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The changing global climate has sparked an interest in how these changes are affecting the
intensity and frequency of extreme weather events such as thunderstorms and tornadoes be-
cause these extreme events pose a significant threat to life, property, and economic stability.
This article uses and evaluates several spatio-temporal statistical extreme value models to
model extreme weather from reanalysis data observed across the continental United States
and Mexico. The models find that the intensity of extreme weather is particularly high for
the central United States. Additionally, the intensity of extreme weather is increasing over
time but the amount of increase may not be practically significant.
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1. INTRODUCTION

Changes in frequency and intensity of extreme weather events (e.g. thunderstorms and tor-
nadoes) as a result of global climate change is of great concern as these events pose a significant
threat to life, property, and economic stability. Developing models which are able to assess tem-
poral and spatial trends in extreme events is, therefore, important in understanding the effects of
these events. Modeling extreme events, however, is difficult for several reasons. For example,
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the coarse resolution of current climate models renders them incapable of capturing fine scale
extreme events. Thus, modeling large-scale indicators of extreme weather is often considered
as a viable alternative to modeling the extreme events directly (see Gilleland et al. 2008). For
example, Brooks et al. (2003) found that a combination of convective available potential energy
(CAPE) in Joules/Kg and wind shear (WS) in meters/second are associated with atmospheric
conditions that exist during the occurrence of thunderstorms and tornadoes.

Even when using large-scale indicators of extreme events, modeling extreme weather can
be difficult due to its highly skewed distribution. For example, Figure 1 displays a histogram
of extreme values of WmSh � WS �Wmax P R� from the reanalysis data set (described in
Section 2) where the transformation Wmax � ?

2� CAPE allows Wmax to be on the same
scale as WS. Needless to say, because the events of interest lie in the tail of the distribution,
appropriate statistical models for extreme events need to account for heavy tails such as those
displayed in Figure 1.

In an effort to understand the spatial and temporal trend of extreme weather, this article de-
velops statistical models for the large scale indicator of extreme weather WmSh. By modeling
WmSh, rather than WS and CAPE jointly, the outcome is univariate which greatly reduces
the complexity of the statistical models. Specifically, this article poses several spatio-temporal
statistical models which account for varying degrees of spatial and temporal trends in WmSh. A
special distinction should be made in that models forWmSh are not models for extreme weather,
but, rather, an indicator of conditions for extreme weather to occur. Thus, the models considered
in this article are for large-scale indicators of extreme weather which can be useful for monitoring
and predicting conditions where extreme weather events can occur. The data under consideration
are reanalysis data from the National Center for Atmospheric Research (NCAR) and the National
Center for Environmental Prediction (NCEP) reanalysis project. Section 2 provides a description
of the reanalysis project and the data set used in this article.

The remainder of this article is outlined as follows. Section 3 provides a review of univariate
extreme value theory including the generalized extreme value (GEV) distribution for block max-
ima, the generalized Pareto distribution (GPD) for threshold exceedences, and a point process
characterization of extremes (PPE). An exploratory data analysis is performed in Section 4 using
the GEV and the GPD approaches. Based on the results of the exploratory analysis, Section 5
suggests three Bayesian hierarchical models for extreme weather in increasing complexity. The
results of the fitted models are discussed in Section 6. A discussion of the work undertaken in
this article, along with possible future research directions, are provided in Section 7.
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2. THE NCAR/NCEP REANALYSIS DATASET

The reanalysis project (see Kalnay et al. 1996) is a collaborative effort between the National
Center of Environmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR). The main purpose of this project was to produce relatively high-resolution global anal-
yses of atmospheric fields over a long time period. Covering the years 1957 through 2002,
the reanalysis data contains observations from each time index synthesized using a static data
assimilator. The component datasets included global rawinsonde data, comprehensive ocean-
atmosphere data, aircraft data, surface land synoptic data, satellite sounder data, special sens-
ing microwave/imager data (surface wind speeds), and satellite cloud drift winds. The different
stages of the project can be outlined as data preparation, preprocessing, assimilation module, re-
analysis output and the climate data assimilation system (CDAS) for future use. For a complete
description of the project see Kalnay et al. (1996) and see Kistler et al. (2001) for the related
documentation.

This article uses reanalysis data of CAPE andWS measured at 884 grid points on a 1.4�1.4

degree grid across the United States and adjacent regions over the 42-year period 1958 - 1999. A
few days over this time span are not available leading to 15,300 total measurements of CAPE
and WS at each location. This article uses the transformation WmSh � WS �Wmax to reduce
the dimensionality of the data. For a brief description of the reanalysis data on a global scale, see
Brooks et al. (2003).

3. REVIEW OF EXTREME VALUE THEORY

Let X be a random variable with distribution function FXp� | θq, where θ is a vector of
parameters and x1, . . . , xn are n iid observations from FXp� | θq. When considering extreme
events, the primary concern is with the tail behavior of FXp� | θq, hence only those observations
that are considered “extreme” are used for the analysis. As such, the use of distributions in the
exponential family as a model for extreme events is not appropriate. Additionally, substituting
a plug-in estimator, say pθ, into FXp� | θq frequently results in significant discrepancies between
PrpX ¥ u | pθq and PrpX ¥ u | θq for large u. Rather than working with FXp� | θq directly,
extreme value theory works with families of extreme value distributions to directly model the tail
behavior.

3.1 The Generalized Extreme Value Distribution for Block Maxima

Consider the extreme event defined by Mn � maxpx1, . . . , xnq. If FXp� | θq is known, then
the distribution function of Mn can be calculated directly as PrpMn ¤ mq � FXpm | θqn. This
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distribution function, however, is not practically useful because PrpMn ¤ mq Ñ 0 as n Ñ 8
for any m such that FXpm | θq   1. If normalizing sequences an and bn ¡ 0 exist such that
PrppMn � anq{bn ¤ mq Ñ Gpm;µ, σ, ξq, where Gpm;µ, σ, ξq is a non-degenerate distribution,
then Gpm;µ, σ, ξq is given by,

Gpx;µ, σ, ξq � exp

"
�
�
1� ξ

�x� µ

σ

	��1{ξ

�

*
, (1)

where µ is a location parameter, σ ¡ 0 is a scale parameter, ξ is a shape parameter, and pxq� �
maxp0, xq. The distribution function (1) is referred to as the generalized extreme value (GEV)
distribution. The shape parameter ξ controls the tail behavior of the distribution. For ξ ¡ 0 the
tail of G decays polynomially, when ξ Ñ 0 the tail decays exponentially, and when ξ   0 the
distribution has an upper bound (Coles 2001).

In practice, the GEV distribution is used to obtain probabilities for block maxima where the
blocks are generally determined by some natural division such as years. For example, if xki
is the ith observation in block k, the parameters in (1) would be fit using the block maxima
Mk � maxpxk1, . . . , xknq. The main disadvantage of the block maxima approach for extremes is
that much of the observed data is discarded, which may be a problem if data are already scarce.

3.2 The Generalized Pareto Distribution for Threshold Exceedances

To avoid the loss of data issue encountered in the block maxima approach, consider the ex-
treme event X ¡ x � u | X ¡ u for a large threshold u such that all X ¡ u is retained for
analysis. Defining Y � X � u | X ¡ u, extreme value theory finds, under certain conditions,
PrpY ¤ yq Ñ Hpy;ψ, ξq as uÑ suptx : FXpx | θq   1u, where,

Hpy;ψ, ξq � 1�
�
1� ξ

y

ψ

��1{ξ

�

, (2)

ψ ¡ 0 is a scale parameter, and ξ is the shape parameter. The distribution given by (2) is referred
to as the generalized Pareto distribution (GPD). The GPD and the GEV distribution are related to
each other in that ψ � σ � ξpu � µq, and ξ in the GEV distribution is theoretically the same as
that in the GPD.

The GPD is used to characterize extreme events defined by exceedances over a high threshold
u. The advantage of using the GPD instead of the GEV distributions to model extremes is that
the GPD retains all the data which fall over the threshold u. Thus the amount of data used to fit a
GPD may be markedly higher than if only the block maxima are considered. The disadvantage of
using the GPD is that PrpY ¤ yq Ñ Hpy;ψ, ξq does not hold for a particular choice of u, and the
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resulting estimated parameters are threshold dependent as shown through the reparameterization
from GPD scale ψ � σ� ξpu�µq to GEV scale. However, asymptotic theory suggests selecting
a large enough u such that PrpY ¤ yq � Hpy;ψ, ξq. In practice, u is typically estimated from
the data using mean residual life plots (see Coles 2001, Section 4.3.1) or, as is the approach used
in this paper, setting u to be some large quantile of the observed values. Alternatively, Cooley
et al. (2007) use the fact that estimates of ξ should be stable beyond a sufficiently large u and
fit (2) using several different values u1, . . . , uK to obtain pξ1, . . . , pξK and then choose u to be the
minimum ui such that pξi � pξi�1 � � � � � pξK . Regardless of the approach, once chosen, u is
treated as fixed and (2) is assumed to be a good approximation to PrpY ¤ yq for the remainder of
the analysis. An alternative to selecting a single u was proposed by Behrens et al. (2004) which
estimated u probabilistically by assigning a prior distribution to u and estimating u via Markov
chain Monte Carlo (MCMC) methods, but their results were inconclusive, and thus not employed
here.

3.3 A Point Process Characterization of Extremes

Smith (1989) merged the GEV approach and the GPD approach for extremes by developing
a point process characterization for extremes (PPE). Instead of viewing the value of extreme
events as a univariate outcome, consider the bivariate process pt, Zq, where t, the time at which
Z � X | X ¡ u is observed, is also a random variable. Under certain normalization criteria,
Smith (1989) showed that the bivariate process pt, Zq behaves as a non-homogeneous Poisson
process with intensity,

λpt, zq � 1

σ

�
1� ξ

�z � µ

σ

	��1{ξ�1

�
, (3)

where µ, σ, and ξ are the corresponding parameters of the GEV distribution. Taking time to
be discrete and considering regions of the form D � t1, . . . , T u � pu,8q, then following the
arguments outlined in Chapter 7 of Coles (2001), the likelihood of the observed data pti, ziq is,

Lpµ, σ, ξ | tti, ziuq � exp

"
�
»
D
λpt, zqdzdt

*¹
i

λpti, ziq (4)

� exp

"
�T

�
1� ξ

�u� µ

σ

	��1{ξ

�

*¹
i

λpti, ziq,

where T is the number of years of observed data. The main advantage of using the point process
is that the GEV parameters (which easily extend to include spatial and temporal effects) are
retained while still using all observations that exceed the threshold u. Additionally, because the
PPE is defined in terms of the GEV parameters, parameter estimates are not tied to the threshold
u as in the GPD approach.
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The parameters in (1), (2), and (4) can be difficult to interpret. Thus, extreme value models
often interpret the estimated parameters in terms of r-year return levels. Intuitively, the r-year
return level is defined as the value so extreme that it is only exceeded once every r years. Math-
ematically, the r-year return level, RLr, solves the equation PrpX ¡ RLrq � prnyq�1 for RLr,
where ny is the number of observations taken per year. For example, using the GPD, RLr is
given by,

RLr � u� ψ

ξ
ppny � r � ζuqξ � 1q, (5)

where ζu � PrpX ¡ uq. When using the point process approach, calculation of RLr relies on
the identity ψ � σ � ξpu� µq.

4. EXPLORATORY DATA ANALYSIS

The primary goal of this paper is to develop an extreme value model for large-scale indicators
of ideal conditions for extreme weather events. Specifically, the goal is to build an extreme value
model for WmSh � WS �Wmax, where Wmax �

?
2� CAPE, wind shear (WS) measures

the vertical shear of the tropospheric horizontal winds in meters/second (m/s), and CAPE is
the convective available potential energy of the atmosphere measured in Joules/Kg. By modeling
WmSh, rather thanWS andCAPE jointly, the outcome is now univariate which greatly reduces
the complexity of the models.

An exploratory analysis of the data is first conducted to expose any spatial and temporal
patterns, so that these patterns can be appropriately accounted for in the models proposed in
Section 5. The need to account for spatial correlation is extant, as weather is inherently spatial
and does not affect regions in space independently. What is unknown is the degree to which the
spatial structure needs to be accounted for in a well-posed statistical model. Not so obvious,
however, is whether or not a temporal component is needed. Indeed, the behavior of WmSh

over time is one of the primary research questions of this article. Thus, an exploratory analysis is
useful to investigate what degree of spatial and temporal effects need to be accounted for in the
modeling.

Let xtdpslq be the observed value of WmSh on day d in year t at location sl. Furthermore,
let µpslq, σpslq, ψpslq and ξpslq be the corresponding parameters in (1) and (2) at location sl for
the l � 1, . . . , 884 spatial locations of the reanalysis data. For the reanalysis data considered
here, having a fixed u across all locations would be problematic because each s P S has vastly
different values of WmSh. Thus, for large u, the data at several sites would be thrown out
completely. Rather, the threshold is determined to be spatially varying, in that upsq is fixed
at the 95th percentile of txtdpsq : t � 1, . . . , 42; d � 1, . . . , 365u. This value for upsq was
chosen because it is high enough such that exceedances can be considered to be in the tail of the
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distribution, while low enough to retain a sufficient portion of the data at each location. A map
of this upsq is shown in Figure 2. Of note in this figure is the long narrow band of consistently
higher WmSh values in the central United States extending from South Dakota down through
Texas and into Mexico. This band of higher intensity WmSh is accounted for by the models
discussed in section 5.

To explore the spatial pattern in the distribution of WmSh, each observation is treated as
independent across space, and maximum likelihood estimates of the GEV parameters µpslq, σpslq,
ψpslq and ξpslq are obtained using the extRemes package in R (Gilleland et al. 2004). The
estimated 20-year return levels are plotted in Figure 3. The most notable spatial pattern in return
levels of Figure 3 occurs in the mid-western United States and along the Gulf of Mexico where
the return levels are notably higher. Plots of the maximum likelihood estimates (MLEs) pµpslq,pσpslq, pξpslq and pψpslq (not shown) display similar spatial patterns to those in Figure 3, suggesting
that spatial structure could be built into any or all of these parameters.

To investigate possible temporal patterns, the location and scale parameters for the GEV
model are extended to include a temporal effect for year, such that µpslq and σpslq become
µtpslq � β0pslq � β1pslq � t and logpσtpslqq � α0pslq � α1pslq � t, respectively, where t de-
notes the year. Again assuming independence across space, a distinct GEV distribution is fit at
each location. It is found that, of the pβ1pslq, 13% are significantly positive and 5% significantly
negative, while of the pα1pslq, 5% are significantly positive and 1% significantly negative (these
tests are performed without multiplicity correction at the 5% significance level and, thus, the
overall Type I error rate is inflated). A similar analysis extending logpψq in the GPD distribution
to include a temporal trend shows that 25% of the corresponding slope parameters are signifi-
cant. Together, these results indicate that inclusion of a temporal effect in a statistical model for
WmSh may be beneficial, but that this temporal effect should vary across space.

As a final component of the exploratory analysis, consider the dependence between the pa-
rameters of the GEV and GPD. Strong positive dependence (ρ � 0.69) is exhibited between pµpslq
and pσpslq, but negative dependence is found between ppµpslq, pσpslqq and pξ with ρ � �0.30 and
ρ � �0.36, respectively. The correlation between pξpslq and pψpslq in the GPD model is observed
at ρ � �0.55. Thus, incorporating dependence between parameters in a statistical model may be
necessary.

5. SPATIO-TEMPORAL MODELS

Given the results from the exploratory analysis in Section 4, this section proposes three sta-
tistical models for modeling extreme values of WmSh, in order of increasing complexity. Model
1 represents a parsimonious model for WmSh with a crude spatial effect and no temporal ef-
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fect. Model 2 builds on Model 1 through the use of Gaussian processes to account for the spatial
correlation, and Model 3 then builds on Model 2 by introducing a temporal component.

Each model below is presented as a Bayesian hierarchical model and posterior inference is
done via Markov chain Monte Carlo (MCMC) sampling. As shown by, among others, Cooley
et al. (2007), Sang and Gelfand (2007), Cooley and Sain (2009), and Sang and Gelfand (2009),
Bayesian hierarchical modeling for extremes has proven very insightful. Particularly, the use of
Bayesian methods for model construction and fitting is preferred here because of the importance
of accurately quantifying the uncertainty associated with each parameter. Additionally, after
having obtained draws from the joint posterior distribution of model parameters, obtaining the
marginal posterior distribution over quantities such as the r-year return level is straightforward.

5.1 Model 1

Let upslq be the 95th quantile of txtdpslqut,d and ytdpslq � pxtkpslq � upslqq� be the ex-
ceedances over the threshold upslq. The first model uses the GPD likelihood given by (2), such
that,

ytdpslq|ψpslq, ξpslq iid� GPD pψpslq, ξpslq, upslqq ,
logpψpslqq � αψ � 1slPAψδψ, (6)

ξpslq � αξ � 1slPAξδξ.

Here, the regionsAψ andAξ are areas of exceptional values of the GPD-model MLEs of ψ and ξ,
respectively. They roughly correspond to the mid-western United States and areas along the Gulf
of Mexico. The region Aψ consists of all locations sl for which pψpslq ¡ 6.3, and Aξ is defined
as all sl between �122� and �88� longitude for which pξpslq   �0.1. For all models, the regions
Aψ andAξ are assumed known. Although the regions here are somewhat arbitrarily chosen, they
are based on the band of higher WmSh found in Figure 2. The variables δψ and δξ represent the
added effects of being in these regions. Certainly, these regions could be estimated through the
use of mixtures of distributions but this possibility is not considered here and is left as an open
research question.

To complete the model specification, the prior distributions for the parameters in (6) are taken
as αψ � Np5.5, 1q, δψ � Np0, 1q, αξ � Np0, 0.22q, δξ � Np0, 0.22q. The prior distributions for
αψ and δψ are relatively vague in an attempt to let the data inform the posterior distribution. The
prior distributions for αξ and δξ are more informative in order to constrain ξ to reasonable values.
Specifically, if ξ ¤ �0.5, the corresponding GPD has a short bounded upper tail which does not
seem to match intuition for WmSh. Additionally, Smith (1985) demonstrated that for ξ ¤ �0.5,
maximum likelihood estimators do not have the standard asymptotic properties. On the other
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hand, if ξ ¡ 0.5 then the GPD has a long, unbounded upper tail, which is also counter-intuitive
for weather. Alternatively, the method of Coles and Tawn (1996) could have been used to develop
informative prior distributions for these parameters, but because of the size of the data set any
prior will be swamped by the likelihood, hence pursuing such a course was deemed unproductive.

The model given by (6) is, admittedly, a very crude spatial model and certainly does not
capture all aspects of the physical process relating to WmSh. Nevertheless, (6) has the benefit of
being a very parsimonious and easily-fit model which incorporates a clear-cut distinction between
inside and outside of the A regions, as was observed in the exploratory analysis above.

5.2 Model 2

For Model 2, assume,

ytdpslq|ψpslq, ξpslq iid� GPD pψpslq, ξpslq, upslqq ,
logpψpslqq � GPpµψ, τ 2

ψ, φψq, (7)

ξpslq � αξ � 1slPAξδξ.

Here, GPpµψ, τ 2
ψ, φψq is a stationary Gaussian process with constant mean µψ and exponential

covariance function

Covplogpψpslqq, logpψpskqqq � τ 2
ψ expt�φψ}sl � sk}u,

where } � } represents spherical distance (in miles). The prior distribution for µψ is assumed to
be non-informative such that µψ � Unifp�8,8q, because experience has shown that the mean
of a Gaussian process is typically well-identified. Additionally, a non-informative prior allows
the data to inform the posterior distribution. The parameters of the covariance function, τ 2

ψ and
φψ, are more delicate in that these parameters typically require informative prior distributions to
be estimated (see Zhang 2004). Thus, the prior distributions are taken as τ 2

ψ � IGp2.1, 3q and
φψ � Unifp0.001, 0.1q where IGpa, bq is the inverse gamma distribution with rate parameter b.
Following Cooley et al. (2007), the exponential covariance function was assumed, but certainly
other classes of covariance functions (e.g. Matern, Normal, etc.) could be used here.

The model given by (7) introduces an added complexity to Model 1 in that the spatial structure
of ψpsq is captured through a Gaussian process. In this way, each location has its own scale
parameter, but these scale parameters are correlated in space. Because the parameter ξpsq is
difficult to estimate, it is unlikely that any spatial structure in ξpsq could be deciphered, and so
ξpsq is left unchanged from Model 1. Indeed, this choice is further justified by Cooley et al.
(2007), who fit a GP to ξpsq only to find that such a model was not preferable.
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5.3 Model 3

In order to include a temporal effect, the PPE likelihood given by (4) is used for Model 3 such
that,

xtdpslq|xtdpslq ¡ upslq, β0pslq, β1pslq, σpslq, ξpslq iid� PPpβ0pslq � β1pslq � t, σpslq, ξpslqq,
pβ0pslq, β1pslq, logpσpslqqq1 � GP3pµM3

,φM3
,Γq, (8)

ξpslq � αξ � 1slPAξδξ,

where PPpµ, σ, ξq denotes the likelihood given by (4), t � 1, 9,42 is the year, GP3 is a trivariate
Gaussian process induced via coregionalization (Gelfand et al. 2004), µM3

� pµβ0 , µβ1 , µσq1,
φM3

� pφ1, φ2, φ3q1, and Γ is a 3 � 3 lower triangular matrix with entries γij . In more detail,
Model 3 constructs a multivariate spatial process via,

θpslq �

��� β0pslq
β1pslq

logpσpslqq

���
���µβ0

µβ1

µσ

���
���γ11 0 0

γ21 γ22 0

γ31 γ32 γ33

��
���w1

w2

w3

��, (9)

where w1, w2, and w3 are independent, zero-mean Gaussian process realizations with spatial
decay parameters φ1, φ2, and φ3, respectively. Using this construction, the covariance between
location sl and sk is then ΓRpsl, skqΓ1, where Rpsl, skq is diagonal with ith entry expt�φi}sl �
sk}u. The scale for the wi can be equal to 1, because the γij provide the scaling on the induced
process. The implied joint distribution for θ � pθ1ps1q, . . . ,θ1psLqq1 is Gaussian with mean µM3

and Covpθq � °3
i�1Rpφiqbγiγ 1i, whereRpφiq is now L�L with ijth entry expt�φi}si�sj}u,

and γi is the ith column of Γ. To complete the model specification, non-informative priors are
used for µβ0 , µβ1 , and µσ; Unifp0.001, 0.1q priors are assigned to each φi; and diffuse normal
and inverse-gamma priors are used for the off-diagonal and diagonal elements of Γ, respectively.

Model 3 is much more complex than either of Model 2 or Model 1 in that the temporal
effect coefficients in the location parameter µtpslq � β0pslq � β1pslq � t are site specific, as was
suggested by the exploratory analysis of Section 4. Additionally, the dependence structure of
parameters mentioned in Section 4 is explicitly built into the model through the matrix Γ.

6. RESULTS

For each model given above, the adaptive Metropolis algorithm of Haario et al. (2001) is used
to obtain 5,000 draws from the posterior distribution of parameters after discarding an initial burn-
in of 5,000 draws. Four chains were run for each model and Gelman-Rubin diagnostics (Gelman

10



and Rubin 1992) indicated that the chains converged with potential scale reduction factors of less
than 1.2 for all parameters.

The deviance information criterion (DIC) (see Spiegelhalter et al. 2002) is a measure of model
fit that balances goodness-of-fit with model complexity, where smaller values indicate the pre-
ferred model. Specifically, DIC � sD � pd, with sD � EpDpθqq and pd � sD � Dpsθq, where
Dpθq � �2 � log�likelihood is a measure of model fit, pd is the estimated number of effective
parameters in the model, and θ is a vector of all model parameters. Complex models incur a
penalty for the number of parameters, and thus, under DIC, such models might not be preferred.
Table 1 displays sD, pd andDIC for the three models under consideration. According to the DIC,
Model 3 is strongly preferred despite having a much higher number of effective parameters.

In addition to DIC, the three spatio-temporal models and a MLE model (i.e. each location
was fit independently by maximizing a GPD likelihood at that location) are compared using
several other model fit diagnostics based on the predictive distribution for ytdpslq. Specifically, the
models are compared using the predictive root mean square error (PRMSE), coverage probability
of predictive intervals, and average width of predictive intervals for both inside and outside of
Aξ. The PRMSE is defined as,

PRMSE �
d°

t,d,lpytdpslq � ỹtdpslqq2
N

,

where N is the total number of exceedances and ỹtdpslq � EpYtdpslq | tytdpslquq is the expected
value of the predictive distribution for ytdpslq. For the MLE model, the corresponding model fit
diagnostics are calculated assuming the parameters are fixed at the MLEs. The results are also
displayed in Table 1. In terms of predictive performance, the results are not as strongly in favor
of Model 3 as is the case using DIC. For example, the PRMSE for Model 2 and 3 are essentially
the same and only slightly better than the PRMSE obtained under Model 1. However, all the
Bayesian models showed improvement over the MLE model. The average width of predictive
intervals for Models 2 and 3 is smaller than the average width of predictive intervals for the MLE
model and Model 1, especially within region Aξ.

Both Model 2 and Model 3 more rigorously exploit the spatial dependence in the data, and
the results in Table 1 suggest that making use of this correlation is preferred over a less rigorous
treatment. Choosing a preferred model between Model 2 and 3 is more difficult. According to
DIC, Model 3 is preferred to Model 2, but in terms of predictive performance, the models perform
similarly. This is perhaps a result of the large number of “non-practically significant” temporal
trend terms in Model 3 (see below). With a small temporal trend term, Model 2 and 3 are very
similar, which explains the similarity in predictive performance.

A final interesting comparison is for the estimates of ξ and δξ. The final two rows of Table
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1 display 95% credible intervals for αξ and αξ � δξ inside and outside of Aξ. For the MLE
model, the interval is the 2.5th and 97.5th percentile of the MLE’s in the corresponding region.
Only Model 1 finds that αξ is positive indicating an infinitely long tail in AC

ξ . The other models
agree with their estimates of a bounded tail for WmSh, which makes sense physically because
of constraints preventing Wmax and shear from being radically high at the same time.

The spatial pattern and intensity of r-year return levels are of practical interest as the return
levels provide a measure of how extreme the weather can be over a set period of time. Draws
from the posterior distribution πpRLr | tytdpslqut,d,lq are obtained one-for-one from the draws
of the posterior distribution via (5), where ζu � 0.05, because upslq is defined here as the 95th

percentile of txtdpslqu. Figure 4 displays the posterior means of RL20 under Model 2 and 3
for the year 1999. The corresponding plot using the MLE model is shown in Figure 3. The
corresponding plot using Model 1 is omitted as Model 2 and 3 are preferred to Model 1. Both
models are in general agreement as Model 2 has posterior means of 3977.52 and 2516.62 for
s P Aξ and s R Aξ, respectively, compared with 3994.56 and 2510.69 for Model 3.

The estimated temporal trend of extreme weather is displayed in Figure 5, which maps the
posterior mean pβ1pslq over the region of interest. Figure 6 displays the regions where a 95%
credible interval for β1pslq does not contain 0. In Figure 6, negative values denote locations for
which the 95% credible interval for β1pslq is strictly less than 0, while positive values denote
locations where the credible interval is strictly greater than 0. Figures 5 and 6 indicate that the
intensity ofWmSh is increasing for the majority of the continental United States and parts of the
Pacific Ocean. However, these increases are only slight, as maxlppβ1pslqq � 4.5, which equates
to a difference in 20-year return levels of approximately 70 meters per second between 1958
and 1999. Thus, while the yearly trend is positive, the observed increase may not be practically
significant in terms of values of WmSh associated with more devastating storms.

7. DISCUSSION AND CONCLUSIONS

This article compares a simple MLE extreme value model and three Bayesian hierarchical
extreme value models on a spatio-temporal data set of WmSh. The results from comparing
the models indicate that for the analysis of spatially-distributed extreme values, Bayesian mod-
eling is clearly preferred over frequentist modeling, as it provides a natural way of quantifying
uncertainty, and gives more accurate and precise results. For the reanalysis data set under consid-
eration, incorporating spatial dependence on the parameters in the hierarchical models improves
model fit and efficiency.

The results from the fitted models regarding an increase in intensity of extreme weather were
statistically significant for the southern United States as well as the majority of the western United
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States (see Figure 6). However, the temporal trend term on the mean of the extreme value dis-
tribution is not statistically different from zero for the northeastern part of the United States,
southern Mexico, and the Caribbean islands. Significant negative temporal trends were found for
most of the Atlantic ocean. Whether the temporal trend term is positive or negative, the mean de-
gree of increase or decrease is small prompting the question of practical significance (see Figure
5) of the temporal trend.

When considering threshold exceedances, a common practice is to use declustering (see, e.g.,
Fawcett and Walshaw 2007) techniques to reduce the autocorrelation between observations such
that the convergence in distribution to Hpy;ψ, ξq holds. No declustering techniques were use for
the reanalysis data used here but the sensitivity of the results to declustering is an active area of
research.

While Model 3 is fairly elaborate and exploits spatial correlations for most of its parame-
ters, the spatial dependence assumed for the shape parameter ξ is very crude. As ξ is generally
regarded as being difficult to estimate, borrowing strength from nearby locations to estimate it
makes intuitive sense. This could be done in a more subtle way via a Gaussian process (see, e.g.,
Cooley and Sain 2009), but this approach requires more elaborate modeling techniques such as
penalized likelihood. A similar comment could be made for the threshold upsq. In this paper, upsq
is simply assumed to be the marginal 95th percentile of the data at each location and, therefore, is
not smooth across space. It is not clear what the optimal way of exploiting spatial dependencies
for this purpose is, and so this question requires further research.

This report only considered modeling WmSh. An alternative approach would be to jointly
model the variables Wmax �

?
2� CAPE and WS as a bivariate extreme. Developing a bi-

variate model has several challenges in that, while the theory underlying bivariate extremes is
well-developed, standard approaches to bivariate modeling are less developed. The increase in
dimensionality presents new challenges for model selection, fitting, and validation. Addition-
ally, the strength of dependence between the two variables can, perhaps, diminish at the extreme
levels. Additionally, atmospheric system constraints prevent CAPE and WS from becoming
arbitrarily large simultaneously. Such system constraints would need to be considered for a bi-
variate approach. Despite these concerns, a bivariate approach, perhaps following the methods in
Sang and Gelfand (2009) or Cooley et al. (2009), may prove useful in predicting and modeling
extreme weather.

The data used in this paper are large-scale indicators of extreme weather. Thus, the models
presented herein are not modeling extreme weather such as tornadoes and hurricanes directly.
While high values of WmSh are typically associated with these extreme weather events, further
work (and data) is needed to quantify this relationship more precisely. The question has been
partly addressed by Brooks et al. (2003), but the relationship between large-scale indicators and
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extreme weather events is still open to further research and inquiry.
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Table 1. Model fit diagnostics. The diagnostics sD, pd, and DIC are omitted for the MLE model
because these only pertain to Bayesian models.

Diagnostic MLE (GPD) Model 1 Model 2 Model 3
pd 4.43 874.98 2133.45sD 3.03� 106 3.01� 106 2.85� 106

DIC 3.03� 106 3.01� 106 2.86� 106

PRMSE 394.47 323.92 313.31 313.29
Coverage 0.95 0.94 0.95 0.95

Width of PI (Aξ) 1294.19 1046.10 584.96 578.73
Width of PI (AC

ξ ) 1368.19 1180.42 961.30 1028.30
95% Int. for αξ p�0.05,�0.03q p0.03, 0.04q p�0.03,�0.01q p�0.03,�0.01q

95% Int. for αξ � δξ p�0.16,�0.14q p�0.06,�0.05q p�0.14,�0.13q p�0.15,�0.14q
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Figure 1. Histogram of 1000   WmSh   5500 for 1958 - 1999 across all locations in the
reanalysis data set. Proper statistical models need to account for the heavy upper tail of this
distribution. The 5500 upper bound was arbitrarily chosen to accentuate the features of the
histogram.
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Figure 2. Thresholds upsq above which WmSh excesses are fit to the GPD. These are equivalent
to the 95th percentile of WmSh at each grid point.
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Figure 3. Maximum likelihood estimates of 20-year return levels using (a) the GEV approach
and (b) the GPD approach.
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(b)

Figure 4. Posterior mean of RL20 for year 1999 as estimated using (a) Model 2 and (b) Model 3.
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Figure 5. Map of the temporal coefficient in Model 3 ppβ1pslqq. Intensity of WmSh seems to be
increasing over time for the south western part of the U.S. as well as the Gulf Coast.
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Figure 6. Significance of the temporal coefficient in Model 3 ppβ1pslqq. Values of 1 (-1) indicate
a 95% credible interval for pβ1pslq is strictly greater than (less than) 0 while values of 0 indicate
non-significance.
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