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Abstract
Evaluation of biological effects, both desired and undesired, caused by Manufactured
NanoParticles (MNPs) is of critical importance for nanotechnology. Experimental studies,
especially toxicological, are time-consuming, costly, and often impractical, calling for the
development of efficient computational approaches capable of predicting biological effects of
MNPs. To this end, we have investigated the potential of cheminformatics methods such as
Quantitative Structure – Activity Relationship (QSAR) modeling to establish statistically
significant relationships between measured biological activity profiles of MNPs and their physical,
chemical, and geometrical properties, either measured experimentally or computed from the
structure of MNPs. To reflect the context of the study, we termed our approach Quantitative
Nanostructure-Activity Relationship (QNAR) modeling. We have employed two representative
sets of MNPs studied recently using in vitro cell-based assays: (i) 51 various MNPs with diverse
metal cores (PNAS, 2008, 105, pp 7387–7392) and (ii) 109 MNPs with similar core but diverse
surface modifiers (Nat. Biotechnol., 2005, 23, pp 1418–1423). We have generated QNAR models
using machine learning approaches such as Support Vector Machine (SVM)-based classification
and k Nearest Neighbors (kNN)-based regression; their external prediction power was shown to be
as high as 73% for classification modeling and R2 of 0.72 for regression modeling. Our results
suggest that QNAR models can be employed for: (i) predicting biological activity profiles of novel
nanomaterials, and (ii) prioritizing the design and manufacturing of nanomaterials towards better
and safer products.
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Introduction
More than 1000 manufacturer-identified, nanotechnology-based consumer products are
currently available on the market*. A growing fraction of them represent green products
intended to achieve efficient and less polluting energy sources.1 However, some
Manufactured NanoParticles (MNPs) intended for industrial applications may cause toxic
effects in humans,2–4 and public concern about the safety of MNPs is increasing.5 Induced
biological effects could result from exposure and subsequent absorption of ultrafine MNPs
via different routes,6 and lead to their potentially detrimental delivery to critical organs.7
Once MNPs gain entry into the systemic circulation, they can immediately interact with
blood cells and can then be either distributed throughout the body, or quickly captured by
macrophages of the reticuloendothelial system. Thus, understanding the biological effects of
exposure to MNPs is of paramount importance.

Experimental nanotoxicology is a very young field.8–14 There remain significant scientific
gaps in our understanding of the toxicology of nano-based materials that, (i) are already
contained in commercial products not intended for human exposure, (ii) could contaminate
the environment while also not intended for human exposure, and (iii) are intended for
biomedical applications such as drug delivery, imaging, and sensing. Thus, it is imperative
to develop a comprehensive, and ideally, predictive knowledge of the effects of MNPs on
the environment as well as animals and humans. Recently, Mumper and colleagues
published a comprehensive study on the hemocompatibility of lipid NPs for drug delivery.15
There are several reports on the deleterious effects of MNPs on humans and wildlife. For
example, Radomski et al.16 reported that both multi-walled and single-walled carbon
nanotubes caused platelet aggregation and vascular thrombosis acceleration. Harhaji et al.17
showed that even at the ‘high dose’ of 1 µg/mL, the C60 fullerenes caused reactive-oxygen,
species-mediated, necrotic cell damage18 and proposed C60 fullerenes as an anti-cancer
agent. Kane et al.19 found that silica MNPs directly interacted with plasma and lysosomal
membranes leading to Ca2+ influx, ATP depletion, and cell death. Kang et al.20 observed
that nano-TiO2 caused ROS stress and DNA damage in lymphocytes. Leonard et al.21
showed that PbCrO4 particles resulted in ROS generation and up-regulation of NF-kappaB
and AP-1 in RAW 264.7 cells. Pulskamp et al.22 reported that several carbon MNPs (multi-
walled, single-walled, carbon black, quartz) increased ROS and decreased mitochondrial
membrane potential in a dose- and time-dependent manner in rat macrophages and human
A549 lung cells. An important review on the subject of nanotoxicity was recently
published7 that describes examples of known toxic effects of MNPs.

Modeling MNPs and their biological effects is challenging. First, because of the high
structural complexity and diversity of MNPs, it is difficult to develop quantitative
parameters capable of characterizing the structural and chemical properties of MNPs.
Second, systematic physicochemical, geometrical, structural and biological studies of MNPs
are nearly absent in the public domain, making the development of statistically significant
computational models and their validation difficult as these procedures require relatively
large amounts of data. For instance, most papers cited in the previous paragraph reported
experimental studies on one or a few MNPs. Not surprisingly, the reports on computational
modeling of MNPs, especially in the area of nanotoxicology have been scarce.23 Liu et al.
24 demonstrated the utility of molecular dynamics simulations for (i) revealing the overall
changes in the structure of cellular membranes caused by the insertion of carbon nanotubes
as well as (ii) estimating the affinity of drug-like molecules for carbon nanotubes in an
aqueous environment.25 In another recent study by Shaw et al.26, as many 51 MNPs were
thoroughly tested in vitro against four cell lines in different assays to study their induced
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biological effects. Different statistical techniques were applied to find the correlations
between the biological activity profiles of MNPs and to discover hidden structure-property
relationships. Recently, Puzyn et al.27 suggested that Quantitative Structure-Activity
Relationship (QSAR) modeling can be employed in computational nanotoxicology studies.
The authors appropriately concluded that no universal "nano-QSAR" model can accurately
assess the toxicity of all possible MNPs. They also reported several QSAR models largely
developed for carbon nanotubes and fullerenes to assess their solubility and lipophilicity.
However, these models were built using very small datasets, usually less than twenty MNPs,
and insufficient validation procedures according to common QSAR modeling practices
(such as OECD principles28).

The main objective of this study is to develop predictive Quantitative Nanostructure-
Activity Relationship (QNAR) models following the established principles of conventional
QSAR modeling workflows.29 Similar to general QSAR modeling strategies, the overall
objective of QNAR models is to relate a set of descriptors characterizing MNPs with their
measured biological effects, e.g., cell viability, or cellular uptake (Fig. 1). Such models can
then be applied to newly-designed or commercially available MNPs in order to quickly and
efficiently assess their potential biological effects. As a proof-of-concept, we describe case
studies for two relatively large series of MNPs that have been tested for their effects in
different in vitro cellular-based assays. The first series26 comprises 51 diverse MNPs with
different metal cores and surface modifications (Case Study 1) that were tested for in
different cell based assays, whereas the second series30 includes 109 NPs with the same
core but different surface modifiers (Case Study 2) that were tested for their cell uptake
activity. We have applied conventional cheminformatics techniques such as (i) cluster
analysis to examine if MNPs with similar biological activities are also structurally similar,
and (ii) QNAR modeling to establish quantitative links between available MNP descriptors
(that characterize their structure) and their biological activity. In Case Study 1, the structure
of MNPs was characterized by their experimental properties treated as molecular
descriptors. Conversely, Case Study 2 could be regarded as a conventional QSAR
investigation since 109 MNPs with the same metal core (analogous to common chemical
scaffold for organic molecules) were characterized by conventional chemical descriptors of
surface-modifying organic molecules. In both case studies, QNAR calculations led to
statistically validated and externally predictive models; these models quantitatively relate
the chemical, physical, and geometrical properties of MNPs with their biological effects
measured in vitro in different cell-based assays. We believe that this report, which to the
best of our knowledge is the first example of QNAR analysis of relatively large datasets of
MNPs, successfully demonstrates the high potential of cheminformatics approaches for
improving the experimental design and prioritizing the biological testing of novel MNPs.

Results
Case Study 1 - Modeling of Cellular Effects Induced by Diverse MNPs

Using the Heat Map Viewer (HMV) software developed internally, we first visualized the
biological activity profile of the entire dataset comprising 51 MNPs tested in vitro using four
doses, four different cell lines, and four different assays of cellular physiology, forming an
activity matrix of 64 biological parameters for each MNP (using data reported by Shaw et
al.26); this array represents a 64-feature biological activity profile for each MNP (Fig. S1),
which we subsequently normalized to the unit (variation between 0 and 1) and clustered
using ISIDA/Cluster31 (hierarchical algorithm, Euclidean distance between compounds,
complete linkage between clusters). It should be pointed out that no obvious clusters of
MNPs appeared on this initial heat map.
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We identified three clusters (Fig. 2) using a hierarchical clustering procedure. Five types of
MNPs were represented in the dataset; each MNP had a metal core, i.e., Fe2O3-predominant,
Fe3O4-predominant, Cd-Se, or FeIII; an organic coat, either acidic, basic, amphiphilic, or
lipophilic; and various surface modifiers for some of the MNPs. First, we confirmed some of
the results of Shaw et al.26 that all MION nanoparticles were found in cluster 2, whereas all
three Quantum dot-based MNPs were found in cluster 1. Importantly, further analysis (see
Table 1) revealed that all MNPs included in cluster 2 featured the same metal core (Fe3O4-
predominant) independently of their surface modifiers and the type of MNPs; for instance,
cluster 2 contains 13 CLIO, 2 PNP and 4 MION each with different coatings, such as cross-
linked dextran, arabino-galactan, or carboxymethyl dextran, and different additional organic
surface modifiers (see Supplementary Table 1 for the complete description of MNPs). All of
these MNPs displayed relatively similar biological activity profiles (Fig. 2), and data
visualization with the HMV program confirmed that MNPs within cluster 2 were very
similar in terms of their biological properties whereas those in clusters 1 and 3 were more
chemically diverse. These similarity discrepancies were also observed in the distance matrix,
where intra-cluster pairwise similarities were significantly higher for cluster 2 compared to
the other two clusters. These results demonstrate that, at least in some cases, MNPs with
similar biological activity can be also recognized as similar by their structural descriptors
(e.g., type of metal core). This initial observation is important to demonstrate the
applicability of cheminformatics approaches to the analysis of nanostructure-activity
relationships.

In order to further demonstrate the overall feasibility of QNAR modeling, we used
experimentally measured physical parameters (descriptors) of MNPs to build binary
classification models (i.e., models capable of assigning MNPs to one of two distinct classes
defined by their biological activity). Four such structural descriptors were available for 44 of
the 51 MNPs: nanoparticle size, ranging from 20 to 74 nm, R1 and R2 relaxivities
representing their magnetic properties, and zeta potential representing the intensity of charge
on their surface. On the other hand, the entire biological activity profile included 64 features,
i.e., a total number of all possible combinations of four doses, four cell lines, and four
assays. To enable a binary classification study, we transformed the 64 features into one by
calculating their arithmetic mean (Zmean; cf. Table S1 in Supplementary Materials). It
should be noted that when Shaw et al.26 expressed the biological activity of MNPs as a 64-
feature vector (4 cell lines × 4 assays × 4 doses), the correlation coefficient between vectors
associated with the independent replicates for the same nanoparticle was as high 0.93;
furthermore, these independent replicates for the same nanoparticle were more similar to
each other, than to any other nanoparticle (cf. Fig. 3 in Shaw et al.26). We then defined two
binary classes using an arbitrary threshold at Zmean = −0.40, which allowed us to split the
set into two groups each containing the same number of MNPs. As a result, twenty-two
MNPs belonged to class 1 (Zmean ≥ −0.40), and the remaining twenty-two were put in class
0 (Zmean < −0.40).

To derive QNAR models, we used the WinSVM program developed in-house. WinSVM
implements an external 5-fold cross-validation procedure: the program splits the entire
dataset five times into a modeling set including 80% of the nanoparticle dataset, and the
external validation set, comprising the remaining 20% of the nanoparticle dataset. Only the
modeling set (which is divided additionally into multiple training and test sets) was used to
build and validate models, and models with appreciable training and test set prediction
accuracies were selected for predicting class membership of the external set. Each MNP was
included into a validation set only once, allowing us to calculate the overall external
prediction accuracy for the whole set (see Table 2). The data indicate that SVM models had
relatively high external prediction accuracies of 56 – 88% for the five independent external
validation sets, with the mean external accuracy as high as 73%. To assess model
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significance, we also applied a Y-randomization procedure and found no statistically
significant model according to CCR acceptance thresholds (see Methods); this result
indicates that models developed with the original data are statistically robust.

In terms of applicability domain, the high similarity of biological profiles for particles of
cluster 2 could be expected to yield better prediction performances within this cluster. To
evaluate this hypothesis, we recalculated all statistical parameters per cluster for 5-fold
external cross-validation results: cluster 1 (n=13, CCR= 0.65, sensitivity=0.5,
specificity=0.8), cluster 2 (n=18, CCR= 0.78, sensitivity=0.78, specificity=0.78), and cluster
3 (n=13, CCR= 0.7, sensitivity=0.4, specificity=1). These results confirm that prediction
performances of our model were indeed better for MNPs comprised in cluster 2.

Then, we investigated the dose-dependency of biological effects induced by MNPs. The
activity heat map representing biological activity induced by MNPs at four different
concentrations is shown in Fig. S2. We also plotted the Z score variations for all 51 MNPs
tested against aorta endothelial cells in the ATP content assay at four different
concentrations (Fig. 3). Overall, the higher was the dosage, the stronger were the NP-
induced effects; however, we observed some interesting cases where this rule was not
clearly followed. Although the vast majority of MNPs are characterized by small linear
variations of Z scores corresponding to increases in their concentrations, some MNPs
induced significantly higher Z scores at higher concentrations: NP_36 (PNP-Fe2O3-PVA,
PEG), NP_29 (PNP-Fe3O4-PVA, protamine, rhodamine), NP_28 (PNP-Fe3O4-PVA,
ethylenediamine), NP_37 (PNP-Fe2O3-PVA), and NP_20 (CLIO-SIA-FITC-Fe3O4-
succinimidyl iodoacetate). Of all these MNP with “outlier” dose dependencies, our binary
classification model assigns the class correctly for all but NP_20 (see Table S1); NP_20
features a unique combination of molecular coating and surface modifiers, and this
nanoparticle displayed the highest variation in biological activity at a high concentration.
Such examples highlight the complexity involved in modeling these chemical systems where
minor changes such as small variation of nanoparticle concentrations or surface modifiers
may dramatically affect their biological activity profile. Although the modeling of such
cases remains very challenging, we believe that this proof-of-concept study illustrates the
ability of QNAR models to establish predictive relationships between structural attributes
and biological activity of MNPs.

Case Study 2 - Modeling of MNPs Uptake in PaCa2 Cancer Cells
Unlike the MNP set employed in Case Study 1, all MNPs included in the second set
possessed exactly the same metal core. The structure of organic small molecule conjugated
to the MNP surface was the only difference from one MNP to another. As a result, each
MNP was represented by a unique set of descriptors determined by the conjugated small
molecule. 150 MOE descriptors were calculated for all 109 organic compounds. We
expressed cellular uptake as the decadic logarithm of the concentration (pM) of MNP per
cell, which varied from 2.23 to 4.44 (See Supplementary Materials, Table S2). Next, we
performed a QSAR investigation and descriptor analysis to uncover major structural
attributes responsible for cellular uptake of MNPs. External 5-fold cross validation exercise
was carried out in the same manner as in Case Study 1 employing the k Nearest Neighbors
(kNN) modeling approach. Results showed that prediction accuracies expressed as
coefficients of correlation R2

abs ranged from 0.65 to 0.80 for external sets (see Table 3).
These results were slightly improved to 0.67 to 0.90 by taking into account the applicability
domain of the models and removing compounds found to be outside the domain. We also
performed Y-randomization, and no statistically significant models were retrieved, proving
the robustness of QNAR models built on this dataset.
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To enable model interpretation, we identified descriptors that occurred most frequently in
kNN models with the highest prediction accuracy. We calculated average values of these
descriptors for MNPs with the highest (top 20) and the lowest (bottom 20) cellular uptakes
(Fig. 4a) and found that these values were significantly different in several cases. The top-10
most frequently selected descriptors in each individual fold and the averaged frequency
across five folds are listed in Supplementary Materials (SM_Tables S3 and S4). It is of
notice that several descriptors such as SlogP_VSA1, SlogP_VSA2, SlogP_VSA5 represent
different aspects of van der Waals surface area’s contribution to compound lipophilicity;
another relatively frequent descriptor is b_double (representing the number of double bonds
in a molecule).

Thus, lipophilicity was found to be the most discriminating factor; it is quantified by several
descriptors such as GCUT_SLOGP_0, SlogP_VSA0, BCUT_SLOGP_0, and SlogP_VSA1.
Consistent with this observation, MNPs with the highest PaCa2 cellular uptake are highly
enriched for lipophilic surface compounds (high values of GCUT_SLOP_0); conversely,
MNPs with the lowest PaCa2 uptake are highly enriched for low values of GCUT_SLOP_0
(Fig. 4b). However, this phenomenon was only found in Paca2 cell lines. In the other cell
lines tested by Weissleder et al.30, cellular uptake measured for the same series of MNPs
revealed no significant variations correlating with MNPs structural properties. Other
descriptors like molecular refractivity (GCUT_SMR_0), specific Van der Waals surface area
(basic vsa_base, acidic vsa_acid, and donor vsa_don), and electrostatic descriptors also
reasonably discriminated between MNPs possessing high or low Paca2 cellular uptake.
These findings imply that the cellular behavior of a nanoparticle library based on a common
core can be predicted using QNAR analysis of the surface modifying ligands, and thus that
rational design of organic compounds attached to the surface of MNPs is possible using
QNAR models and descriptor analysis.

Discussion
Although QSAR methodology is well known and is extensively applied in the areas of drug
discovery29 and chemical toxicity modeling32, its application to model the biological
effects of MNPs presents a real challenge for several reasons: (i) MNPs are complex
assemblies of inorganic and/or organic elements, sometimes mixed or coated with diverse
organic compounds where the exact stoichiometry may vary from one MNP to another,
making classical molecular descriptors not appropriate for this type of study; (ii) the exact
composition of a given MNP is not known in most cases; (iii) three-dimensional
nanostructures that include thousands of atoms are highly complex. Many computational
approaches, like ab initio quantum chemistry methods, are inadequate for such large,
complex systems. Systematic physico-chemical, geometrical, structural, and biological
studies of MNPs are rare. Therefore, computational modeling of MNPs is only beginning to
emerge. Most likely, a comprehensive computational nanotechnology and nanotoxicology
effort would require the integration of several computational techniques, such as quantum
mechanics, molecular dynamics simulations,24, 25, 33 and cheminformatics.27, 34 The
success will certainly depend on close collaboration with experimental scientists, as well as
the application of high-throughput assay technologies to test MNPs, resulting in sufficiently
large body of data to enable large-scale modeling. Such strategies are entirely within a
vision for toxicity testing outlined in a recent Science paper35 and implemented in a joint
project between EPA, NIEHS, and the NIH Chemical Genomics Center.

The overall goal of this study was to demonstrate the potential benefits of using
cheminformatics approaches such as QSAR (or QNAR) modeling to obtain predictive
knowledge for MNPs that affect human cells and utilize this knowledge to improve the
experimental design of MNP and enable their prioritization for in vivo testing (e.g., to
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evaluate MNPs for therapeutic efficacy or toxicity). There were three fundamental
hypotheses that drove this study: (i) the effects of MNPs on different types of human cells
depend on the physical/chemical/geometrical properties of MNPs; (ii) high-throughput
cellular-based assays can provide useful and predictive information about pleiotropic
biological properties of MNPs; (iii) it is feasible to develop predictive Quantitative
Nanostructure – Activity/Toxicity (QNAR/QNTR) models using physical/chemical
characterization and toxicological screens for an ensemble of MNPs.

Obviously, in our study we have attempted to tackle a very challenging problem of
establishing predictive relationships between the structure of MNPs and their biological
activity. It is undoubtedly true that biological effects of nanomaterials are strongly
dependent on a large variety of factors. Should this consideration alone prevent any attempt
to model MNPs? It may appear so; however, we should note that the problem of accurate
prediction of biological activity (let alone, toxicity) of organic molecules, i.e., traditional
objective of QSAR modeling, is no less challenging when one thinks about dozens if not
hundreds of interlinked mediatory processes in living cells (let alone whole organisms) that
are responsible for the observed biological response phenotypes. Nevertheless, the QSAR
approach has been successfully applied for many years to model very complex biological
endpoints. Thus, we have been motivated to examine the applicability of QSAR approaches
to modeling nanoparticles empirically. We should also emphasize that a critical strength of
the datasets analyzed in our paper is that a large number of nanomaterials were
simultaneously tested in the same laboratory under the identical culture conditions, thus
enabling direct comparisons across nanomaterials.

Our computational approach addresses a significant near- and long-term problem that relates
to the complexity, time, and cost associated with performing sub-chronic and chronic studies
of novel nanomaterials in animals.36 Because these types of comprehensive studies are
impossible for all available MNPs, high-throughput cellular-based assays are needed that
provide critical and predictive data in just a few hours. Shaw and colleagues26 provided
examples where these in vitro biologic activity profiles were correlated with in vivo MNP
effects. As current efforts to correlate in vitro cellular activity with in vivo behavior
(including toxicity) improve, QNAR models such as those presented here could help predict
toxicity of newly designed nanomaterials and bias the design and manufacturing towards
safer products.

To demonstrate the validity of the QNAR modeling approach, we have applied it in two case
studies comprising two series of diverse MNPs. In Case Study 1, we studied a dataset of 51
MNPs that Shaw et al.26 tested extensively against four cell lines in four different assays.
Our studies revealed three clusters of MNPs based on their induced biological activity and
established specific nanostructure-activity relationships using cheminformatics approaches
relying on multiple molecular descriptors of MNPs. We demonstrated the feasibility of
deriving robust QNAR models using the following four experimental descriptors: size,
relaxivities, and zeta potential. We should note that in an attempt to capture MNPs activity
across a broader swath of biology, the Shaw group measured the effects of nanomaterials in
four diverse cell lines, at four doses, and using four assays that interrogate different aspects
of cellular physiology. Thus, the biological effects of each nanomaterial can be described as
a 64-feature vector (4 cell lines × 4 assays × 4 doses). An analogy or inspiration for this
approach may be found in the field of cancer genomics, where describing cancer cell lines
using a common multidimensional vector (in this case composed of the expression levels of
many different genes) has enabled many powerful computational analyses.

Theoretically, one could develop 64 independent QNAR models, with each model
attempting to reproduce the biological response induced by 44 nanoparticles for a given
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assay in a particular cell line at a given dose. Actually, we have attempted to obtain such
highly specific models but with no success for most cases (data not shown): despite pretty
high fitting accuracy (~85%), the external predictivity (assessed by 5-fold external cross-
validation) of these models were dramatically low (~40–50%), not significantly different
than the predictivity of models built with randomly shuffled activity of the training set (i.e.,
using the standard Y-randomization test). Meanwhile, the combination of the entire 64
dimensional vector for each nanoparticle into one single averaged response apparently
helped detecting the overall biological signal from noise; this was achieved by defining two
different classes of particles (the threshold of averaged Z score have been put to −0.4 to
balance nanoparticle distribution between the two classes). As we demonstrate in the
manuscript, this data transformation allowed us to succeed in obtaining models
characterized by both good internal fitness and external predictive power.

In the course of additional studies, we are pursuing different approaches for characterizing
biological activity profiles, defining thresholds between profiles, and reducing the number of
biological dimensions by compressing multiple measurements. For instance, we could
define profiles based on clusters resulting from the previous analysis, or we could compare
biological activity profiles using different general profile similarity metrics such as the
Tanimoto coefficient, which is widely used to compare chemical structures. We anticipate
that the quest to identify and predict rigorous relationships between MNP structures and
their biological activity will require empiric exploration of several different approaches.

In Case Study 2, we investigated 109 MNPs with the same core structure but diverse organic
molecules attached to their surfaces that were tested for cellular uptake against different cell
lines.30 The PaCa2 cell line was selected for in-depth QSAR study because of the
significant variance of cellular uptakes among all tested MNPs. Each individual MNP was
represented by the structure of the organic molecule attached to its surface. Statistically
robust kNN QSAR models, linking chemical descriptors and MNP cellular uptakes, were
developed and validated using 5-fold external validation procedure. Their external
prediction power was shown to be as high as R2 of 0.72. Additional investigations are in
progress to map chemical features responsible for differential uptake of MNPs onto
chemical structures of surface modifiers and to detect the key structural fragments that
mostly influence the cellular uptake. Overall, models assessing the potential cellular uptakes
for particular cell lines are likely to be important tools to design novel cell-targeting
particles that deliver drugs to those specific cells. We aim to develop an ensemble of models
for use as efficient filters for computer-aided MNP design.

The quality of all QNAR models derived in this study was rigorously estimated according to
their external prediction abilities assessed by a 5-fold external cross-validation procedure.
Unlike many QSAR (or similar multidimensional data modeling) studies, we did not
evaluate the power of our models based on their 'too optimistic' fitting performances but on
external predictions only (models are built and selected using modeling set only, not the
external set). Y-randomization technique also assessing the chance correlation likelihood
was used in both case studies to confirm the predictivity of generated models.

Before embarking on the huge task of predictive, computational nanotoxicology, it is
necessary to demonstrate that statistical and data-mining techniques could indeed uncover
the non-spurious nanostructure – activity correlations using experimental or computed
properties of MNPs as structural descriptors. Our preliminary analysis of these two datasets
provides a clear indication that this approach could indeed bear fruit. We also believe the
two case studies reported in this paper represent the first attempts to build robust and
validated QNAR models using either MNPs as a whole (Case Study 1) or particle-specific
organic compounds representing the whole structure (Case Study 2). The two types of
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datasets studied in this report are representative of many similar datasets that hopefully will
emerge in the published scientific literature and that could be subject to similar
computational analysis. All too often the results of even large scale experimental projects
remain confined to individual laboratories or are published in unstructured format making it
difficult, if not impossible, to access this data. We hope that with time and more data
available in the public domain we will be able to establish an Integrated Nanotoxicology
Web-Portal to enable the scientific community free access to both data and computational
models. As part of these efforts, all datasets used in this study can be downloaded from the
ChemBench portal (http://chembench.mml.unc.edu/) developed in our laboratory and are
also provided as supplementary materials in Tables S1 and S2.

In summary, the trends in experimental nanotechnology and nanotoxicology require not only
exploration and rationalization of experimental nanostructure-activity relationships, but most
importantly, development of models that will help in designing environmentally benign
nanomaterials, and prioritizing existing and novel MNPs for in vivo testing. Integrated data
obtained from the characterization of the MNPs and systematically acquired in vitro data
could enable the development of predictive QNAR models to correlate descriptors of MNPs
with clinically important in vivo endpoints.

Materials and Methods
Datasets

Case Study 1: MNPs with Diverse Core Structures—Recently Shaw et al.26
published a unique and comprehensive study in which 51 diverse MNPs were tested in
various cell based assays. Among these MNPs, 23 were Cross-Linked Iron Oxide (CLIO)
derivates; 19 were Pseudocaged NanoParticle (PNP) based; 4 Monocrystalline Iron Oxide
Nanoparticle (MION) based; 3 were Quantum dot-based MNPs with a CdSe core, a ZnS
shell and a polymer coating; and 2 other were iron-based MNPs: Feridex IV (approved for in
vivo imaging) and Ferrum Hausmann (approved for iron supplementation). All these MNPs
were tested in vitro against four cell lines in four different assays at four different
concentrations resulting in a 51 * 64 data matrix of experimental results. Each cell of this
matrix (Fig. S1) reports the biological activity profile induced by a given MNP at a certain
concentration in a particular assay for a given cell line. The four cell lines included
monocytes, hepatocytes, and two types of vascular cells, namely, endothelial and smooth
muscle. The four assays measured (i) ATP content, (ii) reducing equivalents, (iii) caspase-
mediated apoptosis, and (iv) mitochondrial membrane potential. Biological activity profiles
were recorded for the following concentrations of MNPs: 0.01, 0.03, 0.1, and 0.3 mg/mL for
all iron-based MNPs; and 3, 10, 30, and 100 nM for the three quantum dot-based MNPs.
Assay response values were expressed in units of standard deviations of the distribution
obtained when control cells were treated with PBS (Phosphate Buffered Saline) alone: ZNP
= (μNP − μPBS)/ σPBS, where μPBS is the mean of control tests with PBS and σPBS their
standard deviation. The authors also reported four experimentally measured descriptors for
44 out of 51 tested MNPs: size, relaxivities, and zeta potential.

Case Study 2: MNPs with Common Core but Diverse Surface Modifiers—
Weissleder et al.30 recently synthesized a library comprised of 109 MNPs in which a
superparamagnetic nanoparticle (Cross-Linked Iron Oxide with amine groups, CLIO-NH2)
was decorated with different synthetic small molecules. NPs were made magneto-
fluorescent with the addition of FITC (fluorescein isothiocyanate) molecules on their
surfaces to enable measurement of cellular uptake. Then, NPs were screened against
different cell lines, including PaCa2 human pancreatic cancer cells, U937 macrophage cell
lines, resting and activated primary human macrophages, and HUVEC human umbilical vein
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endothelial cells. Unlike the other cell lines, the uptake of the NPs in PaCa2 pancreatic
cancer cells was diverse and highly dependent on surface modification, enabling the
application of QSAR modeling approach to this data.

QSAR Modeling
QSAR models establish quantitative relationships between chemical structures characterized
by chemical descriptors and a target property, e.g., biological activity of chemicals in
specific biological assays. Validated and externally predictive models29 can be applied to
screen virtual chemical libraries to retrieve compounds with desired properties.32, 37, 38
QSAR modeling employs complex machine leaning algorithms such as Support Vector
Machines (SVM) or the k Nearest Neighbors (kNN) that take the descriptor matrix of
compounds as inputs and output a predicted value for the modeled property.

The QSAR modeling workflow can be divided into three major steps: (i) data preparation/
analysis39 (selection of compounds and descriptors), (ii) model building, and (iii) model
validation/selection (including the evaluation of its Applicability Domain – AD). A set of
compounds with known experimental activity is randomly split into several training and test
sets. Models are built using compounds of each training set and then applied to test set
compounds to assess their properties. After application of rigorous tests (such as leave one
out, n-fold cross-validation, and Y-randomization), and calculation of model accuracy
metrics described below, certain models are selected if and only if they can reasonably
predict both the training set as assessed by cross-validation procedures and the test set.40
Models obtained for the modeling set with randomized activities (Y-randomization) should
have significantly lower predictive capabilities than models built using modeling set with
real activities. Finally, the selected models are applied to the external validation set
compounds.

Chemical structures are represented by molecular descriptors.41 In Case Study 2, we used
the following two-dimensional MOE descriptors (commercial software distributed by
Chemical Computing Group): physical properties, surface areas, atom and bond counts, Kier
& Hall connectivity indices, kappa shape indices, adjacency and distance matrix descriptors,
pharmacophore feature descriptors, and molecular charges.

The clustering of a chemical dataset consists of merging compounds into independent
clusters that include chemically similar molecules42 based on any similarity metrics (e.g.,
compounds can be clustered based on their biological activity profiles). In this study, we
have employed the ISIDA/Cluster program31 implementing the Sequential Agglomerative
Hierarchical Non-overlapping (SAHN) method. The parent-child relationships between
clusters result in a hierarchical data representation, or dendrogram. In particular, we used
ISIDA/Cluster to obtain the heat map of the proximity matrix and the dynamic dendrogram
(Fig. 2).

The kNN QSAR method43, 44 is based on the idea that the activity of a given compound
can be predicted by averaging the activities of k compounds from the modeling set, which
are most chemically similar to this compound. Briefly, our algorithm employs the kNN
classification principle and variable selection procedure (simulated annealing with the
Metropolis-like acceptance criteria): it generates both an optimum k value, typically from
one to five, and an optimal nvar subset of descriptors that maximize the QSAR model’s
training set accuracy as estimated by the Q2

abs statistical parameter. The Euclidean distance
between compounds is used as a metric that characterizes compounds’ dissimilarity in
multidimensional descriptor space. Additional details of the method can be found elsewhere.
29 For SVM classification, we used the WinSVM program (version 1.1.8)37 developed in
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our group at UNC, which implements the opensource libsvm package
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/).

The Applicability Domain (AD) of a model is defined in order to determine if a given model
is capable of predicting the activity of a query compound29, 38 within a reasonable error. In
this study, we defined the AD as a threshold distance DT between a query compound and its
nearest neighbors in the training set, calculated as follows: DT = ȳ + Zσ where ȳ is the
average Euclidean distance between each compound and its k nearest neighbors in the
training set, σ is the standard deviation of the Euclidean distances, and Z is an arbitrary
parameter to control the significance level; k is the parameter optimized in the course of
QSAR modeling. We set the default value of Z at 0.5, which formally places the allowed
distance threshold at the mean plus one-half of the standard deviation. If the distance of the
test compound from any of its k nearest neighbors in the training set exceeds the threshold,
the prediction is considered unreliable. In this study, we used this same approach for both
Case Studies 1 and 2.

We used different statistical parameters to evaluate the performance of models. For binary
classification problems (like Case Study 1), these are defined as: Accuracy = (TP + TN) /
(NA + NI); Sensitivity = TP / NA; Specificity = TN / NI; CCR = 0.5 (Sensitivity +
Specificity), where NA is the total number of actives (or class 1), NI is the total number of
inactives (or class 0), TP is the number of true positives (experimentally actives predicted as
actives), TN is the number of true negatives (experimentally inactives predicted as
inactives), and CCR is the Correct Classification Rate.

When activities were represented by a range of values (Case Study 2), we used squared
correlation coefficient (R2

abs) for test set compounds, squared leave-one-out cross-validation
correlation coefficient (Q2

abs) for training set compounds, and mean absolute error (MAE)
for the linear correlation between predicted (Ypred) and experimental (Yexp) data. For this
study, Y is the Paca2 cellular uptake. These parameters are defined as follows:

. In Case Study 1, the classification models were considered acceptable if CCRCV ≥ 0.6 and
CCRtest ≥ 0.6, whereas the regression models were considered acceptable in Case Study 2 if
Q2

abs > 0.6 and R2
abs > 0.6.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Study design for Quantitative Nanostructure-Activity Relationship (QNAR) modeling using
both calculated as well as experimentally measured properties of manufactured
nanoparticles as descriptors.
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Figure 2.
Hierarchical clustering analysis of 51 MNPs using their biological activity profiles. The
clustered distance matrix reveals 3 distinct clusters of MNPs based on their biological
activity profiles [on the distance matrix, blue colors = high similarity between
nanoparticles, red/green/yellow colors = low/medium similarity between nanoparticles].
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Figure 3.
Analysis of Z score variations for all 51 nanoparticles tested against AO aorta endothelial
cells in the ATP content assay at four different concentrations (0.01, 0.03, 0.1 and 0.3 Fe
(mg/ml) for iron-based nanoparticles (NP_1–48) respectively; for the three quantum dot-
based nanoparticles (NP_49–51), concentrations were equal to 1, 3, 30 and 100 nM). The
labeled MNPs show the most dramatic dose-dependence of their biological effects,
particularly at high MNP concentrations.
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Figure 4.
Analysis of descriptors used most frequently in kNN-QSAR models of 109 MNPs. (a)
Average descriptor values in MNPs with highest and lowest PaCa2 cellular uptake. (b)
Example of a lipophilicity related descriptor (GCUT_SLOGP_0), which significantly
discriminates between nanoparticles with highest and lowest PaCa2 cellular uptake.

Fourches et al. Page 17

ACS Nano. Author manuscript; available in PMC 2011 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fourches et al. Page 18

Table 1

Case Study 1 - (a) Cluster membership according to the MNP types and (b) their metal core types.

MNP
Type

CLUSTER
1

CLUSTER
2

CLUSTER
3

Total

CLIO 7 13 3 23

PNP 7 2 10 19

MION 0 4 0 4

Qt-dot 3 0 0 3

Feridex 0 1 0 1

Ferrum Haussmann 1 0 0 1

18 20 13 51

(a)

MNP
Metal
Core

CLUSTER
1

CLUSTER
2

CLUSTER
3

Total

Fe2O3 5 0 9 14

Fe3O4 9 20 4 33

Cd-Se 3 0 0 3

Fe(III) 1 0 0 1

18 20 13 51

(b)
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