBT̃ = GM̃
r2

, where M̃ represents the total mass enclosed within the

volume V = 4πr3/3. But, as we will show below, consistency with the discussion in the

previous section (and with observational data) demands that M̃ = M +M ′ where M ′ is

some unknown mass — that is, dark matter. Thus, we need the concept of dark matter for

consistency.

First note that it is natural to write the entropic force Fentropic = m[(a2 + a20)
1/2 −

a0] as Fentropic = maN [1 + (a0/a)
2/π] since the latter expression is arguably the simplest

interpolating formula for Fentropic that satisfies the two requirements: a ≈ (2aNa
3
0/π)

1/4 in

the small acceleration a ≪ a0 regime, and a = aN in the a ≫ a0 regime. But we can also

write F in another, yet equivalent, form: Fentropic = mG(M +M ′)/r2. These two forms of

F illustrate the idea of CDM-MOND duality [8]. The first form can be interpreted to mean

that there is no dark matter, but that the law of gravity is modified, while the second form

means that there is dark matter (which, by construction, is consistent with MOND) but that

the law of gravity is not modified. The second form gives us a very intriguing dark matter

profile: M ′ = 1

π

(

a0
a

)2
M . Dark matter of this kind can behave as if there is no dark matter

but MOND. Therefore, we call it “MONDian dark matter” [8]. One can solve for M ′ as a

4 We only need to replace the T in Verlinde’s argument by T̃ for the Unruh temperature.
5Actually Milgrom did observe [22] that the generalized Unruh temperature T̃ can give the correct be-

haviors of the interpolating function between the usual Newtonian acceleration and his suggested MONDian

deformation for very small accelerations. He was right; but, unlike us, he could offer no justification.
6 We need to replace the T and M in Verlinde’s argument by T̃ and M̃ respectively.
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function of r in the two acceleration regimes: M ′ ≈ 0 for a≫ a0, and (with a0 ∼
√
Λ)

M ′ ∼ (
√
Λ/G)1/2M1/2r

for a ≪ a0. Intriguingly the dark matter profile we have obtained relates, at the galactic

scale,7 dark matter (M ′), dark energy (Λ) and ordinary matter (M) to one another. As a

side remark, this dark matter profile can be used to recover the observed flat rotation curves

and the Tully-Fisher relation.

4 Inertia in Quantum Gravity

As the example of MOND illustrates, the inertia – the response of a body to force – is

not an inherent property of bodies. It depends on the background medium. Let us discuss

this phenomenon in a more general and wider context. Adopting the thermo-field-dynamics

language of Israel [23] and others [24, 25], we start from the familiar expansion of the

Minkowski vacuum ψ in terms of an ensemble sum over the entangled left and right Rindler

vacuum φ: ψM =
∑

i e
−βEiφL

i × φR
i , where β is the inverse of the Unruh temperature T ∼

~a/c. Better yet, instead of φL,R we can use, in the above formula, the exact quantum

gravity states, such as fuzzball states introduced by Mathur [26], the presumed exact no-

horizon states of string theory (viewed as a quantum theory of gravity).

Replacing the Minkowski vacuum with the global de Sitter vacuum and the entangled

left and right Rindler patches with the entangled left and right static patches of de Sitter

(or better still, with their fuzzball counterparts) we can expand the de Sitter vacuum with

cosmological constant Λ as

ΨΛ

dS =
∑

i

e−βdSEiΦL
i × ΦR

i .

This formula is in the spirit of the discussion of holography in de Sitter space as presented

in [27]. Here the Unruh temperature in the de Sitter space is given by T̃ = [(a2 + a2
0
)1/2 −

a0]/(2πkB) with a0 =
√

Λ/3 introduced above. The weighting factors in the ensemble sum

depend on the energies Ei ∼ mic
2 with mi being the invariant masses associated with the

exact quantum gravity spectrum (which we do not know how to calculate at present). Thus,

for the Minkowski case, we have ratios like mia
−1 in the ensemble weights (in the units of

c = 1, ~ = 1 and kB = 1). But, for the de Sitter case, we obtain these ratios only in the limit

of a≫ a0, whereas in the limit of a≪ a0 the ratios are mi(a
2/a0)

−1, where a0 is the critical

acceleration a la Milgrom. The latter result for the de Sitter case can be reinterpreted to

mean that the inertial properties of massive particles with mass mi have become acceleration-

and Λ-dependent! (This is analogous to what happens to the inertial properties of particles

7 One may wonder why MOND works at the galactic scale, but not at the cluster or cosmic scale. One

of reasons is that, for the larger scales, one has to use Einstein’s equations with non-negligible contributions

from the pressure and explicitly the cosmological constant, which have not been taken into account in the

MOND scheme [8].
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in special relativity, where the dependence is on the velocity of the particle and c, the speed

of light.)

Therefore, the weights of the exact formula which represents the expansion of the exact de

Sitter quantum gravity state in terms of entangled exact stationary quantum gravity states,

such as fuzzballs, associated with the left and right static patches, are scale-dependent, and

the weights determine what we mean by the mass at different scales. This general argument

suggests that Milgrom’s scaling is just a new physical phenomenon in which the inertial

properties are acceleration- and Λ-dependent.

5 Discussion

To recapitulate, we have given an entropic and holographic dual description of the Milgrom

scaling associated with galactic rotation curves and the Tully-Fisher relation by showing how

dark matter can emulate the modified Newtonian dynamics at the galactic scale. In addition

we have argued that the inertia of matter is quantum gravitational and is deeply connected

to dark energy.

The last point reminds us of the relation between nuclear physics and the theory of

quantum chromodynamics (QCD). We can make the following analogy: the phenomenolog-

ical lagrangians of nuclear physics would correspond to the phenomenological treatments of

matter in particle physics. But the true picture should be found in quantum gravity, the

analog of QCD in this comparison. Furthermore, the Milgrom scaling can perhaps be viewed

as an analog of the Bjorken scaling and quantum gravity corrections to the Unruh formula

as the analog of the logarithmic corrections to the Bjorken scaling as provided by asymptotic

freedom in QCD.

We conclude with some open questions to be investigated. Our arguments have been

mainly thermodynamical, hence the precise nature of MONDian dark matter is still unclear;

we should construct a microscopic theory which would also address the question of crossover

between the Newtonian and MOND regimes. The dark matter profile we have obtained (at

the galactic scale) hints at a fixed energy density ratio between the three different cosmo-

logical components of the Universe; how does this relation help to alleviate the coincidence

problem? That same relation seems to suggest that the microscopic MONDian dark matter

degrees of freedom may have knowledge of the non-local cosmological constant; what are

some of the phenomenological implications (for example, in dark matter searches)? Because

we have the exact formula for the Unruh acceleration, we can now look at the higher order

terms (in powers or inverse powers of a2/Λ) in the expansion of the relevant expressions

to examine possible phenomenological consequences. For example, are there corrections to

the Milgrom scaling? Would the corrections improve MOND’s agreement with the rotation

curves? What are the effects on the Tully-Fisher relation? Are the correction terms relevant

to sub-galactic scales? Finally we have given a general argument showing that inertia of a
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body depends on the physical vacuum. Can we derive the entropic force directly in this gen-

eral framework? And what novel properties of dark matter and distinctive phenomenologies

can be uncovered?
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