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Abstract
Diffusion tensor imaging (DTI) provides important information on the structure of white matter
fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. This paper
presents a functional regression framework, called FRATS, for the analysis of multiple diffusion
properties along fiber bundle as functions in an infinite dimensional space and their association
with a set of covariates of interest, such as age, diagnostic status and gender, in real applications.
The functional regression framework consists of four integrated components: the local polynomial
kernel method for smoothing multiple diffusion properties along individual fiber bundles, a
functional linear model for characterizing the association between fiber bundle diffusion
properties and a set of covariates, a global test statistic for testing hypotheses of interest, and a
resampling method for approximating the p-value of the global test statistic. The proposed
methodology is applied to characterizing the development of five diffusion properties including
fractional anisotropy, mean diffusivity, and the three eigenvalues of diffusion tensor along the
splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of
neurodevelopment. Significant age and gestational age effects on the five diffusion properties
were found in both tracts. The resulting analysis pipeline can be used for understanding normal
brain development, the neural bases of neuropsychiatric disorders, and the joint effects of
environmental and genetic factors on white matter fiber bundles.
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I. Introduction
Water molecules in the human brain diffuse preferentially along the major axis of white
matter fiber bundles. Thus, Diffusion Tensor Imaging (DTI), which can track the effective
diffusion of water in the human brain in vivo, is used to accurately map in vivo the structure
and orientation of fiber tracts in the white matter of the brain [1], [2]. The directional
dependence of water diffusion in each voxel can be characterized by a matrix, called a
diffusion tensor (DT), and the degree of diffusivity can be quantified by using the three
eigenvalue-eigenvector pairs of DT and its related parameters, such as fractional anistropy
(FA) [3], [4], [5], [6]. There has been a wealth of neuroimaging studies using a set of water
diffusion related parameters including FA, mean diffusivity (MD), and the three eigenvalues
of diffusion tensor as a marker for white matter tract maturation and integrity found in [7],
[8], [9], [10], and many others. Analyzing these water diffusion related parameters across
subjects requires specific statistical methods for the group analysis of diffusion imaging
data.

In the current literature, three major approaches to the group analysis of diffusion imaging
data are region-of-interest (ROI) analysis, voxel based analysis, and fiber tract based
analysis [11], [12], [13]. The region-of-interest (ROI) method used in some neuroimaging
studies [14], [15] primarily averages diffusion properties in some manually drawn ROIs for
each subject and then creates a single statistic per ROI [13]. Some major drawbacks of ROI
analysis are the difficulty in identifying meaningful ROIs, particularly the long curved
structures common in fiber tracts, the instability of statistical results obtained from ROI
analysis, and the partial volume effect in relative large ROIs. The ROI method is also based
on a stringent assumption that diffusion properties in all voxels of the same ROI are
essentially homogeneous, which is largely false for DTI.

Voxel based analysis is used more commonly than ROI analysis in neuroimaging studies
[16], [17], [18], [19]. The first step involves fitting a statistical model to the smoothed and
registered diffusion properties imaging data from multiple subjects at each voxel to generate
a parametric map of test statistics (or p-values). The second step is to correct for the multiple
comparisons across the many voxels of the imaging volume [20], [21], [22]. It suffers from
issues of alignment quality and the arbitrary choice of smoothing extent [23], [20], [11],
[24]. As shown in Jones et al. (2005), the final results of voxel-based analysis can strongly
depend on the amount of smoothing in the smoothed diffusion imaging data.

With the drawbacks mentioned of ROI and voxel based analysis, there is a growing interest
in the DTI literature in developing fiber tract based analysis of diffusion properties, such as
eigenvalues and fractional anisotropy (FA) values [11], [12], [25], [26]. For instance, Smith
and his coauthors develop a tract-based spatial statistics framework for constructing local
diffusion properties along the white matter skeleton followed by performing pointwise
hypothesis tests on the skeleton [11]. Yushkevich and coauthors propose a model-based
framework for the statistical analysis of diffusion properties on the medial manifolds of fiber
tracts followed by testing pointwise hypotheses on the medial manifolds [25]. Similar to the
work proposed in this paper, Goodlett and coauthors propose to use a functional data
analysis method to compare a univariate diffusion property, such as fractional anisotropy,
across two (or more) populations for a single hypothesis test per tract [26]. Their method is
limited to a univariate diffusion property and cannot control for other covariates of interest,
such as age, gender and behavioral variables. Moreover, the permutation test and the
Hotelling T2 statistic used in [26] may be statistically over-sensitive, because only the data
in the reduced principal component analysis space are permuted. Statistically, such a
procedure, which ignores substantial noise in the original data, can lead to misleading
results.
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What these three methods do not account for is the comparison of fiber bundle diffusion
properties across groups and the development of fiber bundle diffusion properties along
time, while controlling for other covariates of interest, such as gender [16], [14], [11], [17],
[18], [19]. Making these comparisons requires a regression modeling framework for the
analysis of fiber bundle diffusion properties and a set of covariates of interest, such as age,
diagnostic status and gender. This paper presents a functional regression analysis of DTI
tract statistics, called FRATS, for modeling the relationship between fiber bundle diffusion
properties and covariates of interest. Compared with [26] and other existing literature, there
are four methodological contributions in this paper. First, the local polynomial kernel
method is used to regularize multiple diffusion properties along individual fiber bundles.
Second, a functional linear model is developed to characterize the association between fiber
bundle diffusion properties and any covariate of interest. Third, a global test statistic is
proposed for testing hypothesis of interest. Fourth, a resampling method is developed for
estimating the p-value of the global test statistic. The proposed methodology is used to
characterize the development of five diffusion properties along the splenium and right
internal capsule tracts in a clinical study of neurodevelopment in the University of North
Carolina at Chapel Hill.

II. Methods
This paper introduces a set of statistical tools for the group analysis of fiber bundle diffusion
properties while controlling for a set of covariates of interest. Comparing diffusion
properties in populations of DTIs requires imaging methods for establishing correspondence
among regions of anatomy in DTIs. For this purpose, we use the DTI atlas building methods
proposed in [26], which are included here for completion. The focus of this paper is to
develop the functional regression model pipeline, called FRATS, for assessing the
association between fiber bundle diffusion properties and covariates of interest.

A. DTI Atlas Building
Before applying FRATS, a quality control pipeline is applied to each of the subjects'
diffusion weighted images (DWIs) to check if the DWIs contain large slice brightness
artifacts, intra-gradient Venetian blind artifacts, and motion artifacts using DTIPrep
(www.ia.unc.edu/dev). Skull stripping is then performed automatically via a brain mask
computed from both the non-diffusion weighted baseline image and isotropic diffusion
weighted image using a free software itkEMS (www.ia.unc.edu/dev/download/itkems).
Masking out the non-brain tissues stabilizes the subsequent DTI estimation and registration
step. Diffusion tensors are estimated for each subject from a series of cleaned diffusion
weighted images using a weighted least square tensor estimation [27], [2].

After DTI estimation, registration occurs and its accuracy is crucial for identifying
meaningful group differences. We use a nonlinear fluid deformation based high-
dimensional, unbiased atlas computation method to carry out a large deformation non-linear
registration [28]. The atlas building procedure is initialized by an affine registration and
followed by a nonlinear registration of a feature image which is sensitive to the geometry of
white matter. Further reference of the DTI atlas building procedure has been described in
[26]. Then, we warp each of the tensor images into the unbiased space and reorient them
using the finite strain approximation proposed by [29] to get the aligned DTIs. After
averaging all the registered DTIs, a study specific unbiased DTI atlas is created. The tensor
warping and averaging are performed using a novel Log-Euclidean geometry [30].

Major fiber bundles are tracked in the atlas space within 3D Slicer (www.slicer.org). First,
ROIs are drawn with the Editor module and then fibers are tracked using a stream line
method with the Tractography module. Usually, the fibers directly generated in this way
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contain some fibers not belonging to the bundle that we are interested in due to either the
noise in DTI data or not proper ROI delineation. We use FiberViewer to visualize and clean
the fibers. Tractography of atlas fiber bundles are more reliable than individual ones because
of the improved signal-to-noise ratio of the atlas.

With the fiber bundles in atlas space, each subject's DTI data is transformed into the atlas
space. When transforming the diffusion properties from native space to the atlas space, tri-
linear interpolation is used to interpolate diffusion properties from the native space. Finally,
we get a set of individual tracts with corresponding geometry but varying diffusion
properties. Within FiberViewer, a cutting plane is first placed perpendicular to the fibers at a
location where the fibers are organized neatly to define the origin of arc length. The
diffusion properties along fiber tracts are then measured and plotted as functions of arc
length. Using FiberViewer, these plots from each subject are generated. This allows us to
conduct a group comparison analysis of the along-bundle tensor properties. Except for 3D
Slicer, all DTI tools and itkEMS are part of the open source UNC NeuroLib software
repository (https://www.ia.unc.edu/dev/).

B. FRATS: Nonparametric Model
After spatial normalization of tensor images, we propose to use a functional regression
model to analyze diffusion properties along the same fiber bundle from multiple subjects.
FRATS consists of four major components: a regularization of individual tracts, a functional
linear model, a global test statistic for hypothesis testing, and a resampling method for
estimating the p-value of the global test statistic. A schematic overview of FRATS is in
Figure 1. We describe each of these components in detail below.

To regularize individual tracts, we develop a nonparametric model for multiple diffusion
properties (e.g., FA) along the same fiber bundle as a smooth function of arc length from
each subject as follows. For the i-th subject, we consider a m × 1 vector of diffusion
properties, denoted by yi,j = (yij,1, ⋯, yij,m)T, and its associated arc length sj for the j-th
location grid point on the fiber bundle for j = 1, ⋯,L0 and i = 1, ⋯, n, where L0 and n denote
the numbers of grid points and subjects, respectively. The nonparametric model is given by

(1)

where fi(s) = (fi,1(s), ⋯, fi,m(s))T is an m × 1 vector of continuous functions with second-
order continuous derivative, E[yi,j|fi(sj)] = fi(sj), and Cov[yi,j|fi(sj)] = Σ(sj). Our aim is to
reconstruct the continuous function vector fi(s) based on observed fiber bundle diffusion
properties.

To simultaneously construct all individual function vectors fi(s), we develop an adaptive
local polynomial kernel smoothing technique [31], [32], [33], [34], [35], [36]. Specifically,
using Taylor's expansion, we can expand fi(sj) at s to obtain

(2)

where zj = (1, sj − s)T and  is an m × 2 matrix with . We
develop an algorithm to estimate Ai as follows.

Step (1.1). Step (1.1) is to construct an initial estimate of fi(s) for each i. Let ai;k be the k-th
row of Ai and K(·) be a kernel function, such as the Gaussian, Epanechnikov, or uniform
kernels [31]. Without loss of generality, we assume that the kernel function K(·) is always a
symmetric probability density function. Throughout the paper, we take K(t) = 0.75(1 − t2)1(|
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t| ≤ 1), where 1(·) is an indicator function. For each k and a fixed bandwidth hk, we estimate
ai;k by minimizing an objective function given by

(3)

where Khk(·) = K(·/hk)hk is a rescaled kernel function. With some calculation, it can be
shown that

(4)

Let e1,2 = (1, 0)T. Then, since , fi,k(s) can be estimated by

(5)

where  are the empirical equivalent kernels [31]. Thus,

, where yi:,k = (yi1,k, ⋯, yiL0,k)T and Si,k is the
smoother matrix for the k-th measurement of the i-th subject. For each k, we pool the data

from all n subjects and select the optimal bandwidth hk, denoted by , by minimizing the
generalized cross-validation score given by

(6)

Based on the optimal , we can estimate  for all i.

Step (1.2). Step (1.2) is to construct an estimator of the covariance matrix Σ(sj) at sj.
Specifically, we consider the unbiased sample covariance matrix at sj given by

(7)

where  and a⊗2 = aaT for any vector a. It can be shown that

 converges to the true Σ(sj) in probability as both n and L0 go to infinity.

Step (1.3). Step (1.3) is to compute an adaptive estimator of fi(s) for all i using the initial
results from Steps (1.1) and (1.2). For all k and a fixed bandwidth h, we estimate Ai by
minimizing an objective function given by

(8)
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Let  be an m × 2m matrix and . It can
be shown that

(9)

which leads to a new estimator of fi,k(s), denoted by  for each i and k. Let  be the
smoother matrix for the k-th measurement of the i-th subject such that

. We pool the data from all n subjects and m

measurements and select the optimal bandwidth h, denoted by  by minimizing the
generalized cross-validation score, denoted by GCV(h), given by

(10)

where . Based on the optimal , we can estimate 
for all i and k. Similar to the arguments in [35], it can be shown that when Σ(s) varies across

s,  based on the optimal  is more accurate than  obtained from Step (1.1).

Step (1.4). Step (1.4) is to estimate the mean function f(s) and the covariance function Γ(s, t)
of fi(s). Specifically, following [36], [34], we can estimate f(s) and Γ(s, t) by using their

empirical counterparts of the estimated  as

(11)

(12)

The diagonal of Γ(s, s) reflects the variance of fi(s) at the location s.

C. FRATS: Functional Linear Model
We develop a functional linear model to characterize the relationship between all diffusion
properties along fiber tracts and a set of covariates of interest, such as age, group, and
gender. We assume that

(13)

where B(s) is a m × p matrix of functions of s, xi is a p × 1 vector of covariates of interest,
and ηi(s) satisfies E[ηi(s)|xi] = 0 and Cov[ηi(s), ηi(t)|xi] = Γη(s, t). B(s) characterizes the
association between fiber bundle diffusion properties and the covariates of interest xi.

As an illustration, in our clinical study on early brain development, we are interested in
studying the evolution of the three eigenvalues λi of diffusion tensor (λ1 ≥ λ2 ≥ λ3) along
two selected fiber tracts in 128 healthy pediatric subjects (Figs. 2 (a) and 5 (a)). See clinical
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data and results section for details. We consider a functional linear model of three
eigenvalues along a specific tract as follows:

(14)

where fi,k(·) equals the smoothed λk curve from the i-th subject for k = 1, 2, 3, and xi = (1,
gi, Gagei, agei)T, in which gi and Gagei denote gender and gestational age, respectively.
Moreover, gestational age is the age of a newborn infant, both gestational age and age are
continuous covariates, and gender is a discrete covariate. In this case, m = 3, B(s) = (βjk(s))
is a 3 × 4 matrix, and xi = (1, gi, Gagei, agei)T.

We develop an estimation algorithm to estimate B(s) and Γη(s, t) as follows.

Step (2.1). Step (2.1) is to estimate B(s). Let Bk(s) be the kth row of B(s). Then, based on

the estimated function vectors , we calculate the least-squares estimator of B(s),

denoted by , by minimizing an objective function given by

(15)

Specifically, the least-squares estimator of Bk(s), denoted by , is given by

(16)

for k = 1, ⋯, m.

Step (2.2). Step (2.2) is to estimate Γη(s, t). Let . Then, the
covariance matrix Γη(s, t) can be estimated by

(17)

The covariance matrix Γη(s, t) characterizes the variation of ηi(s), which is different from
Γ(s, t).

To carry out statistical inference on B(s), we need some asymptotic results for . Let
vec(B(s)) = (B1(s)T, ⋯,Bm(s)T)T. Theoretically, following the arguments in [36], it can be
shown that under some regularity conditions,

(18)

where →L denotes the convergence in distribution and GP(0, ΓB) is a Gaussian process with

mean zero and covariance function , in which ⊗ denotes the

Kronecker product of two matrices and . The asymptotic result in
(18) ensures the validity of constructing the global test statistic detailed below.
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D. FRATS: Global Test Statistic
We develop a global test statistic to test linear hypotheses of B(s) in order to answer various
scientific questions involving a comparison of fiber bundle diffusion properties along fiber
bundles across two (or more) diagnostic groups and the development of fiber bundle
diffusion properties along time. We can formulate these questions as linear hypotheses of
B(s) as follows:

(19)

(20)

where C is a r × mp matrix of full row rank and b0(s) is a given r × 1 vector of functions.

As an illustration, we are interested in testing the age effect on the evolution of the three
eigenvalues of the diffusion tenors along the two selected fiber tracts in 128 healthy
pediatric subjects in our clinical study on early brain development. Statistically, for model
(1), testing the age effect can be formularized as follows:

In this case, we have

and b0(s) ≡ (0, 0, 0)T for all s. The use of multiple diffusion properties in model (13) allows
us to compare different functions in B(s) associated with different diffusion properties. For
instance, suppose that we want to test

In this case, we have

and b0(s) ≡ (0) for all s.

We test the null hypothesis H0 : Cvec(B(s)) = b0(s) using a global test statistic Sn defined by

(21)

where , and F0 is the whole arc length of a
specific fiber bundle. In order to use Sn as a test statistic, we need an asymptotic result.
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Specifically, similar to the arguments in [36], we can show that under some conditions and

H0,  and Sn converge weakly to  and a weighted χ2

distribution, respectively, as n → ∞.

In addition, at a given grid point sj on a specific tract, we can also test the local null
hypothesis H0(sj) : Cvec(B(sj)) = b0(sj) using a local test statistic Sn(sj) defined by

(22)

Under some conditions and H0(sj),  and Sn(sj) converge weakly to

 and a weighted χ2 distribution with r degrees of freedom,
respectively, as n → ∞.

E. FRATS: Resampling Method
We develop a resampling method (or wild bootstrap method) to approximate the p-value of
Sn [37], [38]. The resampling method has four key steps as follows.

Step (3.1): Fit the functional linear model , i = 1, ⋯, n, under the null

hypothesis H0, which yields  and .

Step (3.2): Generate a random sample  from a N(0, 1) generator for i = 1, ⋯, n and then

construct . Then, based on , we calculate

(23)

for k = 1, ⋯, m, where  and  are, respectively, the kth row of  and

. Finally, let , we compute

 and

 for j = 1, ⋯, L0.

Step (3.3): Repeat Step (3.2) G times to obtain  and
calculate

for each sj. The p(sj) is the corrected p-value at the location sj.

Step (3.4): Repeat Step (3.2) G times to obtain  and calculate
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If p is smaller than a pre-specified value α, say 0.05, then we reject the null hypothesis H0.

We note several advantages of using the resampling method in the above test procedure.

Computationally, the above procedure only requires the repeated calculation of  and .

Thus, because computing  is very fast, the proposed test procedure is computationally
efficient. The proposed resampling method also performs better than parametric bootstrap.
Specifically, the parametric bootstrap requires parametric assumptions for ηi(s). Moreover,
for functional linear model (13), permutation method is not directly applicable without very
strong assumption such as complete exchangeability.

F. Monte Carlo Simulations
We conducted a set of Monte Carlo simulations to evaluate the Type I and II error rates of
the global test statistic Sn based on the resampling method. We simulated FA and MD
measures along the right internal capsule tract (Fig. 7(a)) obtained from our clinical data
according to

where xi = (1, gi, Gagei, agei)T, ηi(s) = (ηi1(s), ηi2(s))T is a 2 × 1 vector of Gaussian process
with zero mean and covariance matrix Γη(s, t) and ϵi,j is a 2×1 vector of Gaussian random
variables with zero mean and covariance matrix Σ(sj). To mimic imaging data in practice,
we used FA and MD measures along the right internal capsule tract from the 128 subjects in

our clinical data to estimate  of Σ(sj) via equation (7),  of B(s) via equation (16)

and  via equation (17). Then, except for (β12(s), β22(s)) for all s, we fixed all other
parameters at their values obtained from our clinical data, whereas we assumed

, where c is a scalar specified below and 
were estimators obtained from our clinical data.

We tested the hypotheses H0 : β12(s) = β22(s) = 0 for all s along the right internal capsule
tract against H1 : β12(s) ≠ 0 or β22(s) ≠ 0 for at least a s on the tract. We assumed c = 0 to
assess the Type I error rates for the global test statistic, and then we assumed c = 0.1, 0.2,
0.3, and 0.4 to examine the Type II error rates for Sn. In both cases,

for all s. We set n = 128 and 64. For n = 128, we used the same values of age, gestational
age, and gender from all 128 subjects in our clinical data. For n = 64, we randomly chose 32
males and 32 females from our clinical data and used their values of age, gestational age,
and gender to simulate the values of FA and MD along the right internal capsule tract.

For each simulation, the significance levels were set at α = 5% and 1%, and 1,000
replications were used to estimate the rejection rates. For a fixed α, if the Type I rejection
rate is smaller than α, then the test is conservative, whereas if the Type I rejection rate is
greater than α, then the test is anticonservative, or liberal.
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G. Clinical Data
This study was approved by the Institute Review Board of the University of North Carolina
at Chapel Hill. A total of 128 healthy full-term subjects (75M and 53F) during the first year
of age were recruited and written informed consent was obtained from their parents before
imaging acquisition. The subjects were taken from a larger study designated to investigating
early brain development at our institution. A total of 128 neonates with a mean postnatal age
of 25±17.9 days (range: 9 to 144 days) were included in this study. Efforts were made to
ensure the subjects slept comfortably inside the MR scanner, and thus none of the subjects
was sedated during imaging session. All subjects were fed and calmed to sleep on a warm
blanket with proper ear protection.

All images were acquired on a 3T Allegra head only MR system (Siemens Medical Inc.,
Erlangen, Germany) with a maximal gradient strength of 40 mT/m and a maximal slew rate
of 400 mT/(m·msec). A single shot EPI DTI sequence (TR/TE=5400/73 msec) with eddy
current compensation was used to obtain DTI images. Diffusion gradients with a b-value of
1000 s/mm2 were applied in six non-collinear directions, (1,0,1), (−1,0,1), (0,1,1), (0,1,−1),
(1,1,0), and (−1,1,0). The reference scan (b=0) was also acquired for the construction of
diffusion tensor matrices. Contiguous slices with slice thickness of 2mm were scanned to
cover the whole brain. The voxel resolution was isotropic 2mm, and the in-plane field of
view was 256mm in both directions. A total of five scans were acquired and averaged to
improve the signal-to-noise ratio of the images.

A weighted least square estimation method was used to construct the diffusion tensors [27],
[2]. Then the image processing steps in the DTI atlas building were used to process all 128
DTI data sets and compute diffusion properties along all fiber tracts of interest. For the sake
of space, we chose two tracts of interest including the splenium of the corpus callosum tract
and the right internal capsule tract (Figs. 2(a) and 7(a)) and then computed fractional
anistropy (FA), mean diffusivity (MD), and the three eigenvalues of the diffusion tensors,
denoted by λ1 ≥ λ2 ≥ λ3, at each grid point on both tracts for each of the 128 subjects. FA
denotes the inhomogeneous extent of local barriers to water diffusion, while MD measures
the averaged magnitude of local water diffusion. The three eigenvalues of diffusion tensor
may, respectively, reflect the magnitude of water diffusivity along and perpendicular to the
long axis of white matter fibers [39].

We applied FRATS to the joint analysis of FA and MD values along the splenium tract as
follows. We fitted the functional linear model (13) to these smoothed FA and MD functions
from all 128 subjects, in which xi = (1, gi, Gagei, agei)T and m = 2, and then we used

equation (16) to estimate the function of regression coefficient vector . Secondly, we
constructed the global test statistic Sn to test the effects of all the three covariates for FA
alone, MD alone, and joint FA and MD, respectively, and performed hypothesis testing on
the whole splenium tract. The p-value of Sn was approximated using the resampling method
with G = 10,000. Based on the significant results for MD, we further analyzed the three
eigenvalues of diffusion tensors along the splenium tract using the same steps.

Similar to the analysis of the splenium tract, we also applied FRAST to the analysis of FA
and MD values along the right internal capsule tract. Then, we fitted the functional linear
model (13) to these smoothed FA and MD functions from all 128 subjects, in which xi = (1,
gi, Gagei, agei)T and m = 2. We performed formal hypothesis testings in order to examine
the effects of gender, gestational age, and age on FA and MD values along the right internal
capsule tract. We further analyzed the three eigenvalues of diffusion tensors along the right
internal capsule tract.
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III. Results
A. Monte Carlo Simulations

Overall, the rejection rates for Sn based on the resampling method were accurate for all
sample sizes (n = 64, or 128) at both significance levels (α = 0.01 or 0.05) (Figs. 3(a) and
(b)). Consistent with our expectations, the statistical power for rejecting the null hypothesis
increased with the sample size.

B. Clinical Data: Splenium Tract
We used the adaptive local polynomial kernel smoothing technique to simultaneously
smooth FA and MD function vectors for each of 128 subjects, which leads to the smoothed
curves (Figs. 4(a) and (b)). We computed the sample covariance matrix and obtained
correlation coefficient between FA and MD at each grid point. We observed negative
correlations at most grid points (Fig. 4 (c)). Based on the smoothed FA and MD functions,
we estimated their mean functions and their covariance functions using equations (11) and
(12) (Figs. 4 (d) and (e)). Then, we fitted the functional linear model (13) to the smoothed
FA and MD functions from all 128 subjects, in which xi = (1, gi, Gagei, agei)T and m = 2.

The elements of  corresponding to FA are shown in Fig. 4(f).

From our model, we performed formal hypothesis testings in order to examine the effects of
gender, gestational age, and age on FA and MD values along the splenium tract. We first
considered tests based on FA and MD, respectively, and performed hypothesis testing at
each grid point along the splenium tract (Figs. 5). For FA alone, no significant effect of any
covariate was found, even though the −log10(p) value of Sn(s) for age at a single grid point
was slightly greater than 2 (Fig. 5 (c)). For MD alone, no significant gender effect was found
(Fig. 5 (d)), whereas the effects of age and gestational age were significant at the head and
tail of the splenium tract (Figs. 5 (e) and (f)).

For FA alone, no significant effects of all covariates were found in Table 1, which agrees
with our previous findings based on the local test statistics Sn(s). This indicates that the
degree of anisotropy on the splenium tract does not differ significantly between male and
female groups and does not change significantly with gestational age and age. For MD
alone, we observed a significant association between gestational age and MD and a marginal
significance for age. This indicates a significant change of the degrees of diffusivity, not the
degree of anisotropy, along the splenium tract. For joint FA and MD on the splenium tract,
no significant gender effect was found, whereas the effects of both age and gestational age
were significant.

Along the splenium tract, we observed positive correlations among the three eigenvalues
(Fig. 6(d)). Particularly, large correlations between λ2 and λ3 along the splenium tract
indicate the small differences between λ2 and λ3 on the splenium tract (Figs. 2 (e) and (f)),
whereas relatively weak correlations between λ1 and λ3 indicate large differences between
λ1 and λ3 along the splenium tract (Fig. 2(d)). Then, we fitted the functional linear model
(13) to the smoothed three eigenvalues functions from all 128 subjects, in which xi = (1, gi,
Gagei, agei)T and m = 3.

We examined association between all covariates of interest and all eigenvalues along the
splenium tract by performing formal hypothesis testing at each grid point. No significant
gender effect was found for all the three eigenvalues (Fig. 6 (a)), whereas significant
gestational age effect was observed at the head and tail of the splenium tract (Fig. 6 (b)). We
observed a similar association pattern between gestational age and the three eigenvalues of
DT (Fig. 6 (b)). We picked a grid point with a significant p value of Sn(s) and observed that
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the three eigenvalues decrease with gestational age. For age, a similar association pattern
was observed for λ2 and λ3, whereas λ1 was significantly associated with age at the head of
the splenium tract (Fig. 6 (c)).

C. Clinical Data: Right Internal Capsule Tract
We simultaneously smoothed the FA and MD function vectors of all 128 subjects and then
estimated their mean functions (Figs. 8 (a) and (d)) and their covariance functions (Figs. 8
(b) and (e)). Then, we fitted the functional linear model (13) to the smoothed FA and MD
functions from all 128 subjects, in which xi = (1, gi, Gagei, agei)T and m = 2. We considered
tests based on FA alone, MD alone, and (FA, MD), respectively, and performed hypothesis
testing at each grid point along the right internal capsule tract (Figs. 8(c) and (f)). No
significant gender effect was found for all tests (Table 1). For FA alone, significant
gestational age and age effects were observed for the right internal capsule tract (Figs. 8 (c)
and (f)). We observed negative correlations between FA and MD at most grid points (Fig. 8
(g)). We picked a grid point with the significant p value of Sn(s) at the significance level 5%
and observed the increasing pattern of FA with the standardized gestational age (Fig. 8 (i)).
For MD alone, significant gestational age and age effects were found in the middle of the
right internal capsule tract (Fig. 8 (f)). We picked a grid point with the significant p value of
Sn(s) and observed the decreasing pattern of MD with the standardized gestational age (Fig.
8 (h)).

We also constructed the global test statistic Sn to assess the covariates of interest based on
FA alone, MD alone, and (FA, MD), respectively, and performed hypothesis testing on the
right internal capsule tract. The p-value of Sn was approximated using the resampling
method with G = 10,000. The resulting p-values are reported in Table 1. No significant
gender effect was found for all scenarios, which indicates no significant difference between
male and female groups. We observed significant gestational age and age effects for both
FA and MD. Our results agree with previous DTI findings. Current DTI studies including
neonates have revealed that FA and MD respectively increases and decreases with age. In
white matter, neonates have significantly lower anisotropy values and significantly higher
MD values compared to adults [40], [41].

We also observed positive correlations among the three eigenvalues (Fig. 9(b)). We
observed large correlation between λ2 and λ3 and relatively weak correlation between λ1
and λ3. This agrees with the small differences between λ2 and λ3 along the right internal
capsule tract (Figs. 7 (d)–(f)) and the relatively large differences between λ1 and λ3 in the
middle of the right internal capsule tract (Figs. 7(d)–(f)). Then, we fitted the functional
linear model (13) to the smoothed three eigenvalues functions from all 128 subjects, in
which xi = (1, gi, Gagei, agei)T and m = 3. We performed formal hypothesis testings by
examining the association between all covariates of interest and the three eigenvalues along
the right internal capsule tract at each grid point. No significant gender effect was found for
all the three eigenvalues (Fig. 9 (d)). Gestational age was strongly associated with all the
three eigenvalues (Fig. 9 (e)). The scatter plot at a selected grid point shows the decreasing
pattern for all eigenvalues with the gestational age. We observed a moderate age effect on
all the three eigenvalues (Fig. 9 (f)).

IV. Conclusion and Discussion
The contributions of our work are two folds. Technically, we have presented a novel
functional regression framework, called FRATS, for analyzing multiple fiber bundle
diffusion properties with a set of covariates of interest, such as age, diagnostic status and
gender, in real applications. FRATS can be used to understand normal brain development,
the neural bases of neuropsychiatric disorders, and the joint effects of environmental and
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genetic factors on white matter fiber bundles. From the application end, FRATS is applied to
characterizing the development of diffusion properties on fiber bundles in a clinical study of
neurodevelopment. Our approach is able to reveal the complex inhomogeneous
spatiotemporal maturation patterns as the apparent changes in FA, MD, and the three
eigenvalues of DT. Specifically, our results suggest that white matter maturation patterns are
different in different white matter regions.

There are still limitations that need to be addressed. First, we have focused on the analysis of
a set of water diffusion related parameters based on diffusion tensor image rather than those
based on high angular resolution diffusion image (HARDI), because diffusion tensor image
is commonly used for characterizing major white matter fiber bundles. In the future, we will
apply FRATS to water diffusion related parameters obtained from HARDI [42], [43], [44].
Second, we have focused on tensor derived univariate measures. It is also interesting to
extend FRATS to principal directions and full diffusion tensors on fiber bundles [45], [46],
[47], [48], [49]. Third, we have focused on analyzing fiber bundle diffusion properties with
a set of covariates. The proposed methodology can be readily extended to more complex
fiber structures, such as the medial manifolds of fiber tracts [25]. Fourth, we have focused
on cross-sectional studies. Extending FRATS to longitudinal studies and family studies
requires further research [50].

We have developed FRATS for statistically analyzing multiple diffusion properties along
fiber bundle and assessing their association with a set of covariates of interest in real
applications. FRATS integrates four statistical tools for formally testing hypothesis of
interest and carrying out statistical inference in real applications. The proposed methodology
is demonstrated in a clinical study of neurodevelopment. In this study, significant age and
gestational age effects on multiple diffusion properties were examined and localized in two
representative tracts. We expect that this novel statistical tool will lead to new findings in
our clinical applications.
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Fig. 1.
A schematic overview of FRATS: a nonparametric model for regularizing individual tracts,
a functional linear model, a global test statistic for hypothesis testing, and a resampling
method for estimating the p-value of the global test statistic.
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Fig. 2.
Splenium tract and diffusion properties along the splenium tract: (a) the splenium tract
extracted from the tensor atlas with color representing mean FA value; (b) FA; (c) MD; (d)
λ1; (e) λ2; (f) λ3. The diffusion properties in panels (b)–(f) are sampled along the atlas-
normalized arc length for all 128 subjects.
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Fig. 3.
Simulation study: Type I and Type II error rates. Rejection rates of Sn based on the
resampling method are calculated at five different values of c for sample sizes of 64, 128
subjects at the 5% (green) and 1% (red) significance levels: (a) n = 128; (b) n = 64.

Zhu et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 July 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.

Results from the analysis of FA and MD on the splenium tract: reconstructed curves 
for FA in panel (a) and MD in panel (b); (c) estimated correlation between FA and MD

along the tract; estimated covariance matrices  for FA in panel (d) and MD in panel

(e); (f) estimated regression coefficient functions for FA:  for intercept (blue), 

for gender (red),  for gestational age (green), and  for age (black).
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Fig. 5.
Results from the analysis of FA and MD on the splenium tract: the −log10(p) values of test
statistics Sn(sj) for testing gender effect in panel (a), gestational age effect in panel (b), and
age effect in panel (c) on FA; the −log10(p) values of test statistics Sn(sj) for testing gender
effect in panel (d), gestational age effect in panel (e), and age effect in panel (f) on MD.
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Fig. 6.
Results from the analysis of the three eigenvalues of diffusion tensor on the splenium tract:
the −log10(p) values of test statistics Sn(sj) for testing gender effect in panel (a), gestational
age effect in panel (b), and age effect in panel (c) on λ1 (red), λ2 (blue) and λ3 (green);
correlations among λ1, λ2 and λ3 in panel (d); scatter plots of λ1 (red), λ2 (blue) and λ3
(green) against gestational age and age in panels (e) and (f), respectively.
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Fig. 7.
Right internal capsule tract and diffusion properties along the tract: (a) the right internal
capsule tract extracted from the tensor atlas with color representing mean FA value; (b) FA;
(c) MD; (d) λ1; (e) λ2; (f) λ3. The diffusion properties in panels (b)–(f) are sampled along
the atlas-normalized arc length for all 128 subjects.
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Fig. 8.
Results obtained from the analysis of FA and MD on the right internal capsule tract: the
estimated mean function and covariance function for FA in panels (a) and (b), respectively;
the estimated mean function and covariance function for MD in panels (d) and (e),
respectively; (g) the correlation between FA and MD; the −log10(p) values of test statistics
Sn(sj) for testing gestational age and age effect on FA (green), MD (blue), and (FA, MD)
(red) in panels (c) and (f), respectively; scatter plots of MD and FA measures from a
selected grid point against standardized gestational age, abbreviated as S-gestation age, in
panels (h) and (i), respectively.
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Fig. 9.
Results from the analysis of the three eigenvalues of diffusion tensor on the right internal
capsule tract: (a) the estimated mean functions for λ1 (red), λ2 (blue), and λ3 (blue); (b)
correlations among λ1, λ2 and λ3; (c) scatter plot of λ1 (red), λ2 (blue) and λ3 (green) from
a selected grid point against gestational age; the −log10(p) values of test statistics Sn(sj) for
testing gender effect in panel (d), gestational age effect in panel (e), and age effect in panel
(f) on λ1 (red), λ2 (blue) and λ3 (green).
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