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Abstract

This paper uses Bureau of Transportation data on 35 million domestic flights between 1995 and 2001

to investigate the determinants of flight cancellations. This paper is novel in two regards since it focuses

exclusively on flight cancellations and it explores the service quality and flight revenue relationship. We

find that carriers have some control over the occurrence of flight cancellations given that cancellations

are significantly less likely on Thursday, Friday, and Sunday and for the last flight of day. There is

some evidence that links cancellations with revenue.

∗We thank Joe Hopkins, Harumi Ito, Darin Lee, Chris Mayer, Ed Schumacher, Lester Zeager, several anonymous airline
operations employees, seminar participants at Appalachian State University, East Carolina University, International Industrial
Organization Conference, and Southern Economic Association Conference, and two referees for their helpful comments.
Sherrine Ahmed and Jim Goodman provided research assistance.

†Contact at ruppn@mail.ecu.edu or (252) 328-6821.
‡Contact at mark holmes@unc.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/475609266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


“Canceling a flight for economic reasons was totally taboo before, but we’re seeing it now.”

(Robert Harrell, Vice President for American Express Travel Related Services, Wall Street

Journal, 15 February 1991.)

1 Introduction

U.S. airline carriers had 665.5 million enplanements in 2000, which generated $93.6 billion in passenger

revenue and employed 679,967 individuals (Air Transport Association 2001 Annual Report). Yet airlines

have historically provided poor customer service: approximately one in four flights were delayed, canceled,

or diverted between 1995 and 2002 (see Table 1). The most common consumer air travel complaint in 2000

was flight problems (e.g., cancellations, delays, and missed connections), an increase of 30 percent from 1999

(Air Travel Consumer Report, February 2001, p. 34), while revenue passenger miles increased only 6 percent

over the same period.1 Consumer frustration with airlines was typified by a Chicago businessman, who filed

suit against United Airlines in 2000, seeking financial damages to cover ticket refunds, reimbursements for

alternative transportation, compensation for emotional distress, lost vacation days, and missed business

opportunities following a rash of cancellations due to unresolved contractual issues with United pilots

(Carey, 2000). In 1999, due to poor airline service quality, U.S. Congressional hearings debated the merits

of a passenger bill of rights. Ultimately, fourteen major domestic airlines voluntarily agreed in 1999 to the

Airline Customer Service Commitment, which promised improved treatment of air travelers. In a follow-up

study one year later, the U.S. Department of Transportation found that airlines were falling short of their

promises due to extensive flight delays and long check-in lines (Heller, 2000).

This paper examines flight cancellations by using a sample of U.S. Bureau of Transportation Statistics

(BTS) data for 35 million domestic flights in the U.S. by major carriers between January 1995 and August

2001. During this period there were more than one million flight cancellations. Moreover, cancellations

became more frequent, increasing from 91,905 (in 1995) to more than twice that amount, 231,198 flights

(in 2001), which corresponds to a cancellation rate of 1.73 and 2.79 percent, respectively, of all scheduled

domestic flights. This study is novel in two aspects. First, it is one of the first to investigate the deter-
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minants of flight cancellations.2 Second, the paper explores the relationship between service quality and

revenues during normal daily operations.

Related theoretical work on flight cancellations is provided by networking models, which determine the

optimal aircraft recovery schedule following a hub closure (Yan and Yang, 1996; Thengvall et al. 2000;

Thengvall et al. 2001). Previous empirical research on service quality primarily has focused on flight

delays, instead of cancellations (e.g., Mayer and Sinai, 2003a & 2003b; Mazzeo, 2003).

In the first six months after the BTS began tracking causes of flight delays in August, 2003, the four

most common delay causes (in order of relevance) are late arriving aircraft, air carrier delay, national

aviation system delay, and extreme weather.3 Hence this paper controls for each of these measures and

we find many significant non-weather cancellation factors matter such as day of the week, departure time,

and number of daily scheduled flights on a route. An analysis of flight cancellations is beneficial given

that (i) cancellations are more inconvenient for passengers than flight delays (e.g., following a cancellation

passengers who are fortunate enough to be re-booked on the carrier’s next scheduled departure on the

route wait an average of over five hours, whereas the typical delayed flight departs an average of 52

minutes late); (ii) airline performance is a high-priority issue for travelers, airlines, and lawmakers; and

(iii) recent consolidation (American Airlines acquired TWA in 2001), bankruptcy filings (US Airways and

United Airlines declared bankruptcy in 2002), and scheduling cut-backs since the September 11th terrorist

attacks (Carey and McCartney, 2001) may affect cancellations. Hence this paper investigates the link

between flight cancellations and competition at both the route and airport level.

This paper examines four potential flight operation objectives originally proposed by Rupp et al. (2005),

that carriers might pursue. There are a number of different competing objectives that carriers could follow

in making daily flight operation decisions in order to maintain existing flight schedules. First, route and

airport competition may motivate carriers to avoid lapses in service quality by limiting cancellations.

Second, carriers may attempt to avoid disruption of their network operations by limiting the cancellation

of flights to and from their hub airports. Third, carriers may choose to limit the number of passengers

displaced by a service interruption by conducting fewer cancellations of larger and fuller planes. Fourth,

carriers may protect their profits on high revenue routes by attempting to provide high service quality
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(fewer cancellations) on such routes.

We examine the effect of four classes of explanatory variables on flight cancellations. Following the

previously cited literature, our regressions include economic, competitive, logistical, and weather measures

at the route, airport, and aircraft level. We find evidence which suggests that route competition improves

service quality. At the airport level, however, flight cancellations are independent of airport concentration.

We find significantly fewer flight cancellations at hub airports, which highlights the importance of hub flights

in maintaining a flight network. There is considerable support for the hypothesis that carriers minimize

passenger inconvenience. We present some empirical evidence that links revenue with flight cancellations.

In the next section, we examine four potential flight operation objectives. We then describe the econometric

specification used in the empirical analysis. The data are discussed in section 3, and findings are presented

in section 4. We conclude the paper with some public policy implications for flight cancellations.

2 Flight Operation Objectives

We envision two types of cancellations. First, “stochastic cancels” are situations where the short run

supply of available aircraft is exogenously decreased (e.g., severe weather limits airport operations, or an

equipment failure/maintenance repair is necessary before the aircraft is operational). Second, “strategic

cancellations” are situations in which the airline cancels a flight for strictly economic reasons (e.g., low

passenger bookings). Note that economic factors can still play an important role even when stochastic

cancels occur since airlines may prioritize high-profit flights over low-profit flights.

2.1 Competition

Kranton (2003) presents a model where price competition in a market can eliminate the incentive for

firms to produce a high-quality good when consumers cannot observe the quality of the good prior to

purchase. Empirical research in a variety of industries such as public schools (Hoxby, 2000), health care

(Kessler and McClellan, 2000) and surface freight transportation (Ellig and Kelley, 2002) have found that

competition improves service quality, yet the competitive effects on service quality in the airline industry
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remain unclear. Mazzeo (2003) finds more competitive routes have better service quality in terms of less

frequent and shorter flight delays.4 Mayer and Sinai (2003b), however, report the opposite result that less

competitive routes provide better service. Oum et al. (2000) find mixed evidence of how competition affects

service quality in their examination of global airline alliances and international flight delays. At the airport

level, Brueckner (2002) and Mayer and Sinai (2003a) find more concentrated (less competitive) airports

have fewer flight delays.5 Given that the competitive effects on airline service quality are ambiguous, this

paper hopes to provide some insight into how one measure of airline service, flight cancellations, is affected

by route competition.

We explore three different variables to characterize route competition. First, since more than half of the

sample involves routes served by a single carrier, we examine monopolist routes to see if less competitive

routes have worse service quality. Second, market share, the proportion of daily scheduled flights on

route r provided by carrier j, provides a continuous measure of route-level competition. Finally, we track

the performance of routes served by two carriers to determine if performance differs for large and small

duopolists. Following Mayer and Sinai (2003b), the carrier with a larger (smaller) route market share is

the large (small) duopoly carrier. Hence the first potential operations objective is that carriers provide

better service quality on competitive routes in order to retain passengers.

2.2 Flight Network

The second hypothesis suggests that carriers give priority to hub origination and destination flights to

maintain their flight network. We define airline hub origination (destination) as carriers with 26 or more

connections at the origination (destination) airport. By not canceling hub origination flights, carriers can

keep their network intact. In addition, hub origination flights may have fewer cancellations than non-hub

flights due to some supply-side issues. Maintenance and/or staffing issues can be more easily addressed

for flights originating at a carrier’s hub airport due to the greater availability of spare parts, replacement

aircraft, mechanics, ground personnel, and flight crews. For example, Northwest Airlines has pilot bases

and flight attendant bases at all three of its U.S. hub airports (Memphis, Minneapolis/St. Paul, and

Detroit) and Northwest operates two U.S. maintenance bases in Minneapolis and Duluth, MN.
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Hub destination flights may have fewer flight cancellations than non-hub destination flights due to

demand side issues - carriers need these flights to arrive in order to keep their network intact and to enable

connecting passengers to reach their next flight. Morrison andWinston (1995, p. 44) report that at a typical

hub a majority of passengers make connections. In addition, flights destined for hubs are more likely to

haul passengers making international connections. Canceling a hub destination flight is more inconvenient

for both domestic and international connecting passengers. Discussions with flight operation employees

of mainline U.S. carriers confirm that carriers are concerned about getting passengers to international

destinations.

We further explore this flight network hypothesis by distinguishing the size of an airline’s hub. Similar to

Mayer and Sinai (2003a), we define airline hub sizes by the number of connecting flights at the origination

airport, such that airlines having 71 or more connections are large airline hub origination, between 46

and 70 connections medium airline hub origination, and between 26 and 45 connections small airline hub

origination. Hub airline operations at destination airports are defined in a similar manner. We expect that

the flight network effect is most pronounced for large airline hub origination & destination.

2.3 Passenger Inconvenience

The third hypothesis is that carriers attempt to limit passenger inconvenience from service disruptions.

Limiting inconvenience is related to the fourth hypothesized objective (revenue maximization) since the

number of passengers is also a component in the revenue calculation. We use four variables to measure the

magnitude of passenger inconvenience — additional planes needed, seating capacity, daily scheduled flights,

and last flight of day. First, the additional planes needed to accommodate displaced passengers after a flight

cancellation is defined as: load factor/(1-load factor), where load factor is the monthly average proportion

of total seats that are occupied by passengers for carrier j on route r. For example, if a route has an

average load factor of 0.75, then additional planes needed equals 0.75/0.25 = 3, where 3 is the approximate

number of additional planes needed to accommodate displaced passengers.6 Carriers can limit passenger

inconvenience by canceling flights on routes in which fewer additional planes are needed. Second, if carriers

are limiting passenger inconvenience, then we should find fewer cancellations for planes with larger seating
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capacity. Third, canceling a flight on a route with frequent daily service minimizes passenger inconvenience

since frequently served routes have shorter waiting periods until the next scheduled departure. Finally,

carriers can also reduce passenger inconvenience by not canceling the last flight of the day for carrier j

on route r.7 Getting the last flight to its destination also avoids some costly alternatives such as issuing

refunds, rebooking passengers on a competitor’s flight, and/or paying for overnight accommodations for

displaced passengers.8

2.4 Revenue Maximization

Neoclassical economic theory assumes that airlines maximize profits. Since route-level profitability figures

are unavailable and costs are likely more constant across routes than revenue, we use route revenue as a

profit proxy. There are likely to be both short-term and long-term aspects of the relationship between

revenue and service quality. In the short-term carriers may avoid canceling a high revenue flight in order

to avert costly passenger reimbursements to those who abort their trips due to service disruptions.9 If the

theoretical switching model, proposed by Suzuki (2000) and calibrated with aggregate US DOT data, is

accurate and passengers who experience poor service quality are more likely to switch carriers, then the

effect of a flight cancellation may also be felt long-term by the carrier. This may be especially true if

travelers blame flight cancellations on the carrier rather than a problem that is beyond the carrier’s control

(i.e., severe weather). Hence our fourth and final hypothesis is that carriers provide better service quality

on more profitable (high revenue) routes.

We consider three revenue measures including average revenue (quarterly average one-way passenger

fare multiplied by the monthly average number of occupied seats on the plane), potential revenue (quarterly

average one-way passenger fare multiplied by seating capacity of the plane), and yield (dollars per revenue

passenger mile). This paper is one of the first to link route revenue with flight service quality. Rupp et

al. (2005) find that higher potential revenue flights receive better service quality (fewer cancellations and

delays) after an airport reopens following a security-related airport closure. During irregular operations,

potential revenue may be the preferred revenue measure since every seat is likely to be taken after an airport

reopens due to the large number of flight cancellations. During normal operations, however, average revenue
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may be a better measure of lost revenue from a flight cancellation since average revenue does not assume

that all seats are occupied. Instead, this revenue measure assumes that the flight has the monthly average

passenger load. Although our examination of the revenue and service quality relationship is novel, previous

studies on airline prices have used yield (Windle and Dresner, 1999; Lee and Ito, 2004). Given that average

fares are higher for longer flights, all estimations control for flight length by including non-stop distance

blocks between airports for short flight (<400 miles) and middle distance (400 to 800 miles) flights.

2.5 Econometric Specification

We now specify the empirical model. Due to the presence of a discrete dependent variable (flight cancel-

lation), we employ a probit model to estimate our parameters of interest:

Lit = [Φ(Xitβ)]
zit [1−Φ(Xitβ)]

1−zit (1)

where zit = 1 if the ith flight on day t is canceled and 0 otherwise and Xit is a vector of carrier, route,

airport, weather, and time period characteristics. In addition, for a baseline of comparison with previous

flight delay studies, we present one estimation for the occurrence of a flight departure delay. Hence zit = 1

if the ith flight on day t departs more than 15 minutes after its scheduled departure time and 0 otherwise.

Given that we consider five different route competition measures, we compare the results of the models

using binary tests for model selection due to Davidson and MacKinnon (1993) and Vuong’s (1989) non-

nested test.10 Results of these tests, along with the comparisons of log-likelihood values, suggest that

models using monopoly as the route competition measure are better specified. Hence monopoly is the

default variable for route competition.

All flight cancellation and delay models control for individual carrier, month, year, and day of week

effects by using indicator variables.11 We do not present the estimated effects for day of week, month, and

specific carriers because they are intended as control variables, not as independent variables interesting

on their own. Nonetheless, the appendix reports coefficients, standard errors, and marginal effects for

these indicator variables for three estimated flight cancellation models reported on Table 3 which are
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representative of the indicator variable effects.

A limitation of this research is that we only observe the flight outcome (cancel or not cancel). A carrier,

however, makes additional choices and can update these decisions before the flight departs, all of these

decisions will influence the likelihood of a cancellation. For example, airlines can choose both the type

and size of an aircraft serving a route, hence carriers have considerable influence on load factor and total

passengers for each route. In addition, in the winter, the carrier may opt to direct larger planes through its

good weather hub and smaller planes through the hub with worse weather. Our weather variables control

for severe weather days, however, the point remains that carriers have considerable influence over some of

our explanatory variables. We also note that while the regressions do not account for every different model

or type of aircraft, the estimations in model 6 do account for aircraft manufacturer and aircraft age, two

potentially important choice variables.

2.6 Correlation Issues

We are concerned about correlation between the unobserved terms in three dimensions. First, intertem-

poral correlation within a route may exist. For example, airport-specific shocks (such as less experienced

employees or airport construction) may lead to this condition. Second, a similar argument would suggest

correlation across carriers within the same route. Furthermore, airlines may be more willing to offer poor

service on a route if the competition also offers poor service on the same route. Third, correlation within

carrier across “opposite” routes may exist. That is, if a flight from airport A to airport B is canceled,

then the flight from B to A may also be cancelled. The prototypical example is if a flight from a hub to an

outlying airport is canceled, then there is no aircraft in the outlying airport, so the return flight is canceled

by default.

We deal with the first two correlation types by estimating standard errors via block bootstrapping

(Härdle et al. 2002). We find that the bootstrapped standard errors are, on average, approximately

50% larger than the standard errors assuming independence. We deal with the third correlation issue by

randomly selecting flights in one direction only, either “A to B” or “B to A”, but not both.
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3 The Data

3.1 The Sample

Our data and a majority of the variables are constructed from individual flights obtained from the U.S.

Bureau of Transportation Statistics (BTS) TranStats database (www.transtats.bts.gov). Airlines with at

least 1 percent of domestic scheduled passenger revenues are required to submit monthly performance

reports to the BTS. Hence these flight data cover all nonstop scheduled-service domestic flights by the ten

largest mainline or “major” U.S. carriers,12 which account for more than 85 percent of domestic revenues

in 2000 (Air Travel Consumer Report, January 2001). The ten major carriers are required to report

flight operations in 29 U.S. airports. Beginning in 1995, every major airline has voluntarily reported all

domestic operations to the BTS. Prior to 1995, carriers did not report flight delays or cancellations due to

mechanical difficulties. The result is the best source of airline cancellation rates and on-time performance

data. Covering the period 1995-2002, Table 1 summarizes annual flight operations. The table shows that

the percentage of late arrivals has generally increased since 1995, reaching a peak in 2000 of 27 percent,

and a dramatic reduction in flight delays in 2002. Cancellation rates exhibit a similar pattern, increasing

each year between 1997 and 2001 with the highest cancellation rate of 3.3 percent occurring in 2000. More

recently, cancellation rates have fallen in 2001 and 2002. The percentage of flights diverted has remained

relatively constant, around 0.2 percent. Finally, on-time performance improved substantially in 2002 with

on-time arrival rates exceeding 80 percent and flight cancellations dropping to 1.2 percent.

[Place Table 1 about here]

We obtained every domestic flight in the U.S. between January 1995 and August 2001 from the BTS

TranStats database. We restrict our attention to the pre-September 11th period since we expect a massive

structural shift around this period (rendering pooling unappealing) and more data is available in the pre-

period than the post-period.13 Since there are approximately 35 million individual flights during this period,

to obtain a more manageable data set we are forced to reduce the sample size. As mentioned previously, the

sample is reduced by 50% to avoid correlation between routes serving the same two airports. Specifically,
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the sample only includes flights in one direction, either from airport A to airport B or from B to A. We also

omit days in which a carrier cancels more than 95% of their scheduled domestic daily flights. This criterion

drops days in which a labor strike prohibits flight operations. Next, we randomly select ten percent of the

remaining flights, resulting in a sample size of 1,447,096 individual flights.

All variables are constructed from the original data set, with only the estimations using the smaller

randomly selected sample. Individual flight data provide efficiency gains over monthly aggregate cancel-

lation data if the individual flight characteristics (e.g., departure time or daily precipitation), contribute

to the cancellation rate. Daily flight data enable us to control for day of the week effects. In fact, we

find significantly fewer flight cancellations for weekend flights (Thursday, Friday, and Sunday) compared to

Wednesday flights (see Appendix). Friday and Sunday are busy travel days given the surge of leisure trav-

elers on the weekends. Hence canceling such flights would be especially costly for carriers and inconvenient

for passengers. The Sunday marginal effect of -0.0055 from model (1) suggests that the cancellation rate for

Sunday is 0.55 percentage points lower than Wednesday. This percentage point reduction corresponds to

Sunday flights being approximately 21 percent less likely to be cancelled, compared to Wednesday flights,

given that the average flight cancellation rate in the sample is 2.56 percent.

The differences in the day of the week flight cancellation rates are not merely an artifact of varying

aircraft utilization rates among the days. We find little variation in the number of scheduled weekday

flights and a reduction in flight offerings on the weekend. Specifically, during the first eight months of

2001, the average number of daily scheduled U.S. domestic flights during a weekday varied little ranging

from a low of 17,081 (Wednesday) to a high of 17,565 (Monday). Flight offerings are lower on Saturdays and

Sundays by 14% and 5%, respectively when compared to the average number of weekday flights (17,222). If

cancellation rates were a function of aircraft utilization rates, then we should observe the lowest cancellation

rates on Saturday and little difference among the weekday cancellation rates. The results in the Appendix

suggest otherwise. In sum, these results suggest that flight cancellations may not be entirely random.

Consequently, all estimations include day-of-the-week indicators to control for important day of the week

effects.
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Descriptive statistics for the sample appear in Table 2. We separate flights into one of four categories:

non-hub airport pairs, hub to non-hub (or hub-spoke), non-hub to hub (or spoke-hub), and hub to hub

flights. Recall that a carrier must offer 26+ connecting flights at the airport to receive the “hub” designa-

tion. An examination of every domestic flight for all U.S. carriers in May 2001 reveals that hub-spoke and

spoke-hub flights each comprise 37% of the sample. Non-hub airport pairs and hub-hub flights encompass

21% and 5% of the sample, respectively. The non-hub airport pairs are not entirely comprised of South-

west Airlines flights. In fact, approximately half of the flights between non-hub airports are from network

carriers. We find that non-hub to non-hub flights (in comparison to all other flights) are typically shorter

distance, lower average fare, slightly smaller aircraft, and have lower load factor. In addition, we find some

of the lowest cancellation rates occur for these non-hub airport pairs.

[Place Table 2 about here]

Carriers provide an average of seven non-stop daily scheduled flights on a route. Five of every six flights

are on routes with limited competition. Specifically, monopoly and duopoly routes comprise 53 and 30

percent of the sample, respectively. One in nine flights (11 percent) originate from a slot-controlled airport

(i.e., New York LaGuardia (LGA), New York JFK, Washington Reagan National (DCA), and Chicago

O’Hare (ORD)). A ‘slot’ provides the carrier with a short window (typically 60 or 90 minutes) in which an

aircraft is allowed to land or take-off. Slots cannot be transferred nor can they be saved (i.e., the carrier

either uses the slot or loses it).

We match the tail numbers provided by the BTS to the FAA Aircraft Registry database, which enables

us to obtain aircraft characteristics such as seating capacity (the number of available seats on the aircraft),

manufacturer (i.e., McDonnell-Douglas, Airbus, etc.), and aircraft age (the number of years since the

aircraft was manufactured). Since we are unable to match tail numbers to the FAA registry database

for approximately half of the sample flights,14 only one estimation (see model 5) includes aircraft specific

characteristics.

We also match individual flights to quarterly passenger fare data from the Airline Origin and Desti-

nation (O&D) Survey, which is a 10% sample of airline tickets from reporting carriers, collected by the
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U.S. Office of Airline Information of the Bureau of Transportation Statistics and included in the TranStats

database. These fare data enable us to estimate the revenue of a particular flight. The sample average

fare of $166 reflects the nominal quarterly average one-way airfare for carrier j on route r. For round-trip

itineraries, the total ticket price is divided by two to obtain the one-way airfare. Average revenue is found

by multiplying average fare by the monthly average number of occupied seats for carrier j on route r,

which is obtained from the Air Carrier Statistics database (also known as T-100 data bank and available at

TranStats). The typical plane size of 162 seats has a potential revenue per flight of approximately $31,000.

Since the average load is two-thirds of capacity, the average revenue per flight is about $21,000. Finally,

yield is the carrier’s total quarterly revenue on route r divided by the total quarterly revenue passenger

miles on route r. One caveat regarding our revenue measures is that the O&D Survey data only provide

the average fare for a given quarter (monthly for load factor); hence we do not observe average fares paid

on a particular day and flight. For example, within the same day there may be considerable variation in

load factor and average fares due to differences in the scheduled departure time. Nonetheless, in these

data, quarterly revenue measures and monthly capacity observations provide the smallest possible level of

aggregation.

We obtain load factor from the TranStats database, which includes monthly T-100 domestic market

data. This variable is the monthly average proportion of total seats that were occupied by passengers for

carrier j on route r. Load factor is multiplied by the seating capacity of the aircraft in order to obtain

the monthly average number of occupied seats for the carrier. To account for the occurrence of cascading

delays during the day (Mazzeo, 2003), we include a continuous time measure, time01 which renormalizes

the scheduled departure time to between 0 (midnight) and 1 (23:59). Time01 and day of the week can

partially, but not perfectly, control for these within day and between day differences.

Since most airports are active weather reporting stations,15 we obtain daily weather data at origination

and destination airports from the U.S. National Oceanic & Atmospheric Administration (NOAA). These

weather measures include temperature, rain, and freezing rain. Minimum temperature origination (desti-

nation) is the minimum daily temperature (in Fahrenheit) at the origination (destination) airport. Rain

origination (destination) is the amount of daily precipitation (in hundredths of an inch) at the origina-
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tion (destination) airport. Finally, frozen precipitation origination (destination) is daily rain origination

(destination) multiplied by one if daily minimum temperature < 33, otherwise zero.16

The sample selection criteria drops days in which a carrier cancels 95% or more of its scheduled flights.

Since labor issues may cause a carrier to cancel a portion of its flights, we also use the ProQuest database

to search the Wall Street Journal for keyword combinations of airline (or carrier) and labor (or strike or

slow-down or sick-out or work-to-rules or CHAOS). Hence labor unrest is a binary variable, coded as one for

the month in which the Wall Street Journal reports that a carrier is experiencing a previously mentioned

labor issue and zero otherwise.

Since airport congestion is an important flight delay determinant (Mayer and Sinai, 2003a; Mazzeo,

2003), we include daily airport operations origination (destination), which is the total number of daily

take-offs and landings at the origination (destination) airport. We also include monthly indicators in all

estimations to control for both demand and seasonal fluctuations in cancellations which typically peak in

January for cold weather airports.

4 Results

4.1 Which Flights are Canceled?

This paper examines various route and airport competition measures, aircraft characteristics, flight rev-

enues, and airport size effects by estimating fourteen flight cancellation models and one flight delay model.

The latter enables a comparison with the flight delay literature. All estimated models include carrier, day

of the week, month, and year indicator variables. We also report marginal effects in Tables 3-8, which are

defined as the effect on the probability that the average flight is canceled. We begin by examining the first

hypothesis which proposes that route competition improves service quality.

4.1.1 Route Competition

Most results are consistent with this first hypothesis since three different route competition measures on

Table 3 all reveal a similar result that competitive routes have fewer flight cancellations.17 Model (1)
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indicates that monopoly routes have significantly more cancellations. This result is robust across a variety

of specifications since monopoly registers statistical significance in seven of nine estimated cancellation

models which exclude airport fixed effects. The marginal effects in model (1) are interpreted as follows:

monopoly routes have 0.23 percentage points higher cancellation rates which corresponds roughly to a 9%

increase in flight cancellations. In other words, for a carrier that has seven daily scheduled flights on a

route (or 2,555 scheduled flights a year), we estimate that a monopolist carrier would cancel an additional

six flights per year. In addition to more flight cancellations, we also find that monopoly routes have

significantly more departure delays (see Model 7). This latter result is also consistent with a delay study

by Mazzeo (2003).18

[Place Table 3 about here]

Higher flight cancellation rates for monopoly routes is especially interesting given that Borenstein and

Netz (1999) find that monopolist carriers have easier to maintain flight schedules due to greater departure

time differentiation which enables a monopolist to avoid peak travel congestion times. Borenstein and

Netz report that routes served by multiple carriers, which operate the same total number of flights, have

flight schedules with less departure-time differentiation (i.e., grouping departures around peak travel times)

compared to a monopolist which operates the same number of flights. Despite these easier to satisfy flight

schedules, we find that monopoly carriers have significantly more flight cancellations.

Model (2) reveals marginally higher (significant at the 10% level) cancellation rates for carriers with

higher route level market share. This finding of worse service quality for carriers with greater market

share is consistent with the previously discussed monopoly results. Model (3) examines the performance

of both monopoly and duopoly carriers. We find that monopoly and small duopoly carriers have more

cancellations. Surprisingly, large duopoly carriers are neither more likely nor less likely to cancel flights.

Given the similar results for these three route competition measures and since a majority of routes (53%)

are served by monopoly carriers, the paper uses monopoly as the default measure of route competition. We

also note that improvements in service quality from competition are limited to route competition and do

not extend to airport competition.19
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Sincemonopoly routes are more prevalent at smaller airports,20 the increase in flight cancellations maybe

driven by an airport effect (i.e., lack of mechanics at small airports) rather than a monopoly effect. To

control for airport effects, model (5) includes dummy variables for each origination and destination airport.

We find that themonopoly coefficient retains its positive sign, however, loses its statistical significance. This

finding indicates that monopoly routes are experiencing more cancellations due to an airport effect rather

than a monopoly effect. Finally, we should note that we find few notable changes in the airport fixed effects

estimation (comparing models 4 & 5 on Table 4). This suggests that our results (other than monopoly)

appear robust to this alternative specification. In sum, the estimations that exclude airport fixed effects

indicate that competitive routes have lower flight cancellation rates. Once we control for airport specific

effects, however, the link between monopoly routes and flight cancellations dissipates. Next, we turn our

attention to the second hypothesis that carriers provide better service to and from their hub airports in

order to maintain their flight network.

4.1.2 Flight Network

The estimated cancellation models reveal a consistent and overwhelming result that both airline hub

origination and destination flights have significantly fewer cancellations. These airline hub effects are non-

trivial. For example, model (1) indicates that cancellation rates are 28% lower for airline hub origination

flights and 26% lower for airline hub destination flights. We attribute these results to the previously

discussed demand and supply side issues. Carriers want to avoid canceling flights originating from their hubs

to keep their flight network operating. The supply-side issues for fewer airline hub origination cancellations

include better access to maintenance facilities, ground personnel, replacement flight crews, and spare parts.

On the other hand, demand-side issues arise for fewer airline hub destination cancellations since car-

riers need these aircraft to arrive at the hub in order to maintain their flight network. An examination

of late night scheduled departures (between 10 p.m. and 11 p.m.) reveals that cancellation rates are 26%

lower for airline hub destination flights.21 This finding suggests that carriers are positioning themselves

for normal hub operations the following day. In addition, airline hub destinations typically involve con-

necting passengers some of whom may be bound for an international destination. Hence canceling an
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airline hub destination flight is inconvenient for connecting passengers, and especially so for international

bound travelers. We should also note that better service (i.e., fewer cancellations) for hub airlines is a

stark contrast to the flight delay literature (Mayer and Sinai, 2003a & 2003b; Mazzeo, 2003) which has

extensively documented worse hub service (i.e., both more frequent and longer delays) for hub origination

and destination flights.

To further explore this flight network hypothesis, model (4) examines the size of an airline’s hub. If this

network hypothesis holds, then carriers should provide better service at larger airline hubs. In fact, we find

that flight cancellations monotonically decrease as the size of a carrier’s hub increases for both origination

and destination airports. For example, the marginal effects for large (-0.011), medium (-0.010), and small

(-0.004) airline hub originations correspond to a reduction in the flight cancellation rate of 41%, 37%, and

16% respectively. Once again, the better performance at larger hub airports is likely due to larger hubs

having more available resources.

[Place Table 4 about here]

We also find fewer flight cancellations at larger airline hub destinations. Specifically, large, medium,

and small airline hub destinations have 40%, 33%, and 27% respectively, lower flight cancellation rates.

Our discussions with airline operations personnel revealed that airlines have a keen interest in the welfare

of international travelers. Hence we attribute the better performance for hub-bound flights to more inter-

national travelers making connections. For example, in May 2001, large hub destination airports had an

average of 33.67 scheduled daily international departures, while medium and small hub destinations had

14.19 and 10.10 daily international departures, respectively. In comparison, non-hub destinations offered

an average of 0.21 daily international departures during this same time period.

Since carriers can choose the location of their hub airport, we expect hub airports to have more favorable

weather conditions. While all regressions control for daily weather conditions at both origination and

destination airports, nonetheless model (5) includes airport dummy variables to control for airport specific

effects. We find that all hub airline size variables maintain their statistical significance. Once again the

larger hubs have the largest impact on reducing flight cancellations. We should note that the inclusion of
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airport fixed effects does reduce the magnitude of the airline hub coefficients and marginal effects. In sum,

there is overwhelming evidence to support the second hypothesis that carriers seek to maintain their flight

networks. Next, we turn our attention to the third hypothesis that carriers limit passenger inconvenience.

4.1.3 Passenger Inconvenience

There is considerable evidence which suggests that carriers minimize passenger inconvenience by not can-

celing fuller planes, infrequently served routes, and the final flight of the day. Moreover, these results

are robust across various modeling specifications. Specifically, every estimated model indicates that can-

cellations are less common on routes that require more additional planes needed to transport displaced

passengers following a flight cancellation. This nonlinear measure of seat occupancy rates shows that fuller

planes have fewer cancellations.22 Fewer cancellations for planes with higher occupancy rates does come

at a cost, since model (7) suggests that routes with fuller planes take longer to load and hence experience

more frequent flight delays, a result consistent with Rupp et al. (2005). In sum, we find that full planes

are more likely to be delayed yet less likely to be canceled.

Carriers that offer more daily scheduled flights on a route are more likely to cancel a flight. We do not,

however, attribute this result to congestion since the daily total airport operations at both origination and

destination are co-variates and should control for airport congestion. Instead, we believe that canceling

a flight on a route with frequent daily service limits passenger inconvenience since carriers have more

opportunities to accommodate displaced passengers and hence minimize the waiting time until the next

flight. Shorter waiting periods also discourage passengers from making the costly demand of being re-

booked on another carrier. Using the estimated parameters from model (1), figure (1) graphs both the

predicted and actual probability of a flight cancellation as a carrier schedules more daily flights on a route.

This figure reveals that as the number of daily scheduled flights increases, holding all other characteristics

constant, the probability of a flight cancellation also increases. Restricting the graph to routes in which a

carrier schedules between 0 and 16 daily flights (95 percent of all flights in our sample are on routes with

16 or fewer daily flights), we find that the predicted cancellation rates mirror the actual rates.

[Place Figure 1 about here]
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Model (6) controls for a variety of aircraft characteristics including: age, number of seats, and manu-

facturer. We find significantly fewer cancellations for younger aircraft, while the estimates reveal no link

between cancellations and aircraft manufacturer or seating capacity.

[Place Table 5 about here]

We find a consistent and significant result across all estimated models: fewer cancellations for the last

flight of day. This result highlights another distinction between flight delays and cancellations, since Mayer

and Sinai (2003b) document more departure delays for last flight of day. To verify that the reduction in

last flight of the day cancellations is not merely due to the fact that carriers typically have a surplus of

idle aircraft late at night, we exam evening departures (8 p.m. to 9 p.m.) and night departures (9 p.m.

to 10 p.m.). Last flight of day comprises 73% and 86% of the evening and night departure, respectively.

We use separate scheduled departure intervals to control for the availability of idle/replacement aircraft

and level of airport congestion. Carriers have fewer rescheduling options (i.e., alternative routings or other

carriers’ flights) when the last flight of day occurs later in the day. This may explain why the last flight of

day for evening departures is neither more likely nor less likely to be canceled (see model 8). Whereas we

find significantly fewer last flight of day cancellations for night departures (see model 9).

[Place Table 6 about here]

We also examined scheduled departures between 3 a.m. and 8 a.m. to see how carriers handled

morning cancellations (i.e., they wake up with a broken plane). The results from model (10) reveal that

many of the same factors (revenue, load factors, number of daily flights, poor weather, etc.) which influence

cancellations throughout the day also generate early morning cancellations. We find a 1 percentage point

reduction (40% drop) in early morning cancellations for hub origination flights. On the other hand, early

morning airline hub destination flights have significantly higher (21% increase) cancellation rates. This is

likely due to mandatory rest periods for flight crews (i.e., all flight crew members must have 9 consecutive

hours of rest for each 24 hour period). Since most airline hub destination flights (88%) are not originating

from the carrier’s hub, there are fewer substitute flight crews available to replace ineligible flight crews.
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Finally, we note that morning departures are more likely to cancel the last flight of day. We do not place

too much importance to this result given that less than 5% of early morning departures receive the last

flight of day designation and numerous rebooking alternatives exist for passengers displaced early in the

morning.

The above results suggests that carriers limit passenger inconvenience and avoid costly overnight reim-

bursements by not canceling the last flight of day (especially at night) since this would force passengers

to either rebook on a competing carrier or unexpectedly spend a night at the airport or departure city.

Neither of these options is very appealing for the carrier, hence the lower cancellation rates for last flight

of day. Alternatively, better performance for last flight of day could also be considered as evidence sup-

porting the “flight network hypothesis” since getting the final daily flight to its scheduled destination sets

the carrier up for regular operations the following day. In sum, we find considerable support for the third

hypothesis that carriers minimize passenger inconvenience by not canceling fuller planes, flights on routes

with infrequent scheduled service, and the last flight of day.

4.1.4 Revenue Maximization

The fourth and final hypothesized airline objective is that carriers maximize revenues. Average revenue

is our preferred flight revenue proxy since it assumes that aircraft are carrying the average number of

passengers for that route and carrier, whereas potential revenue represents an upper-bound of lost revenue

from a flight cancellation due to the assumption that every seat is taken. The empirical estimations show

overwhelming evidence (11 of 13 models) that average revenue is significant and inversely correlated with

flight cancellations.

Table 7 reveals that average revenue has an impact at mid-size airports (100 to 400 total daily opera-

tions) and an even larger impact at small-size airports (< 100 total daily operations). The typical flight

from a small airport involves a small plane, flying a short distance, with a high average fare, and is destined

for a carrier’s hub airport. Recall that average one-way fare is constructed from non-stop tickets, hence

connecting passenger fares are excluded. Small airports also have the highest proportion of connecting

passengers.23 Consequently, average revenue at small airports may serve as a rough proxy for actual flight
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revenue since it is compiled from a small subset of travelers who are purchasing non-stop tickets. Finally,

discussions with a commuter airline operations manager reveal that a shortfall in flight revenue is sufficient

justification for a flight cancellation. The manager also remarked that: “I wish our (mainline) parent

company had the same policy”.

[Place Table 7 about here]

We find no link between our alternative route revenue measure, potential revenue (see model 14) and

flight cancellations. In addition, the yield results were also uninformative and hence not reported. In sum,

we find some support for the hypothesis that carriers maximize revenues when making flight cancellation

decisions. The revenue-flight cancellation link is most prominent at small and mid-size airports. Caution,

however, should be exerted before inferring too much from these findings for three reasons. First, most

of the average revenue results are sensitive to the empirical specification.24 Second, while we observe

individual flight outcomes, we do not observe individual flight revenues. Instead, we use the lowest level

of revenue data aggregation available to us, quarterly averages of route revenue. Given this crude revenue

proxy, it is somewhat surprising that we are able to detect any pattern at all between revenues and flight

cancellations. Third, we get different results across the three route revenue measures. While the airline

industry typically uses yield to measure revenue, we opt to use a flight-based revenue proxy rather than

a seat-based revenue variable. For example, a large aircraft (300+ seats) may have the same yield as a

small regional jet (70 seats), yet the revenue from these flights will be substantially different. Improved

flight-based revenue measures remain an area for future research.

[Place Table 8 about here]

4.1.5 Logistical Issues

We now briefly discuss other important logistical and weather variables. It is not surprising that airport

congestion (measured by daily total airport operations) particularly at the destination is positively cor-

related with flight cancellations, since flight delays due to airport congestion have been well documented

(Mayer and Sinai, 2003a; Mazzeo, 2003). This congestion result may explain why Southwest Airlines, the
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carrier with the best historical on-time performance record (Air Travel Consumer Report, March 2003),

is reluctant to enter markets with congested airport facilities (Oh and Wiggins, 2001; Boguslaski et al.

2004). Model (11) reveals that most large U.S. airports (>400 daily take-offs and landings) are capacity

constrained since an increase in scheduled flight operations is correlated with higher cancellation rates. The

problem of airport congestion is most acute at the nation’s four slot-controlled airports. Model (15) shows

that both slot origination and destination airports have significantly higher cancellation rates. This result

is likely due to the nature of a slot, which entitles the carrier to use the slot (land/depart typically within

a 60 minute window) or lose it.

Time01 registers significantly higher cancellation rates in most estimated models which suggests an

increase in flight cancellations for flights scheduled later in the day. A carrier may opt to cancel a flight

rather than experience cascading delays (Mazzeo, 2003) for the remainder of the day. The airport size

estimations in Table 7 indicate that the small airports experience the majority of late-in-the-day flight

cancellations. For example, the marginal effect of 0.0132 for time01 in model (8) suggests that the cancel-

lation rate for an 8 p.m. departure at small airports is 0.52 percentage points (or 20 percent) higher than

an 8 a.m. departure.

Flight cancellation decisions appear to be independent of flight length since a majority of the flight

cancellation models have insignificant estimates for short flight and middle distance. Not surprisingly,

carriers that are experiencing labor unrest have higher cancellation rates. Finally, as expected, severe

weather (rain and frozen precipitation) at both origination and destination airports increases the likelihood

of a flight cancellation with frozen precipitation causing a larger service disruption than rain.

4.2 Cancellations vs. Delays

In this section we analyze the similarities and differences between the economics of flight cancellations

and delays.25 In some instances cancellations and delays behave like substitute goods where a carrier

can trade-off a flight cancellation to avoid additional delays. In other cases, cancellations and delays act

like complementary goods that occur in unison and hence cannot be mitigated. First, we will present

the evidence of a trade-off between cancellations and delays. We find that an increase in the number of
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additional planes needed to accommodate displaced passengers (i.e., higher load factor) reduces the flight

cancellation rate, yet increases the likelihood of a flight delay (see model 7). Rupp et al. (2005) document

a trade-off between cancellations and delays at slot-controlled airports during irregular operations as slot

airports have more cancellations yet fewer delays. A flight cancellation and delay trade-off also occurs at

hub airline airports with origination and destination hubs having fewer cancellations yet hub airlines are

subject to more flight delays (Mayer and Sinai, 2003a).

Next, we also find some evidence that cancellations are merely extended flight delays, with the same

economic and external factors that contribute to delays also causing flight cancellations. For example, we

find worse service quality (more cancellations and departure delays) on less competitive routes. In addition,

flight schedules appear to deteriorate during the day since time01 indicates that evening departures are

subject to more cancellations and more departure delays than morning flights. We also find that airport

congestion, labor unrest, and poor weather conditions all contribute to both more delays and cancellations.

Passengers may view flight cancellations and long delays differently since the rights to the airline seat

are quite different. For example, after a flight cancellation all passengers lose their right to a seat on that

flight, and hence must be re-accommodated. If there are not enough available seats on the next flight,

some passengers will be forced to wait until an even later flight. In comparison during an extended flight

delay, all passengers still retain their seat rights on the original flight.

5 Conclusion

This paper extends the literature on airline service quality by examining determinants of flight cancella-

tions. Since the Airline Deregulation Act of 1978, airlines have attracted Congressional attention due to

disgruntled passengers, employee strikes, proposed mergers, and financial concerns. This study proposes

four possible airline flight operations objectives that carriers might pursue in order to satisfy existing flight

schedules. We find that more competitive routes have lower cancellation rates. Since monopoly routes are

especially prevalent at smaller “Podunk” airports which lack mechanics, we attribute the increase in flight

cancellations on monopoly routes to an airport effect rather than a monopoly effect. We find considerable
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support for the hypothesis that carriers maintain their flight network by canceling flights to and from their

hubs less frequently. Moreover, this hub airline effect (for both origination and destination airports) is

strongest for large hub operations. There also is substantial evidence which shows that carriers minimize

passenger inconvenience by not canceling fuller planes, infrequently served routes, and the final flight of

the day. Finally, we find some support for the revenue maximization objective since the estimations reveal

a significant reduction in cancellations on routes with higher average revenue.

There are some limitations for this research. Many factors that are observable to the airlines are not

observable to us. For example, we treat airline’s resources such as ground crews, flight crews, replacement

aircraft, and maintenance personnel as exogenous. In fact, such decisions are endogenous for each airline.

Carriers can have more reliable schedules if they build in more redundancy (i.e., stand-by flight crews and

aircraft) in the schedule. Built-in redundancy, however, is a costly way to reduce flight cancellations. One

way carriers manage their redundancy levels is by taking aircraft out-of-service for regularly scheduled

maintenance checks on light travel days (i.e., Tuesdays and Wednesdays). This enables carriers to have

more aircraft available and hence higher levels of redundancy on the busier travel days (i.e., holidays &

weekends). More redundancy on the weekends may explain the reduction in cancellations on Thursday,

Fridays, and Sundays.

We are now able to address the public policy question posed in the introduction: how might airline

consolidation influence flight cancellations? If consolidation causes a reduction in route competition (i.e.,

more monopolist routes), then these estimates suggest that an increase in flight cancellations would likely

occur. Specifically, we estimate that a 10 percent increase in the number of monopoly routes in the U.S.,

holding everything else unchanged, would increase the cancellation rate by 0.023 percentage points (or

about 1 percent).

More generally, what public policy implications can be gleaned from this analysis? Although severe

weather events are clearly beyond the control of airlines, the findings that cancellation rates are significantly

lower on Thursdays, Fridays and Sundays and on routes with infrequent daily service suggest that flight

cancellations are not random events. Finally, given that we find considerable support for the hypothesis

that carriers are limiting passenger inconvenience in addition to maintaining their existing flight networks,
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we see little need for active government intervention to improve service quality. Instead, we advocate

for greater transparency from the U.S. Department of Transportation on the causes of flight cancellations.

Specifically, the DOT should begin collecting data on the causes of flight cancellations (much like they have

done for flight delays since June, 2003) and publicize their findings in order to break the misperception

that all flight cancellations are beyond the carriers’ control. This news might motivate carriers to improve

service quality and may help weary air travelers sleep a little easier.
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Notes

1The complaint rate increase in the last couple of years is a relatively recent development since Morrison and Winston

(2000, p. 20) show that complaints against U.S. carriers per billion revenue passenger miles are relatively constant between

1990 and 1998.

2We are aware of only two other studies examining cancellations. An earlier version of Mayer and Sinai (2003a) included

one cancellation regression. This regression, however, was omitted in the final published version of the paper. Rupp et al.

(2005) examine flight cancellations during irregular operations (i.e., security-related airport closures).

3http://www.transtats.bts.gov/OT Delay/OT DelayCause1.asp accessed 2 March 2004.

4For related flight delay literature see Foreman and Shea (1999).

5We also find shorter delays at more concentrated origination and destination airports.

6This variable is an approximation since we observe monthly load factor averages, rather than actual passenger bookings

for specific flights. Further we assume every aircraft on the route has the same seating capacity.

7A few flights (primarily red-eye flights from the West to the East coast of the U.S.) are scheduled to depart the following

day, shortly after midnight. Hence flights scheduled before 3:00 a.m. are treated as the “same day” for the last flight of day

designation.

8While there is no FAA regulation that requires airlines to assist displaced passengers, most U.S. carriers provide overnight

accommodations if the cancellation is caused by events within the carriers’ control (e.g., see the Customer Service Plan for

American Airlines at www.aa.com). On 17 February 2005, a new European Union (EU) rule came into effect that guarantees

monetary compensation for airline passengers who are bumped or whose flights are delayed or canceled at all EU airports

(europa.eu.int/comm/transport/air/rights/index en.htm).

9Norman Strickland, Assistant Director for the Office of Aviation Enforcement and Proceedings, stated on 25 September

2001 that “refunds should be provided upon request to passengers who wish to cancel their trips as a result of a flight

cancellation or significant schedule change made by the carrier” (airconsumer.ost.dot.gov/rules/20010925.htm).

10The Davidson-MacKinnon test is comparable to the J-test commonly used in testing regression models.

11Since the revenue measures are defined at the route level, we exclude indicator variables for route effects.

12The major carriers include Alaska, America West, American, Continental, Delta, Northwest, Southwest, TWA, United,

and US Airways. In 2001, two additional major carriers were added: Aloha and American Eagle. These data exclude commuter

airlines such as US Airways Express or Delta Connection.
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13See Lee and Ito (2005) for an analysis of how the September 11th terrorist attacks impacted U.S. airline demand.

14This is due to (i) missing tail numbers, (ii) incorrectly recorded tail numbers, and (iii) tail numbers that are no longer

active in the FAA registry database. In situations where the tail number (and hence seating capacity) is unknown, seating

capacity is found by substituting the median value of seats on comparable flights (i.e., same flight number, route, carrier,

month, and year).

15In cases of missing weather data, we use the nearest weather reporting station within twenty-five miles.

16Since many NOAA weather stations do not report wind speed and daily snowfall totals, we must exclude wind as a

weather variable. We construct our own snowfall measure by interacting temperature and precipitation.

17Two additional route competition measures were also considered: (i) the daily number of carriers serving route r; and

(ii) effective competitors (the inverse of the Herfindahl index for all carriers serving route r each day). Routes with more

carriers have significantly fewer flight cancellations. We find, however, no link between the number of effective competitors

and flight cancellations. These results are available upon request.

18Mayer and Sinai (2003b), however, use a sample of 3 million flights between 1988 and 2000 and find better on-time

performance for monopoly routes.

19We also examined the competitive influences on service quality at the airport level by including airport concentration at

both the origination and destination airports. We found little evidence that airport concentration affected flight cancellations

in a predictable manner.

20For example, in May 2001, 83% of all flights at small airports involve monopoly routes, whereas monopoly routes comprise

65% and 40% of flights from medium and large airports, respectively.

21These results are available upon request of the authors.

22We also find evidence that the linear seating capacity measure load factor is inversely correlated with flight cancellations.

We opt to use the additional flights needed variable due to the large nonlinear effects of load factor.

23For example, in May 2001, the proportion of local passengers originating from small, medium, and large airports was

28.5%, 47.4%, and 46.4% respectively.

24Specifically, average revenue loses its statistical significance in most estimations if the non-linear load factor (additional

planes needed) is replaced by a linear load factor measure.

25For an in-depth look at the relationship between flight delays and cancellations see Rupp (2005) which uses a nested logit

model to examine on-time flight arrivals, delays, and cancellations.
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Table 1: Summary of Domestic Flights by U.S. Carriers On-time Performance1, 1995-2002

Scheduled Flights Pecent Percent Percent  Percent 
Year Flights Canceled On-time Late   Canceled Diverted
1995 5,327,435   91,905       76.65       21.43       1.73         0.20
1996 5,351,983   128,536     71.87       25.46       2.40         0.26
1997 5,411,843   97,763       75.91       22.06       1.81         0.22
1998 5,384,721   144,509     74.27       22.80       2.68         0.24
1999 5,527,884   154,311     73.07       23.89       2.79         0.25
2000 5,683,047   187,490     69.04       27.41       3.30         0.25
2001 5,967,780   231,198     73.07       23.89       2.79* 0.25
2002 5,267,770   64,981       80.75       17.86       1.23         0.16

Average 5,490,308   137,587     74.33       23.10       2.34         0.23

1Source: Bureau of Transportation Statistics (www.bts.gov/oai/on_time_2002/), 
accessed 1/30/2004. U.S. carriers include: Alaska, America West, American,
Continental, Delta, Northwest, Southwest, TWA, United, US Airways.

*Because of the shutdown of the air transportation system as a result of the terrorist attacks 
on September 11, 2001, the BTS granted air carriers waivers that we would not count the forced
cancellations against the air carriers' on-time performance ratings.  Hence, the "Percent Canceled" 
does not reflect these forced cancellations. For historical purposes, however, the number of "Flights
canceled" includes all cancellations regardless of reason.  



Table 2: Descriptive Statistics: 5% sample of all daily domestic flights by U.S. carriers, 
January 1995 to August 2001

  Variable Obs Mean Std. Dev.
Proportion Canceled 1,545,085  0.0256 0.1578
Proportion Delayed 1,545,085  0.1857 0.3889
Economic Variables
Potential Revenue (in $10,000s) 1,447,095  0.3054 0.2145
Load Factor (Monthly Average) 1,545,085  0.6702 0.1253
Additional Planes Needed 1,529,413  2.6642 2.2392
Yield (dollars per revenue passenger mile) 1,544,653  0.3541 0.3283
Average One-way Fare (Quarterly Average) 1,544,653  165.9045 79.3885
Average Revenue (in $10,000s) 1,447,096  0.2073 0.1589
Route Competition Variables
Effective Competitors 1,545,085  1.4576 0.5833
Number of Carriers 1,545,085  1.6511 0.8351
Monopoly Route 1,545,085  0.5288 0.4992
Route Market Share 1,545,085  0.7809 0.2681
Small duopoly carrier 1,545,085  0.1012 0.3016
Large duopoly carrier 1,545,085  0.2036 0.4027
Airport Competition Variables
Airline Hub Origination 1,545,085  0.4052 0.4909
       Large Airline Hub Origination 1,545,085  0.1680 0.3738
       Medium Airline Hub Origination 1,545,085  0.1306 0.3370
       Small Airline Hub Origination 1,545,085  0.1066 0.3087
Airline Hub Destination 1,545,085  0.4579 0.4982
       Large Airline Hub Destination 1,545,085  0.1921 0.3940
       Medium Airline Hub Destination 1,545,085  0.2056 0.4042
       Small Airline Hub Destination 1,545,085  0.0601 0.2377
Airport Concentration Origination 1,545,085  0.0143 0.0822
Airport Concentration Destination 1,545,085  0.0156 0.0886
Slot Origination 1,545,085  0.1116 0.3148
Slot Destination 1,545,085  0.1659 0.3720
Aircraft Characteristics
Aircraft Age 1,042,056  11.1812 7.1492
Airbus 1,123,649  0.0443 0.2057
McDonnell-Douglas 1,123,649  0.2072 0.4053
Seating Capacity of Aircraft 1,060,197  162.2064 51.3258
Logistical Variables
Daily Total Airport Operations Orig. 1,545,085  6.1891 4.4511
Daily Total Airport Operations Dest 1,545,085  6.7667 5.0148
Daily Scheduled Flights 1,545,085  7.0840 4.7813
Last Flight of Day 1,545,085  0.1776 0.3822
Time01 1,545,085  0.5660 0.1974
Short Flight (< 400 miles) 1,545,085  0.4419 0.4966
Middle Distance (400 to 800 miles) 1,545,085  0.3429 0.4747
Labor Unrest 1,545,085  0.0585 0.2346
Weather Variables
Minimum Temperature Origination 1,545,085  51.1134 17.1647
Minimum Temperature Destination 1,545,085  49.7770 18.3997
Rain Origination 1,545,085  9.6895 31.6288
Rain Destination 1,545,085  9.8150 32.3273
Frozen Precipitation Origination 1,545,085  0.6169 5.0238
Frozen Precipitation Destination 1,545,085  0.7420 5.5027



Table 3: Probit Estimations of Flight Cancellations - The Effect of Route Competition
Dependent Variable: Flight Cancellations for Domestic Flights by U.S. Carriers, January 1995 - August 2001.
Model (1) (2) (3)

Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff.
Route Competition Variables
Monopoly 0.0527 ** 0.0103 0.0023 0.0630 ** 0.0149 0.0028
Market Share  0.0385  0.0203 0.0017
Large Duopoly Carrier   0.0065  0.0140 0.0003
Small Duopoly Carrier   0.0370 * 0.0178 0.0017
Hub Variables
Airline Hub Origination -0.1672 ** 0.0139 -0.0071 -0.1656 ** 0.0141 -0.0071 -0.1652 ** 0.0143 -0.0070
Airline Hub Destination -0.1544 ** 0.0136 -0.0067 -0.1427 ** 0.0133 -0.0062 -0.1580 ** 0.0138 -0.0069
Economic Variables    
Average Revenue (in $10,000s) -0.0999 * 0.0470 -0.0044 -0.0970 * 0.0465 -0.0043 -0.0950 * 0.0473 -0.0042
Additional Planes Needed -0.0957 ** 0.0045 -0.0042 -0.0943 ** 0.0045 -0.0042 -0.0951 ** 0.0045 -0.0042
Logistical Variables
Daily Total Airport Operations Orig. 0.0012  0.0014 0.0001 0.0002  0.0014 0.0000 0.0007  0.0014 0.0000
Daily Total Airport Operations Dest 0.0074 ** 0.0014 0.0003 0.0058 ** 0.0015 0.0003 0.0072 ** 0.0014 0.0003
Daily Scheduled Flights 0.0348 ** 0.0011 0.0015 0.0352 ** 0.0012 0.0015 0.0352 ** 0.0011 0.0015
Last Flight of Day -0.0594 ** 0.0094 -0.0025 -0.0524 ** 0.0095 -0.0022 -0.0580 ** 0.0093 -0.0025
Time01 0.0361 * 0.0177 0.0016 0.0281  0.0177 0.0012 0.0356 * 0.0176 0.0016
Short Flight (< 400 miles) -0.0104  0.0154 -0.0005 -0.0030  0.0154 -0.0001 -0.0112  0.0154 -0.0005
Middle Distance (400 to 800 miles) -0.0161  0.0154 -0.0007 -0.0156  0.0154 -0.0007 -0.0173  0.0156 -0.0008
Labor Unrest 0.3098 ** 0.0190 0.0182 0.3103 ** 0.0191 0.0183 0.3098 ** 0.0190 0.0182
Weather Variables
Minimum Temperature Origination 0.0000  0.0004 0.0000 -0.0002  0.0004 0.0000 -0.0001  0.0004 0.0000
Minimum Temperature Destination -0.0033 ** 0.0005 -0.0001 -0.0033 ** 0.0005 -0.0001 -0.0032 ** 0.0005 -0.0001
Rain Origination 0.0022 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001
Rain Destination 0.0022 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001
Frozen Precipitation Origination 0.0122 ** 0.0005 0.0005 0.0122 ** 0.0005 0.0005 0.0122 ** 0.0005 0.0005
Frozen Precipitation Destination 0.0106 ** 0.0005 0.0005 0.0106 ** 0.0005 0.0005 0.0106 ** 0.0005 0.0005
Constant -1.7813 ** 0.0475 -1.7728 ** 0.0483 -1.7950 ** 0.0469
Log Likelihood -155,175 -155,204 -155,169
Pseudo R-squared 0.086 0.086 0.086
Number of Observations 1,447,096 1,447,096 1,447,096
Note: Bootstrapped standard errors are reported. Regressions include carrier, day of week, month, and year dummy variables.
Marginal effects are defined as the effect on the probability that the average flight is cancelled. * and ** indicate significance at the 5% and 1% levels.
 



Table 4: Flight Cancellation Probits - The Effect of Airline Hubbing
Dependent Variable: Flight Cancellations for Domestic Flights by U.S. Carriers, January 1995 - August 2001.
Model (4) (5)

Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff.
Route Competition Variable
Monopoly 0.0969 ** 0.0124 0.0042 0.0310  0.0305 0.0013
Hub Size Variables   
Large Airline Hub Origination -0.2910 ** 0.0230 -0.0105 -0.2469 ** 0.0394 -0.0087
Medium Airline Hub Origination -0.2660 ** 0.0192 -0.0095 -0.1342 ** 0.0384 -0.0050
Small Airline Hub Origination -0.0982 ** 0.0147 -0.0040 -0.0572 * 0.0250 -0.0023
Large Airline Hub Destination -0.2766 ** 0.0227 -0.0102 -0.1482 ** 0.0430 -0.0056
Medium Airline Hub Destination -0.2188 ** 0.0170 -0.0084 -0.1172 ** 0.0378 -0.0045
Small Airline Hub Destination -0.1846 ** 0.0230 -0.0068 -0.0734 * 0.0361 -0.0028
Economic Variables   
Average Revenue (in $10,000s) -0.1556 ** 0.0451 -0.0068 -0.5146 ** 0.0559 -0.0213
Additional Planes Needed -0.0953 ** 0.0045 -0.0042 -0.0568 ** 0.0047 -0.0024
Logistical Variables   
Daily Total Airport Operations Orig. 0.0076 ** 0.0016 0.0003 0.0065  0.0079 0.0003
Daily Total Airport Operations Dest 0.0132 ** 0.0016 0.0006 0.0323 ** 0.0063 0.0013
Daily Scheduled Flights 0.0351 ** 0.0011 0.0015 0.0258 ** 0.0023 0.0011
Last Flight of Day -0.0612 ** 0.0094 -0.0026 -0.0718 ** 0.0100 -0.0028
Time01 0.0410 * 0.0177 0.0018 0.0571 ** 0.0184 0.0024
Short Flight (< 400 miles) 0.0041  0.0155 0.0002 -0.0734  0.0375 -0.0030
Middle Distance (400 to 800 miles) -0.0038  0.0154 -0.0002 -0.1040  0.0621 -0.0042
Labor Unrest 0.3081 ** 0.0189 0.0180 0.3258 ** 0.0184 0.0184
Weather Variables   
Minimum Temperature Origination -0.0006  0.0004 0.0000 0.0005  0.0005 0.0000
Minimum Temperature Destination -0.0030 ** 0.0004 -0.0001 -0.0026 ** 0.0005 -0.0001
Rain Origination 0.0022 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001
Rain Destination 0.0021 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001
Frozen Precipitation Origination 0.0122 ** 0.0005 0.0005 0.0123 ** 0.0005 0.0005
Frozen Precipitation Destination 0.0106 ** 0.0005 0.0005 0.0104 ** 0.0005 0.0004
Constant -1.8142 ** 0.0481 -1.7049 --1

Airport Fixed Effects No Yes
Log Likelihood -155,044 -153,205
Pseudo R-squared 0.087 0.0971
Number of Observations 1,447,096 1,444,774
Note: Bootstrapped standard errors are reported. Regressions include carrier, day of week, month,
and year dummy variables. Marginal effects are defined as the effect on the probability that the
average flight is cancelled. * and ** indicate 5% and 1% significance levels, respectively.
 
1Bootstrapped standard error for the constant is not consistent, since the regressions are not guaranteed 
to have the identical excluded referent airports across the bootstrapped samples.



Table 5: Probit Estimations of Flight Cancellations & Delays - The Effect of Aircraft Characteristics
Flight Cancellations and Departure Delays1 for Domestic Flights by U.S. Carriers, January 1995 - August 2001.
Dependent Variable Flight Cancellation Departure Delay
Model (6) (7)

Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff.
Route Competition Variable
Monopoly 0.0970 ** 0.0209 0.0000 0.0569 ** 0.0066 0.0145
Hub Size Variables   
Airline Hub Origination -0.1317 ** 0.0248 0.0000 0.0062  0.0088 0.0016
Airline Hub Destination -0.1055 ** 0.0241 0.0000 -0.1003 ** 0.0093 -0.0256
Economic Variables
Average Revenue (in $10,000s) -0.2930 * 0.1349 -0.0001 0.1353 ** 0.0204 0.0346
Additional Planes Needed -0.0643 ** 0.0092 0.0000 0.0114 ** 0.0012 0.0029
Aircraft Characteristics
Aircraft Age 0.0048 ** 0.0010 0.0000
Airbus 0.0413  0.0305 0.0000
McDonnell-Douglas 0.0012  0.0182 0.0000
Seating capacity of aircraft -0.0003  0.0002 0.0000
Logistical Variables
Daily Total Airport Operations Orig. 0.0075 ** 0.0026 0.0000 0.0123 ** 0.0008 0.0031
Daily Total Airport Operations Dest 0.0089 ** 0.0030 0.0000 0.0108 ** 0.0009 0.0028
Daily Scheduled Flights 0.0264 ** 0.0033 0.0000 0.0058 ** 0.0009 0.0015
Last Flight of Day -0.0262  0.0171 0.0000 -0.0805 ** 0.0059 -0.0201
Time01 -0.0006  0.0366 0.0000 1.1965 ** 0.0126 0.3063
Short Flight (< 400 miles) -0.0871 ** 0.0281 0.0000 -0.0157  0.0112 -0.0040
Middle Distance (400 to 800 miles) -0.0916 ** 0.0289 0.0000 0.0499 ** 0.0097 0.0129
Labor Unrest 0.1933 ** 0.0303 0.0001 0.2428 ** 0.0129 0.0683
Weather Variables
Minimum Temperature Origination -0.0040 ** 0.0006 0.0000 -0.0007 ** 0.0003 -0.0002
Minimum Temperature Destination -0.0011  0.0007 0.0000 -0.0012 ** 0.0003 -0.0003
Rain Origination 0.0023 ** 0.0002 0.0000 0.0036 ** 0.0001 0.0009
Rain Destination 0.0018 ** 0.0002 0.0000 0.0025 ** 0.0001 0.0006
Frozen Precipitation Origination 0.0132 ** 0.0009 0.0000 0.0111 ** 0.0004 0.0028
Frozen Precipitation Destination 0.0100 ** 0.0008 0.0000 0.0078 ** 0.0004 0.0020
Constant -8.2865 ** 0.3470 -1.9450 ** 0.0287
Log Likelihood -29,215 -654,924
Pseudo R-squared 0.215 0.060
Number of Observations 749,467 1,447,096
Note: Bootstrapped standard errors are reported. Regressions include carrier, day of week, month,
and year dummy variables. Marginal effects are defined as the effect on the probability that the
average flight is cancelled. * and ** indicate 5% and 1% significance levels, respectively.



Table 6: Probit Estimations of Flight Cancellations - The Effect of Scheduled Departure Time
Dependent Variable: Flight Cancellations for Domestic Flights by U.S. Carriers, January 1995 - August 2001.
Model (8) (9) (10)
Scheduled Departure Time: Evening (8pm - 9pm) Night (9pm - 10pm) Early Morning (3am - 8am)

Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff.
Route Competition Variables
Monopoly 0.2930 ** 0.0731 0.0091 0.5507 ** 0.1600 0.0150 0.0582  0.0363 0.0024
Hub Variables   
Airline Hub Origination -0.2624 ** 0.0701 -0.0082 -0.4784 0.1436 -0.0137 -0.2463 ** 0.0659 -0.0103
Airline Hub Destination -0.0233  0.0912 -0.0007 0.0032  0.1284 0.0001 0.1249 * 0.0551 0.0054
Economic Variables   
Average Revenue (in $10,000s) -0.8542 * 0.3678 -0.0266 -0.1194  0.2638 -0.0031 -1.1597 ** 0.2503 -0.0470
Additional Planes Needed -0.0632 ** 0.0151 -0.0020 -0.1375 ** 0.0314 -0.0035 -0.0833 ** 0.0165 -0.0034
Logistical Variables   
Daily Total Airport Operations Orig. -0.0103  0.0067 -0.0003 0.0203  0.0152 0.0005 0.0078  0.0075 0.0003
Daily Total Airport Operations Dest -0.0098  0.0107 -0.0003 0.0087  0.0213 0.0002 0.0048  0.0051 0.0002
Daily Scheduled Flights 0.0172 ** 0.0065 0.0005 -0.0098  0.0129 -0.0003 0.0457 ** 0.0040 0.0019
Last Flight of Day 0.0155  0.0594 0.0005 -0.3039 ** 0.0793 -0.0095 0.1484 ** 0.0426 0.0058
Time01 2.2234  1.8516 0.0693 -8.0084 ** 2.4284 -0.2054 -3.8509 ** 1.2472 -0.1560
Short Flight (< 400 miles) 0.4219 ** 0.1154 0.0127 0.2320  0.1727 0.0062 0.0394  0.0841 0.0016
Middle Distance (400 to 800 miles) 0.7830 ** 0.1306 0.0409 0.6346 ** 0.2173 0.0316 0.0049  0.0934 0.0002
Labor Unrest 0.2377 ** 0.0765 0.0095 0.4792 ** 0.0741 0.0202 0.4343 ** 0.0603 0.0269
Weather Variables   
Minimum Temperature Origination 0.0016  0.0018 0.0000 0.0007  0.0024 0.0000 0.0018  0.0015 0.0001
Minimum Temperature Destination -0.0036  0.0020 -0.0001 -0.0023  0.0022 -0.0001 0.0005  0.0016 0.0000
Rain Origination 0.0033 ** 0.0004 0.0001 0.0035 ** 0.0004 0.0001 0.0038 ** 0.0002 0.0002
Rain Destination 0.0021 ** 0.0004 0.0001 0.0028 ** 0.0005 0.0001 0.0030 ** 0.0003 0.0001
Frozen Precipitation Origination 0.0118 ** 0.0017 0.0004 0.0136 ** 0.0025 0.0003 0.0163 ** 0.0015 0.0007
Frozen Precipitation Destination 0.0110 ** 0.0017 0.0003 0.0073 ** 0.0020 0.0002 0.0102 ** 0.0013 0.0004
Constant -4.4770 ** 1.6788 5.1172 * 2.3890 0.8731  1.0531
Log Likelihood -3,634 -2,577 -7,054
Pseudo R-squared 0.116 0.159 0.157
Number of Observations 42,270 31,036 62,807
Last Flight of Day (Percentage) 73.0% 85.8% 4.9%
Note: Bootstrapped standard errors are reported. Regressions include carrier, day of week, month, and year dummy variables.
Marginal effects are defined as the effect on the probability that the average flight is cancelled. * and ** indicate significance at the 5% and 1% levels.



Table 7: Probit Estimations of Flight Cancellations - The Effect of Airport Size
Dependent Variable: Flight Cancellations for Domestic Flights by U.S. Carriers, January 1995 - August 2001.
Model (11) (12) (13)
Sample Large Airports Medium Airports Small Airports

Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff.
Route Competition Variables
Monopoly 0.0896 ** 0.0135 0.0043 -0.0958 ** 0.0207 -0.0033 0.0798  0.0740 0.0038
Hub Variables   
Airline Hub Origination -0.1923 ** 0.0189 -0.0092 -0.1623 ** 0.0288 -0.0047
Airline Hub Destination -0.1605 ** 0.0177 -0.0072 -0.1290 ** 0.0300 -0.0042 -0.0505  0.0595 -0.0026
Economic Variables   
Average Revenue (in $10,000s) -0.0429  0.0517 -0.0020 -0.5110 ** 0.0965 -0.0166 -1.0304 ** 0.2468 -0.0518
Additional Planes Needed -0.1105 ** 0.0052 -0.0052 -0.0598 ** 0.0095 -0.0019 -0.0600 ** 0.0112 -0.0030
Logistical Variables   
Daily Total Airport Operations Orig. 0.0070 ** 0.0018 0.0003 -0.0139  0.0124 -0.0005 0.0161  0.0529 0.0008
Daily Total Airport Operations Dest 0.0101 ** 0.0018 0.0005 0.0002  0.0038 0.0000 -0.0064  0.0041 -0.0003
Daily Scheduled Flights 0.0370 ** 0.0013 0.0017 0.0487 ** 0.0028 0.0016 0.0264 ** 0.0065 0.0013
Last Flight of Day -0.0878 ** 0.0112 -0.0038 -0.0752 ** 0.0195 -0.0023 -0.0466  0.0239 -0.0023
Time01 0.0394  0.0205 0.0018 0.0244  0.0413 0.0008 0.2626 ** 0.0620 0.0132
Short Flight (< 400 miles) -0.0743 ** 0.0197 -0.0034 -0.1876 ** 0.0400 -0.0060 0.1907 * 0.0947 0.0085
Middle Distance (400 to 800 miles) -0.0726 ** 0.0193 -0.0033 -0.1087 ** 0.0336 -0.0034 0.0094  0.0914 0.0005
Labor Unrest 0.2954 ** 0.0210 0.0181 0.4074 ** 0.0398 0.0202 0.2413 ** 0.0418 0.0152
Weather Variables   
Minimum Temperature Origination -0.0002  0.0005 0.0000 0.0005  0.0008 0.0000 0.0028 ** 0.0010 0.0001
Minimum Temperature Destination -0.0037 ** 0.0005 -0.0002 -0.0018 * 0.0008 -0.0001 -0.0064 ** 0.0012 -0.0003
Rain Origination 0.0026 ** 0.0001 0.0001 0.0014 ** 0.0002 0.0000 0.0020 ** 0.0002 0.0001
Rain Destination 0.0022 ** 0.0001 0.0001 0.0021 ** 0.0002 0.0001 0.0021 ** 0.0001 0.0001
Frozen Precipitation Origination 0.0130 ** 0.0007 0.0006 0.0109 ** 0.0011 0.0004 0.0109 ** 0.0009 0.0005
Frozen Precipitation Destination 0.0107 ** 0.0007 0.0005 0.0109 ** 0.0010 0.0004 0.0094 ** 0.0011 0.0005
Constant -1.7722 ** 0.0625 -1.7928 ** 0.1060 -1.9378 ** 0.2014
Log Likelihood -106,497 -29,122 -18,898
Pseudo R-squared 0.093 0.075 0.064
Number of Observations 926,628 357,360 163,108
Note: Bootstrapped standard errors are reported. Regressions include carrier, day of week, month, and year dummy variables.
Marginal effects are defined as the effect on the probability that the average flight is cancelled. * and ** indicate significance at the 5% and 1% levels.
Airport size is based on the number of daily airport operations (take-offs and landings): Large (> 400 daily operations), Medium (100-400) & Small (<100).



Table 8: Flight Cancellation Probits - The Effect of Flight Revenue & Slot Controlled Airports 
Dependent Variable: Flight Cancellations for Domestic Flights by U.S. Carriers, January 1995 - August 2001.
Model (14) (15)

   Coeff Std. Error Marg. Eff.  Coeff Std. Error Marg. Eff.
Route Competition Variable
Monopoly 0.0523 ** 0.0103 0.0023 0.0702 ** 0.0106 0.0031
Hub Variables  
Airline Hub Origination -0.1745 ** 0.0139 -0.0074 -0.1193 ** 0.0139 -0.0051
Airline Hub Destination -0.1596 ** 0.0136 -0.0069 -0.1034 ** 0.0137 -0.0045
Slot Origination 0.1327 ** 0.0160 0.0065
Slot Destination 0.1765 ** 0.0149 0.0088
Economic Variables
Potential Revenue (in $10,000s) -0.0045  0.0298 -0.0002
Average Revenue (in $10,000s) -0.2014 ** 0.0469 -0.0088
Additional Planes Needed -0.0971 ** 0.0043 -0.0043 -0.0858 ** 0.0043 -0.0038
Logistical Variables  
Daily Total Airport Operations Orig. 0.0015  0.0014 0.0001 -0.0007  0.0013 0.0000
Daily Total Airport Operations Dest 0.0077 ** 0.0014 0.0003 0.0002  0.0015 0.0000
Daily Scheduled Flights 0.0345 ** 0.0011 0.0015 0.0316 ** 0.0010 0.0014
Last Flight of Day -0.0590 ** 0.0094 -0.0025 -0.0717 ** 0.0093 -0.0030
Time01 0.0375 * 0.0177 0.0016 0.0440 ** 0.0176 0.0019
Short Flight (< 400 miles) 0.0119  0.0151 0.0005 -0.0167  0.0156 -0.0007
Middle Distance (400 to 800 miles) 0.0011  0.0150 0.0000 -0.0646 ** 0.0156 -0.0028
Labor Unrest 0.3091 ** 0.0190 0.0181 0.3139 ** 0.0191 0.0185
Weather Variables  
Minimum Temperature Origination 0.0000  0.0004 0.0000 -0.0002  0.0004 0.0000
Minimum Temperature Destination -0.0033 ** 0.0005 -0.0001 -0.0025 ** 0.0005 -0.0001
Rain Origination 0.0022 ** 0.0001 0.0001 0.0022 ** 0.0001 0.0001
Rain Destination 0.0022 ** 0.0001 0.0001 0.0021 ** 0.0001 0.0001
Frozen Precipitation Origination 0.0122 ** 0.0005 0.0005 0.0122 ** 0.0005 0.0005
Frozen Precipitation Destination 0.0106 ** 0.0005 0.0005 0.0106 ** 0.0005 0.0005
Constant -1.8173 ** 0.0478 -1.8525 ** 0.0480
Log Likelihood -155,185 -154,861
Pseudo R-squared 0.086 0.088
Number of Observations 1,447,096 1,447,096
Note: Bootstrapped standard errors are reported. Regressions include carrier, day of week, month,
and year dummy variables. Marginal effects are defined as the effect on the probability that the
average flight is cancelled. * and ** indicate 5% and 1% significance levels, respectively.



Appendix Table 1: Dummy Variables from Flight Cancellation Models (1, 2, & 3)
(1) (2) (3)

Carrier Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff. Coeff Std. Error Marg. Eff.
Alaska -0.0805 * 0.0353 -0.0033 -0.1044 ** 0.0347 -0.0041 -0.0752 * 0.0353 -0.0031
Aloha -0.4782 ** 0.0655 -0.0130 -0.4677 ** 0.0661 -0.0128 -0.4854 ** 0.0654 -0.0131
American Eagle 0.3763 ** 0.0298 0.0243 0.3827 ** 0.0302 0.0249 0.3808 ** 0.0298 0.0247
America West 0.1185 ** 0.0256 0.0059 0.1213 ** 0.0257 0.0060 0.1180 ** 0.0257 0.0058
Continental 0.0010  0.0175 0.0000 0.0065  0.0177 0.0003 0.0059  0.0178 0.0003
Delta 0.0369 * 0.0157 0.0017 0.0490 ** 0.0160 0.0022 0.0376 * 0.0157 0.0017
Northwest 0.1918 ** 0.0208 0.0100 0.1988 ** 0.0208 0.0104 0.1937 ** 0.0209 0.0101
Southwest -0.4252 ** 0.0230 -0.0136 -0.4144 ** 0.0231 -0.0134 -0.4253 ** 0.0232 -0.0136
TWA 0.1183 ** 0.0237 0.0058 0.1327 ** 0.0237 0.0067 0.1218 ** 0.0239 0.0060
United 0.1395 ** 0.0135 0.0068 0.1406 ** 0.0135 0.0069 0.1431 ** 0.0136 0.0070
US Airways 0.1338 ** 0.0159 0.0065 0.1432 ** 0.0161 0.0071 0.1325 ** 0.0160 0.0065
Month
January -0.1030 ** 0.0214 -0.0041 -0.1077 ** 0.0214 -0.0043 -0.1010 ** 0.0212 -0.0041
February -0.1669 ** 0.0222 -0.0063 -0.1710 ** 0.0222 -0.0065 -0.1652 ** 0.0221 -0.0063
March -0.2171 ** 0.0224 -0.0079 -0.2217 ** 0.0224 -0.0081 -0.2162 ** 0.0222 -0.0079
April -0.2261 ** 0.0197 -0.0081 -0.2290 ** 0.0197 -0.0082 -0.2252 ** 0.0197 -0.0081
May -0.1240 ** 0.0160 -0.0049 -0.1256 ** 0.0162 -0.0050 -0.1233 ** 0.0160 -0.0049
June 0.0198  0.0182 0.0009 0.0191  0.0182 0.0009 0.0197  0.0182 0.0009
August -0.0261  0.0149 -0.0011 -0.0259  0.0150 -0.0011 -0.0259  0.0149 -0.0011
September -0.1524 ** 0.0176 -0.0059 -0.1524 ** 0.0175 -0.0059 -0.1515 ** 0.0176 -0.0058
October -0.2365 ** 0.0176 -0.0085 -0.2389 ** 0.0178 -0.0085 -0.2357 ** 0.0176 -0.0084
November -0.3502 ** 0.0220 -0.0112 -0.3542 ** 0.0221 -0.0113 -0.3489 ** 0.0218 -0.0112
Decemeber -0.2552 ** 0.0230 -0.0090 -0.2609 ** 0.0229 -0.0091 -0.2535 ** 0.0228 -0.0089
Year
1996 -0.0258  0.0160 -0.0011 -0.0251  0.0159 -0.0011 -0.0253  0.0158 -0.0011
1997 -0.1307 ** 0.0168 -0.0053 -0.1303 ** 0.0169 -0.0053 -0.1306 ** 0.0168 -0.0053
1998 -0.0062  0.0151 -0.0003 -0.0068  0.0152 -0.0003 -0.0062  0.0152 -0.0003
1999 0.0530 ** 0.0150 0.0024 0.0520 ** 0.0150 0.0024 0.0524 ** 0.0150 0.0024
2000 0.1377 ** 0.0154 0.0066 0.1376 ** 0.0154 0.0066 0.1371 ** 0.0154 0.0066
Day of Week
Monday 0.0014  0.0095 0.0001 0.0013  0.0095 0.0001 0.0014  0.0095 0.0001
Tuesday 0.0066  0.0097 0.0003 0.0065  0.0097 0.0003 0.0065  0.0097 0.0003
Thursday -0.0217 * 0.0095 -0.0009 -0.0218 * 0.0095 -0.0009 -0.0217 * 0.0095 -0.0009
Friday -0.0397 ** 0.0105 -0.0017 -0.0399 ** 0.0105 -0.0017 -0.0398 ** 0.0105 -0.0017
Saturday -0.0164  0.0114 -0.0007 -0.0180  0.0114 -0.0008 -0.0161  0.0114 -0.0007
Sunday -0.1405 ** 0.0104 -0.0056 -0.1411 ** 0.0104 -0.0056 -0.1402 ** 0.0105 -0.0055




